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Abstract The topic of this paper is the study ofInformation
Disseminationin Mobile Ad-hoc Networks by means of de-
terministic protocols. We assume a weak set of restrictions
on the mobility of nodes, parameterized byα, the discon-
nection time, andβ, thelink stability time, such that the Mo-
bile Ad-hoc Networks considered are connected enough for
dissemination. Such a connectivity model generalizes pre-
vious models in that we assume much less connectivity, or
make explicit the assumptions in previous papers. The pro-
tocols studied are classified into three classes:oblivious(the
transmission schedule of a node is only a function of its ID),
quasi-oblivious(the transmission schedule may also depend
on a global time), andadaptive.

The main contribution of this work concerns negative
results. Contrasting the lower and upper bounds derived, in-
teresting complexity gaps among protocol-classes are ob-
served. These results show that the gap in time complex-

This research was supported in part by the National Science Foun-
dation (CCF-0937829, CCF-1114930), Comunidad de Madrid grant
S2009TIC-1692, Spanish MICINN grants TIN2008-06735-C02-01
and TEC2011-29688-C02-01, National Natural Science Foundation of
China grant 61020106002.

Antonio Fernández Anta
Institute IMDEA Networks, Madrid, Spain
E-mail: antonio.fernandez@imdea.org

Alessia Milani
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ity between oblivious and quasi-oblivious (hence, adaptive)
protocols is almost linear. This gap is what we call theprofit
of global synchrony,since it represents the gain the network
obtains from global synchrony with respect to not having
it. We note that the global synchrony required by the effi-
cient quasi-oblivious protocol proposed is simply achieved
by piggybacking in the messages sent the time at the source
node, as a global reference.

Keywords Mobile Ad-hoc Networks· Radio Networks·
Geocast· Broadcast· Lower Bounds

1 Introduction

A Mobile Ad-hoc Network (aka MANET) is a set of mobile
nodes which communicate over a multihop radio network,
without relying on a stable infrastructure. In these networks,
nodes are usually battery-operated devices that can commu-
nicate via radio with other devices that are in range. Due
to unreliable power supply and mobility, nodes may have a
continuously changing set of neighbors in that range. This
dynamic nature makes it challenging to solve even the sim-
plest communication problems in general. Hence, proposed
protocols often have strong synchronization and stabilityre-
quirements, like having a stable connected network for long
enough time.

Current trends in networking-architecturedevelopments,
like delay and disruption tolerant networks,andopportunis-
tic networking[18, 43], aim to deal with the disconnections
that naturally and frequently arise in wireless environments.
Their objective is to allow communication in dynamic net-
works, like a MANET, even if a route between sender and
receiver never exists in the network. The result is that multi-
hop communication is provided throughopportunistic com-
munication,in which theonline route of a message is fol-
lowed one link at a time, as links in the route become avail-
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able. While the next link is not available, the message is held
in a node. With opportunistic communication, strong con-
nectivity requirements are no longer needed. Furthermore,
in some cases mobility is the key to allow communication
(e.g., consider two disconnected static nodes, where com-
munication between them is provided by a device that, due
to mobility, sometimes is in range of one and sometimes of
the other).

In this paper, we formally define a particular class of
MANET which is suited for opportunistic communication,
and which we callpotentially epidemic. A MANET is poten-
tially epidemic if the changes in the communication topol-
ogy are such that an online route exists among any two nodes
that wish to communicate.

The network ispotentiallyepidemic because the actual
propagation of the information on the online routes, and then
the possibility for a node to affect another node, depends on
the stability of each communication link of the online route.

In this context, we define and study the deterministic
solvability of a problem that we callDissemination.In this
problem, at a given time a source node holds an information
that must be disseminated to a given set of nodes belonging
to the MANET. The nodes elected to eventually receive the
information are the ones that satisfy a given predicate. De-
pending on this predicate, the Dissemination problem can
instantiate most of the common communication problems in
distributed systems, such as Broadcast, Multicast, Geocast,
Routing, etc.

In particular, we determine assumptions on link stability
and speed of nodes under which a distributed deterministic
protocol exists that solves Dissemination in potentially epi-
demic networks. Moreover, we relate the time complexity of
the solution to the speed of movement and to the information
that protocols may use.

1.1 The Dissemination Problem

We study the problem of disseminating a piece of infor-
mation, initially held by a distinguished source node, to all
nodes of a given set in the network. Formally,

Definition 1 Given a MANET formed by a setV of n nodes,
letP be a predicate onV ands ∈ V a node that holds a piece
of informationI at timet1 (s is the source of dissemination).
TheDisseminationproblem consists of distributingI to the
set of nodesVP = {x ∈ V :: P(x)}. A node that has re-
ceivedI is termedcovered, and otherwise it isuncovered.
The Dissemination problem is solved at time slott2 ≥ t1 if,
for every nodev ∈ VP , v is covered by time slott2.

The Dissemination problem abstracts several common
problems in distributed systems. E.g. Broadcast, Multicast,
Geocast, Routing etc., are all instances of this problem for

a particular predicateP . In order to prove lower bounds,
we will use one of these instances: the Geocast problem.
The predicateP for Geocast isP(x) = true if and only
if, at time t1, x is up and running, and it is located within
a parametric distanced > 0 (calledeccentricity) from the
position of the source node at that time.

1.2 Model

We consider a MANET formed by a setV of n mobile
nodes deployed inR2, where no pair of nodes can occupy
the same point in the plane simultaneously. It is assumed that
each node has data-processing and radio-communication ca-
pabilities, and a unique identificator number (ID) in[n] ,

{1, . . . , n}.
Time. Each node is equipped with a clock that ticks at

the same uniform rateρ but, given the asynchronous acti-
vation, the clocks of different nodes may start at different
times. A time interval of duration1/ρ is long enough to
transmit (resp. receive) a message. Computations in each
node are assumed to take no time. Starting from a time in-
stant used as reference, the global time is slotted as a se-
quence of time intervals ortime slots1, 2, . . . , where slot
i > 0 corresponds to the time interval[(i − 1)/ρ, i/ρ). All
node’s ticks are assumed to be in phase with this global tick.
The use of a slotted scenario instead of a more realistic un-
slotted one was justified in [45], where it was shown that
they differ only by a factor of 2 because a packet can inter-
fere in no more than 2 time slots.

Node Activation. We say that a node isactive if it is
powered up, andinactiveotherwise. It is assumed that, due
to lack of power supply or other unwanted events that we
call failures, active nodes may become inactive. Likewise,
due also to arbitrary events such as replenishing their bat-
teries, nodes may be re-activated. We call the temporal se-
quence of activation and failures of a node theactivation
schedule. The activation schedule for each node is assumed
to be chosen by an adversary, in order to obtain worst-case
bounds. Most of the lower-bound arguments included in this
paper hold, even if all nodes are activated simultaneously
and never fail (which readily provide a global time), making
the results obtained stronger.

We assume that a node is activated in the boundary be-
tween two consecutive time slots. If a node is activated be-
tween slotst−1 andt we say that it is activated at slott, and
it is active in that slot. Upon activation (or reactivation after
a failure) a node immediately starts running from scratch an
algorithm previously stored in its hardware.

Due to failures, it is possible that a covered node does
not hold the informationI. To distinguish a covered node
that does not hold the informationI from one that holds it,
we introduce the following additional terminology: we say
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that a nodep is informedat a given timet if it holds the
informationI at timet, otherwisep is said to beuninformed.

Radio Communication.Nodes communicate via a col-
lision prone single radio channel. A nodev can receive a
transmission of another nodeu in time slot t only if their
distance is at most therange of transmissionr during the
whole slott. The range of transmission is assumed to be the
same for all nodes and all time slots. If two nodesu andv are
separated by a distance at mostr, we say that they areneigh-
bors. (Whenr is normalized to1, this model is called Unit
Disk Graph in the Radio Networks literature.) In this paper,
no collision detection mechanism is assumed, and a node
cannot receive and transmit at the same time slot. Therefore,
an active nodeu receives a transmission from a neighbor-
ing nodev at time slotj if and only if v is the only node in
u’s neighborhood transmitting at time slotj. Also, a node
cannot distinguish between a collision and no transmission.
In general, we say that a nodev ∈ V ′ transmits uniquely
among the nodes of setV ′ ⊆ V in a slott if it is the only
node inV ′ that transmits int.

