
Correctness Proof of Ben-Or’s Randomized Consensus Algorithm∗

Marcos Kawazoe Aguilera Sam Toueg

May 17, 1998

Abstract

We present a correctness proof for Ben-Or’s Randomized Consensus Algorithm for the case in
which processes can fail by crashing, and a majority of processes is correct. This is the first time
that the proof of Ben-Or’s algorithm appears for this case. The proof has been extracted from
[AT96]: it is a simplification of the correctness proof of a more complex consensus algorithm
that involves both randomization and failure detection.

1 Introduction

We present a correctness proof for Ben-Or’s Randomized Consensus Algorithm for the case in which

processes can fail by crashing, and n > 2f (n is the number of processes and f is the maximum
number of processes that can crash). This is the first time that the proof of Ben-Or’s algorithm

appears for this case. Previous proofs either assume that n > 3f [Lyn96] or that the adversary is
weak [Had91].

Our proof has been extracted from [AT96]. That paper gives a hybrid consensus algorithm that
uses both randomization and failure detection. The proof that we present here is a simplification

of the proof in [AT96]: roughly speaking, we obtained it by “removing” the failure detection part
of the proof in that paper.

2 Informal Model

Our model of asynchronous computation is patterned after the one in [FLP85]. We only sketch its
main features here. We consider asynchronous distributed systems in which there is no bound on

message delay, clock drift, or the time necessary to execute a step. To simplify the presentation of
our model, we assume the existence of a discrete global clock. This is merely a fictional device: the

processes do not have access to it. We take the range T of the clock’s ticks to be the set of natural
numbers N.

The system consists of a set of n processes, Π = {p0, p1, . . . , pn−1}. Every pair of processes is

connected by a reliable communication channel. Up to f processes can fail by crashing.
Each process has access to a random number generator (r.n.g.). When a process queries its

r.n.g. it obtains a random bit. For simplicity, we assume a uniform distribution, i.e., the r.n.g.
outputs 0 and 1, each with probability 1/2.

∗Research partially supported by NSF grant CCR-9402896, by ARPA/ONR grant N00014-96-1-1014, and by an
Olin Fellowship.

1



A distributed algorithm A is a collection of n deterministic automata (one for each process
in the system) that communicate by sending messages through reliable channels. The execution

of A occurs in steps as follows. For every time t ∈ T , at most one process takes a step. Each
step consists of receiving a message; querying the r.n.g.; changing state; and optionally sending a
message to one process. We assume that messages are never lost. That is, if a process does not

crash, it eventually receives every message sent to it.
A schedule is a sequence {sj}j∈

� of processes and a sequence {tj}j∈
� of strictly increasing times.

A schedule indicates which processes take a step and when: for each j, process sj takes a step at
time tj . A process crashes in a schedule if it takes only a finite number of steps. If a process does

not crash, we say that is it correct.

2.1 Adversary Power

When designing fault-tolerant algorithms, we often assume that an adversary has some control

on the behavior of the system, e.g., the adversary may be able to control the occurrence and the
timing of process failures, the message delays, and the scheduling of processes. Adversaries may

have limitations on their computing power and on the information that they can obtain from the
system. Different algorithms are designed to defeat different types of adversaries [CD89].

We now describe the adversary that Ben-Or’s algorithm defeats. The adversary has unbounded
computational power, and full knowledge of all process steps that already occurred. In particular,
it knows the contents of all past messages, the internal state of all processes in the system,1 and

all the previous outputs of the r.n.g.. With this information, at any time in the execution, the
adversary can dynamically select which process takes the next step and which message this process

receives (if any). The adversary, however, operates under the following restrictions: every message
sent to a correct process must eventually be received and the final schedule may have at most f

crashed processes.

3 The Consensus Problem

In the uniform binary consensus problem every process p has some initial value vp ∈ {0, 1}, and

must decide on a value such that:

Uniform agreement: If processes p and p′ decide v and v′, respectively, then v = v′;

Uniform validity: If some process decides v, then v is the initial value of some process;

Termination: Every correct process eventually decides some value.

For probabilistic consensus algorithms, Termination is weakened to

Termination with probability 1: With probability 1, every correct process eventually decides some

value.

1This is in contrast to the assumptions made by several algorithms, e.g., those that use cryptographic techniques.

