
HAL Id: hal-00408738
https://hal.science/hal-00408738

Preprint submitted on 2 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial Synchrony Based on Set Timeliness
Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, Sam

Toueg

To cite this version:
Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, Sam Toueg. Partial Synchrony
Based on Set Timeliness. 2009. �hal-00408738�

https://hal.science/hal-00408738
https://hal.archives-ouvertes.fr

Partial Synchrony Based on Set Timeliness

Marcos K. Aguilera
Microsoft Research Silicon Valley

Carole Delporte-Gallet
Université Paris 7

Hugues Fauconnier
Université Paris 7

Sam Toueg
University of Toronto

August 2, 2009

Abstract

We introduce a new model of partial synchrony for read-writeshared memory systems. This model
is based on the notion ofset timeliness—a natural and straightforward generalization of the seminal
concept oftimelinessin the partially synchrony model of Dwork, Lynch and Stockmeyer [11].

Despite its simplicity, the concept of set timeliness is powerful enough to define a family of partially
synchronous systems that closely match individual instances of thet-resilientk-set agreement prob-
lem amongn processes, henceforth denoted(t, k, n)-agreement. In particular, we use it to give a par-
tially synchronous system that is is synchronous enough forsolving(t, k, n)-agreement, but not enough
for solving two incrementally stronger problems, namely,(t + 1, k, n)-agreement, which has a slightly
stronger resiliency requirement, and(t, k − 1, n)-agreement, which has a slightly stronger agreement
requirement. This is the first partially synchronous systemthat separates between these sub-consensus
problems.

The above results show that set timeliness can be used to study and compare the partial synchrony
requirements of problems that are strictly weaker than consensus.

1 Introduction

The concept of partial synchrony, introduced in the seminalwork of Dwork, Lynch and Stockmeyer [11],
is based on the notion oftimeliness, e.g., an upper boundΦ on relative process speeds: “in any contiguous
interval containingΦ real-time steps, every correct process must take at least one step. This implies no
correct process can run more thanΦ times slower than another.” In the partially synchronous systems
in [11], all the processes are (eventually) timely relative to each other.

To define partially synchronous systems that are weaker thanthose in [11], but are still strong enough to
solve consensus, the above notion of timeliness was later refined by considering the timeliness of each pair
of processesindividually. In particular, for shared memory systems, one can define theconcept ofprocess
timeliness, which compares the speed of asingleprocessp to the speed of another processq, as follows:p
is timely with respect toq if, for some integeri, every interval that containsi steps ofq contains at least one
step ofp [3]. Process timeliness, however, cannot be used to study problems that are weaker than consensus
such asset agreement: the existence of a single processp that is timely with respect to another process
q is sufficient to solve consensus in read-write shared memorysystems where at most one process may
crash (this follows from results in [1,3]). In fact, all the partially synchronous systems that were previously
proposed for message-passing and read-write shared memoryare strong enough to solve consensus (under
some condition on the number of processes that may crash).

1

= p1
= p2 = q

= q= p (p or p1 2)

...

...

Figure 1: Example of set timeliness. Top shows a schedule with three processes,p1, p2, q, in which neither
p1 norp2 is timely with respect toq. Bottom shows the same schedule wherep1 andp2 are considered as a
single virtual processp, andp is timely with respect toq.

In this paper, we propose a simple generalization of processtimeliness, calledset timeliness, and show
that it can be used to study and compare the partial synchronyrequirements of problems that are weaker than
consensus. Intuitively, this generalization is obtained by considering a set of processesP in the system as a
single entity, i.e., as a “virtual process”p that takes a step whenever any process inP takes a step, and then
use the definition of process timeliness on such virtual processes. So, asetof processesP is timely with
respect to anothersetof processesQ if, for some integeri, every interval that containsi steps of processes
in Q contains at least one step of some process inP . As we will see below, the processes inP may not be
individually timely (i.e., the speed of each process inP may fluctuate beyond any bound), but when they are
viewed as a single (cooperating) process they may be timely.So a set of processes may be able to overcome
the speed fluctuations of individual members of the set, by working together as a timely virtual process.

A simple example, depicted in Figure 1, illustrates the definition of set timeliness. Consider the syn-
chrony of processesp1 andp2 with respect to processq in scheduleS = [(p1 · q)

i · (p2 · q)
i]∞i=1. Note that

p1 is not timely with respect toq in S, because there are longer and longer sequences of consecutive steps
in S whereq takes more and more steps whilep1 takes no step at all: intuitively, there are longer and longer
periods wherep1 is very slow with respect toq. Similarly, p2 is not timely with respect toq in S. But if we
considerp1 andp2 as a single virtual processp, then the above scheduleS now becomes(p · q)∞, and the
virtual processp is indeed timely with respect toq. In other words, ifp1 andp2 are considered as a single
entity (a set of two cooperating processes), then together they are timely with respect toq. In our model of
partial synchrony, we say that the set of processes{p1, p2} is timely with respect to the set{q}. Similarly, a
set of processes{p1, p2} is timely with respect to a set{q1, q2, q3} if, when we remove all the indices from
these processes, the resulting virtual processp is timely with respect to virtual processq.

In this paper, we show that set timeliness can be used to studythe synchrony requirements of sub-
consensus tasks. In particular, we use it to define a family ofpartially synchronous systems, and prove
tight possibility/impossibility results for solving thet-resilient k-set agreement problem— a well-known
generalization of the wait-free consensus problem [10] — inthese systems.1

More precisely:

1. We define a family of partially synchronous systems, denotedSi
j,n, as follows:Si

j,n is a read/write
shared memory system ofn processes where at least one set of processes of sizei is timely with
respect to a set of processes of sizej. The family of partially synchronous systems consists of all Si

j,n

where each ofi andj ranges from1 to n.

