N

N

Partial Synchrony Based on Set Timeliness
Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, Sam

Toueg

» To cite this version:

Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, Sam Toueg. Partial Synchrony
Based on Set Timeliness. 2009. hal-00408738

HAL Id: hal-00408738
https://hal.science/hal-00408738

Preprint submitted on 2 Aug 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00408738
https://hal.archives-ouvertes.fr

Partial Synchrony Based on Set Timeliness

Marcos K. Aguilera Carole Delporte-Gallet Hugues Fauconnier
Microsoft Research Silicon Valley Université Paris 7 Université Paris 7
Sam Toueg

University of Toronto

August 2, 2009

Abstract

We introduce a new model of partial synchrony for read-wsttared memory systems. This model
is based on the notion &fet timeliness-a natural and straightforward generalization of the sainin
concept otimelinessn the partially synchrony model of Dwork, Lynch and Stockme[11].

Despite its simplicity, the concept of set timeliness is pdwl enough to define a family of partially
synchronous systems that closely match individual ingaraf thet-resilient k-set agreement prob-
lem amongn processes, henceforth denotegdk, n)-agreement. In particular, we use it to give a par-
tially synchronous system that is is synchronous enougbdiving (¢, &, n)-agreement, but not enough
for solving two incrementally stronger problems, namély- 1, k, n)-agreement, which has a slightly
stronger resiliency requirement, afk — 1, n)-agreement, which has a slightly stronger agreement
requirement. This is the first partially synchronous systeat separates between these sub-consensus
problems.

The above results show that set timeliness can be used tp atudcompare the partial synchrony
requirements of problems that are strictly weaker thaneosiss.

1 Introduction

The concept of partial synchrony, introduced in the semivak of Dwork, Lynch and Stockmeyer [11],
is based on the notion diimelinesse.g., an upper bound on relative process speeds: “in any contiguous
interval containing® real-time steps, every correct process must take at leasst@p. This implies no
correct process can run more théntimes slower than another.” In the partially synchronousteays
in [11], all the processes are (eventually) timely relative to eachr.othe

To define partially synchronous systems that are weakertttwee in [11], but are still strong enough to
solve consensus, the above notion of timeliness was Idiaedeby considering the timeliness of each pair
of processeidividually. In particular, for shared memory systems, one can definedheept ofprocess
timeliness which compares the speed o$iagle process to the speed of another procegsas follows:p
is timely with respect tq if, for some integet, every interval that containssteps ofy contains at least one
step ofp [3]. Process timeliness, however, cannot be used to stuahtgims that are weaker than consensus
such asset agreementthe existence of a single procesghat is timely with respect to another process
q is sufficient to solve consensus in read-write shared mersgsiems where at most one process may
crash (this follows from results in [1, 3]). In fact, all thanally synchronous systems that were previously
proposed for message-passing and read-write shared memgosyrong enough to solve consensus (under
some condition on the number of processes that may crash).

M=), A=p, O=g| HOAONONOAOAONONONOAOAOAO -

®@=p(p,orp) O=q| 0000000000000 0000000000

Figure 1: Example of set timeliness. Top shows a schedulethite processes;, ps2, ¢, in which neither
p1 NOr po is timely with respect tg. Bottom shows the same schedule wherendp, are considered as a
single virtual procesg, andp is timely with respect tg.

In this paper, we propose a simple generalization of protesdiness, calledet timelinessand show
that it can be used to study and compare the partial synchegujrements of problems that are weaker than
consensus. Intuitively, this generalization is obtaingddnsidering a set of processEdn the system as a
single entityi.e., as a “virtual procesgj that takes a step whenever any procesB takes a step, and then
use the definition of process timeliness on such virtual gsses. So, setof processes is timely with
respect to anothesetof processes) if, for some integet, every interval that containssteps of processes
in () contains at least one step of some procesB.iMs we will see below, the processesinmay not be
individually timely (i.e., the speed of each process’imay fluctuate beyond any bound), but when they are
viewed as a single (cooperating) process they may be tirSelya set of processes may be able to overcome
the speed fluctuations of individual members of the set, brking together as a timely virtual process.

A simple example, depicted in Figure 1, illustrates the dk@dim of set timeliness. Consider the syn-
chrony of processes, andp, with respect to procesgin scheduleS = [(p; - ¢)" - (p2 - q)']3°,. Note that
p1 is nottimely with respect tg in S, because there are longer and longer sequences of consestaips
in S whereq takes more and more steps whiletakes no step at all: intuitively, there are longer and lenge
periods where); is very slow with respect tg. Similarly, p» is not timely with respect tg in S. But if we
considerp; andp, as a single virtual procegs then the above schedutenow becomesp - ¢)°°, and the
virtual proces® is indeed timely with respect t@ In other words, ifp; andp, are considered as a single
entity (a set of two cooperating processes), then togeltegrdre timely with respect i@ In our model of
partial synchrony, we say that the set of procegsesp- } is timely with respect to the sét;}. Similarly, a
set of processe§p, p2 } is timely with respect to a sél, g2, g3} if, when we remove all the indices from
these processes, the resulting virtual progeissimely with respect to virtual procegs

In this paper, we show that set timeliness can be used to shedgynchrony requirements of sub-
consensus tasks. In particular, we use it to define a familyasfially synchronous systems, and prove
tight possibility/impaossibility results for solving theresilient k-set agreement problem- a well-known
generalization of the wait-free consensus problem [10] -th@se systems.