(α, β)-connectivity. We assume that nodes may move
on the plane. Thus, the topology of the network is time de-
pendent. For simplicity, we assume that the topology only
changes in the boundaries between time slots. Then, at time
slot t nodesu and v are connected by a link in the net-
work topology iff they are neighbors during the whole slot
t. An online route between two nodesu and v is a path
u = w0, w1, . . . , wk = v and a sequence of time slots
t1 < t2 < · · · < tk such that the network has a link be-
tweenwi−1 andwi at time slotti. Observe that in order to
be able to solve an instance of Dissemination, it is neces-
sary that the network is potentially epidemic. I.e. after the
initial time t1, there is an online route from the sources to
every node inVP . However, as argued in [15], worst-case
adversarial choice of topologies for a dynamic network pre-
cludes any deterministic protocol from completing Broad-
cast, even if connectivity is guaranteed. Note that Broad-
cast is an instance of Dissemination, and that if there is
connectivity then there are online routes between all nodes.
Thus, the property that the network is potentially epidemic
as described is not sufficient to solve Dissemination, and fur-
ther limitations to the adversarial movement and activation
schedule are in order.

While respecting a bound on the maximum speedvmax,
which is a parameter, the adversarial movement and activa-
tion schedule is limited by the following connectivity prop-
erty. LetS ⊂ V be any non-empty subset of nodes, and let
S̄ = V − S. An edge isk-stableat time t if it exists for
k consecutive steps[t, t + k − 1]. The opportunistic com-
munication constraint is parameterized by parametersα and
β: for every partition(S, S̄), there are at mostα consecu-
tive steps without aβ-stable edge betweenS andS̄. We call
such a network(α, β)-connected. Note, for example, that

(α, β)-connectivity requires that any node that fails reboots
(and reestablishes connectivity) withinα steps. For simplic-
ity, we do not enforce(α, β)-connectivity before the time
slot t1 when the source node is informed.

The aim of thisα,β parameterization is twofold. First,
in some previous papers, the connectivity depended explic-
itly [21] or implicitly [43] on the protocol (notably, who has
and does not have the informationI at any given time). Here,
we remove the dependency on the protocol, while maintain-
ing a similar flavor to the connectivity constraints. Second,
we substantially weaken the connectivity assumptions com-
pared with some previous papers which assumed, for ex-
ample, a stable spanning tree of edges [35, 39], or that the
underlying graph may be non-geometric [6,12,15].

It is of the utmost importance to notice that(α, β)-con-
nectivity is a characterization that applies toanydetermin-
istic model of dynamic network, given that for any mobil-
ity and activation schedule, and any pair of nodes, there is a
minimum time they are connected (even if that time is small)
and a maximum time they are disconnected (even if that
time is very large). Thus, any dynamic network determin-
istic model used to study the Dissemination problem has its
ownα andβ values.

Due to the same argument,(α, β)-connectivity does not
guarantee by itself that the network is epidemic (i.e. that
the informationI is eventually disseminated); instead, an
(α, β)-connected network is onlypotentiallyepidemic. Con-
sider for instance the source node. Thanks to the(α, β)-con-
nectivity, at most everyα slots, the sources is connected to
other nodes of the network for at leastβ time slots. But, we
have progress only if the protocol to solve Dissemination is
able to use theβ slots of connectivity to cover some uncov-
ered node. As a consequence of the above discussed, impos-
sibility results only restrictβ, whereasα only constrains the
running time, as it is shown in this paper.

1.3 Protocols for Dissemination

We consider distributed deterministic protocols, i.e., weas-
sume that each node in the network is preloaded with its own
and possibly different deterministic algorithm that defines a
schedule of transmissions for it. Even if a transmission is
scheduled for a given node at a given time, that node will
not transmit if it is uninformed.

Following the literature on various communication prim-
itives [32,33], a protocol is calledobliviousif, at each node,
the algorithm’s decision on whether or not to schedule a
transmission at a given time slot depends only on the iden-
tifier of the node, and on the number of time slots that the
node has been active. Whereas, if no restriction is put on
the information that a node may use to decide its commu-
nication schedule, the protocol is calledadaptive. Addition-
ally, in this paper, we distinguish a third class of protocols
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that we callquasi-oblivious. In a quasi-oblivious protocol
the sequence of scheduled transmissions of a node depends
only on its ID and a global time. Quasi-oblivious protocols
have sometimes been called oblivious, since the model as-
sumed simultaneous activation, and hence a global time was
readily available. However we prefer to make the difference
explicit, as done in [42], because we found a drastic gap be-
tween this class and fully oblivious protocols.

1.4 Previous Work

A survey of the vast literature related to Dissemination is
beyond the scope of this article. We overview in this section
the most relevant previous work. Additionally, a review of
relevant related work for static and dynamic networks be-
yond MANETs can be found in Section 1.5.

The Dissemination problem abstracts several common
problems in Radio Networks. When some number1 ≤ k ≤
n of active nodes hold an information that must be dissem-
inated to all nodes in the network, the problem is calledk-
Selection[32] or Many-to-all [11]. If k = 1 the problem is
calledBroadcast[5, 36], whereas ifk = n the problem is
known asGossiping[9, 19]. Upper bounds for these prob-
lems in mobile networks may be used for Dissemination,
and even those for static networks may apply if the move-
ment of nodes does not preclude the algorithm from com-
pleting the task (e.g., round-robin). On the other hand, if
only the subset ofk nodes have to receive the information,
the problem is known asMulticast[11,25], and if only nodes
initially located at a parametric distance from the source
node must receive the information the problem is called Geo-
cast [30], defined in Section 1.1.

Deterministic solutions for the problems above have been
studied for MANETs. Their correctness rely on strong syn-
chronization or stability assumptions. In [38], deterministic
Broadcast in MANETs was studied under the assumption
that nodes move in a one-dimensional grid knowing their po-
sition. Two deterministic Multicast protocols are presented
in [28,41]. The solutions provided require the network topol-
ogy to globally stabilize for long enough periods to ensure
delivery of messages, and they assume a fixed number of
nodes arranged in some logical or physical structure. Leav-
ing aside channel contention, a lower bound ofΩ(n) rounds
of communication was proved in [44] for MANET Broad-
cast, even if nodes are allowed to move only in a grid, im-
proving over theΩ(D log n) bound of [8], whereD is the
diameter of the network. This bound was improved [17] to
Ω(n log n) without using the movement of nodes, but the
diameter of the network in the latter is linear. Recently, de-
terministic solutions for Geocast were proposed in [4] for
a one-dimensional setting and in [20] for the plane. In the
latter work, the authors concentrate in the structure of the

Geocast problem itself, leaving aside communication issues
such as the contention for the communication channel.

1.5 Related Work

Node activation in distributed computing.The issue of how
many nodes start an execution, is of central importance in
distributed computing. In rare cases it might affect the solv-
ability of the problem (see Example 1 below), and it cer-
tainly might affect the time (see Example 2 below) or the
message complexity (see Example 3 below). All these ex-
amples refer to asynchronous networks, so the issue of si-
multaneity is different from the one used in our case. The
examples are: (1) In [23] it is shown that no algorithm can
solve the consensus problem if at least one node might fail
during the execution; however, the result does not hold if
the failure can occur only at the beginning of the execution.
Actually, the problem can be solved as long as a majority
of the processes are non-faulty, but those that fail do so at
the beginning of the execution. (2) In [24] an algorithm to
find a minimum spanning tree in a network is presented.
It is shown that the execution can takeΩ(n2) time if the
processors are allowed to start at different times; however,
if they all start simultaneously then the time complexity is
O(n log n). (n is the number of processors). (3) Finding a
leader in a network whose topology is a complete graph is of
message complexityΩ(n log n) if all nodes start the execu-
tion [31], but can be solved by at mostO(k log n) messages
when only k nodes start [29].

