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Abstract

We consider a Mobile Ad-hoc NETwork (MANET) formed by n agents that
move at speed v according to the Manhattan Random-Way Point model over a
square region of side length L. The resulting stationary (agent) spatial probability
distribution is far to be uniform: the average density over the “central zone” is
asymptotically higher than that over the “suburb”. Agents exchange data iff they
are at distance at most R within each other.

We study the flooding time of this MANET: the number of time steps required
to broadcast a message from one source agent to all agents of the network in the
stationary phase. We prove the first asymptotical upper bound on the flooding
time. This bound holds with high probability, it is a decreasing function of R and
v, and it is tight for a wide and relevant range of the network parameters (i.e. L,
R and v).

A consequence of our result is that flooding over the sparse and highly-disconnected
suburb can be as fast as flooding over the dense and connected central zone. Rather
surprisingly, this property holds even when R is exponentially below the connectivity
threshold of the MANET and the speed v is very low.
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1 Introduction

We continue our adventure in exploring the impact of agent mobility on data propagation
in Mobile Ad-hoc NETworks (MANET ). Node mobility can be considered as a resource
to exploit in data-forwarding protocols rather than a hurdle [19, 15]. This is well-
captured by the model known as opportunistic MANET [26, 16, 15, 30].

In our previous works [10] and [11], the speed of information spreading (measured
in terms of flooding time) has been analytically determined in MANETs where agents
perform a sort of independent random walks over a square. In such MANETs, the
stationary (agent) spatial probability distribution is almost uniform: the probability
that an agent lies in a given position is almost the same for any choice of the position.
Furthermore, the stationary (agent) destination probability distribution (i.e., the prob-
ability that an agent, lying in a given position (x, y), has a given destination) is uniform
over a disk centered on (x, y) and it is zero elsewhere.

The most popular mobility model is the Random Way-Point (RWP) [5, 6, 22]. In the
basic version of this model, each agent chooses independently and uniformly at random
a destination over all the square. Then, she starts traveling at speed v towards the
destination along a simple path. When she reaches the destination (a way-point), she
chooses another destination.

In this work, we consider the version of the RWP, called Manhattan Random Way-
Point (MRWP) model, where the path followed by an agent from a given point to a
destination point is randomly chosen between the two Manhattan shortest paths con-
necting the two points (see Section 2 for a formal definition). This version of the RWP
is motivated by scenarios where agents travel over an urban zone and try to minimize
the number of turns while keeping the chosen route as short as possible [13, 12, 22].

The MRWP is a dynamical system yielded by an infinite Markovian process that al-
ways reaches a stationary phase. Explicit formulas for the stationary spatial and destina-
tion probability distributions have been derived in [13, 12]. The stationary distributions
of some other versions of the RWP have been obtained in [5, 7, 21, 23]. In general, the
knowledge of such distributions is crucial to achieve perfect simulation [6, 22], to derive
connectivity properties [14, 13], and for the study of information spreading [10, 11, 13].

Differently from the case of random-walks models, it turns out that the stationary
probability distributions yielded by the MRWP are very far to be uniform. As for the
stationary spatial distribution, in the four regions close to the corners of the square, the
probability density function is asymptotically much lower than that in the Central Zone
(see Fig. 1). The four corners form the Suburb. The area of the Suburb is not negligible,
being a constant fraction of the entire area. A further crucial difference with respect
to the random-walk models, studied in [14, 10, 11], lies in the stationary destination
distribution. This distribution has a rather complex shape (see Section 2).

We consider a MANET where n agents move independently at speed v > 0 over a
square of side length L according to the MRWP model. Agents exchange data iff they
are at distance at most R within each other, where R > 0 is the agent transmission
radius. At every time step t, the snapshot of the MANET determines a symmetric disk
graph Gt. The connectivity threshold is the smallest R such that Gt is connected. In
[13], from the explicit formula of stationary spatial distribution of the MRWP model,
the relative connectivity threshold for the stationary graph Gt is derived: when L =

√
n,

it is equal to some root of n. Thus, it is exponentially higher than that of the stationary
disk graph yielded by mobility models having uniform stationary spatial distribution
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(such as the random-walk models and some RWP models over toroidal spaces): this
threshold being Θ(

√
log n) [18, 27].

The flooding mechanism is the simple broadcast protocol where every informed agent
sends the source message at discrete time steps (an agent is said to be informed if she
knows the source message). Thus, a non-informed agent a gets informed at time step
t iff, during t, an informed agent b is within distance R from a. The flooding time is
the first time step in which all agents are informed. It is a natural lower bound for
any broadcast protocol, it represents the maximal speed of data propagation, and it
has the same role of the diameter in static networks. Flooding time of some classes of
Markovian evolving graphs [2] has been recently studied in [9, 10, 3]. On the other hand,
no analytical results are known for flooding time on any version of the RWP model.

Our Result. We study the flooding time in the MRWP model under the conditions:
R > c1

√
log n and v 6 R/c2, where c1 and c2 are positive constants. Observe that, from

the above discussion on graph connectivity, the first assumption on R does not guarantee
network connectivity [13]: the stationary snapshots could be highly disconnected in the
Suburb. The second assumption means we are considering a slow-mobility scenario, i.e.,
when an agent’s move, in a time unit, cannot be longer than the transmission radius.
Observe that the second assumption implies the lower bound Ω(L/R) for flooding time.
We prove that flooding time is w.h.p.1 bounded by

O

(

L

R
+

S

v

)

(1)

where

S = Θ

(

L3 log n

R2n

)

is the diameter of each of the four corner regions of the Suburb. Hence, our bound can
be interpreted as saying that flooding time is asymptotically bounded by the sum of two
consecutive time spans: the time to traverse the square at “speed” R and the time to
traverse the Suburb at speed v.