More precisely:

1. We define a family of partially synchronous systems, ctmhéyn as foIIows:S;i,n is a read/write
shared memory system af processes where at least one set of processes of @zémely with
respect to a set of processes of siz& he family of partially synchronous systems consists bﬁ;é}jl
where each of andj ranges froml to n.

2. We solve the following general questiofor anyt, k, n and any: and j, is the(t, k, n)-agreement

Intuitively, with thet-resilientk-set agreement problem farprocesses, henceforth denotgdk, n)-agreementthere aren
processes that propose values, and if at me$tthem crash, then each non-faulty process must decide oopaged value such
that there are at mostdifferent decision values. The problem parametenges froml (which corresponds to tolerating a single
failure) ton — 1 (which corresponds to wait-freedom), and paraméteanges froml (which corresponds to consensusyite- 1
(which corresponds to set-consensus).

problem solvable in partially synchronous systsgipn? The answer to this question is surprisingly
simple: (¢, k, n)-agreement is solvable Lﬁ;n ifandonly ifi < kandj —i > (t +1) — k.

The above result gives the first partially synchronous systet separates the, k, n)-agreement prob-
lem from the following two incrementally stronger problentis+ 1, k, n)-agreement, which has a slightly
stronger resiliency requirement, afidk — 1, n)-agreement, which has a slightly stronger agreement re-
quirement. In fact, the result implies that partially syrarious systernSt";rl,n is synchronous enough for
solving (¢, k, n)-agreement, but not enough for solvifig+ 1, k, n)-agreement of¢, k — 1, n)-agreement.
The partially synchronous systems that “closely match{the 1, k, n)-agreement an@, k — 1, n)-agreement
problems arest"ﬁr?m andeJ:lfn, respectively.

Our work is related to results in the 1IS and IRIS models [5,183. We discuss this and other related
work in Section 6.

Roadmap. This paper is organized as follows. In Section 2, we definendt®n of set timeliness and
use it to define the partially synchronous systsm. In Section 3, we describe the, k, n)-agreement
problem. In Section 4, we prove thét k, n)-agreement is solvable in syste.ﬁt’fﬂm. In Section 5, we
determine wherft, k, n)-agreement is solvable in syst@;ign. In Section 6, we discuss related work.

2 Model

We consider a shared-memory system witprocessedl,, = {1,...,n}, which can communicate with
each other via some (possibly infinite) &bf shared registers.

A scheduleS (in IT,,) is a finite or infinite sequence of processesl(if). A step of a scheduls an
element ofS. Given a finite schedulé and a schedulé’, we denote bys - S’ the concatenation of and
S’. Given an infinite schedulg, a proces9 is correct in S if there are infinitely many occurrences fn
S, andp is faulty in S otherwise (in this case, we also say tharrashes inS).

2.1 Settimeliness

In what follows, P, P/, Q, andQ’ are sets of processeslih, andS is a schedule iflL,,.

Definition 1 P is timely with respect t@) in S if there is an integer such that every sequence of consecu-
tive steps of5 that containg occurrences of processes@ricontains a process if.

The following observations follow directly from the abovefiition:

Observation 2 If P is timely with respect t@) in S, andP’ is timely with respect t@)’' in S, thenP U P’
is timely with respect t6) U Q' in S.

Observation 3 If P is timely with respect t&) in S, andP C P’ andQ’ C Q, thenP' is timely with
respect ta)’ in S.

The definition ofsettimeliness given above (Definition 1) is a direct generailaof the definition of
procesgimeliness given in [3]. In fact, Definition 1 can be used téime process timeliness: A processs
timely with respect to a procegsn S if set{p} is timely with respect to sy} in S.

2.2 Systems and partially synchronous systems

A system may be defined by some properties, e.g., timelinegmegies, of its schedules. So we define a
systemS as a tupleS = (II,,, =, Sched$ whereSchedss a set of schedules ifi; intuitively, Schedss the
set of schedules that are possible in system

Theasynchronousystem of: processes, denotd),, is the systentll,,, =, SchedswhereSchedss the
set ofall the schedules il,,. We define the following family opartially synchronous systemtor each
iandj such thatl < i < j < n, S;n is the system of, processes wherat least oneset of processes
of sizei is timely with respect t@t least oneset of processes of size More precisely, for every and
jsuchthatl < i < j < n,let Sched‘ﬁn be the set of all the schedulésin II,, such that inS at least
one set of processes of sizés timely with respect to at least one set of processes of si2d/e define
S, = (I, E, Scheds,,).

We say that aystemS’ is contained in syster, and writeS’ C S, if every schedule of’ is also a
schedule ofS, i.e., if S = (II,,, 2, Scheds andS’ = (I1,,, 2, Sched§ andSchedsC Scheds

Observation 3 implies the following:

Observation 4 For alli, j, n such that < i < j < n, and alli’" andj’ such that < <iandj < j' <n,
Si, CS8t .
]7”

Jmn =

Since, in any schedule, every setiqgirocesses is timely with respect to itself, the followin@lwious:

Observation 5 For all i such thatl < i < n, Sjn =S, ie., S;n is the asynchronous system with
processes.