Static networks.Given that a static network is just an in-
stance of a network where nodes are allowed to move, lower
bounds for the Broadcast problem also may apply to Dis-
semination, but only if the network is geometric (i.e., the
adjacencies of the topology assumed can be embedded in
R

2) and the target of the dissemination are all the nodes in
the network. The following bounds are proved for models
similar to the one assumed in this paper. Exploiting a lower
bound on the size of a combinatorial problem calledselec-
tive families, a lower bound for deterministic Broadcast of
Ω(n log D), whereD is the diameter of the layered topol-
ogy used, was shown in [13], yielding a linear lower bound
if D ∈ O(1). In [33], adaptive and oblivious deterministic
lower bounds ofΩ(n) andΩ(n min{D,

√
n}) respectively

were presented for the Broadcast problem in static Radio
Networks. The construction used for the former has diam-
eter at most4 and at least7 for the latter. Extending the
construction used previously in [8, 10] to geometric Radio
Networks, a lower bound ofΩ(n log n) is shown in [17] for
the Broadcast problem even if nodes do not move. The di-
ameter of the network used in this case is linear. In [26], it
was shown that, for each oblivious deterministic Broadcast
algorithm, there exists a network of diameter2 such that the
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running time is at leastΩ(
√

g), whereg is the inverse of
the minimum Euclidean distance between any pair of nodes,
by adversarially placing nodes as the algorithm progresses.
The above bounds apply also to Geocast, but only ifd ≥ D

whereD is also the eccentricity but with respect to all nodes
in the constructions used to prove them.

Regarding upper bounds, in [10], Chlebus et al. presented
an adaptive protocol that completes deterministic Broadcast
in less than14n steps wheren is the number of nodes in the
system, for a symmetric network without collision detection
where nodes do not have any information of the network ex-
cept their own unique identity (later denoted ID for short).
Making use of the simultaneous activation of all nodes, the
protocol defines an eulerian cycle over a spanning tree of
the network. Hence, this protocol could be used for Dis-
semination only if the movement of nodes does not change
the topology. None of these assumptions are present in our
model. Limiting the adversary to changes of topology due to
node failures only, it was proved in [14] that the well-known
round-robinO(Dn) algorithm, whereD is the diameter of
the network, is optimal for solving Broadcast restricted to
connected non-failing nodes.

Dynamic Networks beyond MANETs.Similar problems have
been studied recently for dynamic networks. A suitable model
for time-dependent topologies is theDynamic Graph[6,12,
16]. A dynamic graph is a set ofn nodesV and a sequence of
edge-setsE1, E2, . . . overV . Mapping eachEi with a time
sloti, a dynamic graph models a network with a possibly dif-
ferent topology for each time slot, usually called aDynamic
Network[3, 15]. If such topology can be embedded inR

2,
a dynamic network is a suitable model of a MANET (even
under failures since a node that is inactive at time stepi may
be modeled by not including any of its edges to neighbor-
ing nodes inEi). Dynamic networks may beeventually con-
nected[2]. In other words, the temporal sequence of edge-
sets may be such that no edge-cut lasts forever, as assumed
in population protocols[1].

Communication techniques to solve Dissemination, such
as flooding, have been studied for dynamic networks [6, 12,
15,16,40]. In [6,12,15,16] the results obtained are stochas-
tic and, as argued in [15], worst-case adversarial choice of
topologies precludes any deterministic protocol from com-
pleting Broadcast, even if connectivity is guaranteed. In [40],
they consider deterministic solutions to solve two particu-
lar instances of the dissemination problem, e.g., routing and
flooding. They do not explicitly deal with the contention for
the communication channel, and they request the network to
be always connected and to provide some local stability. A
data-centric approach for data dissemination in opportunis-
tic networks is studied in [7]. The only constraint on mobil-
ity is that each node must eventually communicate with an
appropriate set of peers. Hence, the performance of the tech-

nique is evaluated only experimentally. In [34, 35] a model
of dynamic network is proposed, in which, for anyT con-
secutive rounds there is astable connected spanning graph.
Guan [27] also proposes a dynamic version of the quasi unit
disk graph, where nodes do not move but when they are
beyond a certain distance their connectivity can fluctuate.
These models are stronger than the models considered here
but they do not provide applicable lower bounds.

1.6 Our Results

The main contribution of this work concerns negative re-
sults. Our main results are summarized in Table 1. Con-
trasting the lower bounds obtained with the upper bounds
derived by careful combination of previous techniques, in-
teresting complexity gaps among protocol-classes are ob-
served.

For a model where nodes may fail, there is no global
clock, and nodes may be activated at different times, we
show in Theorem 6 that any oblivious protocol takes, in the
worst case,Ω((α + n2/ lnn)n) steps to solve the Geocast
problem ifvmax > πr/6(α+⌊(2n/5)(2n/5−1)/ ln((2n/5)(2n/5−
1))⌋−2). Given the upper bound ofn(α+4n(n−1) ln(2n))
for Dissemination established in Theorem 8 by means of
an oblivious deterministic protocol based on Primed Selec-
tion [22], this lower bound is tight up to a poly-logarithmic
factor.

Moreover, for the same model, Theorem 5 shows that,
even if nodes are activated simultaneously and do not fail,
and an adaptive protocol is used, any Geocast protocol takes,
in the worst case,Ω(n(α + n)) if vmax > πr/(3(2α +

n − 4)). This result should be contrasted with the quasi-
oblivious protocol based onRound-Robinthat solves Dis-
semination in at mostn(α + n) steps as established in The-
orem 7.

The latter results are asymptotically tight and show that
full adaptiveness does not help with respect to quasi-obliv-
iousness. The first lower bound and the last upper bound,
show an asymptotic separation almost linear between ob-
livious and quasi-oblivious protocols. In a more restrictive
model, where nodes are activated simultaneously, there ex-
ists an oblivious protocol (e.g. Round Robin) that solves
Dissemination in at mostn(α + n) steps. This can be triv-
ially derived from the fact that when nodes are all activated
simultaneously, the above quasi-oblivious protocol does not
need the synchronization step and thus simply reduces to the
Round Robinprotocol. Hence, the lower bound proved in
Theorem 6 shows the additional cost of obliviousness when
nodes are not simultaneously activated. This gap is what we
call theprofit of global synchrony,since it represents the gain
the network obtains from global synchrony with respect to
not having it. Moreover, the quasi-oblivious protocol derived
shows that for the Dissemination problem, the simultaneous



6 Fernández Anta, Milani, Mosteiro, Zaks

oblivious quasi-oblivious adaptive

lower bounds Ω(n(α + n2/ lnn)) - Ω(n(α + n))

upper bounds n(α + 4n(n − 1) ln(2n)) n(α + n) -

Table 1 Time complexity of deterministic Opportunistic Dissemination Information in Mobile Ad-hoc Networks.

activation performance can be achieved by distributing the
time elapsed since the source started the dissemination.

Additionally, it is shown in Theorem 1 that no protocol
can solve the Geocast problem (and hence Dissemination)
in all (α, β)-connected networks unlessβ ≥ n−1. Interest-
ingly, it is shown in Theorem 2 that this bound becomesβ

> ⌊(n− 1)(n− 3)/4 ln((n− 1)(n− 3)/4)⌋ if the protocol
is oblivious. Comparing these bounds with the requirements
of the protocols presented above, the quasi-oblivious pro-
tocol requiredβ ≥ n, which is almost optimal, while the
oblivious protocol requiredβ ∈ Ω(n2 log n), which is only
a polylogarithmic factor larger than the lower bound. These
results also expose another aspect of the profit of global syn-
chrony mentioned before: whileβ = n is enough for quasi-
oblivious protocols to solve Dissemination, oblivious proto-
cols require a value ofβ almost a linear factor larger.