2



Every process p executes the following:

0 procedure consensus(vp) {vp is the initial value of process p}

1 x← vp {x is p’s current estimate of the decision value}

2 k← 0

3 while true do

4 k← k + 1 {k is the current phase number}

5 send (R, k, x) to all processes

6 wait for messages of the form (R, k, ∗) from n− f processes {“∗” can be 0 or 1}
7 if received more than n/2 (R, k, v) with the same v

8 then send (P, k, v) to all processes
9 else send (P, k, ?) to all processes

10 wait for messages of the form (P, k, ∗) from n − f processes {“∗” can be 0, 1 or ?}

11 if received at least f + 1 (P, k, v) with the same v 6= ? then decide(v)
12 if at least one (P, k, v) with v 6= ? then x← v else x← 0 or 1 randomly {query r.n.g.}

Figure 1: Ben-Or’s Randomized Consensus algorithm

4 Ben-Or’s Randomized Consensus Algorithm

The Randomized Consensus algorithm shown in Figure 1 is due to Ben-Or [Ben83]. The algorithm
works under the assumption that a majority of processes are correct (i.e., n > 2f). It is easy to see

that this requirement is necessary for any algorithm that solves Consensus in asynchronous systems
with crash failures, even if all processes have access to a random number generator.

In the algorithm, every message contains a tag (R or P ), a phase number, and a value which
is either 0 or 1 (for messages tagged P , it could also be “?”). Messages tagged R are called reports

and those tagged with P are called proposals . When p sends (R, k, v) or (P, k, v) we say that p
reports or proposes v in phase k, respectively.

Each execution of the while loop is called a phase, and each phase consists of two asynchronous
rounds. In the first round, processes report to each other their current estimate (0 or 1) for a

decision value.
In the second round, if a process receives a majority of reports for the same value then it

proposes that value to all processes, otherwise it proposes “?”. Note that it is impossible for one

process to propose 0 and another process to propose 1 in the same phase. At the end of the second
round, if a process receives f + 1 proposals for the same value different than ?, then it decides that

value. If it receives at least one value different than ?, then it adopts that value as its new estimate,
otherwise it adopts a random value for its estimate.

The algorithm in Figure 1 does not include a halt statement. Moreover, once a correct process
decides a value, it will keep deciding the same value in all subsequent phases. However, it is easy

to modify the algorithm so that every process decides at most once, and halts at most one round
after deciding.

3



5 Proof of Correctness

Assume that there is a majority of correct processes (i.e., n > 2f). We show the following:

Theorem 1

(Safety) Ben-Or’s algorithm always satisfies uniform validity and uniform agreement.

(Liveness) The algorithm satisfies termination with probability 1.

Proof: We say that process p starts phase k if process p completes at least k − 1 iterations of
the while loop. We say that process p reaches line n in phase k if process p starts phase k and p

executes past line n− 1 in that phase. We say that v is k-locked if every process that starts phase
k does so with its variable x set to v. When ambiguities may arise, a local variable of a process p

is subscripted by p, e.g., xp is the local variable x of process p.

We first show the safety properties.

Lemma 1 Suppose k > 0. Then it is impossible for a process to propose 0 and another one to
propose 1 in the same phase k.

Proof: We prove the result by contradiction: suppose that two processes p and q propose 0 and 1,

respectively, in phase k. Thus, p received more than n/2 reports for 0 and q received more than
n/2 reports for 1 in phase k. But then there is a process that reports 0 to p and 1 to q in phase k,

and this is impossible. �

Lemma 2 If some process decides v in phase k > 0, then v is (k + 1)-locked.

Proof: Suppose some process p decides v in phase k > 0 (note that v 6= ?), and let q be any process

that starts phase k + 1. From the algorithm, p receives at least f + 1 proposals for v in phase k
(line 10). In phase k, q waits for n − f proposals in line 10. Because p receives f + 1 proposals
for v, q must have received at least one proposal for v. Moreover, by Lemma 1, q does not receive

any proposals for v̄.2 So q sets xq to v in line 12 and starts phase k + 1 with xq = v. �

Lemma 3 If a value v is k-locked for some k > 0, then every process that reaches line 12 in

phase k decides v in phase k.

Proof: Suppose v is k-locked for some k > 0. Then, all reports sent in line 6 of phase k are for v.
Since n−f > n/2, every process that proposes some value in phase k proposes v in line 8. Consider

a process p that reaches line 12 in phase k. Clearly, p receives n − f proposals (line 10) for v in
phase k. Since n− f ≥ f + 1, p decides v in phase k. �

Corollary 1 If some process decides v in phase k > 0, then every process that reaches line 12 in

phase k + 1 decides v in phase k + 1.