Let us discuss the consequences of our bound in the “standard” case L =
√
n (clearly,

similar consequences hold for different values of L). If R = Θ(
√

log n), our bound
becomes O(L/v): this is optimal whenever v = Θ(R). In general, our bound is optimal
whenever the speed v falls into the range logn

R 6 v 6 R. For instance, if R = Θ(log n),
our bound becomes optimal provided that v is larger than an absolute constant. This
fact is rather surprisingly. Indeed, under such conditions, the snapshots in the Suburb
are sparse and highly-disconnected (as mentioned above, the connectivity threshold in
the Suburb is exponentially larger than log n [13]). Nevertheless, our bound says that
flooding succeeds over the Suburb as well and, even more, its completion time is similar
to that in the Central Zone where the snapshots are fully-connected. This phenomenon
holds even when the agent speed v is very low.
We do not know whether our bound is optimal for all the range of the network parame-
ters, however it cannot be improved to O(L/R). Indeed, we prove that, for some ranges
of R, n, and L, flooding time is asymptotically larger than L/R and, moreover, it must
depend on v.

Finally, we strongly believe that our ideas and techniques used to obtain the upper
bound can be adapted to analyze flooding over other versions of the RWP model and

1As usual, we say event E holds with high probability (w.h.p.) if P (E) > 1− 1/nc for some c > 0.
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even over some versions of the more general Random Trip model [22], in the stationary
phase. An outline of our proof and its potential applications to other mobility models
are given in Section 3.

Note. In order to make the technical arguments more readable, our asymptotic analysis
definitely does not optimize the constants in the upper bound and in the assumption on
R. However, we believe that, with some work, our arguments could be refined so that
the involved constants are significantly improved.

2 The Manhattan Random-Way Point

In this section, we formally present the MRWP model. Consider a square of edge length
L > 0. A set of n independent agents move over this square according to the following
stochastic rule. Starting from an initial position (x0, y0), every agent selects a destination
(x, y) uniformly at random in the square. Then, the agent chooses uniformly at random
between the two feasible Manhattan paths

P1 = ((x0, y0) → (x0, y) → (x, y)) and P2 = ((x0, y0) → (x, y0) → (x, y))

Once the feasible path is selected, the agent starts following the chosen route with
constant velocity determined by the parameter v. We assume that all agents have the
same velocity v that represents the travelled distance by an agent in the time unit. An
agent, once arrived at the selected destination, re-applies the process described above
again and again. This Markovian process yields the MRWP model.
The stationary probability distributions of the MRWP have been recently analytically
derived. The stationary (agent) spatial distribution gives the probability that an agent
lies in a position (x, y) and it has been derived in [13]. The stationary (agent) destination
distribution gives the probability that an agent, conditioned to lie in position (x0, y0),
is traveling toward destination (x, y) and it has been determined in [12]. An informal
representation of the two distributions is given in Fig. 1.

Theorem 1 [13]. The probability density function of the stationary spatial distribution
is

f(x, y) =
3

L3
(x + y) − 3

L4

(

x2 + y2
)

(2)

Theorem 2 [12]. The probability density function of the stationary destination distri-
bution is

f(x0,y0)(x, y) =































2L−x0−y0

4L(L(x0+y0)−(x2

0
+y2

0
))

if x < x0 and y < y0
x0+y0

4L(L(x0+y0)−(x2

0
+y2

0
))

if x > x0 and y > y0
L−x0+y0

4L(L(x0+y0)−(x2

0
+y2

0
))

if x < x0 and y > y0
L+x0−y0

4L(L(x0+y0)−(x2

0
+y2

0
))

if x > x0 and y < y0

+∞ otherwise.

(3)

In order to get the destination distribution where the probability density function is
infinite, one has to consider the four segments outgoing from (x0, y0) and parallel to the
axis (see Fig. 1). For every segment s ∈ {S,W,N,E}, the probability that an agent in
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(x0, y0) EW
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L

Figure 1: The spatial density
function is shown by a gradation
of gray (black corresponds to the
maximum density and white cor-
responds to the minimum den-
sity). The destination probabil-
ity over the cross of agent po-
sition (x0, y0) = (L/3, L/4) is
shown in gradation of blue.

node (x0, y0), has destination lying on the segment s, is φs
(x0,y0)

. It has been proven in

[12] that

φS
(x0,y0)

= φN
(x0,y0)

=
y0(L− y0)

4L(x0 + y0) − 4(x20 + y20)
(4)

φW
(x0,y0)

= φE
(x0,y0)

=
x0(L− x0)

4L(x0 + y0) − 4(x20 + y20)
(5)

It is interesting to observe that the sum of the above four probabilities (i.e. the proba-
bility that the agent has destination over the cross centered on (x0, y0)) is not zero (it
is equal to 1/2) despite the fact that this region (i.e. the cross) has area 0. This fact
will be used in our analysis of flooding over the Suburb.

3 Proof of the upper bound: an overview

We here outline the proof technique of the upper bound on the flooding time. The
stationary spatial probability distribution (see Fig. 1) shows a central region of high
density (the Central Zone) and four corner regions (the Suburb) of low density. High
density means that the expected number of agents in any disk of radius R is Ω(R2) (see
Def. 4) and that, in the Central Zone, the resulting MANET is w.h.p. connected.