Finally, for an arbitrary small bound on node speed, we
show in Theorem 3 the existence of an(α, β)-connected net-
work where Geocast takes at leastα(n − 1) steps, even us-
ing randomization; and the existence of an(α, β)-connected
network where any deterministic protocol that transmits pe-
riodically takes at leastn(n − 1)/2 steps, even if nodes do
not move, in Theorem 4.

For the upper bounds, we additionally assume that fail-
ing nodes do not lose the informationI. This is needed in or-
der to make Dissemination solvable because, otherwise, e.g.,
the adversary may turn off the source node in the first time
step. Our lower bounds are proved independently of whether
a failing node loose the informationI or not. Our upper
bounds also hold under a weaker connectivity model where
only the partition defined by the informationI is (α, β)-
connected.

1.7 Paper Organization

The rest of the paper is organized as follows. In Section 2 we
introduce some technical lemmas that will be used to prove
our main results; in Section 3 we prove the lower bounds on
link stability and on the time complexity to solve the Dis-
semination problem with respect to some important aspects
of the system (e.g. speed of movement of nodes and their ac-
tivation schedule) and of the protocols (e.g., obliviousness
versus adaptiveness). We finally present the corresponding
upper bounds in Section 4.

2 Preliminaries

The following lemmas will be used throughout the analysis.
A straightforward consequence of the pigeonhole principle
is established in the following lemma.

Lemma 1 For any time stept of the execution of a Dissem-
ination protocol, where a subsetV ′ of k informed nodes do
not fail during the interval[t, t + k − 2], there exists some
nodev ∈ V ′ such thatv does not transmit uniquely among
the nodes inV ′ during the interval[t, t + k − 2].

In the following lemma, we show the existence of an
activation schedule such that, for anyobliviousdeterministic
protocol, within any subset of at least3 nodes, there is one
that does not have a unique transmission scheduled within a
period roughly quadratic in the size of the subset. The proof
is based on the probabilistic method.

Lemma 2 For any deterministic oblivious protocol for Dis-
semination in a MANET ofn nodes, where nodes are ac-
tivated possibly at different times, and for any subset ofk
nodes,k ≥ 3, there exists a node-activation schedule such
that, for any time slott and lettingm = ⌊k(k−1)/ ln(k(k−
1))⌋, each of thek nodes is activated during the interval
[t − m + 1, t], and there is one of thek nodes that is not
scheduled to transmit uniquely among thosek nodes during
the interval[t, t + m − 1].

Proof Consider any oblivious protocolΠ and any subset of
k nodes, wherek is an arbitrary value such that3 ≤ k ≤ n.
If, according toΠ , the algorithm of one of thek nodes, call
it i, does not schedule any transmission in some period ofm

steps within the first2m steps, the claim holds by activating
i so that such period starts at time slott.

Otherwise, the algorithm of all thek nodes must sched-
ule at least one transmission in any period ofm steps within
the first2m steps. If, according toΠ , the algorithm of one of
thek nodes, call iti, schedules less thank transmissions in
some period ofm steps within the first2m steps, the claim
holds by activatingi so that such period starts at time slott

and the otherk − 1 nodes are activated during the interval
[t−m+1, t] so that each ofi’s transmissions are scheduled at
the same time that some other transmission. This is possible
becausei is scheduled to transmit less thank times during
the interval[t, t + m− 1] and each of the otherk − 1 nodes
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is scheduled to transmit at least once within any period ofm

steps within the first2m steps.
Otherwise, the algorithm of all thek nodes must sched-

ule at leastk transmissions in any period ofm steps within
the first2m steps, we say that thedensityof scheduled trans-
missions in such period is at leastk/m. Then, we prove the
existence of the claimed activation schedule by the proba-
bilistic method.

Consider any of thek nodes, call iti. Let i be activated
at time slott. For each of the otherk − 1 nodes, choose
uniformly and independently at random a slot within the in-
terval [t − m + 1, t] for activation. Consider any time slot
t′ ∈ [t, t+m− 1] wheni is scheduled to transmit. Consider
any of the otherk− 1 nodes, call itj. Given that the density
of scheduled transmissions within the first2m steps ofj is
at leastk/m, the probability thatj has a transmission sched-
uled at timet′ is at leastk/m. Thus, the probability that no
node other thani has a transmission scheduled at timet′ is
less than(1 − k/m)k−1. Using the union bound over the
m slots in[t, t + m − 1], we know that the probability that
i has a unique (among thek nodes) transmission scheduled
during the interval[t, t+m−1] is less thanm(1−k/m)k−1.

Then, in order to prove the claim, it is enough to show
that the probability thati does not have a unique (among the
k nodes) transmission scheduled at some time step within
i’s first m steps is strictly bigger than0. Replacing, it is
enough to prove1−⌊k(k−1)/ ln(k(k−1))⌋(1−k/⌊k(k−
1)/ ln(k(k − 1))⌋)k−1 > 0, which we do as follows. We
know that, for anyk ≥ 3, it is ln(k(k − 1)) > 1. Dividing
both sides byk(k − 1),

ln(k(k − 1))

k(k − 1)
>

1

k(k − 1)

= exp (− ln(k(k − 1))) and

=

(

exp

(

− ln(k(k − 1))

k − 1

))k−1

.

Using the inequalitye−x ≥ 1 − x, for 0 < x < 1 [37,
§2.68], we know that

ln(k(k − 1))

k(k − 1)
>

(

1 − ln(k(k − 1))

k − 1

)k−1

1 >
k(k − 1)

ln(k(k − 1))

(

1 − ln(k(k − 1))

k − 1

)k−1

.

Which implies that

1 −
⌊

k(k − 1)

ln(k(k − 1))

⌋

(

1 − k

⌊

k(k − 1)

ln(k(k − 1))

⌋−1
)k−1

> 0.

⊓⊔

3 Solvability of the Dissemination Problem

If there is at least one node inVP − {s} at least one time
slot is needed to solve Dissemination, since the source node
has to transmit at least once to pass the informationI. Fur-
thermore, if all nodes inVP are neighbors ofs, one time
slot may also be enough if the source node transmits be-
fore neighboring nodes are able to move out of its range.
On the other hand, if the latter is not possible, more than
one time slot may be needed. Let us consider the Geocast
problem. Given that the specific technological details of the
radio communication devices used determine the minimum
running time when the eccentricity isd ≤ r, all efficiency
lower bounds are shown ford > r unless otherwise stated.

3.1 Link Stability Lower Bounds

The following theorem shows a lower bound on the value of
β for the Geocast problem.

Theorem 1 For any vmax > 0, d > r, α > 0, and any
deterministic Geocast protocolΠ , if β < n− 1, there exists
an (α, β)-connected MANET ofn nodes such thatΠ does
not terminate, even if all nodes are activated simultaneously
and do not fail.

Proof Consider three sets of nodesA, B, andC deployed
in the plane, each set deployed in an area of sizeε arbitrarily
small, such that0 < ε < r andd ≥ r + ε. (See Figure 1.)

≤ r ≤
ε

r < δ ≤ r + ε

A B C

Fig. 1 Illustration of Theorem 1.

The invariant in this configuration is that nodes in each
set form a clique, every node inA is placed within distance
r from every node inB, every node inB is placed at most
at distanceε from every node inC, and every node inA is
placed at some distancer < δ ≤ r+ε from every node inC.
ε is set appropriately so that a node can moveε distance in
one time slot without exceedingvmax. At the beginning of
the first time slot, the adversary placesn−1 nodes, including
the source nodes, in the setC, the remaining nodex in
setA, and activates all nodes. The setB is initially empty.
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Given thatd ≥ r + ε, x must become informed to solve the
problem.

For any protocolΠ for Geocast, lett1 be the first time
slot where the source node is the only node to transmit in
the setC. Adversarially, lett1 be the first time slot when
the source is informed. (Recall that(α, β)-connectivity is
not enforced beforet1 for clarity.) At time slott1, all nodes
placed inC are informed.

After time slott1, the adversary moves the nodes as fol-
lows. Given that the problem was not solved yet and nodes
in C do not fail, according to Lemma 1, there exists a node
y ∈ C that does not transmit uniquely among the nodes in
C during the interval[t1 + 1, t1 + n − 2]. Given thatΠ is
a deterministic protocol, and the adversary knows the pro-
tocol and defines the movement of all nodes, the adversary
knows which is the nodey.