2.3 Algorithms and runs

An algorithm A in a systemS consists of a set af (infinite or finite) deterministic automatd,, ..., A,.

By abuse of notation, we identify a process with its automateach process executes by taking steps. In
each step, a procegscan read or write a shared register and change state (atgdodi's state transition
function in A).

Below, .4 denotes an algorithn§ = (I1,,, =, Sched$ denotes a system, amief(Sched$ denotes the
set of all finite prefixes of schedules$@thedsA configurationof .4 in S indicates the state of each process
and register. Aun R of Ain Sis atupleR = (1, 5,.A) where is an initial configuration of4 in S
and S is a schedule irBcheds A partial run P of Ain Sis a tupleP = (I, S,.A) where! is an initial
configuration of4 in S andS is a schedule ipref(Scheds. Theconfiguration at the end aP is the state
of each process and register after they have taken steps/fioitine order indicated by and according to
the state transitions 0. Given a schedul&’ whereS - S’ € pref(Sched§, we denote by - S’ the partial
run(I,S -5’ A) of Ain S. A continuation ofP in SisarunR = (1,5, A) of Ain S whereS is a prefix
of S’.

3 t-resilient k-set agreement forn processes

Letl <t <n-—1andl < k < n. Thet-resilient k-set agreement for processegproblem, denoted
(t, k,n)-agreementis defined as follows. Each processlIp has an initial value and must decide a value
such that

e (Uniform k-agreementProcesses decide at mastlistinct values;

e (Uniform validity) If some process decidesthenw is the initial value of some process; and
e (Termination)If at mostt¢ processes are faulty then every correct process evenuedligles some
value.

Note that(¢,n — 1, n)-agreement is also calleeresilient set agreemenand(¢, 1, n)-agreement is also
calledt-resilient consensusWhent = n — 1, we get thewait-freeversions of these problems, which are
simply calledset agreemendnd consensysrespectively. In théinary versions of all these problems, the
initial values of processes are restricted to béanl }.

Observation 6 Foralll <t <n—1andl < k < n, if (t,k,n)-agreement can be solved in a systém
then it can also be solved in every systShsuch thatS’ C S.

Observations 4 and 6 imply the following:

Observation 7 Foralll <t <n—1andl < k <n, if (t, k,n)-agreement can be solved in a systém,
wherel < i < j < n, then it can also be solved in every systégﬁhn such thatl < <iandj <j <n.

4 Solvingt-resilient k-set agreement forn processes in system‘fﬂm

To show thatt-resilient k-set agreement for processes can be solved ‘ﬂ,{fﬂ,n, we use the-resilient
version ofk-anti{) — a failure detector given in [21]. In the following, we defineesilientk-anti<€2, we
give an algorithm that implementsresilient k-anti«<2 in systemst";rl,n, and we observe that, from a result
in [21], ¢-resilientk-anti<2 can be used to solvg, k, n)-agreement.

4.1 Failure detectork-anti-

Lett andk be suchthal <t < n —1andl < k < n — 1. With thet-resilientk-anti€2 failure detector,
every procesg has a local variablédOutpuf, that holds a set of—k processes, such that the following
property holds: if at most processes are faulty then there exists a correct precass a time after which,
for every correct process c is not infdOutpuf,. Note that whert = n — 1, ¢-resilientk-anti<2 is just the
k-anti<) failure detector defined in [28].

4.2 Algorithm for ¢-resilient k-anti-€2 in systemSt’;l,n

We now give an algorithm that implementgesilient k-anti€2 in systemeJan, that is, the algorithm
works if every run has at two sef? and () of sizesk andt + 1, respectively, such tha? is timely with
respect toQ). In the following, H’;; denotes the set of all subsetsldf of size k. The basic idea of our
algorithm is that each procepsas a heartbeat that it increments periodically, and psaecéss a timeout
timer on each setl in TI%. Procesg resets the timer ford whenever it sees that the heartbeataof/
process i has increased. |'s timer for A expires (the process times out di), proces® increments the
timeout that it subsequently uses fér andp also increments a shared regisBountef A, p]. This shared
register represents a “badness” counterd@s seen by procegs Note thatCountef A, p| is monotonically
nondecreasing, so either it grows to infinity or it eventuatbps changing. We define the accusation counter
of a setA to be the(t + 1)-st smallest value oEountefA, x|. Intuitively, the accusation counter df has
two properties: (1) if at least — ¢ entries ofCountef A, x| grow to infinity then the accusation counter of

2S0(n—1)-resilientl-anti<Q is equivalent to failure detect®r [9], and (n—1)-resilient(n—1)-anti<2 is also called ant2 [21].

A also grows to infinity, and (2) if at least- 1 entries ofCountef A, x| eventually stops changing then the
accusation counter ol also eventually stops changing. Each progepgks the set that has the smallest
accusation counter, breaking ties using some arbitragf twtler onIT%. This set is denotedinnersey,
andp outputs the seffl,, — winnersef as the output ok-anti-2.