A key-issue here is that flooding must be observed over a sequence of consecutive
snapshots of the MANET: even though we can say that each of such snapshots (indi-
vidually) enjoys all the stationary properties (such as high density and connectivity of
Central Zone), we cannot directly exploit them during the observed process. Indeed,
there is strong stochastic dependence between consecutive snapshots: if we “observe”
one snapshot, then the next one is not anymore random with the stationary distribution.
Informally speaking, this technical issue is solved by proving that any stationary snap-
shot sequence of reasonable length (say O(n)) is formed by conditional random graphs,
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all having expansion properties similar to those enjoyed by the (individual) stationary
random graph. Then, the Central Zone is partitioned in square cells of side length less
than R and the flooding process on agents of the MANET is viewed as a propagation
of information from cells to their adjacent ones (see Lemmas 8, 9, and Theorem 10).
Thanks to the above expansion properties, we prove this propagation takes O(L/R)
time to “infect” all the Central Zone. We introduced a similar technique in [10] for the
random-walk mobility model: we here carefully adapt it for the particular shape of the
Central Zone and for the different random agent mobility (i.e. the MRWP model).

The analysis of the flooding over the Suburb is much harder. Indeed, besides the
above key-issue, in the sparse and highly disconnected Suburb, we cannot exploit any
good expansion property of the snapshots. Moreover, it is possible to prove that, with
non negligible probability, there are agents that will not visit the Central Zone for a (too)
long time. However, we resort to the properties of the stationary destination probability
distribution (combined to those of the spatial distribution) to prove that a sufficiently
wide flow of informed agents floods from the Central Zone over the Suburb. This is not
enough to guarantee that all the agents in the Suburb gets informed within O(S/v) time
after the Central Zone is informed. A special care has indeed to be used to guarantee
that this flow of informed agents floods over the Suburb sufficiently fast (see Lemma
16).

We believe that the above outlined technique can be adapted to analyze the flooding
over other versions of the RWP model and over some versions of the more general Ran-
dom Trip model [22]. Indeed, in several versions of those models the spatial probability
distribution shows a high-density region and low-density regions. It should not be too
hard to adapt our analysis for the high-density region. The analysis for the low-density
regions remains the hard part. However, we think that, by following our proof (Lemmas
13, 14, and 16) as a guideline and making the most of the properties of both distributions
(destination and spatial), the flooding over the Suburb can be analyzed as well.

4 Flooding over Manhattan

We consider the flooding process starting from a source agent. We want to provide an
upper bound on the flooding time, i.e. the time required by the flooding process to
inform all the agents. An agent is said to be informed if she knows the source message.
At the starting time, only the source agent is informed. Then, an agent a gets informed
at time step t = 1, 2, . . . iff, at that time, there is (at least) an informed agent b that
lies at distance not larger than R > 0, where R is the transmission radius valid for all
agents. The n agents move over the square L×L (with L > 0) according to the MRWP
model. This section is devoted to prove our main result.

Theorem 3 Consider a MANET of n agents moving over a square of size L according
to the MRWP model. Let R be the transmission radius and v be the agent speed. Assume
that R > c1L

√

log n/n and v 6 R/c2 for sufficiently large constants c1 and c2. Then,
for sufficiently large n, the flooding time in the stationary phase is w.h.p. bounded by

O

(

L

R
+

L

v

L2

R2

log n

n

)

The proof of the above theorem requires some preliminary definitions and results.
Notice that, due to lack of space, most of proofs of the next lemmas are given in the
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Appendix.
In the sequel, we assume that R 6

√
2L. Observe that if R >

√
2L, then the bound

on the flooding time is trivial. We partition the square into m×m square cells of side
length ℓ with

R

1 +
√

5
6 ℓ 6

R√
5

(6)

Notice that ℓ is chosen in order to guarantee that an agent inside a cell C can transmit
to any agent lying in any of the four adjacent cells of C. The core of a cell C is the
central subsquare of C with side length ℓ/3. We assume the agent transmission radius
and the agent speed satisfy the following bounds

R ≥ 200L

√

log n

n
(7)

v ≤ R

3(1 +
√

5)
(8)

Observe that the above condition on v guarantees that an agent, lying in the core of a
cell C at time t, will remain in C at time t + 1 as well.
From Eq. 2, the probability that an agent lies in a cell C is given by

∫

C
f(x, y)dxdy

We now define formally the Central Zone and the Suburb

Definition 4 [Central Zone and Suburb] The Central Zone is the subset CZ of
those cells C such that

∫

C
f(x, y)dxdy >

3

8

log n

n

The complement set of the Central Zone is called Suburb.

Flooding in the Central Zone

By using the density function f(x, y) in Eq. 2 and Ineq. 6, we have

Observation 5 Consider a cell C having its South-West (SW) corner in position (x0, y0).
Then, it holds that
∫

C

f(x, y)dxdy =
3ℓ2

L4

(

ℓ

3
(3L− 2ℓ) + x0(L− ℓ− x0) + y0(L− ℓ− y0)

)

>
ℓ3(3L− 2ℓ)

L4
>

(

R

(1 +
√
5)L

)3

From the above observation, it is easy to verify that the constant 3/8 in Def. 4 guarantees
the following

Lemma 6 The number of rows (and columns as well) of cells that belong to the Central
Zone is at least m/

√
2.

We say that the density condition holds at time t if, for every cell C of the Central Zone,
the number of agents in the core of C at time t is at least η log n, for a suitable positive
constant. Let D be the following event: the density condition holds for every time step
t = 0, 1, . . . , n.
The proof of the following lemma easily derive from the definition of the Central Zone
by a simple union bound argument.
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Lemma 7 (Density) The probability of event D is at least 1 − 1/n4.