2. We solve the following general question:For any t, k, n and anyi and j, is the(t, k, n)-agreement

1Intuitively, with thet-resilientk-set agreement problem forn processes, henceforth denoted(t, k, n)-agreement, there aren
processes that propose values, and if at mostt of them crash, then each non-faulty process must decide on a proposed value such
that there are at mostk different decision values. The problem parametert ranges from1 (which corresponds to tolerating a single
failure) ton − 1 (which corresponds to wait-freedom), and parameterk ranges from1 (which corresponds to consensus) ton − 1
(which corresponds to set-consensus).

2

problem solvable in partially synchronous systemSi
j,n? The answer to this question is surprisingly

simple:(t, k, n)-agreement is solvable inSi
j,n if and only if i ≤ k andj − i ≥ (t + 1)− k.

The above result gives the first partially synchronous system that separates the(t, k, n)-agreement prob-
lem from the following two incrementally stronger problems: (t + 1, k, n)-agreement, which has a slightly
stronger resiliency requirement, and(t, k − 1, n)-agreement, which has a slightly stronger agreement re-
quirement. In fact, the result implies that partially synchronous systemSk

t+1,n is synchronous enough for
solving (t, k, n)-agreement, but not enough for solving(t + 1, k, n)-agreement or(t, k − 1, n)-agreement.
The partially synchronous systems that “closely match” the(t + 1, k, n)-agreement and(t, k − 1, n)-agreement
problems areSk

t+2,n andSk−1

t+1,n, respectively.
Our work is related to results in the IIS and IRIS models [5, 18, 19]. We discuss this and other related

work in Section 6.

Roadmap. This paper is organized as follows. In Section 2, we define thenotion of set timeliness and
use it to define the partially synchronous systemSi

j,n. In Section 3, we describe the(t, k, n)-agreement
problem. In Section 4, we prove that(t, k, n)-agreement is solvable in systemSk

t+1,n. In Section 5, we
determine when(t, k, n)-agreement is solvable in systemSi

j,n. In Section 6, we discuss related work.

2 Model

We consider a shared-memory system withn processesΠn = {1, . . . , n}, which can communicate with
each other via some (possibly infinite) setΞ of shared registers.

A scheduleS (in Πn) is a finite or infinite sequence of processes (inΠn). A step of a scheduleis an
element ofS. Given a finite scheduleS and a scheduleS′, we denote byS · S′ the concatenation ofS and
S′. Given an infinite scheduleS, a processp is correct inS if there are infinitely many occurrences ofp in
S, andp is faulty inS otherwise (in this case, we also say thatp crashes inS).

2.1 Set timeliness

In what follows,P , P ′, Q, andQ′ are sets of processes inΠn andS is a schedule inΠn.

Definition 1 P is timely with respect toQ in S if there is an integeri such that every sequence of consecu-
tive steps ofS that containsi occurrences of processes inQ contains a process inP .

The following observations follow directly from the above definition:

Observation 2 If P is timely with respect toQ in S, andP ′ is timely with respect toQ′ in S, thenP ∪ P ′

is timely with respect toQ ∪Q′ in S.

Observation 3 If P is timely with respect toQ in S, andP ⊆ P ′ andQ′ ⊆ Q, thenP ′ is timely with
respect toQ′ in S.

The definition ofsettimeliness given above (Definition 1) is a direct generalization of the definition of
processtimeliness given in [3]. In fact, Definition 1 can be used to define process timeliness: A processp is
timely with respect to a processq in S if set{p} is timely with respect to set{q} in S.

3

2.2 Systems and partially synchronous systems

A system may be defined by some properties, e.g., timeliness properties, of its schedules. So we define a
systemS as a tupleS = (Πn,Ξ, Scheds) whereSchedsis a set of schedules inΠ; intuitively, Schedsis the
set of schedules that are possible in systemS.

Theasynchronoussystem ofn processes, denotedSn, is the system(Πn,Ξ, Scheds) whereSchedsis the
set ofall the schedules inΠn. We define the following family ofpartially synchronous systems: for each
i andj such that1 ≤ i ≤ j ≤ n, Si

j,n is the system ofn processes whereat least oneset of processes
of size i is timely with respect toat least oneset of processes of sizej. More precisely, for everyi and
j such that1 ≤ i ≤ j ≤ n, let Schedsij,n be the set of all the schedulesS in Πn such that inS at least
one set of processes of sizei is timely with respect to at least one set of processes of sizej. We define
Si

j,n = (Πn,Ξ, Schedsij,n).
We say that asystemS ′ is contained in systemS, and writeS ′ ⊆ S, if every schedule ofS ′ is also a

schedule ofS, i.e., if S = (Πn,Ξ, Scheds) andS ′ = (Πn,Ξ, Scheds′) andScheds′ ⊆ Scheds.
Observation 3 implies the following:

Observation 4 For all i, j, n such that1 ≤ i ≤ j ≤ n, and alli′ andj′ such that1 ≤ i′ ≤ i andj ≤ j′ ≤ n,
Si′

j′,n ⊆ S
i
j,n.