The detailed algorithm is shown in Figure 2. Each processiggs an infinite loop, in which the process
readsCountefA, ¢] for each setd in TI* and each procesg € II,,, calculates the accusation counter of
each setd, chooses a winner, and sets the outpuk-@inti<2 accordingly. The process then increments its
heartbeat, checks the heartbeats of each pracessl, if the heartbeat has increased, it resets the timers
of all the sets inlI* containingq. Finally, proces checks if the timers have expired, and increments
Countef A, p] for the setsA whose timer expired.

Intuitively, this algorithm works because there is at leas setP of sizek that is timely with respect to
some set) of sizet + 1. As we shall see, this implies that eventually every proges<) stops increasing
CountefP, q]. So, at least + 1 entries ofCountef P, x| eventually stops changing. Thus, the accusation
counter ofP also eventually stops changing. Among all sets whose ationsabunter stops changing, one
of them, sayA,, ends up with the smallest accusation counter, and evénalbtorrect processes pick this
set as the winner and outpllt, — Ay. Note that4dy must have a correct process: if all processedjnvere
faulty then all correct processes (there are at least of them) would keep timing out oA, and so at least
n — t entries ofCountef A, «| would grow to infinity, so the accusation counter4f would also grow to
infinity.

We now sketch a correctness proof. ket,n be such that < k£ <t < n— 1. Henceforth, we consider
an arbitrary runR of the algorithm of Figure 2 in syste k+1,n' In the proof, the local variablear of a
procesg is denoted byar,. Let.S be the schedule of ruR. Henceforth, “steps” refer to steps f) and a
“correct” or “faulty” refers to a correct or faulty process$, and if we say that a process crashes, we mean
it crashes inS.

We must show that if at mostprocesses crash then there exists a correct pracasd a time after
which, for every correct procegs c is not infdOutput,. Henceforth, suppose that at mogirocesses crash.

SinceRis arunin syster@’il,n, we can define the following:

Definition 8 Let A’ andB’ be sets of sizé andt + 1, respectively, such that’ is timely with respect to
B'inS.

Lemma9 Let A € TI¥ and suppose that is timely with respect to some s& C 11,, in S. Then there
exists a constant such that, for every proceés= B, every sequence of consecutive step§ @bntaining
c Steps of processes I# contains a step of a processArnthat writes in line 7.

PROOF SkKeTCH Each loop interaction has a bounded number of steps, sagudt follows from the
definition of what it means for sed to be timely with respect t& in S. O

Note that, for anyd € TTI¥, Countef A, q] can only be modified by procegsand only by incrementing
it. Thus,CountefA, ¢] is monotonically nondecreasing and we have the following:

Lemma 10 For everyA € TI¢ and everyy < 11, either eventuallyfCountefA, q] stops changing or it
grows monotonically to infinity.

We now give a sufficient condition f@@ountefA, ¢] to eventually stop changing.

SHARED REGISTERS

Vp € II,, : Heartbeajp] = 0
VA € TI¥ Vg € 11, : CountefA, q] =0 { 1% is the set of all subsets of,, of sizek }

CODE FOR PROCES®:

Local variables

fdOutput= any set of processes of sire- k
winnerset= ()

myHb= 0

Vq € 11, : prevHeartbedy] = 0

VA € TIF : timeoufA] = 1

VA € TI¥ : timerfA] = timeou{A]

VA € TIF : accusationA] = 0

VA € TIE Vg € 11, : cntfA, ¢] = 0

hbg=0

Main code

1 repeat forever
{ choose FD outpu}

2 for each (A, q) € TI¥ x II,, docn/A, q] «— read(Countef A, q])

3 for each A € TI* do accusatiofiA] < (¢ + 1)-st smallest value afnt{ A,]

4 winnerset— argmin, cyx { (accusatiofA], A)} { break ties using a total order aii" }
5 fdOutput« II,, — winnerset

{ bump heartbea}
6 myHb+«— myHb-+ 1
7 write (Heartbeafp], myHb

{ check other processes’ heartbgat

8 for eachq € 1I,, do
9 hbqg < read(Heartbeaiq))
10 if hbg > prevHeartbedy] then
1 for each A ¢ TI¥ do
12 if ¢ € Athentimer{A] < timeoufA]
13 prevHeartbedyy| < hbq

{ check for expiration of set timers
14 for each A € TIF do
15 timer{A] <« timer{A] — 1
16 if timer[A] = 0 then
17 timeoufA] < timeoufA| + 1
18 timer[A] < timeoufA]

{ incrementCountef A, p| based on the value read in ling 2

19 write (CountefA, p|, cnt{A, p] + 1)

Figure 2: Algorithm fort-resilientk-anti<2 in systemst";rl,n.
7

Lemma 11 For everyA ¢ TI¥ and everyB C 11, if A is timely with respect td3 in S then for every
proces$ € B, there is a time after whicBountef A, b] stops changing.

PROOF SKETCH From Lemma 9, there exists a constasuch that, every sequence of consecutive steps
of S containingc steps of processes iR contains a step of process ihthat writes in line 7. In this line,
Heartbeafa] is incremented for some € A. Therefore, for every proces$sc B, there exists a constadt
such thatimer,[A] is reset tdimeou},[A] at least once every steps ob. Thus, sincé increasesimeout[A]

each time it finds thaimer,[A] = 0, there is a time after whichdoes not find thaimer,[A] = 0in line 16.