In the analysis of the flooding over the Central Zone, we will tacitly assume that event
D holds. Thanks to the previous lemma, since we are conditioning w.r.t. an event that
holds w.h.p., the corresponding unconditional probabilities are affected by a negligible
factor only.
We say that a cell C is informed at time t if all agents visiting C at time t are informed.
Consider an informed cell C of the Central Zone at time t. By the density condition, its
core contains at least one informed agent a. Thanks to the Ineq. 8, agent a will remain
inside C during all time step t+ 1. Then, after the agent transmission of time t+ 1, all
agents lying in C or in its adjacent cells at time t + 1, will get informed. We have thus
shown the following

Lemma 8 (Stability) For any 0 ≤ t ≤ n, If a cell C of the Central Zone is informed
at time t > 0, then C and all its adjacent cells (in the Central Zone) will be informed
at time t + 1 with probability at least 1 − 1/n4.

For any subset B of cells of the Central Zone, define the boundary ∂B of B as follows

∂B = {C | C ∈ CZ \B ∧ ∃C ′ ∈ B : C ′ is adjacent to C}.

We now provide a lower bound on the expansion of any cell subset of the Central Zone.
The result is similar to that in [11], however, in our case, the proof must be adapted for
the particular shape of the Central Zone.

Lemma 9 (Boundary) Let B be any cell subset of the Central Zone. It holds that

|∂B| >
√

min{|B|, |CZ| − |B|}.

By exploiting Lemmas 8, 9 we get the following bound.

Theorem 10 Assume that, at time t = 0, at least one informed agent lies in the Central
Zone. Then, with probability at least 1− 1/n2, at every time t with 18L

R 6 t 6 n, all the
cells in the Central Zone are informed.

Proof. For any t > 0, let Qt be the set of informed cells at time t in the Central Zone.
By hypothesis |Q0| > 1. In virtue of Lemma 9, if all cells in Qt and all their adjacent
cells get informed at time t + 1, then |Qt+1| > |Qt| +

√

min{|Qt|, |CZ| − |Qt|}.
This implies that if the above inequality does not hold then a cell C ∈ Qt exists such
that C or one adjacent cell of C is not informed at time t + 1. It follows that

P
(

|Qt+1| < |Qt| +
√

min{|Qt|, |CZ| − |Qt|}
)

6 P (∃C ∈ Qt : EC,t+1)

where EC,t+1 is the event that occurs if C or one of its adjacent cells in CZ is not
informed at time t + 1. By the union bound, it holds that

P (∃C ∈ Qt : EC,t+1) 6
∑

C

P (C ∈ Qt ∧ EC,t+1) =
∑

C

P (EC,t+1 | C ∈ Qt )P (C ∈ Qt) .
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From Lemma 8, for every cell C, we have P (EC,t+1 | C ∈ Qt ) 6 1/n4. It follows that

P
(

|Qt+1| < |Qt| +
√

min{|Qt|, |CZ| − |Qt|}
)

6
∑

C

P (EC,t+1 | C ∈ Qt )P (C ∈ Qt)

6
∑

C

P (EC,t+1 | C ∈ Qt ) 6
|CZ|
n4

6
1

n3
.

Thus, by the union bound, with probability at least 1 − 1
n2 , it holds that

∀t = 0, 1, . . . , n |Qt+1| > |Qt| +
√

min{|Qt|, |CZ| − |Qt|}.

Now we use the following claim proven in [11]

Claim 11 Let q̄ be any integer s.t. q̄ > 1 and let {qt | t ∈ N} be a sequence of
integers such that q0 > 1, for every t > 0, qt 6 q̄ and qt+1 > qt +

√

min{qt, q̄ − qt}.
Then, it holds that, for every t > 5

√
q̄, qt = q̄.

By applying the claim with qt = |Qt| and q̄ = |CZ|, we get |Qt| = |CZ| for every t with
5
√

|CZ| 6 t 6 n. The thesis follows since 5
√

|CZ| 6 5L/ℓ 6 18L/R.
�

Notice that, thanks to Obs. 5, if R >
(1+

√
5)

2 L
(

3 logn
n

)1/3
, then all cells of the support

square belong to the Central Zone. Hence, from Theorem 10, we get

Corollary 12 (Large R) If R >
(1+

√
5)

2 L
(

3 logn
n

)1/3
, with probability at least 1−1/n2,

the (overall) flooding time is 18L/R.

Flooding over the Suburb

We now analyze the flooding process over the Suburb. Thanks to Cor. 12, we can
assume that

R 6
1 +

√
5

2
L

(

3 log n

n

)1/3

(9)

otherwise the Suburb would be empty.
In this region, the agent density is not sufficiently high to adopt the same cell-partition
technique. The new approach exploits the structure of the paths performed by an agent
that walks for a long time in the Suburb and on the probability that she meets agents
coming from the Central Zone.
We say an agent performs a turn when she changes direction during her Manhattan
path. Let a be an agent, for any time t, the random variable Ht,τ counts the number
of turns performed by a during the time interval [t, t + τ ]. The next lemma shows that
this number cannot be “too” large.

Lemma 13 Let t ≥ 0 and let τ be such that L
nv 6 τ 6 L

4v . With probability at least
1 − 1/n4, it holds that

Ht,τ 6
4 log n

log
(

L
vτ

)

8



The previous lemma allows us to get high probability for the existence of a “good”
segment traveled by any agent in the Suburb.
In the sequel, we assume that agent a lies in the South-West subsquare of size L/2, i.e.,
the subsquare [0, L/2] × [0, L/2]. The a’s position at time t is denoted as (x0, y0). The
analysis of the other three subsquares is symmetric.