Assume, for the sake of contradiction, thatβ ≤ n − 2.
Then, the adversary placesy in B for all time slots in the
interval[t1 +1, t1 +β]. Additionally, for each time slott′ ∈
[t1 +1, t1 +β] wherey transmits, the adversary moves toB

some nodez ∈ C that transmits att′ to produce a collision.
At the end of each time slott′ the adversary movesz back to
C. Such a nodez exists sincey does not transmit uniquely
during the interval[t1 + 1, t1 + n − 2] andn − 2 ≥ β. At
the end of time slott1 +β, the adversary movesy back toC

and the above argument can be repeated forever preserving
the (α, β)-connectivity and precludingΠ from solving the
problem. Therefore,β must be at leastn − 1. ⊓⊔

Building upon the argument used in the previous theo-
rem, but additionally exploiting the adversarial node acti-
vation, the following theorem shows a lower bound on the
value ofβ for the Geocast problem if the protocol used is
oblivious. The idea of the proof is to split evenly the nodes
of setC in the proof of Theorem 1 in two groups, so that
alternately the nodes in one group are activated while the
nodes in the other group produce collisions.

Theorem 2 For any vmax > 0, d > r, n ≥ 8, α > 0,
and any deterministic oblivious protocol for GeocastΠ , if
β ≤ m = ⌊(n − 1)(n − 3)/4 ln((n − 1)(n − 3)/4)⌋, there
exists an(α, β)-connected MANET ofn nodes such thatΠ
does not terminate.

Proof (Proof Sketch)Consider again the configuration de-
scribed in Theorem 1. (See Figure 1.) The invariant, the ini-
tial location of nodes, and the value ofε are the same as
in Theorem 1. The adversarial node activation schedule fol-
lows.

The adversary activatesx ands at the beginning of some
time slott0. Let t1 ≥ t0 be the time slot when the source
node is scheduled to transmit the informationI for the first
time. Adversarially, lett1 be the first time slot when the
source is informed. (Recall that(α, β)-connectivity is not
enforced beforet1 for clarity.)

Consider a partition{Co, Ce} of the nodes inC so that
|Co| = |Ce| = (n − 1)/2 ands ∈ Co. (For clarity assume
thatn is odd.) Nodes inCo − {s} are activated during the
interval[t1 − m + 1, t1] so that some nodey ∈ Co does not
transmit uniquely among the nodes inCo during the interval
[t1 + 1, t1 + m]. As proved in Lemma 2, such a node exists
because the protocol is oblivious andn ≥ 8. Given thatΠ is
a deterministic oblivious protocol known by the adversary,
the adversary knows which is the nodey. Nodes inCe are
activated at timet1 − m. Thus, at timet1 all nodes inC are
informed.

Let t2 > t1 + m be the time slot wheny transmits
uniquely among the nodes inCo for the first time aftert1.
The adversary placesy in B for all time slots in the interval
[t1 + 1, t2). Additionally, for each time slott′ ∈ [t1 + 1, t2)
wherey transmits, the adversary moves toB some node
z ∈ Co that transmits att′ to produce a collision atx. At
the end of each time slott′ the adversary movesz back to
Co. Such a nodez exists sincey does not transmit uniquely
during the interval[t1 + 1, t2). Right before time slott2, the
adversary movesy back toCo precludingx from becoming
covered.

For the following interval[t2 + 1, t2 + m], the above ar-
gument can be repeated using the nodes in the setCe. At
time slott2, the transmission of nodey will inform all nodes
in Ce. Each node inCe is deactivated for one time slot in the
interval[t2 −m, t2) according to the activation schedule re-
quired by Lemma 2. Given that deactivated nodes restart the
execution from scratch upon reactivation, as proved in Lemma 2
some nodey′ ∈ Ce does not transmit uniquely among the
nodes inCe during the interval[t2 + 1, t2 + m]. Given that
α ≥ 1 andβ ≤ m, (α, β)-connectivity is preserved. Thus,
moving nodes between setsCe andB as described before
once againx is not informed, this time during the interval
[t2 + 1, t3), wheret3 > t2 + m is the time slot wheny′ is
scheduled to transmit uniquely among the nodes inCe.

The above argument can be repeated inductively forever
so that the problem is not solved but, sinceβ ≤ m, (α, β)-
connectivity is preserved. Therefore,β must be bigger than
m. ⊓⊔

3.2 Time Complexity Lower Bounds versus Speed,
Activation and Obliviousness

Exploiting the maximum timeα that a partition can be dis-
connected, a lower bound on the time efficiency of any pro-
tocol for Geocast, even regardless of the use of randomiza-
tion and even for arbitrarily slow node-movement, can be
proved. The following theorem establishes that bound.

Theorem 3 For any vmax > 0, d > r, α > 0, andβ >

0, there exists an(α, β)-connected MANET ofn nodes, for
which any Geocast protocol takes at leastα(n − 1) time
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slots, even if all nodes are activated simultaneously and do
not fail.

Proof The following adversarial configuration and move-
ment of nodes shows the claimed lower bound. Initially,
nodes are placed in a circle (as depicted in Figure 2), all
are activated simultaneously, and let the source be informed
immediately upon activation. Let{v1, v2, . . . , vn−1, vn} be
the nodes located around the circle in clockwise direction
wherev1 = s is the source node. The nodes are located so
that the distances between each pair are the following. The
distance betweenv1 andv2 is r+ε, whereε > 0 is set appro-
priately so that a node can move as described below in one
time slot without exceedingvmax. For each1 < i < n, the
distance betweenvi andvi+1 is r. The pairv1, vn is placed
at distanceδ, r < δ < d − ε

′

, whereε
′

> 0 is set ap-
propriately so that nodevn can move as described below in
one time slot without exceedingvmax and it will be always
within distanced from the sources = v1. Every other pair
of nodes is separated by distance bigger thanr. In order to
solve Geocast, nodevn must be covered.

v1 = s

v2

v3

vn−1

vn

r

r +
ε

r < δ < d − ε
′

Fig. 2 Illustration of Theorem 3.

Nodes stay in the position described until time slotα−1

when nodev2 moves so that in time slotα it is placed at dis-
tancer of v1 and at distancer+ε from v3. Nodev2 does not
move after time slotα. Due to this configuration, the source
node is not able to informv2 during the firstα−1 time slots
and, in the best case,v2 becomes informed in time slotα.
After v2 becomes informed, the argument can be repeated it-
eratively forv3, v4, . . . , vn. Given that each node, except for
the source, becomes informed at leastα time slots after its
predecessor, the overall time is lower bounded as claimed.
Given that a new uncovered node becomes a neighbor of
an informed node withinα slots and does not move after

that, and all other partitions are always connected,(α, β)-
connectivity is preserved. ⊓⊔

The linear lower bound for Geocast proved in Theorem 3
was shown exploiting the maximum time of disconnection
between partitions. Exploiting the adversarial schedule of
node activation, even if nodes do not move nor fail, the same
bound can be simply proved for arbitrary Geocast protocols,
while a quadratic bound can be shown for the important
class ofequiperiodicprotocols. The protocol definition and
the theorem for the latter follows.

Definition 2 A protocol of communication for a Radio Net-
work isequiperiodicif for each node, the transmissions sched-
uled are such that the number of consecutive time steps with-
out transmitting, call itT − 1, is always the same. We say
thatT is theperiodof transmission of such a node.

Theorem 4 For anyvmax ≥ 0, d > r, α > 0, β > 0, and
any deterministic equiperiodic Geocast protocolΠ , there
exists an(α, β)-connected MANET ofn nodes, for whichΠ
takes at leastn(n − 1)/2 time slots to solve the problem,
even if nodes do not fail and do not move.