So there is a time after whidBountef A, b] stops changing. O

We now give a sufficient condition f@@ountef A, ¢] to grow to infinity.

Lemma 12 For everyA ¢ TI%, if every process i\ crashes then for every correct procigsSountef A, b]
grows to infinity.

PROOF SKETCH If every process i crashes then eventually no processlimcrements its entry in the
Heartbeatvector. Thus, for every correct procdsshere is a time after which does not setimer,[A] to
timeout[A] in line 12. Therb finds thattimer,[A] = 0 in line 16 infinitely often, and write€ountef A, b]
infinitely often in line 19. Therefor€ountefA, b] grows to infinity. O

We now define a pseudo-varialiteunte A) that depends on the current valuesCafuntef A, «|.

Definition 13 For everyA € TIX, counte(A) is the(t + 1)-st smallest entry dEountefA, «].

Note that since each entry GountefA,] is monotonically nondecreasingpuntef A) is also mono-
tonically nondecreasing. Thus, we can define the following:

Definition 14 For everyA € TIF, we define:(A) as follows. Ifcountef A) grows to infinity therr(A) =
oo. Otherwisegcounte A) eventually stops changing and wedét\) be its final value.

We now establish a relation betwee() and the entries d€ountefA, x|.

Lemma 15 For everyA € TIE, ¢(A) = oo if and only if at least: — t entries ofCountefA, x| grow to
infinity.

PROOF SKETCH Let A € IIX. To show the “if” part of the lemma, suppose that at least ¢ entries of
CountefA, =] grow to infinity. Then the smallest+ 1 entries ofCountefA4, %] includes at least one entry
that grows to infinity. Thusgountef A) also grows to infinity, se(A) = occ.

We now show the “only if” part of the lemma, by showing its a@apiositive. Suppose that fewer than
n — t entries ofCountefA, x| grow to infinity. Then at least+ 1 entries ofCountefA, x| eventually stops
changing. Thus, eventually the smallest1 entries ofCountef A, | all stop changing (since an entry either
stops changing or it grows monotonically to infinity). Thasuntef A) also eventually stops changing, so
c(A) < 0. O

Lemma 16 For everyA € TIE, if A is timely with respect to some sBtof sizet + 1 in S thenc(A) < cc.

PROOF SKETCH By Lemmas 11 and 15. O

Lemma 17 For everyA € TIZ, if every process im crashes then(A) = cc.
PROOF SKETCH By Lemmas 12 and 15, and the fact that there is at least correct processes. [

We now defined, to be the set ok processes with smallestA), breaking ties using a total order on
1148

Definition 18 Let Ay = argmin,cy {(c(A), A)}.

Lemma 19 ¢(Ap) < oc.

PROOF Recall that set!’ is timely with respect to seB’ in S, whereB’ has size + 1. By Lemma 16,
c(A") < co. The result follows since(Aj) < ¢(A’) by definition of A. O

Lemma 20 A, has a correct process.
PROOF SKETCH Immediate from Lemmas 19 and 17. O
We now establish a relation betweef) and the local variablaccusation[A] of a correct procesg.

Lemma 21 For everyA € TI% and every correct procegsif c(A) < oo then there is a time after which
accusation[A] = ¢(A); if ¢(A) = oo thenaccusation[A] grows to infinity.

PROOF SKETCH Let A € TI* andq be a correct process. Singes correct, for every process ¢ sets
cnt,[A, p] to CountefA, p] in line 2 infinitely often. Thus, for each procegscnt,[A, p] eventually stops
changing if and only ifCountefA, p] eventually stops changing. Thus, by the wagetsaccusation[A]

in line 3 and by definition otountefA), we have thatccusation|A] eventually stops changing if and
only if countefA) eventually stops changing. Moreover,cbuntefA) eventually stops changing then
its final valuec(A) is also the final value oficcusatiop[A]. The result now follows by the definition of
c(A): if ¢(A) < oo thencountefA) eventually stops changing and so, by the abaeeusation[A] also
stops changing and their final values are the sam&.Aj = oo thencountef A) grows to infinity, and so
accusation[A] also grows to infinity. O

Finally, we show that every correct process outilifs— Ay.

Lemma 22 There is a time after which every correct process outhts- Ag.

PROOF SKETCH Letp be any correct process. By Lemma 104,) < co. Thus, by Lemma 21, there is
atime after whichaccusatio[Ag] = c¢(Ap).

It is clear that there is a time after whighcan only pickAg in line 4, because ifA # Ag then ei-
ther (a)c(A) = oo, so by Lemma 2Xkccusation[A] grows to infinity, and so there is a time after which
(accusation[A], A) > (accusation[Ay], Ag), or (b)c¢(A) < oo, so by Lemma 21 and the definition df),
there is a time after whictaccusation[A], A) = (¢(A), A) > (c¢(Ao), Ag) = (accusation[Ag], Ag). O

Theorem 23 For everyk,t,n such thal < k <t < n—1, the algorithm in Figure 2 implementgesilient
k-anti€) in systemSf, , ..