Since, in any schedule, every set ofi processes is timely with respect to itself, the following isobvious:

Observation 5 For all i such that1 ≤ i ≤ n, Si
i,n = Sn, i.e., Si

i,n is the asynchronous system withn
processes.

2.3 Algorithms and runs

An algorithmA in a systemS consists of a set ofn (infinite or finite) deterministic automataA1, . . . ,An.
By abuse of notation, we identify a process with its automaton. Each process executes by taking steps. In
each step, a processp can read or write a shared register and change state (according top’s state transition
function inAp).

Below,A denotes an algorithm,S = (Πn,Ξ, Scheds) denotes a system, andpref(Scheds) denotes the
set of all finite prefixes of schedules inScheds. A configurationofA in S indicates the state of each process
and register. Arun R of A in S is a tupleR = (I, S,A) whereI is an initial configuration ofA in S
andS is a schedule inScheds. A partial run P of A in S is a tupleP = (I, S,A) whereI is an initial
configuration ofA in S andS is a schedule inpref(Scheds). Theconfiguration at the end ofP is the state
of each process and register after they have taken steps fromI in the order indicated byS and according to
the state transitions ofA. Given a scheduleS′ whereS · S′ ∈ pref(Scheds), we denote byP · S′ the partial
run (I, S · S′,A) of A in S. A continuation ofP in S is a runR = (I, S′,A) of A in S whereS is a prefix
of S′.

3 t-resilient k-set agreement forn processes

Let 1 ≤ t ≤ n − 1 and1 ≤ k ≤ n. The t-resilient k-set agreement forn processesproblem, denoted
(t, k, n)-agreement, is defined as follows. Each process inΠn has an initial value and must decide a value
such that

• (Uniform k-agreement)Processes decide at mostk distinct values;

4

• (Uniform validity) If some process decidesv thenv is the initial value of some process; and
• (Termination)If at most t processes are faulty then every correct process eventuallydecides some

value.

Note that(t, n − 1, n)-agreement is also calledt-resilient set agreement, and(t, 1, n)-agreement is also
calledt-resilient consensus. Whent = n − 1, we get thewait-freeversions of these problems, which are
simply calledset agreementandconsensus, respectively. In thebinary versions of all these problems, the
initial values of processes are restricted to be in{0, 1}.

Observation 6 For all 1 ≤ t ≤ n − 1 and1 ≤ k ≤ n, if (t, k, n)-agreement can be solved in a systemS
then it can also be solved in every systemS ′ such thatS ′ ⊆ S.

Observations 4 and 6 imply the following:

Observation 7 For all1 ≤ t ≤ n− 1 and1 ≤ k ≤ n, if (t, k, n)-agreement can be solved in a systemSi
j,n,

where1 ≤ i ≤ j ≤ n, then it can also be solved in every systemSi′

j′,n such that1 ≤ i′ ≤ i andj ≤ j′ ≤ n.

4 Solvingt-resilient k-set agreement forn processes in systemSk
t+1,n

To show thatt-resilient k-set agreement forn processes can be solved inSk
t+1,n, we use thet-resilient

version ofk-anti-Ω — a failure detector given in [21]. In the following, we definet-resilientk-anti-Ω, we
give an algorithm that implementst-resilientk-anti-Ω in systemSk

t+1,n, and we observe that, from a result
in [21], t-resilientk-anti-Ω can be used to solve(t, k, n)-agreement.

4.1 Failure detectork-anti-Ω

Let t andk be such that1 ≤ t ≤ n − 1 and1 ≤ k ≤ n − 1. With thet-resilientk-anti-Ω failure detector,
every processp has a local variablefdOutputp that holds a set ofn−k processes, such that the following
property holds: if at mostt processes are faulty then there exists a correct processc and a time after which,
for every correct processp, c is not in fdOutputp. Note that whent = n − 1, t-resilientk-anti-Ω is just the
k-anti-Ω failure detector defined in [21].2

4.2 Algorithm for t-resilient k-anti-Ω in systemSk
t+1,n

We now give an algorithm that implementst-resilient k-anti-Ω in systemSk
t+1,n, that is, the algorithm

works if every run has at two setsP andQ of sizesk andt + 1, respectively, such thatP is timely with
respect toQ. In the following,Πk

n denotes the set of all subsets ofΠn of sizek. The basic idea of our
algorithm is that each processp has a heartbeat that it increments periodically, and process p has a timeout
timer on each setA in Π

k
n. Processp resets the timer forA whenever it sees that the heartbeat ofany

process inA has increased. Ifp’s timer forA expires (the process times out onA), processp increments the
timeout that it subsequently uses forA, andp also increments a shared registerCounter[A, p]. This shared
register represents a “badness” counter forA as seen by processp. Note thatCounter[A, p] is monotonically
nondecreasing, so either it grows to infinity or it eventually stops changing. We define the accusation counter
of a setA to be the(t + 1)-st smallest value ofCounter[A, ∗]. Intuitively, the accusation counter ofA has
two properties: (1) if at leastn − t entries ofCounter[A, ∗] grow to infinity then the accusation counter of

2So(n−1)-resilient1-anti-Ω is equivalent to failure detectorΩ [9], and(n−1)-resilient(n−1)-anti-Ω is also called anti-Ω [21].

5

A also grows to infinity, and (2) if at leastt + 1 entries ofCounter[A, ∗] eventually stops changing then the
accusation counter ofA also eventually stops changing. Each processp picks the set that has the smallest
accusation counter, breaking ties using some arbitrary total order onΠk

n. This set is denotedwinnersetp,
andp outputs the setΠn − winnersetp as the output ofk-anti-Ω.