Proof: By Lemma 2 and Lemma 3. �
2We denote by v̄ the binary complement of bit v.

4



function FavorableToss(r, u): bit {evaluated only at time u ≥ τk where k = 2r}

k ← 2r {k is the first phase in epoch r}

if some value v is k-major at time τk then return v

if by time u no process received n − f proposals in phase k + 1 then return 0 {u < τk+1}

if at time τk+1 0 is (k + 1)-major then return 0 {here u ≥ τk+1}

else return 1

Figure 2: Favorable coin toss algorithm

Corollary 2 (Uniform agreement) If some processes p and p′ decide v and v′ in phase k > 0 and
k′ > 0, respectively, then v = v′.

Proof: For k = k′ the result follows from Lemma 1 and the fact that a process can decide a value

in a phase only if that value was proposed in the same phase. Assume that k < k′. Since p′ decides
in phase k′ then p′ reaches line 12 in every phase r, k < r ≤ k′. Since p decides v in phase k, by

Corollary 1 p′ decides v in phase k +1 ≤ k′. By additional applications of Corollary 1, we conclude
that p′ decides v in phase k′. Each process can decide at most once per phase, so v = v′. �

Corollary 3 (Uniform validity) If some process p decides v, then v is the initial value of some

process.

Proof: Note that v ∈ {0, 1}. If the initial values of all processes are not identical, then v is clearly
the initial value of some process. Now, suppose all processes have the same initial value w. Thus,

w is 1-locked. From Lemma 3, p decides w, and from Corollary 2, w = v. �

We now proceed to show that the algorithm satisfies termination with probability 1.

Lemma 4 Every correct process starts every phase k > 0.

Proof: The detailed proof is by a simple but tedious induction on k. We describe only the central

idea here. In each phase, there are two wait statements that can potentially block processes (lines 6
and 10). However, it is not possible for a correct process to be blocked in any of these statements

because at least n− f processes are correct and send the messages that this process is waiting for.
�

Corollary 4 If a value v is k-locked for some k > 0, then every correct process decides v in phase k.

Proof: Immediate from Lemmata 3 and 4. �

Corollary 5 If some process decides v in phase k > 0, then every correct process decides v in
phase k + 1 (and thus in all subsequent phases).

Proof: Immediate from Corollary 1 and Lemma 4. �

For k > 0, let τk be the first time that any process receives n − f proposals in phase k. From

Lemma 4, for every k > 0, some process receives n−f proposals in phase k, and so τk is well-defined.
Note that in the algorithm no process queries the r.n.g. in phase k before time τk .

5



For each k > 0, we say that a value v is k-major at time t if by time t more than n/2 processes
have started phase k with their variable x set to v.3 Clearly, for each k > 0 and all times t and t′,

it is impossible for 0 to be k-major at t, and 1 to be k-major at t′.
Consider a process p that sets xp to v in line 12 of phase k. If v was obtained from the r.n.g.,

we say that p R-gets v in phase k; otherwise, we say that p D-gets v in phase k.

Lemma 5 For every k ≥ 1: (1) if some process D-gets v in phase k, then v is k-major at some
time; (2) if v is ever k-major, then v is the only value that a process can D-get in phase k.

Proof: Consider phase k ≥ 1. Suppose p D-gets v. Then p received at least one proposal for v

from some process q. So more than n/2 processes must have reported v to q in phase k. Thus, v
was k-major — proving part (1). Part (2) follows from part (1) and the fact that v and v̄ cannot

both be k-major. �

For the rest of the proof, we group pairs of phases into epochs as follows: epoch r consists of

phases 2r and 2r + 1.4 We will define the concept of a “lucky” epoch — one in which processes
toss coins that cause the termination of the algorithm (no matter what the adversary does). To

do so, we first define function FavorableToss(r, u) given in Figure 2. We say that epoch r is lucky
if, for every process p and any time u, if p queries the r.n.g. in epoch r at time u, then p obtains

FavorableToss(r, u) from the r.n.g.. Note that if p queries the r.n.g. in epoch r at time u, this
occurs after at least one process receives n− f proposals in phase 2r. Thus, τ2r ≤ u. So it is clear
that the code of FavorableToss(r, u) refers only to what occurred in the system up to time u.