Lemma 14 Let t ≥ 0 and let τ be such that

max{L/n, 4x0, 4y0}
v

6 τ 6
L

4v

Then, during the time interval [t, t+τ ], with probability at least 1−1/n4, agent a travels
over a (horizontal or vertical) segment directed to the Central Zone and that has length
at least

v τ log
(

L
vτ

)

40 log n

For the sake of convenience, let S = 3L3 logn
2ℓ2n . The next lemma shows that the diameter

of the SW Suburb is bounded by S.

Lemma 15 For every point (x0, y0) in the south-west corner of the Suburb, it holds that
both x0 and y0, are not larger than S.

Meeting agents coming from the Central Zone. Two agents are said to meet each
other at time t > 0 if, at that time, their relative distance is not larger than (3/4)R.
Observe that, due to Ineq. 8, if one informed agent meets another agent at some time,
then within the next time unit, the latter will get informed.
There may be some non-informed agents that travel over the Suburb for a long period.
For those agents, the only chance to be informed (within relatively-small time) is to
meet agents coming from the Central Zone. A symmetric argument will be applied to
manage the case where the source will be in the Suburb for a long time.

We say that a point belongs to the Extended Suburb if the Manhattan distance between
the point and the Suburb is not larger than 2S. Clearly, all points in the Suburb belong
to the Extended Suburb.

The first property of the next Lemma is used when the source lies in Central Zone. The
second property is instead used when the source lies in the Suburb for a long time.

Lemma 16 Let a be an agent lying in the Extended Suburb at any time t > S/v. For
sufficiently large n, with probability at least 1 − 1/n2, an agent b exists that has the
following properties:

1. b was in the Central Zone at time t − S/v and b will meet agent a within time
T + τ , where τ = 590(S/v).

2. Agent b, after meeting a, will be in the Central Zone2 within time t+ τ + 3(S/v).

2It is not relevant whether b will visit the Suburb or not.
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Proof. Let (x0, y0) be the position of a at time t. Observe that L
n 6 S and, from Lemma

15 and the definition of Extended Suburb, both x0 and y0 are not larger than 3S. Thus
it holds that

max{L/n, 4x0, 4y0}
v

6
12S

v
< τ (10)

From Ineq. 6 and Ineq. 7 we obtain

L

ℓ
6

1 +
√

5

200

√

n

log n
(11)

We thus get

τ = 590
S

v
=

L

4v

(

3540
L2 log n

ℓ2n

)

6
L

4v

(

3540 · (1 +
√

5)2

2002

)

<
L

4v

Due to the above inequality and Ineq. 10, we can apply Lemma 14 with τ and t specified
in the thesis. Hence, with probability at least 1−1/n4, agent a will travel a good segment
(i.e. toward the Central Zone) of length

d =
v τ log

(

L
vτ

)

40 log n
during time interval [T , T + τ ]

Observe that

d =
590S log

(

L
590S

)

40 log n
≥ 22

L3

ℓ2n
log

(

ℓ2n

885L2 log n

)

(12)

Wlog, we assume that the good segment is horizontal. Let ta be the time in which a

starts running the good segment and let (xa, ya) be her position at that time. Consider
the rectangle I such that: its SW vertex is point (xa + d + D, ya) where D = d/4 +
v(ta − t + S/v), its horizontal size is d/2, and its vertical size is ℓ. The next claim (its
proof is in the Appendix) is the key-ingredient of the proof.

Claim 17 For sufficiently large n, with probability at least 1 − 1/n2, an agent b

exists satisfying the following properties:

1. at time t−S/v she is in some position (xb, yb) ∈ I and has destination (x, yb),
for some 0 6 x 6 xa + d/2, and

2. her destination after next is in the Central Zone.

We now show that the two properties of Claim 17 imply the two properties of the
lemma. Observe that Ineq. 7 implies that I fully belongs to the Central Zone. Let b be
an agent satisfying the two properties of Claim 1 and let t̄ = xb−xa+vta−S−vt

2v ; consider
the horizontal coordinates x̄a and x̄b, at time t + t̄, of agents a and b, respectively. It
holds that

x̄a = xa + v(t̄ + t− ta) =
xa + xb − v(ta − t + S/v)

2

x̄b = xb − v

(

t + t̄−
(

t− S

v

))

=
xa + xb − v(ta − t + S/v)

2

Moreover observe that, by definition of rectangle I, it holds that

10



xa +
5

8
d 6 x̄a = x̄b 6 xa +

7

8
d

Hence agents a and b at time t+ t̄ are at points (x̄a, ya) and (x̄a, yb), respectively. Their
distance at that time is

|ya − yb| 6 ℓ 6
R√
5
6

3

4
R

Hence, agents a and b will meet at time t + t̄ and, moreover,

t̄ =
xb − xa + vta − S − vt

2v
6

(5/4)d + 2vta − 2v

2v
=

5d

8v
+ ta − t = τ − 3d

8v
< τ

This shows the first property of the Lemma.
As for the second property, we observe that agent b will reach position (xa + d

2 , yb)
within time t + τ . Two cases may arise.

• Position (xa + d
2 , yb) lies in the Central Zone.

From the above observation, we immediately have that b will be in the Central
Zone after meeting a within time t + τ .

• Position (xa + d
2 , yb) lies in the Suburb.