The detailed algorithm is shown in Figure 2. Each process executes an infinite loop, in which the process
readsCounter[A, q] for each setA in Π

k
n and each processq ∈ Πn, calculates the accusation counter of

each setA, chooses a winner, and sets the output ofk-anti-Ω accordingly. The process then increments its
heartbeat, checks the heartbeats of each processq and, if the heartbeat has increased, it resets the timers
of all the sets inΠk

n containingq. Finally, processp checks if the timers have expired, and increments
Counter[A, p] for the setsA whose timer expired.

Intuitively, this algorithm works because there is at leastone setP of sizek that is timely with respect to
some setQ of sizet + 1. As we shall see, this implies that eventually every processq ∈ Q stops increasing
Counter[P, q]. So, at leastt + 1 entries ofCounter[P, ∗] eventually stops changing. Thus, the accusation
counter ofP also eventually stops changing. Among all sets whose accusation counter stops changing, one
of them, sayA0, ends up with the smallest accusation counter, and eventually all correct processes pick this
set as the winner and outputΠn−A0. Note thatA0 must have a correct process: if all processes inA0 were
faulty then all correct processes (there are at leastn− t of them) would keep timing out onA0 and so at least
n − t entries ofCounter[A0, ∗] would grow to infinity, so the accusation counter ofA0 would also grow to
infinity.

We now sketch a correctness proof. Letk, t, n be such that1 ≤ k ≤ t ≤ n−1. Henceforth, we consider
an arbitrary runR of the algorithm of Figure 2 in systemSk

t+1,n. In the proof, the local variablevar of a
processp is denoted byvarp. Let S be the schedule of runR. Henceforth, “steps” refer to steps inS, and a
“correct” or “faulty” refers to a correct or faulty process in S, and if we say that a process crashes, we mean
it crashes inS.

We must show that if at mostt processes crash then there exists a correct processc and a time after
which, for every correct processp, c is not infdOutputp. Henceforth, suppose that at mostt processes crash.
SinceR is a run in systemSk

t+1,n, we can define the following:

Definition 8 Let A′ andB′ be sets of sizek andt + 1, respectively, such thatA′ is timely with respect to
B′ in S.

Lemma 9 Let A ∈ Π
k
n and suppose thatA is timely with respect to some setB ⊆ Πn in S. Then there

exists a constantc such that, for every processb ∈ B, every sequence of consecutive steps ofS containing
c steps of processes inB contains a step of a process inA that writes in line 7.

PROOF SKETCH. Each loop interaction has a bounded number of steps, so the result follows from the
definition of what it means for setA to be timely with respect toB in S.

Note that, for anyA ∈ Π
k
n, Counter[A, q] can only be modified by processq, and only by incrementing

it. Thus,Counter[A, q] is monotonically nondecreasing and we have the following:

Lemma 10 For everyA ∈ Π
k
n and everyq ∈ Πn, either eventuallyCounter[A, q] stops changing or it

grows monotonically to infinity.

We now give a sufficient condition forCounter[A, q] to eventually stop changing.

6

SHARED REGISTERS

∀p ∈ Πn : Heartbeat[p] = 0
∀A ∈ Π

k
n,∀q ∈ Πn : Counter[A, q] = 0 {Π

k
n is the set of all subsets ofΠn of sizek }

CODE FOR PROCESSp:

Local variables

fdOutput= any set of processes of sizen− k

winnerset= ∅
myHb= 0
∀q ∈ Πn : prevHeartbeat[q] = 0
∀A ∈ Π

k
n : timeout[A] = 1

∀A ∈ Π
k
n : timer[A] = timeout[A]

∀A ∈ Π
k
n : accusation[A] = 0

∀A ∈ Π
k
n,∀q ∈ Πn : cnt[A, q] = 0

hbq= 0

Main code

1 repeat forever

{ choose FD output}
2 for each 〈A, q〉 ∈ Π

k
n ×Πn do cnt[A, q]← read(Counter[A, q])

3 for each A ∈ Π
k
n do accusation[A]← (t + 1)-st smallest value ofcnt[A, ∗]

4 winnerset← argminA∈Πk
n
{(accusation[A], A)} { break ties using a total order onΠk

n }

5 fdOutput← Πn − winnerset

{ bump heartbeat}
6 myHb← myHb+ 1
7 write(Heartbeat[p], myHb)

{ check other processes’ heartbeat}
8 for each q ∈ Πn do
9 hbq← read(Heartbeat[q])
10 if hbq> prevHeartbeat[q] then
11 for eachA ∈ Π

k
n do

12 if q ∈ A then timer[A]← timeout[A]
13 prevHeartbeat[q]← hbq

{ check for expiration of set timers}
14 for each A ∈ Π

k
n do

15 timer[A]← timer[A]− 1
16 if timer[A] = 0 then
17 timeout[A]← timeout[A] + 1
18 timer[A]← timeout[A]

{ incrementCounter[A, p] based on the value read in line 2}
19 write(Counter[A, p], cnt[A, p] + 1)

Figure 2: Algorithm fort-resilientk-anti-Ω in systemSk
t+1,n.

7

Lemma 11 For everyA ∈ Π
k
n and everyB ⊆ Πn, if A is timely with respect toB in S then for every

processb ∈ B, there is a time after whichCounter[A, b] stops changing.