Lemma 6 For every r ≥ 1, if epoch r is lucky then some value is (2r+1)-locked or (2r + 2)-locked.

Proof: Throughout the proof of this lemma, fix some arbitrary r ≥ 1 and assume that epoch r is
lucky. Let k = 2r; recall that epoch r consists of phases k and k + 1. Since epoch r is lucky, if any

process R-gets a value v at time t and in phase j = k or j = k + 1, then v = FavorableToss(r, t)
and τk ≤ t.

Case 1: Suppose some value v is k-major at time τk. By the definition of FavorableToss, for any u
such that τk ≤ u, FavorableToss(r, u) = v. So, v is the only value that a process can R-get

in phase k. Since v is k-major, by Lemma 5, v is the only value that a process can D-get in
phase k. Thus, v is (k + 1)-locked.

Case 2: Now assume that no value is k-major at time τk.

Case 2.1: Suppose that 0 is (k + 1)-major at time τk+1. By the definition of FavorableToss, for
any u such that τk+1 ≤ u, FavorableToss(r, u) = 0. So, 0 is the only value that a process can
R-get in phase k +1. Since 0 is (k +1)-major, by Lemma 5, 0 is the only value that a process

can D-get in phase k + 1. Thus, 0 is (k + 2)-locked.

Case 2.2: Now assume that 0 is not (k + 1)-major at time τk+1. By time τk+1, a majority of

processes started round k + 1. Since 0 is not (k + 1)-major at time τk+1, by this time some
process p starts round k + 1 with xp set to 1; thus either p D-got 1 or R-got 1 in phase k.

However, for τk ≤ u < τk+1 we have FavorableToss(r, u) = 0, and so p D-got 1 in phase k. By
Lemma 5, 1 was k-major.

3Recall that a process starts phase k when it completes k − 1 iterations of the loop, i.e., right after it executes
line 12.

4Phase 1 is not part of any epoch.

6



Since 1 was k-major, by Lemma 5, 1 is the only value that a process can D-get in phase k.
Moreover, for τk+1 ≤ u, we have FavorableToss(r, u) = 1, and so 1 is the only value that a

process can R-get in phase k at or after time τk+1,. Thus, after time τk+1, 1 is the only value
that a process can D-get or R-get in phase k. So, after time τk+1, no process starts round
k + 1 with xp set to 0. Since at time τk+1, 0 is not (k + 1)-major, we conclude that 0 is never

(k + 1)-major.

Since 0 is never (k + 1)-major, by Lemma 5, 1 is the only value that a process can D-get in

phase k + 1. Moreover, for τk+1 ≤ u, we have FavorableToss(r, u) = 1, and so 1 is the only
value that a process can R-get in phase k + 1. Thus, 1 is (k + 2)-locked. �

Lemma 7 The probability that some epoch is lucky is 1.

Proof: The result is immediate from the following observation: for every r ≥ 1, (a) the probability

that epoch r is lucky is at least 2−2n (because in each phase there are at most n queries to the
r.n.g.), and (b) for any r′ 6= r, the events “epoch r is lucky” and “epoch r′ is lucky” are independent

(because epochs r and r′ consist of disjoint sets of phases). �

Lemma 8 (Termination with probability 1) The probability that all correct processes decide is 1.

Proof: Immediate from Lemmata 7 and 6, and Corollary 4. �

The proof of Theorem 1 is now complete: uniform validity and uniform agreement were shown in

Corollary 3 and Corollary 2, respectively. Termination with probability 1 was shown in Lemma 8. � Theorem 1

From the proof of Lemma 7, it is easy to see that the expected number of rounds for termination
is O(22n).

References

[AT96] Marcos Kawazoe Aguilera and Sam Toueg. Randomization and failure detection: a hybrid
approach to solve consensus. In Proceedings of the 10th International Workshop on Dis-

tributed Algorithms, Lecture Notes on Computer Science, pages 29–39. Springer-Verlag,
October 1996.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement

protocols. In Proceedings of the Second ACM Symposium on Principles of Distributed
Computing, pages 27–30, August 1983.

[CD89] Benny Chor and Cynthia Dwork. Randomization in Byzantine Agreement. Advances in
Computer Research (JAI Press Inc.), 4:443–497, 1989.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[Had91] Vassos Hadzilacos. Lecture notes. Unpublished manuscript., 1991.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

7