Let x̂b be the horizontal coordinate of the b’s destination determined in the first
property of Claim 17; it holds that xa + d

2 − x̂b 6 S − x̂b 6 S
Hence, b reaches this destination within time t + τ + S/v. The second property
of Claim 17 ensures that the next destination is in the Central Zone. It is easy
to see that the maximal traveled distance to enter into the Central Zone is 2S. It
follows that, within time t + τ + 3(S/v), agent b will be in the Central Zone.

�

Proof of Theorem 3. Let time step 0 be the starting time of flooding: we assume the
MANET is already in its stationary phase.

- We first consider the case where the source lies in the Central Zone when flooding
starts. From Theorem 10, with probability at least 1 − 1/n2, at time Tc = O(L/R), all
the cells of the Central Zone are informed. Observe that if

R ≥ 1 +
√

5

2
L

(

3 log n

n

)1/3

Cor. 12 implies that the Suburb is empty and, hence, the flooding is completed. In
the rest of the proof, we can thus assume that Ineq. 9 holds and focus only on those
agents that at time Tc are not in Central Zone. Consider any agent a among the latter
agents. By definition of Extended Suburb, if an agent is not in the Central Zone at
time Tc, then she will necessarily be in the Extended Suburb at time Tc + S/v. So, by
applying Lemma 16 to agent a with t = Tc + S/v, we obtain that, with probability at
least 1 − 1/n2, an agent b exists that was in the Central Zone at time Tc and she will
meet a within time Tc +O(S/v). Within the latter time, agent a will be thus informed
with probability 1 − 1/n2. By using the union bound, we get that all such agents will
be informed with high probability within time

11



Tc + O

(

L

v

L2

R2

log n

n

)

since S = Θ(
L3 log n

R2n
)

- We now consider the case where the source agent lies in Suburb when flooding starts.
By applying Property 2 of Lemma 16 to the source agent with t = S/v, we get that,
with probability at least 1 − 1/n2, there is an agent b that meets the source agent and,
after that, will be in the Central Zone within time O(S/v). The rest of the proof works
as in the first case.

�

5 A lower bound for flooding time

We observe that our upper bound holds for arbitrary small agent speed v while if v = 0,
flooding never terminates whenever the Suburb is not empty. More generally, we prove
(see the Appendix) the following lower bound

Theorem 18 If R = O(L/n1/3) then, with constant positive probability, the flooding
time is Ω(L/(vn1/3)).

Let us see when the above lower bound is asymptotically larger than L/R. A necessary
and sufficient condition is R/(vn1/3) → ∞. From the theorem’s hypothesis, this is true
only if L/(vn2/3) → ∞. For instance, if L = n1/2 then we need v asymptotically smaller
than 1/n1/6.
If L = n and R = L/n1/3 = n2/3 (so a large transmission radius) then the lower bound
above becomes Ω(n2/3/v): for v = Θ(1), this is larger than L/R for an n1/3 factor.

Acknolewdgements. We thank Francesco Pasquale for helpful comments on a pre-
liminary version of this paper.
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A Proofs for the Central Zone

A.1 Proof of Lemma 9

For the sake of convenience, we say that a cell in B is a black cell and all the cells not
in B are white cells. In the sequel, with the term row (column) we mean the subrow
(subcolumn) of cells that belong to the Central Zone. Observe that, according to this
definition, rows and columns have variable length. We say that a row is black if all the
cells of the row are black. Similarly, we define a black column. Moreover, a row or a
column which contains both at least one black cell and at least one white cell is said to
be gray.
We easily observe that the following inequalities hold

√

min{|B|, |CZ| − |B|} ≤
√

|CZ|
2

≤ m√
2

(13)

Let br and bc be, respectively, the number of black rows and the number of black columns.
In order to prove the lemma, we distinguish four cases.

br = 0 ∧ bc > 1: In this case, from Lemma 6, the number of gray rows is at least m/
√

2.
This implies every gray row contains at least one cell in ∂B. Then, |∂B| ≥ m/

√
2

and the lemma follows from Ineq. 13.

br > 1 ∧ bc = 0: This case is symmetric to the previous one.

br > 1 ∧ bc > 1: If there exist a black row and a black column of maximal length m, then
all non-black rows and columns are gray. Observe that each of the |CZ|−|B| white
cells uniquely determines a pair formed by one gray row and one gray column. We
thus get

|CZ| − |B| ≤ (m− bc)(m− br)

Wlog, we assume that br ≤ bc, then the above inequality implies that

|CZ| − |B| ≤ (m− br)

The thesis follows from the fact that |∂B| ≥ m − br. Now, we consider the case
where no black row or black column of maximal length do exist. Wlog, we assume
that no black row of maximal length exists. Since there are at least a black column,
then all rows of maximal length are gray. From Lemma 6, the number of gray rows
is at least m/

√
2. This implies every gray row contains at least one cell in ∂B.

Then, |∂B| ≥ m/
√

2 and the lemma follows from Ineq. 13.

br = 0 ∧ bc = 0: Let yr and yc be, respectively, the number of gray rows and the number
of gray columns. Since there are neither black rows nor black columns, it must be
the case that every black cell belongs to both a gray row and a gray column. This
implies that

yr · yc > |B|.
Without loss of generality, assume that yr > yc. It follows that y2r > |B|, and
so yr >

√

|B|. Since every gray row contains at least a cell in ∂B, it holds that

|∂B| >
√

|B| >
√

min{|B|,m2 − |B|}.