PROOF SKETCH. From Lemma 9, there exists a constantc such that, every sequence of consecutive steps
of S containingc steps of processes inB contains a step of process inA that writes in line 7. In this line,
Heartbeat[a] is incremented for somea ∈ A. Therefore, for every processb ∈ B, there exists a constantc′

such thattimerb[A] is reset totimeoutb[A] at least once everyc′ steps ofb. Thus, sinceb increasestimeoutb[A]
each time it finds thattimerb[A] = 0, there is a time after whichb does not find thattimerb[A] = 0 in line 16.
So there is a time after whichCounter[A, b] stops changing.

We now give a sufficient condition forCounter[A, q] to grow to infinity.

Lemma 12 For everyA ∈ Π
k
n, if every process inA crashes then for every correct processb, Counter[A, b]

grows to infinity.

PROOF SKETCH. If every process inA crashes then eventually no process inA increments its entry in the
Heartbeatvector. Thus, for every correct processb, there is a time after whichb does not settimerb[A] to
timeoutb[A] in line 12. Thenb finds thattimerb[A] = 0 in line 16 infinitely often, and writesCounter[A, b]
infinitely often in line 19. ThereforeCounter[A, b] grows to infinity.

We now define a pseudo-variablecounter(A) that depends on the current values ofCounter[A, ∗].

Definition 13 For everyA ∈ Π
k
n, counter(A) is the(t + 1)-st smallest entry ofCounter[A, ∗].

Note that since each entry ofCounter[A, ∗] is monotonically nondecreasing,counter(A) is also mono-
tonically nondecreasing. Thus, we can define the following:

Definition 14 For everyA ∈ Π
k
n, we definec(A) as follows. Ifcounter(A) grows to infinity thenc(A) =

∞. Otherwise,counter(A) eventually stops changing and we letc(A) be its final value.

We now establish a relation betweenc(A) and the entries ofCounter[A, ∗].

Lemma 15 For everyA ∈ Π
k
n, c(A) = ∞ if and only if at leastn − t entries ofCounter[A, ∗] grow to

infinity.

PROOF SKETCH. Let A ∈ Π
k
n. To show the “if” part of the lemma, suppose that at leastn − t entries of

Counter[A, ∗] grow to infinity. Then the smallestt + 1 entries ofCounter[A, ∗] includes at least one entry
that grows to infinity. Thus,counter(A) also grows to infinity, soc(A) =∞.

We now show the “only if” part of the lemma, by showing its contrapositive. Suppose that fewer than
n− t entries ofCounter[A, ∗] grow to infinity. Then at leastt + 1 entries ofCounter[A, ∗] eventually stops
changing. Thus, eventually the smallestt+1 entries ofCounter[A, ∗] all stop changing (since an entry either
stops changing or it grows monotonically to infinity). Thus,counter(A) also eventually stops changing, so
c(A) <∞.

Lemma 16 For everyA ∈ Π
k
n, if A is timely with respect to some setB of sizet + 1 in S thenc(A) <∞.

8

PROOF SKETCH. By Lemmas 11 and 15.

Lemma 17 For everyA ∈ Π
k
n, if every process inA crashes thenc(A) =∞.

PROOF SKETCH. By Lemmas 12 and 15, and the fact that there is at leastn− t correct processes.

We now defineA0 to be the set ofk processes with smallestc(A), breaking ties using a total order on
Π

k
n.

Definition 18 Let A0 = argminA∈Πk
n
{(c(A), A)}.

Lemma 19 c(A0) <∞.

PROOF. Recall that setA′ is timely with respect to setB′ in S, whereB′ has sizet + 1. By Lemma 16,
c(A′) <∞. The result follows sincec(A0) ≤ c(A′) by definition ofA0.

Lemma 20 A0 has a correct process.

PROOF SKETCH. Immediate from Lemmas 19 and 17.

We now establish a relation betweenc(A) and the local variableaccusationq[A] of a correct processq.

Lemma 21 For everyA ∈ Π
k
n and every correct processq, if c(A) < ∞ then there is a time after which

accusationq[A] = c(A); if c(A) =∞ thenaccusationq[A] grows to infinity.

PROOF SKETCH. Let A ∈ Π
k
n andq be a correct process. Sinceq is correct, for every processp, q sets

cntq[A, p] to Counter[A, p] in line 2 infinitely often. Thus, for each processp, cntq[A, p] eventually stops
changing if and only ifCounter[A, p] eventually stops changing. Thus, by the wayq setsaccusationq[A]
in line 3 and by definition ofcounter(A), we have thataccusationq[A] eventually stops changing if and
only if counter(A) eventually stops changing. Moreover, ifcounter(A) eventually stops changing then
its final valuec(A) is also the final value ofaccusationq[A]. The result now follows by the definition of
c(A): if c(A) < ∞ thencounter(A) eventually stops changing and so, by the above,accusationq[A] also
stops changing and their final values are the same. ifc(A) = ∞ thencounter(A) grows to infinity, and so
accusationq[A] also grows to infinity.

Finally, we show that every correct process outputsΠn −A0.

Lemma 22 There is a time after which every correct process outputsΠn −A0.

PROOF SKETCH. Let p be any correct process. By Lemma 19,c(A0) < ∞. Thus, by Lemma 21, there is
a time after whichaccusationp[A0] = c(A0).

It is clear that there is a time after whichp can only pickA0 in line 4, because ifA 6= A0 then ei-
ther (a)c(A) = ∞, so by Lemma 21accusationp[A] grows to infinity, and so there is a time after which
(accusationp[A], A) > (accusationp[A0], A0), or (b)c(A) <∞, so by Lemma 21 and the definition ofA0,
there is a time after which(accusationp[A], A) = (c(A), A) > (c(A0), A0) = (accusationp[A0], A0).