PROOF SKETCH Consider any run of the algorithm in Figure 2 in systsﬁalﬁn. Suppose that at most
processes crash. It is clear that the output at each pracesset ofn — k£ > 1 processes. By Lemma 20,
there is a correct processn Ay. By Lemma 22, there is a time after which every correct pro@gputs
II,, — Ap, which does not contaian Hence all the requirements tfesilientk-anti€2 are satisfied. O

4.3 Usingt-resilient k-anti-< to solve(t, k, n)-agreement

Aresult in [21] implies that-resilientk-anti<) can be used to solve tlie i, n)-agreement problem in the
asynchronous systets},. By Theorem 23¢-resilientk-anti<2 can be implemented in syste‘ﬁjﬂHm. By
combining these two results, we have:

Theorem 24 For everyt, k andn such thatl < k <t < n — 1, the(t, k,n)-agreement problem can be
solved in systensf, ; ..

Whent < k < n itis trivial to solve(t, k, n)-agreement in the asynchronous systgmSo we have:

Corollary 25 For everyt, k andn suchthatl <t <n—1andl < k < n, the(t, k,n)-agreement problem
can be solved in systesf, , ,,.

5 Determining if (¢, k, n)-agreement is solvable inSj’i’n

We now present our main result: for evany< k£ <t < n —1, and everyl < i < j < n, we determine
whether thet, k, n)-agreement problem is solvable or not solvable in the ggr8gnchronous systenﬁ;,n.
To do so we first consider the special case whetek, and prove the following theorem:

Theorem 26 For everyk andn such thatl < k <n — 1:

1. The(k, k,n)-agreement problem can be solved in sys&lm.

2. The(k, k,n)-agreement problem cannot be solved in sysﬁﬁml.

PROOF SKETCH Letk andn be suchthat < k£ <n — 1.

1. By Theorem 24(k, k,n)-agreement can be solvedﬂlﬁrl’n. Sincek + 1 < n, by Observation 7,
(k, k,n)-agreement can also be solvedSl,ﬁn.

2. We consider 2 cases:

(@) n = k+ 1. By a well-known impossibility result given in [4,13,20he(k, k, k + 1)-agreement
problem cannot be solved in the asynchronous sysiem. By Observation 551 = S,’jj:ll k1

10

(b) n > k+1. Suppose, for contradiction, that there is an algoriththat solvesk, k, n)-agreement
in Sr’jf,gl. We claim that this implies thdt, &, £ + 1)-agreement can also be solved in the asyn-
chronous systersy, | — contradicting the impossibility result in [4,13,20]. Btdlaim is shown
using a simulation algorithm that is similar to those in [, 7
Consider the asynchronous systém ;. Thek+1 processes a$;; can solvgk, k, k + 1)-agreement
by simulating the execution of the algorith#hin a systemsS of n > k41 processes. In this sim-
ulation, every schedul® of Si; such that at most processes crash i$ maps to a simulated
scheduleS 4 of S such that:

i. at mostk processes crash 14, and
ii. Every set ofk + 1 processes is timely with respect to the setgbrocesses irb 4, i.e.,
Sq € Sﬁ:zl.

Property (i) was already guaranteed by the simulation d@lguos in [6,7]. We obtain Prop-
erty (ii) by a careful scheduling of thesimulated threads of algorithm by thek + 1 processes
of Sk—i—l .
Let Simul 4 be the algorithm that simulates the executionfin systemS. Let R be an
arbitrary run ofSimul 4 in systemSy,; and.S be the schedule of ruR. Let R 4 be the corre-
sponding simulated run od in systemS, andS 4 be the schedule of ruR 4.
Suppose at most processes crash in ruR (i.e., in the schedul& of R). By Property (i), at
mostk processes crash in the corresponding simulatedryii.e., in the schedulé 4 of R 4).
Furthermore, by Property (iif§ 4 is in S,’jfgl. Since the algorithmA solves(k, k, n)-agreement
in Sfjf,gl (by our assumption), the simulated ruty of A, which has schedul& 4 € Siff,gl,
satisfies the properties of thé, k, n)-agreement problem, namely: (1) every process that is
correctin runR 4 (i.e., in schedulé 4) eventually decides (note that there at at leastk > 2
such processes), (2) all the decision values are initialegland (3) there are at mastlistinct
decision values.
Thus, k + 1 processes can solf&, k, k + 1)-agreement in the asynchronous syst8m, by
(1) executing the algorithm¥imul 4 that simulates some ruRl 4 of the algorithmA by n pro-
cesses in systelﬁifjll, and (2) adopting any decision value reached by any of.fhecesses in
this simulated rurk 4. But solving(k, k, k + 1)-agreement i5, ; contradicts the impossibility
resultin [4,13, 20].

O
We now state and prove the main result:

Theorem 27 For evenyt, k andn such thatl < k <t <n — 1 and eveni andj such thatl <i < j <n,
the(t, k,n)-agreement problem can be solved in sys%‘m ifandonly ifi < kandj—i>t+1—k.

PROOFE Letl<k<t<n-landl<i<j<n.