Proof The following adversarial configuration and activa-
tion schedule of nodes shows the claimed lower bound. Ini-
tially, nodes are placed as in Theorem 3, except that now the
distance betweenv1 andv2 is r and nodes will be static. (See
Figure 2.) The adversary chooses the IDs of nodes so that
the periods of transmission are assigned in increasing order.
I.e., the smallest period corresponds to the source nodev1,
the second smallest tov2, and so on. Then,v1 andvn are
activated by the adversary at the same time, and let the node
sourcev1 be informed immediately upon activation. Given
that they are activated simultaneously, in order to solve Geo-
cast,vn must become covered. The adversary chooses the
activation schedule of the rest of the nodes so that, for each
nodevi with assigned periodTi, 1 < i < n, nodevi trans-
mitsTi−1 steps after becoming covered. In order to preserve
(α, β)-connectivity, each nodei is activated beforev1 and
vn, possibly many periodsTi to achieve the above schedule.

Assume that all periods are different. Given that the first
period cannot be smaller than2, and each nodei, 1 < i < n,
transmits for the first time the informationI Ti−1 steps after
becoming covered, the time bound follows.

If on the other hand the protocol is such that two nodes
x, y have the same period of transmission, the following
(α, β)-connected network and activation schedule shows that
the problem cannot be solved. The adversary places the nodes
in a static two-hop topology so that, the nodesx andy are
neighbors of all nodes, but the source node is placed within
distanced and bigger thanr from all nodes exceptx andy.
The adversary activatesx andy so their scheduled transmis-
sions coincide in time. The rest of the nodes are activated at
the same time thatx or y, whichever is the latest. When the
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source node transmits the informationI for the first time,
both nodesx andy, and no other node, become covered si-
multaneously. Given that both nodes are scheduled to trans-
mit at the same time, their transmissions collide forever at
the rest of the nodes. Thus, Geocast cannot be solved. The
network is(α, β)-connected since it is statically connected.

⊓⊔

In Theorems 3 and 4 we showed lower bounds for Geo-
cast for arbitrarily small values ofvmax. We now show that,
by slightly constrainingvmax, a quadratic lower bound can
also be shown for arbitrary deterministic protocols.

Theorem 5 For any vmax > πr/(3(2α + n − 4)), d >

r, α > 0, β > 0, and any deterministic Geocast protocol
Π , there exists an(α, β)-connected MANET ofn nodes, for
whichΠ takesΩ((α +n)n) time slots to solve the problem,
even if all nodes are activated simultaneously and do not
fail.

Proof The following adversarial configuration and move-
ment of nodes shows the claimed lower bound. Consider six
sets of nodesA, A′, B, B′, C, andC′, each deployed in an
area of sizeε arbitrarily small, such that0 < ε < r and
d ≥ r + ε, and four points,x, y, x′, andy′ placed in the
configuration depicted in Figure 3(a).

The invariant in these sets is that nodes in each set form
a clique; each node inA′ is placed at some distance> r

and≤ r + ε from each node inB and from the pointsx, y′

(for clarity, the setsA andA′ in Figure 3(a) are depicted very
well separated from the circle crossing the pointsx, y, x′, y′,
but in factε ≪ r); each node inA is placed at some distance
> r and≤ r + ε from each node inB and from the points
x′, y; each node inB is placed within distancer of points
x, y, x′, andy′, and each node inC andC′; each node in
C is placed at some distance> r and≤ r + ε from the
pointx; each node inC′ is placed at some distance> r and
≤ r + ε from the pointx′; and each node inB′ is placed
within distanceε of each node inB and within distancer of
each node inC andC′. 1

At the beginning of the first time slot, the adversary places
n/2 nodes, including the source nodes, in setB′, the re-
mainingn/2 nodes in the setA, and starts up all nodes. (For
clarity, assume thatn is even.) All the other sets are ini-
tially empty. (See Figure 3(b).) Given thatd ≥ r + ε, all
nodes must be covered to solve the problem. Also,ε is set
appropriately so that a node can be movedε distance in one
time slot without exceedingvmax, and so that a node can be
moved from setA to pointx through the curved parts of the
dotted line (see Figure 3(c)), of length less thanπ(r + ε)/6,
in α + n/2 − 2 time slots without exceedingvmax. (To see

1 During some periods of time a given set could be empty, we mean
that x is separated (within) that distance from any point in the area
designated to the setX

why the length bound is that, it is useful to notice that the
distance between each pair of singular points along each of
the circular dotted lines is upper bounded by(r + ε)/2.)

Let t be the first time slot when the source is scheduled
to transmit. Adversarially, lett be the first time slot when
the source is informed. Hence at timet, all nodes in setB′

become informed but all nodes in setA still have to be in-
formed. Starting at time slott + 1, the adversary moves the
nodes so that only one new node everyα + n/2 steps be-
comes informed. First we give the intuition of the move-
ments and later the details. Refer to Figures 3(c) and 3(d).
Nodes that are not inB or B′ are moved following the dot-
ted lines. Some of the nodes inB′ are moved back and forth
to B. Nodes initially inA are moved clockwise toA′, ex-
cept for one of them, sayu, which is moved simultaneously
counter-clockwise to the pointx. Upon reachingA′ nodes
are moved counter-clockwise back toA, except for one of
them, sayv, which is moved simultaneously clockwise to
the pointx′, while the nodeu is also moved simultaneously
to the pointy. Upon reachingA, the remaining nodes repeat
the procedure whileu keeps moving towardsC andv keeps
moving towardsC′ throughy′ respectively. Nodes initially
in A are moved in the above alternating fashion, one toC
and the next one toC′, until all nodes become informed.
Movements are produced so that(α, β)-connectivity is pre-
served. The details follow.

The movement of each nodeu moved fromA to C is
carried out in three phases of at leastα + n/2− 2 time slots
each as follows. As explained below, some nodes initially in
A will be moved instead toC′, but the movement is sym-
metric. For clarity, we only describe the whole three phases
for one node. The movement within each phase is illustrated
in Figures 4, 5, and 6.

– Phase 1.During the firstα − 2 time slots,u is moved
counterclockwise fromA towards the pointx maintain-
ing a distance> r and≤ r + ε with respect to ev-
ery node inB. Simultaneously, the remaining nodes ini-
tially in A are moved clockwise toA′ maintaining the
same distance toB. (See Figure 4(a).) In the(α − 1)-
th time slot of this phase, all nodes initially inA are
moved within distancer of every node in setB pre-
serving(α, β)-connectivity. (See Figure 4(b).) Nodes in
B ∪ B′ stay static during this interval. Given that only
nodes inB ∪ B′ are informed and the distance between
them and the rest is bigger thanr, no node becomes cov-
ered during this interval. During the followingn/2 − 1
time slots of the first phase, the counterclockwise move-
ment of nodeu towards the pointx continues, but now
maintaining a distance at mostr with respect to every
node inB. In the last time slot of the second phase,
u is moved to pointx. Simultaneously, the rest of the
nodes originally inA continue their movement towards
A′ maintaining a distance at mostr from B preserv-
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ing (α, β)-connectivity.) Then, even ifu becomes in-
formed immediately upon reaching pointx, u cannot in-
form nodes inA′ because they are separated by a dis-
tance> r. (See Figure 4(c).) During this interval, nodes
in B′ are moved back and forth toB as described in
Theorem 1 to guarantee thatu does not become covered
before reaching pointx. Upon reaching pointx, u and
all the other nodes in the network not inB or B′ re-
main static. Phase 1 ends the time slot beforeu becomes
covered, when the rest of the nodes originally inA are
moved toA′. (See Figure 4(d).)

– Phase 2.During this phase,u is moved counterclock-
wise towards pointy maintaining a distance at mostr

with respect to every node inB andB′. Simultaneously,
nodes that were inA′ at the end of the second phase
are moved counterclockwise toA except for one nodev
that moves in its own first phase tox′. (See Figure 5(a).)
Nodes inA′ are moved toA in the same fashion of
Phase 1, i.e., maintaining first a distance> r from B

and later on≤ r to preserve(α, β)-connectivity. (See
Figure 5(b).)
Nodes moving fromA′ to A maintain a distance> r

with respect tou. Thus, even ifu becomes covered the
informationI cannot be passed to the former. At the end
of this phasev is placed in pointx′. Thus, even ifv be-
comes covered immediately after arriving atx′, v can-
not inform nodes inA because they are separated by a
distance> r. (See Figure 5(c).) Phase 2 ofu ends the
time slot beforev becomes covered, when the rest of the
nodes inA′ at the beginning of this phase are moved to
A. (See Figure 5(d).)