9

Theorem 23 For everyk, t, n such that1 ≤ k ≤ t ≤ n−1, the algorithm in Figure 2 implementst-resilient
k-anti-Ω in systemSk

t+1,n.

PROOF SKETCH. Consider any run of the algorithm in Figure 2 in systemSk
t+1,n. Suppose that at mostt

processes crash. It is clear that the output at each process is a set ofn − k ≥ 1 processes. By Lemma 20,
there is a correct processc in A0. By Lemma 22, there is a time after which every correct process outputs
Πn −A0, which does not containc. Hence all the requirements oft-resilientk-anti-Ω are satisfied.

4.3 Usingt-resilient k-anti-Ω to solve(t, k, n)-agreement

A result in [21] implies thatt-resilientk-anti-Ω can be used to solve the(t, k, n)-agreement problem in the
asynchronous systemSn. By Theorem 23,t-resilientk-anti-Ω can be implemented in systemSk

t+1,n. By
combining these two results, we have:

Theorem 24 For everyt, k andn such that1 ≤ k ≤ t ≤ n − 1, the(t, k, n)-agreement problem can be
solved in systemSk

t+1,n.

Whent < k ≤ n it is trivial to solve(t, k, n)-agreement in the asynchronous systemSn. So we have:

Corollary 25 For everyt, k andn such that1 ≤ t ≤ n−1 and1 ≤ k ≤ n, the(t, k, n)-agreement problem
can be solved in systemSk

t+1,n.

5 Determining if (t, k, n)-agreement is solvable inSi
j,n

We now present our main result: for every1 ≤ k ≤ t ≤ n − 1, and every1 ≤ i ≤ j ≤ n, we determine
whether the(t, k, n)-agreement problem is solvable or not solvable in the partially synchronous systemSi

j,n.
To do so we first consider the special case wheret = k, and prove the following theorem:

Theorem 26 For everyk andn such that1 ≤ k ≤ n− 1:

1. The(k, k, n)-agreement problem can be solved in systemSk
n,n.

2. The(k, k, n)-agreement problem cannot be solved in systemSk+1
n,n .

PROOF SKETCH. Let k andn be such that1 ≤ k ≤ n− 1.

1. By Theorem 24,(k, k, n)-agreement can be solved inSk
k+1,n. Sincek + 1 ≤ n, by Observation 7,

(k, k, n)-agreement can also be solved inSk
n,n.

2. We consider 2 cases:

(a) n = k+1. By a well-known impossibility result given in [4,13,20], the(k, k, k + 1)-agreement
problem cannot be solved in the asynchronous systemSk+1. By Observation 5,Sk+1 = Sk+1

k+1,k+1
.

10

(b) n > k+1. Suppose, for contradiction, that there is an algorithmA that solves(k, k, n)-agreement
in Sk+1

n,n . We claim that this implies that(k, k, k + 1)-agreement can also be solved in the asyn-
chronous systemSk+1 — contradicting the impossibility result in [4,13,20]. This claim is shown
using a simulation algorithm that is similar to those in [6,7].

Consider the asynchronous systemSk+1. Thek+1 processes ofSk+1 can solve(k, k, k + 1)-agreement
by simulating the execution of the algorithmA in a systemS of n > k+1 processes. In this sim-
ulation, every scheduleS of Sk+1 such that at mostk processes crash inS maps to a simulated
scheduleSA of S such that:

i. at mostk processes crash inSA, and

ii. Every set ofk + 1 processes is timely with respect to the set ofn processes inSA, i.e.,
SA ∈ S

k+1
n,n .

Property (i) was already guaranteed by the simulation algorithms in [6, 7]. We obtain Prop-
erty (ii) by a careful scheduling of then simulated threads of algorithmA by thek+1 processes
of Sk+1.

Let SimulA be the algorithm that simulates the execution ofA in systemS. Let R be an
arbitrary run ofSimulA in systemSk+1 andS be the schedule of runR. Let RA be the corre-
sponding simulated run ofA in systemS, andSA be the schedule of runRA.

Suppose at mostk processes crash in runR (i.e., in the scheduleS of R). By Property (i), at
mostk processes crash in the corresponding simulated runRA (i.e., in the scheduleSA of RA).

Furthermore, by Property (ii),SA is in Sk+1
n,n . Since the algorithmA solves(k, k, n)-agreement

in Sk+1
n,n (by our assumption), the simulated runRA of A, which has scheduleSA ∈ S

k+1
n,n ,

satisfies the properties of the(k, k, n)-agreement problem, namely: (1) every process that is
correct in runRA (i.e., in scheduleSA) eventually decides (note that there at at leastn− k > 2
such processes), (2) all the decision values are initial values, and (3) there are at mostk distinct
decision values.

Thus,k + 1 processes can solve(k, k, k + 1)-agreement in the asynchronous systemSk+1 by
(1) executing the algorithmSimulA that simulates some runRA of the algorithmA by n pro-
cesses in systemSk+1

n,n , and (2) adopting any decision value reached by any of then processes in
this simulated runRA. But solving(k, k, k + 1)-agreement inSk+1 contradicts the impossibility
result in [4,13,20].