�
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B Proofs for the Suburb

B.1 Proof of Lemma 13

For the sake of simplicity, we will use the following probability notations. For an event
E and a r.v. X, the notation P (E | X ) 6 p means that, for every possible value x of
X, it holds P (E | X = x) 6 p.
Consider the turns performed by a after time t. For any i = 1, 2, . . ., define Xi the
distance travelled by agent a between the i-th turn and the i + 1-th turn. We then
consider the binary r.v. defined as follows

Yi = 1 if Xi 6 vτ and 0 otherwise

Observe that if Xi 6 d then the (i + 1)-turn point lies in the square centered at the
i-th turn point, with diagonals parallel to the axis, and that has side length

√
2vτ . So,

it holds that

P (Yi = 1 | X1, . . . ,Xi−1 ) 6 p

where p =
(
√

2vτ)2

L2

Notice that, since τ 6 L/(4v), then p < 1. We now need the following standard
probability bound (See [4]).

Claim 19 Let X1, . . . , Xn be a sequence of random variables with values in an
arbitrary domain, and let Y1, . . . , Yn be a sequence of binary random variables, with
the property that Yi = Yi(X1, . . . , Xi). If

P (Yi = 1 | X1, . . . , Xi−1) 6 p

then
P
(

∑

Yi > k
)

6 P (B(n, p) > k)

where B(n, p) denotes the binomially distributed random variable with parameters n
and p.

For any h = 1, 2, . . ., from the above Claim it holds that

P

(

h
∑

i=1

Yi = h

)

6 P (B (h, p) = h)

So, it clearly holds that

P

(

h
∑

i=1

Yi = h

)

6 ph (14)

We observe that
Ht,τ−1
∑

i=1

Xi 6 vτ

Hence, event “ Ht,τ > h + 1 ” implies event “
∑h

i=1Xi 6 vτ” and so
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P (Ht,τ > h + 1) 6 P

(

h
∑

i=1

Xi 6 vτ

)

Moreover, observe that the following implication holds

h
∑

i=1

Yi < h =⇒
h
∑

i=1

Xi > vτ

It thus follows that also the implication below holds

h
∑

i=1

Xi 6 vτ =⇒
h
∑

i=1

Yi = h

Hence, from Ineq. 14, we get

P (Ht,τ > h + 1) 6 P

(

h
∑

i=1

Xi 6 vτ

)

6 P

(

h
∑

i=1

Yi = h

)

6 ph (15)

Observe that for h =
⌈

4 logn
log(1/p)

⌉

it holds that

P (Ht,τ > h + 1) 6
1

n4

We also have that

4 log n

log(1/p)
=

4 log n

log
(

L2

(
√
2vτ)2

) =
2 log n

log
(

L√
2vτ

)

Hence, with probability at least 1 − 1/n4, it holds that

Ht,τ 6









2 log n

log
(

L√
2vτ

)









6 1 +
2 log n

log
(

L√
2vτ

)

=



1 +
2 log n

log
(

L√
2vτ

)





4 log n

log
(

L
vτ

)

log
(

L
vτ

)

4 log n

=
4 log n

log
(

L
vτ

)





log
(

L
vτ

)

4 log n
+

2 log
(

L
vτ

)

4 log
(

L√
2vτ

)





(since
L

vτ
6 n) 6

4 log n

log
(

L
vτ

)

(

1

4
+

2

4

log
(

L
vτ

)

log
(

L
vτ

)

− 1
2

)

Notice that

log
(

L
vτ

)

log
(

L
vτ

)

− 1
2

=
1

1 − 1

2 log
(

L

vτ

)

6
4

3
(since

L

vτ
> 4)

Finally, we get
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Ht,τ 6
4 log n

log
(

L
vτ

)

(

1

4
+

2

4
· 4

3

)

6
4 log n

log
(

L
vτ

)

�

B.2 Proof of Lemma 14

Let k = Ht,τ be the number of a’s turns in the interval [t, t + τ ]. For any i = 1, . . . , k,
we define (xi, yi) as the i-th turn position of agent a. We denote the a’s position at time
t+ τ as (xk+1, yk+1). For any j = 1, . . . , k + 1, define hj = xj −xj−1 and vj = yj − yj−1.
Observe that when hj or vj are positive then the travelled segment is directed towards
the Central Zone. It holds that

k+1
∑

j=1

|hj | +
k+1
∑

j=1

|vj | = v τ

Wlog, we assume that the first sum is not smaller than the second one. So,

k+1
∑

j=1

|hj | >
vτ

2

Now, define the following index subsets:

J+ = {j | hj > 0} and J− = {j | hj 6 0}
Hence, we get

∑

j∈J+

hj >
vτ

2
+
∑

j∈J−

hj (16)

Observe that

∑

j∈J−

hj +
∑

j∈J+

hj =

k+1
∑

j=1

hj = xk+1 − x0 > −x0 > −v τ

4

This implies

∑

j∈J−

hj > −v τ

4
−
∑

j∈J+

hj

By combining the above equation with Eq. 16, we obtain

∑

j∈J+

hj >
vτ

2
− vτ

4
−
∑

j∈J+

hj

So,
∑

j∈J+

hj >
vτ

8

Hence, we can say that an index ĵ exists such that
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hĵ >
vτ

8(k + 1)

From Lemma 13 and the fact that τ > L/(nv), with probability at least 1 − 1/n4 it
holds that

hĵ >
vτ

8

(

4 logn

log
(

L

vτ

) + 1

) >
v τ log

(

L
vτ

)

40 log n

�

B.3 Proof of Lemma 15

Let (x, y) the SW corner of the cell containing (x0, y0). We will prove the lemma’s bound
for x0; the bound for y0 can be obtained by a symmetric argument. Since this cell does
not belong to the Central Zone, by Obs. 5, we get