1. Supposé < kandj —i >t + 1 — k. We show thaft, k, n)-agreement can be solved‘ﬂj’n.
We consider 2 cases:

(@) j > t+ 1. By Theorem 24(t, k, n)-agreement can be solved in systéﬁjrlvn. Sincei < k and
j > t+ 1, by Observation 7(t, k, n)-agreement can be also solved in sys@;m.

11

(b) j < t+ 1. Let S be an arbitrary schedule of systeﬂﬁn. By definition, in S there is a set
of processes’; of sizei that is timely with respect to a set of procesggsof size j. Since
n >t+ 1, we haven —j > t+ 1 — j. So, among the, processes iill,,, there are at least
t +1 — j processes that aretin the setP;. LetQ be a set of + 1 — j processes that are not
in P; (sincej < t + 1, this set is not empty).

Let P41 = P,UQ andP, = P; U Q. SinceP; and(Q are disjoint, the size o, is j +
(t+1—j) =t+ 1. P, and@ are not necessarily disjoint, so the sizeffis | such that
i <l<i+(t+1—j) <t+ 1. SinceP; is timely with respect ta?; in scheduleS, andQ
is timely with respect to itself irb, by Observation 2P, = P, U @ is timely with respect to
P1 =P;UQinS. Thus, sincgP,| =l and| P41 | = t + 1, every schedul& of S;n is also a
schedule of5}, .. HenceS}, C S}, .

By Corollary 25, (t,1,n)-agreement can be solved d}, , ,,. SinceS:, C S}, ,, by Obser-
vation 6,(t, [, n)-agreement can also be soIvedSI;ﬁ)n. By assumptionj — ¢ > ¢+ 1 — k, SO
k>t+1+i— jandthereforé > I. So(t, k,n)-agreement can be solved&jnm.

2. Supposé > korj —i <t+1— k. We show thaft, k, n)-agreement cannot be solved&jl,n.
We consider 2 cases:

(@) i > k. By Theorem 26 part (2)k, k, n)-agreement cannot be solved in systsl,’jj,;l. Since
i > k+1andj < n, by Observation 7(k, k, n)-agreement cannot be solveddt,,. Since
k <t,(t,k,n)-agreement cannot be solvedsh,,.

(b) i < k. Sincei < k, by our hypothesis, we must haye-i < t+1—k,andsol <i <k <
t+1—(j—1i).
We claim that(t, k, n)-agreement cannot be solved&jn. Suppose, for contradiction, that
(t, k,n)-agreement can be solved & ,,- We now prove that this implies that, for sonhe<
¢ < m, (£,¢,m)-agreement can be solved in the asynchronous sySfgm- a contradiction to
a well-known impossibility result [6].
Let{ =t—(j—i)andm =n — (j —i). Sincel < t+1—(j—1i)andn > t, we have
1<l <m.

Consider the asynchronous syst8m. Them > 2 processes of this system can sal¥e/, m)-agreement

as follows. They pretend they are in a larger systemith m + (j — i) processes, where the
additional (j —) fictitious processes never take a step. Intuitively, ineysf, the (5 —)
fictitious processes are crashed from the start. Note tleasithulated systen§ has a total of
m + (j —) = n processes.

Let P; be a set of “real” processes, i.e., they are among th@rocesses of systes),,,> and let
C be the set of j — i) fictitious processes .

Now consider any schedulg of the simulated syster§. In S it is obvious that the seb; is
timely with respect to itself, ané; is also timely with respect to the set of crashed proceSses
So, by Observation 27; is timely with respect ta®, U C'in S. Thus, in every schedulg§ of S,
there is a set of sizethat is timely with respect to a set of size- (j — i) = j. In other words,
every schedule of is also a schedule & . SoS C S! .

®Note that there are at leasprocesses i5,,,, becausen = i + (n — j) andn — j > 0.

12

By assumption(t, k, n)-agreement can be solved‘ﬁj,n. SinceS C S;n by Observation 6,
(t, k,n)-agreement can also be solveddn SinceS has(j —) fictitious processes that are
permanently crashed, this implies thiat- (j — i), k, m)-agreement can be solved in the “real”
systemS,,. Sincel =t — (j — i), (¢,k, m)-agreement can be solved &),. Sincek <
t—(j—1)=4¢ (¢,¢,m)-agreement can be solveddh,. SinceS,, is the asynchronous system
with m > 2 processes antl < ¢ < m, this contradicts an impossibility result in [6]. Thus,

(t, k,n)-agreement cannot be solvengjn.

O

6 Related work

Dwork, Lynch, and Stockmeyer [11] introduce the concept atfipl synchrony. They propose message-
passing models in which there are eventual or unknown boondsiessage transmission times and on
relative process speeds. These bounds must hold betweagrpairof processes. It is shown that consensus
can be solved in these models. Subsequent work [1,2,1271#rdposed weaker types of partial synchrony
(for message-passing systems) with which consensus ddrestolved or2 can be implementedXis the
weakest failure detector for consensus [8]). None of theseksvhave considered models in which sub-
consensus problems such(ask, n)-agreement can be solved, but consensus cannot.

The work in [3] considers a shared-memory model and defineg iwimeans for a single proceggo
be timely with respect to another procesis any given schedule. The concept of set timeliness intedu
in this paper is a direct generalization of this definitiomene individual processgsandq are replaced by
sets of processelB and().