– Phase 3.During this phase,u is moved counterclock-
wise towards setC maintaining a distance at mostr

with respect to every node inB andB′. Simultaneously,
nodes that were inA at the end of the second phase are
moved clockwise toA′ except for one nodew that moves
in its own first phase tox. Also simultaneously,v con-
tinues its movement towards setC′ in its own second
phase. (See Figure 6(a).) Nodes inA are moved toA′

in the same fashion of Phase 1, i.e., maintaining first a
distance> r fromB and later on≤ r to preserve(α, β)-
connectivity. (See Figure 6(b).)
Nodes moving fromA to A′ maintain a distance> r

with respect tov. Thus, even ifv becomes covered the
informationI cannot be passed to the former. Also, nodes
u andw are moved maintaining a distance> r between
them. Thus,u cannot informw. At the end of this phase
u has reached setC, v is placed in pointy′, andw is
placed in pointx. Thus, even ifw becomes covered im-
mediately after arriving atx, w cannot inform nodes in
A because they are separated by a distance> r. (See
Figure 6(c).) Phase 3 ofu ends the time slot beforew
becomes covered, when the rest of the nodes inA at

the beginning of this phase are moved toA′. (See Fig-
ure 6(d).) Upon completing the third phase,u stays static
in C forever so that(α, β)-connectivity is preserved.

The three-phase movement detailed above is produced
for each node initially inA, overlapping the phases as de-
scribed, until all nodes have became covered. Given that
when a nodeu reaches the pointx, its phase 1 is stretched
until the time step beforeu becomes covered by a nodev
in B and all other nodes remain static, the next nodew that
will be moved fromA′ to x′ does not become covered by
v, becausew stays inA′ until u becomes covered. In each
phase of at leastα+n/2−2 time slots every node is moved
a distance at mostπ(r + ε)/6 + ε. Thus, settingε appropri-
ately, the adversarial movement described does not violate
vmax. Given thatn/2 nodes initially inA are covered one
by one, each at least withinα + n/2− 2 time slots after the
previous one, the overall running time is lower bounded as
claimed, even ift = 1. ⊓⊔

The quadratic lower bound shown in Theorem 5 holds
for any deterministic protocol, even if it is adaptive. Build-
ing upon the argument used in that theorem, but addition-
ally exploiting the adversarial node activation, the following
theorem shows a roughly cubic lower bound for oblivious
protocols, even relaxing the constraint onvmax.

Theorem 6 Letm = ⌊(2n/5)(2n/5−1)/ ln((2n/5)(2n/5−
1))⌋. For anyn ≥ 8, d > r, α > 0, 0 < β < 2(α + m),
vmax > πr/(6(α + m − 2)), and any oblivious determin-
istic Geocast protocolΠ , there exists an(α, β)-connected
MANET ofn nodes, for whichΠ takesΩ((α + n2/ lnn)n)

time slots to solve the problem.

Proof (Proof Sketch)The following adversarial configura-
tion and movement of nodes shows the claimed lower bound.
The movement of nodes used in this proof is the same as in
Theorem 5, which preserves(α, β)-connectivity as proved.
However, here a particular activation schedule will be used
to exploit obliviousness. We will explain the impact of such
activation schedule in the(α, β)-connectivity at the end of
the proof.

Consider again the configuration described in Theorem 5
(illustrated in Figure 3(a)). The sets and distance invariant
are the same as in that theorem. Regarding node location,
the adversary places4n/5 nodes, including the source node
s, in setB′, and the remainingn/5 nodes in the setA. (For
clarity, assume thatn is a multiple of5.) All the other sets
are initialized empty. (See Figure 3(b).) Also,ε is again set
appropriately so that a node can be moved as required with-
out exceedingvmax, and all nodes that are active at the time
that the source node transmits, must be covered for the par-
ticular value ofd > r.

The adversarial node activation schedule follows. The
adversary activates all nodes in the setA and s simulta-
neously. Lett1 be the time slot when the source node is
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scheduled to transmit the informationI for the first time.
Adversarially, lett1 be the first time slot when the source
is informed. Given that all nodes inA are active and within
distanced of s at timet1, all nodes inA must be covered to
solve the problem.

Consider a partition{B′
o, B

′
e} of the nodes inB′ such

that |B′
o| = |B′

e| = 2n/5 ands ∈ B′
o. The nodes inB′

o −
{s} are activated for the first time during them time slots
beforet1 + α so that some nodeo ∈ B′

o does not transmit
uniquely among the nodes inB′

o before the time slott1+α+

m. As proved in Lemma 2, such a node exists because the
protocol is oblivious andn ≥ 8. Let t2 be the time slot when
nodeo transmits uniquely for the first time. Nodes inB′

e are
activated for the first time at timet1, and reactivated (i.e.
turned off for one time slot) during them time slots before
t2 + α. Given that deactivated nodes restart the execution
from scratch upon reactivation, as proved in Lemma 2 some
nodee ∈ B′

e does not transmit uniquely among the nodes in
B′

e before the time slott2 + α + m − 1.
These alternating rounds of activation are repeated until

the problem is solved. In each of the rounds of activation de-
scribed here, and concurrently with the movement of nodes
in A in the second interval of the first phase described in
Theorem 5, nodes are moved between setsB′ andB as de-
scribed in Theorem 5, but now using the last node to transmit
uniquely inB′

o andB′
e alternately.

The movement of nodes fromA andA′ to C andC′ is
performed slower than in Theorem 5 since, for example, an
uncovered node fromA has now at leastα+m−2 time steps
to be moved fromA to x before being informed. In each
phase of at leastα + m − 2 time slots every node is moved
a distance at mostπ(r + ε)/6 + ε. Settingε appropriately,
the adversarial movement described does not violatevmax.

Given thatn/5 nodes initially inA are covered one by
one, each at least withinα + m − 1 time slots after the
previous one, the overall running time is lower bounded as
claimed.

The movement of nodes preserves(α, β)-connectivity as
proved in Theorem 5. With respect to the activation schedule
of the nodes inB ∪ B′, notice that each node is active for
at least2(α + m) − 1 consecutive steps. Given thatβ <
2(α + m) the connectivity property holds.

⊓⊔
Notice that the upper bound onβ in Theorem 6 is bigger

than the lower bound onβ proved in Theorem 2. Otherwise,
the later would subsume the former.

It is interesting to observe the following. The oblivious
lower bound was proved using failures, unlike the general
lower bound where nodes do not fail. Furthermore, the gen-
eral lower bound is universal for anyβ, because each par-
tition is disconnected only once. But the oblivious lower
bound is existential becauseβ was restricted to exploit fre-
quent failures. Having a restriction onβ for oblivious pro-

tocols is intuitively not surprising though because, asβ be-
comes very large for a fixedα, links become “almost” static
and node failures are rare. An interesting question left for
future work is what is the precise relation betweenβ and the
time bound.

4 Upper Bounds

In this section, a quasi-oblivious protocol and an oblivious
one that solve Dissemination, both based on known algo-
rithms particularly suited for our setting, are described and
their time efficiency proved. The first bound is asymptoti-
cally tight with respect to the more powerful class of adap-
tive protocols. Recall that, for the upper bounds, we assume
that failing nodes do not lose the informationI.

A Quasi-Oblivious Protocol.The idea underlying the pro-
tocol is to augment the well-known Round-Robin protocol
with the synchronization of the clock of each node with the
time elapsed since the dissemination started, which we call
theglobal time. This is done by embedding a counterτ , cor-
responding to the global time, in the messages exchanged
to disseminate the informationI. Given that the schedule
of transmissions of a node depends only on its ID and the
global time, the protocol is quasi-oblivious. More details
about the algorithm can be found in Algorithm 1.