We now state and prove the main result:

Theorem 27 For everyt, k andn such that1 ≤ k ≤ t ≤ n− 1 and everyi andj such that1 ≤ i ≤ j ≤ n,
the(t, k, n)-agreement problem can be solved in systemSi

j,n if and only if i ≤ k andj − i ≥ t + 1− k.

PROOF. Let 1 ≤ k ≤ t ≤ n− 1 and1 ≤ i ≤ j ≤ n.

1. Supposei ≤ k andj − i ≥ t + 1− k. We show that(t, k, n)-agreement can be solved inSi
j,n.

We consider 2 cases:

(a) j ≥ t + 1. By Theorem 24,(t, k, n)-agreement can be solved in systemSk
t+1,n. Sincei ≤ k and

j ≥ t + 1, by Observation 7,(t, k, n)-agreement can be also solved in systemSi
j,n.

11

(b) j < t + 1. Let S be an arbitrary schedule of systemSi
j,n. By definition, inS there is a set

of processesPi of size i that is timely with respect to a set of processesPj of size j. Since
n ≥ t + 1, we haven − j ≥ t + 1 − j. So, among then processes inΠn, there are at least
t + 1− j processes that arenot in the setPj . Let Q be a set oft + 1 − j processes that are not
in Pj (sincej < t + 1, this set is not empty).

Let Pt+1 = Pj ∪ Q andPl = Pi ∪ Q. SincePj andQ are disjoint, the size ofPt+1 is j +
(t + 1 − j) = t + 1. Pi andQ are not necessarily disjoint, so the size ofPl is l such that
i ≤ l ≤ i + (t + 1 − j) ≤ t + 1. SincePi is timely with respect toPj in scheduleS, andQ

is timely with respect to itself inS, by Observation 2,Pl = Pi ∪ Q is timely with respect to
Pt+1 = Pj ∪Q in S. Thus, since|Pl| = l and|Pt+1| = t + 1, every scheduleS of Si

j,n is also a
schedule ofS l

t+1,n. HenceSi
j,n ⊆ S

l
t+1,n.

By Corollary 25,(t, l, n)-agreement can be solved inS l
t+1,n. SinceSi

j,n ⊆ S
l
t+1,n, by Obser-

vation 6,(t, l, n)-agreement can also be solved inSi
j,n. By assumption,j − i ≥ t + 1 − k, so

k ≥ t + 1 + i− j and thereforek ≥ l. So(t, k, n)-agreement can be solved inSi
j,n.

2. Supposei > k or j − i < t + 1− k. We show that(t, k, n)-agreement cannot be solved inSi
j,n.

We consider 2 cases:

(a) i > k. By Theorem 26 part (2),(k, k, n)-agreement cannot be solved in systemSk+1
n,n . Since

i ≥ k + 1 andj ≤ n, by Observation 7,(k, k, n)-agreement cannot be solved inSi
j,n. Since

k ≤ t, (t, k, n)-agreement cannot be solved inSi
j,n.

(b) i ≤ k. Sincei ≤ k, by our hypothesis, we must havej − i < t + 1 − k, and so1 ≤ i ≤ k <

t + 1− (j − i).

We claim that(t, k, n)-agreement cannot be solved inSi
j,n. Suppose, for contradiction, that

(t, k, n)-agreement can be solved inSi
j,n. We now prove that this implies that, for some1 ≤

ℓ < m, (ℓ, ℓ,m)-agreement can be solved in the asynchronous systemSm — a contradiction to
a well-known impossibility result [6].

Let ℓ = t − (j − i) andm = n − (j − i). Since1 < t + 1 − (j − i) andn > t, we have
1 ≤ ℓ < m.

Consider the asynchronous systemSm. Them ≥ 2 processes of this system can solve(ℓ, ℓ,m)-agreement
as follows. They pretend they are in a larger systemS with m + (j − i) processes, where the
additional(j − i) fictitious processes never take a step. Intuitively, in system S, the (j − i)
fictitious processes are crashed from the start. Note that the simulated systemS has a total of
m + (j − i) = n processes.

Let Pi be a set ofi “real” processes, i.e., they are among them processes of systemSm,3 and let
C be the set of(j − i) fictitious processes ofS.

Now consider any scheduleS of the simulated systemS. In S it is obvious that the setPi is
timely with respect to itself, andPi is also timely with respect to the set of crashed processesC.
So, by Observation 2,Pi is timely with respect toPi ∪ C in S. Thus, in every scheduleS of S,
there is a set of sizei that is timely with respect to a set of sizei + (j − i) = j. In other words,
every schedule ofS is also a schedule ofSi

j,n. SoS ⊆ Si
j,n.

3Note that there are at leasti processes inSm, becausem = i + (n − j) andn − j ≥ 0.

12

By assumption,(t, k, n)-agreement can be solved inSi
j,n. SinceS ⊆ Si

j,n, by Observation 6,
(t, k, n)-agreement can also be solved inS. SinceS has(j − i) fictitious processes that are
permanently crashed, this implies that(t− (j − i), k,m)-agreement can be solved in the “real”
systemSm. Sinceℓ = t − (j − i), (ℓ, k,m)-agreement can be solved inSm. Sincek ≤
t− (j − i) = ℓ, (ℓ, ℓ,m)-agreement can be solved inSm. SinceSm is the asynchronous system
with m ≥ 2 processes and1 ≤ ℓ < m, this contradicts an impossibility result in [6]. Thus,
(t, k, n)-agreement cannot be solved inSi

j,n.