3ℓ2

L4

(

ℓ

3
(3L− 2ℓ) + x(L− ℓ− x) + y(L− ℓ− y)

)

6
3

8

log n

n

From the above inequality, we get

x(L− ℓ− x) 6
L4 log n

8ℓ2n
(17)

Notice that, by definition of ℓ and Ineq. 9, we get

ℓ 6
R√
5

6
3

40
L (18)

From Lemma 6, we obtain

x 6
m− m√

2

2
ℓ =

2 −
√

2

4
L

From this inequality and Ineq. 18, we obtain

 L − ℓ− x > L− 3

40
L− 2 −

√
2

4
L >

3

4
L

From the above inequality and Ineq. 17, it holds that

3

4
xL 6 x(L− ℓ− x) 6

L4 log n

8ℓ2n

and

x 6
L3 log n

6ℓ2n
(19)

Since x0 6 x + ℓ, we now bound ℓ. From Ineq. 9, we obtain

ℓ 6
R√
5

6
1 +

√
5

2
√

5
L

(

3 log n

n

)1/3
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Then

ℓ3 6

(

1 +
√

5

2
√

5

)3

3L3 log n

n

We thus get

ℓ 6

(

1 +
√

5

2
√

5

)3
3L3 log n

ℓ2n
6 1.2

L3 log n

ℓ2n

From Ineq. 19 and the last one, we finally obtain

x0 6 x + ℓ 6
1

6

L3 log n

ℓ2n
+ 1.2

L3 log n

ℓ2n
6

3L3 log n

2ℓ2n
= S

�

B.4 Proof of Claim 17

Let P̄ (xb, yb) be the probability that an agent b, being in (xb, yb), has destination (x, yb)
for some 0 6 x 6 xa + d/2. From Eq. 5, it holds that

P̄ (xb, yb) =
xa + d/2

xb
φW
(xb,yb)

=
(xa + d/2)(L − xb)

4L(xb + yb) − 4(x2b + y2b)

Let Pb be the probability that agent b satisfies Property 1. Then,

Pb =

∫

I
P̄ (x, y)f(x, y)dxdy

where f(x, y) is the probability density function of the spatial distribution in Eq. 2. It
thus follows that

Pb =

∫

I

(xa + d/2)(L − x)

4L(x + y) − 4(x2 + y2)

(

3

L3
(x + y) − 3

L4
(x2 + y2)

)

dxdy

=
3(xa + d/2)

4L4

∫

I
(L− x)dxdy

=
3dℓ(xa + d/2)(L − xa − (5/4)d −D)

8L4

≥ 3d2ℓ

16L4
(L− xa − (5/4)d −D) (20)

Observe that

xa + (5/4)d + D = xa + (3/2)d + v(ta − t + S/v)
6 xa + (3/2)d + (vτ − d + S) Since xa 6 x0 + vτ − d
6 x0 + 2vτ + S By Lemma 15
6 3S + 2vτ

6
1775L3 logn

ℓ2n
By Ineq. 11

6 L
2
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From the above inequality, Ineq. 20 and 12, we obtain

Pb ≥ 3d2ℓ

32L3
≥ 45

L3

ℓ3n2
log2

(

ℓ2n

885L2 log n

)

(21)

It is easy to verify that the right-hand side of the above inequality is a decreasing function
of ℓ. So, in order to get a lower bound for that value, we evaluate it in an upper bound
of ℓ.

Now from Ineq.s 6 and 9 we have that

ℓ 6
R√
5
6

(1 +
√

5)

2
√

5
L

(

3 log n

n

)1/3

6
16L

15

(

log n

n

)1/3

= ℓub

Thus we have

Pb ≥ 45
L3

ℓ3ubn
2

log2
(

ℓ2ubn

885L2 log n

)

≥ 37

n log n
log2

(

13

104

(

n

log n

)1/3
)

≥ 37

n log n
log2

(

n1/4
)

≥ 2.3
log n

n
For sufficiently large n.

Since every destination is selected uniformly at random over the square and the Central
Zone’s area is (by Ineq. 7) at least (11/12)L2, the probability that agent b satisfies both
properties of the claim is

P >
11

12
Pb > 2.1

log n

n

Since there are n − 1 independent agents, the probability that no agent satisfies both
properties is

(1 − P )n−1
6

(

1 − 2.1
log n

n

)n−1

= e−2.1 lognn−1

n 6
1

n2

where the last inequality holds for sufficiently large n.
�

C The Lower Bound

Sketch of the Proof of Theorem 18. Let d be such that d = Θ(L/n1/3) and d > R
(since R = O(L/n1/3), such a d does exist). Let F and E be the subsquares having their
SW corner in (0, 0) and side length d and 3d, respectively. By Observation 5, it holds
that: the probability that a fixed agent lies in F is PF = Θ((d/L)3) and the probability
that a fixed agent lies in E is PE = Θ((d/L)3). Consider the event B = “at time 0, at
least an agent is in F and no agent is in E − F”. Let P be the probability that event
B holds. Then,

P >

n
∑

i=1

P (agent i is in F )P (all agents are not in E − F ) = nPF (1−PE)n−1 = Θ(1)
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Hence, P is a constant positive probability.
If event B holds (and the source is not in F ), an agent a in F , at time 0, gets informed
at time t only if there is an informed agent that, at time t, is at distance at most
R from a. Since at time 0 the distance from a and any agent not in F is at least
2d, it takes at least a time span of (2d − R)/(2v) so that a and an agent that was
outside E could be at distance not larger than R. Thus, the flooding time is at least
(2d−R)/(2v) = Ω(L/(vn1/3)). �
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