Algorithm 1 : Dissemination algorithm for nodei. I is the in-
formationI to be disseminated. The source node initially sets
τ = 0.

upon receiving〈I, τ〉 do1
for each time slotdo2

increaseτ by one3
if τ ≡ i mod n then transmit〈I, τ〉4
if τ ≥ n(α + n) then stop5

It can be proved that this quasi-oblivious algorithm solves
Dissemination for arbitrary values ofvmax in at mostn(α+
n) time steps. Formally,

Theorem 7 Given an(α, β)-connected MANET whereβ ≥
n, there exists a quasi-oblivious deterministic protocol that
solves Dissemination for arbitrary values ofvmax in at most
n(α + n) time steps.

Proof As a worst case, we assume that all nodes in the net-
work must be covered, andvmax is arbitrarily big.

Using τ , each node achieves synchronization with re-
spect to the time step whenI was transmitted for the first
time. Thus, since each node transmits in a unique time slot,
collisions are avoided.

Let us denote byC the set of covered nodes, andC(t)

the setC at the end of time slott. Let us denote byti the
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time slot at which the setC increases from sizei to i + 12.
The time slot when the informationI is transmitted for the
first time is thent0.

We prove thatti+1 − ti ≤ α + n and thus in the worst
case, after timen(α + n) all nodes are informed. At timeti,
the set of nodesC(ti) and the remaining nodes in the system
V − C(ti) constitute a non trivial partition.

Given that the network is(α, β)-connected, for each time
slott, and in particular for time slotti, there exists a time slot
t′ ≥ ti such that a pair of nodesp ∈ C(t′) andq ∈ V −C(t′)

such that,p is informed andq is uncovered at timet′, p and
q are neighbors and active for all the interval[t

′

, t
′

+ β) and
this latter intersects with the interval[ti, ti +α). In the worst
case at timet

′

+ β a new node is covered, sinceβ ≥ n.
Remember that everyn time steps each informed node

will re-transmitI unless the stop condition is verified. (I.e.,
n(α+n) time slots after the source node transmitted for the
first time.) Sinceβ ≥ n, we know that at timeti+1 ≤ t

′

+ n
nodeq is informed. Sincet

′

+ n ≤ ti + α + n, we have that
ti+1 ≤ ti + α + n. Thus,ti+1 − ti ≤ α + n. ⊓⊔

Recall thatβ ≥ n − 1 is required for the problem to
be solvable as shown in Theorem 1. This upper bound is
asymptotically tight with respect to the lower bound shown
in Theorem 5 for general deterministic Geocast protocols
whenvmax > πr/(3(2α + n − 4)). Thus, we can conclude
that having extra information in this case does not help.

An Oblivious Protocol.We finally describe how to imple-
ment an oblivious protocol for Dissemination, based on a
protocol presented in [22] for the related problem of Re-
current Communication calledPrimed Selection. Given that
in this protocol the schedule of transmissions of a node de-
pends only on its ID, the protocol is oblivious. This upper
bound is only a poly-logarithmic factor away from the lower
bound shown in Theorem 6.

In order to implement Primed Selection, one ofn prime
numbers is stored in advance in each node’s memory, so that
each node holds a different prime number. Letpℓ denote the
ℓ-th prime number. We set the smallest prime number used
to bepn, which is at leastn, because Primed Selection re-
quires the smallest prime number to be at least the maximum
number of neighbors of any node, which in our model is un-
known. The algorithm is simple to describe, upon receiving
the informationI, each node with assigned prime numberpi

transmits with periodpi.
It was shown in [22] that, for any Radio Network formed

by a setV of nodes running Primed Selection, for any time
slot t, and for any nodei such that the number of nodes
neighboringi is k − 1, 1 < k < n, i receives a transmis-
sion without collision from each of its neighbors within at

2 It may happen that two nodes receive the message at the same time.
But this does not affect the correctness of the proof, it justreduces the
time necessary for the problem to be solved.

mostk maxj∈V pj steps aftert. Given that in our setting the
biggest prime number used isp2n−1, that px < x(ln x +

ln lnx) for anyx ≥ 6 as shown in [46], and that due to mo-
bility all nodes may get close toi in the worst case, we have
thatk maxj∈V pj < n(2n−1)(ln(2n−1)+ ln ln(2n−1)),
for n ≥ 4. Which is in turn less than4n(n − 1) ln(2n) for
n ≥ 3. Hence, given that in the worst case all nodes must be
covered at least one at a time and that the network is(α, β)-
connected, the overall running time is less thann(α+4n(n−
1) ln(2n)). We formalize this bound in the following theo-
rem. Recall thatβ > ⌊(n−1)(n−3)/4 ln((n−1)(n−3)/4)⌋
is required for the problem to be solvable whenn ≥ 8 as
shown in Theorem 2.

Theorem 8 Given an(α, β)-connected MANET, whereβ ≥
n(2n − 1)(ln(2n − 1) + ln ln(2n − 1)) andn ≥ 4, there
exists an oblivious deterministic protocol that solves Dis-
semination for arbitrary values ofvmax in at mostn(α +

4n(n − 1) ln(2n)) time steps.

5 Conclusions

In this paper, we formally define a particular class of MANET,
suited for opportunistic communication, where the changes
in the communication topology; if any, are such that an on-
line route exists among any two nodes that wish to com-
municate. In this context, we have studied a fundamental
communication problem, InformationDissemination.More
generally, a future direction is to understand which are the
problems that can be solved in our model and which not.
Similarly to other works, e.g., [35], this research direction
contributes to understand which are the necessary assump-
tions for distributed algorithms to solve fundamental prob-
lems in networks of dynamic nature.

In this sense, we have shown that when nodes are ac-
tivated at different times, the time complexity to solve the
Dissemination problem can be improved by almost a lin-
ear factor if nodes can use the information in the exchanged
messages to synchronize their clock. In fact, we prove that
only that piece of non-local information is enough to achieve
optimality. This comparison is formalized by considering
three classes of algorithms (oblivious, adaptive and quasi-
oblivious) and summarized in Table 1. On one hand, we
show aΩ(n(α+n2/ lnn)) lower bound for oblivious proto-
cols when nodes may be activated at different times. On the
other hand, in a more restrictive model where global time is
available, there exists an oblivious protocol (Round Robin)
that solves Dissemination in at mostn(α + n) steps.
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37. Mitrinović, D.S.: Elementary Inequalities. P. Noordhoff Ltd. -
Groningen (1964)



Opportunistic Information Dissemination in MANETs 15

38. Mohsin, M., Cavin, D., Sasson, Y., Prakash, R., Schiper,A.: Reli-
able broadcast in wireless mobile ad hoc networks. In: Proceed-
ings of the 39th Hawaii International Conference on System Sci-
ences, p. 233 (2006)

39. O’Dell, R., Wattenhofer, R.: Information dissemination in highly
dynamic graphs. In: Proc. Wksp. on Foundations of Mobile Com-
puting, pp. 104–110 (2005)

40. O’Dell, R., Wattenhofer, R.: Information dissemination in highly
dynamic graphs. In: DIALM-POMC ’05: Proceedings of the 2005
joint workshop on Foundations of mobile computing, pp. 104–
110. ACM, New York, NY, USA (2005)

41. Pagani, E., Rossi, G.: Reliable broadcast in mobile multihop
packet networks. In: Proc. of the 3rd ACM Ann. Intl. Conference
on Mobile Computing and Networking, pp. 34–42 (1997)

42. Peleg, D., Radzik, T.: Time-efficient broadcast in radionetworks.
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Fig. 3 Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small black circle depicts a node. A big empty area depicts
an empty set. A big shaded area depicts a non-empty set.
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Fig. 4 Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small black circle depicts a node. A big empty area depicts
an empty set. A big shaded area depicts a non-empty set.
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Fig. 5 Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small black circle depicts a node. A big empty area depicts
an empty set. A big shaded area depicts a non-empty set.
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Fig. 6 Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small black circle depicts a node. A big empty area depicts
an empty set. A big shaded area depicts a non-empty set.