The IIS model [5] is a round-based model in which, in each dyanprocess atomically writes a value
and obtains a snapshot of the values written by other presésghe round. In this model, set agreement
and consensus are impossible. Rajsbaum et al. [18, 19] geopdamily of models called IRIS that are
weaker than the IIS model. This family is parameterized byop@rty PR~ on the snapshot values that a
process can obtain in a round. This property “restricts #ymehrony” of the system, because the fact that
a snapshot cannot return certain values means that thetiexecannot proceed in certain ways. Specific
IRIS models are given in which wait-frdeset agreement is solvable but wait-frige-1)-set agreement is
not, thus providing a separation between these problems.

Our model of partial synchrony differs from the IRIS modeldwo ways. First, we express synchrony
behavior directly via timeliness properties of processelsereas the IRIS models restrict the allowable
executions via properties that snapshots must satisfyorSemur model is based on read-write shared
memory, whereas the IRIS model is based on rounds with imateednapshots. It is possible to implement
these rounds in the read-write shared memory model, butitdtear how the restricted runs of IRIS map
to the timeliness properties of the shared memory model. ifsdance, a process that never appears in
the snapshot of other processes may be a process that ifyatimaly in the shared memory model that
implements IRIS: this process may execute at the same spamtier processes but always start a round a
few steps later.

The problem of:-set agreement was first defined in [10]. The wait-free iaresilient versions of this
problem were shown to have no solutions in asynchronousrsgsin [4, 6, 13, 20].

Acknowledgements.The authors are grateful to the anonymous referees for itiairy helpful com-
ments.

13

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and T™ueg. Communication-efficient leader
election and consensus with limited link synchrony AlM Symposium on Principles of Distributed
Computing pages 328-337, July 2004.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, andT®ueg. On implementing Omega in systems
with weak reliability and synchrony assumptionBistributed Computing21(4):285-314, October
2008.

[3] M. K. Aguilera and S. Toueg. Timeliness-based wait-ffem: a gracefully degrading progress condi-
tion. In ACM Symposium on Principles of Distributed Computipages 305-314, August 2008.

[4] E. Borowsky and E. Gafni. Generalized FLP impossibitiggult for t-resilient asynchronous compu-
tations. INACM symposium on Theory of computipgges 91-100, May 1993.

[5] E. Borowsky and E. Gafni. A simple algorithmically reasa characterization of wait-free computa-
tion (extended abstract). KCM Symposium on Principles of Distributed Computipgges 189-198,
August 1997.

[6] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BiGtributed simulation algorithm.
Distributed Computing14(3):127-146, October 2001.

[7] T.D. Chandra, V. Hadzilacos, P. Jayanti, and S. Touege@#ized irreducibility of consensus and the
equivalence of t-resilient and wait-free implementatiohg€onsensusSIAM Journal of Computing
34(2):333-357, 2004.

[8] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakektréadetector for solving consensus.
Journal of the ACM43(4):685-722, July 1996.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectorgeliable distributed systemslournal of
the ACM 43(2):225-267, March 1996.

[10] S. Chaudhuri. More choices allow more faults: Set casae problems in totally asynchronous sys-
tems.Information and Computatiqri05(1):132—-158, June 1993.

[11] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus & phesence of partial synchronjournal
of the ACM 35(2):288-323, April 1988.

[12] A. Fernandez and M. Raynal. From an intermittent intpstar to a leader. Technical Report 1810,
IRISA, Université de Rennes, France, August 2006.

[13] M. Herlihy and N. Shavit. The asynchronous computapilneorem for t-resilient tasks (preliminary
version). INACM Symposium on Theory of Computipgges 111-120, May 1993.

[14] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing theakest system model for implementing
2 and ConsensusEEE Transactions on Dependable and Secure Compufingppear.

[15] E. Jiménez, S. Arévalo, and A. Fernandez. Impleimgnanreliable failure detectors with unknown
membershiplnformation Processing Letterd00(2):60-63, October 2006.

14

[16] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos:eeakbction and stability without eventual
timely links. In International Conference on Distributed Computinglume 3724 ofLNCS pages
199-213. Springer Verlag, September 2005.

[17] A. Mostefaoui, M. Raynal, and C. Travers. Time-free dinter-based assumptions can be combined
to obtain eventual leadershifiEEE Transactions on Parallel and Distributed Syste&7):656—666,
July 2006.

[18] S. Rajsbaum, M. Raynal, and C. Travers. Failure dete@se schedulers (an algorithmically-reasoned
characterization). Technical Report 1838, IRISA, Uniiterde Rennes, France, March 2007.

[19] S. Rajsbaum, M. Raynal, and C. Travers. The iterateicesd immediate snapshot model. Ihter-
national Computing and Combinatorics Conferene@ume 5092 of NCS pages 487—-497. Springer,
June 2008.

[20] M. E. Saks and F. Zaharoglou. Wait-free k-set agreeneinpossible: The topology of public
knowledge.SIAM Journal of Computind29(5):1449-1483, 2000.

[21] P. Zielinski. Anti-Omega: the weakest failure detector set agreement. 1ACM Symposium on
Principles of Distributed Computingpages 55—64, August 2008.

15