6 Related work

Dwork, Lynch, and Stockmeyer [11] introduce the concept of partial synchrony. They propose message-
passing models in which there are eventual or unknown boundson message transmission times and on
relative process speeds. These bounds must hold between every pair of processes. It is shown that consensus
can be solved in these models. Subsequent work [1,2,12,14–17] proposed weaker types of partial synchrony
(for message-passing systems) with which consensus can still be solved orΩ can be implemented (Ω is the
weakest failure detector for consensus [8]). None of these works have considered models in which sub-
consensus problems such as(t, k, n)-agreement can be solved, but consensus cannot.

The work in [3] considers a shared-memory model and defines what it means for a single processp to
be timely with respect to another processq in any given schedule. The concept of set timeliness introduced
in this paper is a direct generalization of this definition, where individual processesp andq are replaced by
sets of processesP andQ.

The IIS model [5] is a round-based model in which, in each round, a process atomically writes a value
and obtains a snapshot of the values written by other processes in the round. In this model, set agreement
and consensus are impossible. Rajsbaum et al. [18, 19] propose a family of models called IRIS that are
weaker than the IIS model. This family is parameterized by a propertyPRC on the snapshot values that a
process can obtain in a round. This property “restricts the asynchrony” of the system, because the fact that
a snapshot cannot return certain values means that the execution cannot proceed in certain ways. Specific
IRIS models are given in which wait-freek-set agreement is solvable but wait-free(k−1)-set agreement is
not, thus providing a separation between these problems.

Our model of partial synchrony differs from the IRIS models in two ways. First, we express synchrony
behavior directly via timeliness properties of processes,whereas the IRIS models restrict the allowable
executions via properties that snapshots must satisfy. Second, our model is based on read-write shared
memory, whereas the IRIS model is based on rounds with immediate snapshots. It is possible to implement
these rounds in the read-write shared memory model, but it isunclear how the restricted runs of IRIS map
to the timeliness properties of the shared memory model. Forinstance, a process that never appears in
the snapshot of other processes may be a process that is actually timely in the shared memory model that
implements IRIS: this process may execute at the same speed as other processes but always start a round a
few steps later.

The problem ofk-set agreement was first defined in [10]. The wait-free andt-resilient versions of this
problem were shown to have no solutions in asynchronous systems in [4,6,13,20].

Acknowledgements.The authors are grateful to the anonymous referees for theirmany helpful com-
ments.

13

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-efficient leader
election and consensus with limited link synchrony. InACM Symposium on Principles of Distributed
Computing, pages 328–337, July 2004.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing Omega in systems
with weak reliability and synchrony assumptions.Distributed Computing, 21(4):285–314, October
2008.

[3] M. K. Aguilera and S. Toueg. Timeliness-based wait-freedom: a gracefully degrading progress condi-
tion. In ACM Symposium on Principles of Distributed Computing, pages 305–314, August 2008.

[4] E. Borowsky and E. Gafni. Generalized FLP impossibilityresult for t-resilient asynchronous compu-
tations. InACM symposium on Theory of computing, pages 91–100, May 1993.

[5] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-free computa-
tion (extended abstract). InACM Symposium on Principles of Distributed Computing, pages 189–198,
August 1997.

[6] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BGdistributed simulation algorithm.
Distributed Computing, 14(3):127–146, October 2001.

[7] T. D. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Generalized irreducibility of consensus and the
equivalence of t-resilient and wait-free implementationsof consensus.SIAM Journal of Computing,
34(2):333–357, 2004.

[8] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685–722, July 1996.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor reliable distributed systems.Journal of
the ACM, 43(2):225–267, March 1996.

[10] S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous sys-
tems.Information and Computation, 105(1):132–158, June 1993.

[11] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.Journal
of the ACM, 35(2):288–323, April 1988.

[12] A. Fernández and M. Raynal. From an intermittent rotating star to a leader. Technical Report 1810,
IRISA, Université de Rennes, France, August 2006.

[13] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks (preliminary
version). InACM Symposium on Theory of Computing, pages 111–120, May 1993.

[14] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing the weakest system model for implementing
Ω and Consensus.IEEE Transactions on Dependable and Secure Computing. To appear.

[15] E. Jiménez, S. Arévalo, and A. Fernández. Implementing unreliable failure detectors with unknown
membership.Information Processing Letters, 100(2):60–63, October 2006.

14

[16] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos: leader election and stability without eventual
timely links. In International Conference on Distributed Computing, volume 3724 ofLNCS, pages
199–213. Springer Verlag, September 2005.

[17] A. Mostefaoui, M. Raynal, and C. Travers. Time-free andtimer-based assumptions can be combined
to obtain eventual leadership.IEEE Transactions on Parallel and Distributed Systems, 17(7):656–666,
July 2006.

[18] S. Rajsbaum, M. Raynal, and C. Travers. Failure detectors as schedulers (an algorithmically-reasoned
characterization). Technical Report 1838, IRISA, Université de Rennes, France, March 2007.

[19] S. Rajsbaum, M. Raynal, and C. Travers. The iterated restricted immediate snapshot model. InInter-
national Computing and Combinatorics Conference, volume 5092 ofLNCS, pages 487–497. Springer,
June 2008.

[20] M. E. Saks and F. Zaharoglou. Wait-free k-set agreementis impossible: The topology of public
knowledge.SIAM Journal of Computing, 29(5):1449–1483, 2000.

[21] P. Zielinski. Anti-Omega: the weakest failure detector for set agreement. InACM Symposium on
Principles of Distributed Computing, pages 55–64, August 2008.

15

