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Abstract
The paper tackles the power of randomization in the context of locality by analyzing the ability to

“boost” the success probability of deciding a distributed language. The main outcome of this analysis is
that the distributed computing setting contrasts significantly with the sequential one as far as randomiza-
tion is concerned. Indeed, we prove that in some cases, the ability to increase the success probability for
deciding distributed languages is rather limited.

Informally, a (p, q)-decider for a language L is a distributed randomized algorithm which accepts
instances in L with probability at least p and rejects instances outside of L with probability at least q.
It is known that every hereditary language that can be decided in t rounds by a (p, q)-decider, where
p2 + q > 1, can actually be decided deterministically in O(t) rounds. In one of our results we give
evidence supporting the conjecture that the above statement holds for all distributed languages and not
only for hereditary ones. This is achieved by considering the restricted case of path topologies.

We then turn our attention to the range below the aforementioned threshold, namely, the case where
p2 + q ≤ 1. For k ∈ N∗ ∪ {∞}, we define the class Bk(t) to be the set of all languages decidable
in at most t rounds by a (p, q)-decider, where p1+

1
k + q > 1. It is easy to see that every language is

decidable (in zero rounds) by a (p, q)-decider satisfying p+ q = 1. Hence, the hierarchy Bk provides a
spectrum of complexity classes between determinism (k = 1, under the above conjecture) and complete
randomization (k =∞). We prove that all these classes are separated, in a strong sense: for every integer
k ≥ 1, there exists a language L satisfying L ∈ Bk+1(0) but L /∈ Bk(t) for any t = o(n). In addition,
we show that B∞(t) does not contain all languages, for any t = o(n). In other words, we obtain the
following hierarchy:

B1(t) ⊂ B2(t) ⊂ · · · ⊂ B∞(t) ⊂ All .

Finally, we show that if the inputs can be restricted in certain ways, then the ability to boost the success
probability becomes almost null, and, in particular, derandomization is not possible even beyond the
threshold p2 + q = 1.

All our results hold with respect to the LOCAL model of computation as well as with respect to the
CONGEST (B) model, for B = O(1).

1 Introduction

1.1 Background and Motivation

The impact of randomization on computation is one of the most central questions in computer science.
In particular, in the context of distributed computing, the question of whether randomization helps in im-
proving locality for construction problems has been studied extensively. While most of these studies were
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†Supported in part by the Israel Science Foundation (grant 894/09), the US-Israel Binational Science Foundation (grant

2008348), the Israel Ministry of Science and Technology (infrastructures grant), and the Citi Foundation.

1

ar
X

iv
:1

20
7.

02
52

v1
  [

cs
.D

C
] 

 1
 J

ul
 2

01
2



problem-specific, several attempts have been made for tackling this question from a more general and unified
perspective. For example, Naor and Stockmeyer [26] focus on a class of problems called LCL (essentially
a subclass of the class LD discussed below), and show that if there exists a randomized algorithm that con-
structs a solution for a problem in LCL in a constant number of rounds, then there is also a constant time
deterministic algorithm constructing a solution for that problem.

Recently, this question has been studied in the context of local decision, where one aims at deciding
locally whether a given global input instance belongs to some specified language [13]. The localities of
deterministic algorithms and randomized Monte Carlo algorithms are compared in [13], in the LOCAL
model (cf. [28]). One of the main results of [13] is that randomization does not help for locally deciding
hereditary languages if the success probability is beyond a certain guarantee threshold. More specifically,
a (p, q)-decider for a language L is a distributed randomized Monte Carlo algorithm that accepts instances
in L with probability at least p and rejects instances outside of L with probability at least q. It was shown
in [13] that every hereditary language that can be decided in t rounds by a (p, q)-decider, where p2 +
q > 1, can actually be decided deterministically in O(t) rounds. On the other hand, [13] showed that the
aforementioned threshold is sharp, at least when hereditary languages are concerned. In particular, for every
p and q, where p2 + q ≤ 1, there exists an heredirtary language that cannot be decided deterministically in
o(n) rounds, but can be decided in zero number of rounds by a (p, q)-decider.

In one of our results we provide evidence supporting the conjecture that the above statement holds for
all distributed languages and not only for hereditary ones. This is achieved by considering the restricted
case of path topologies. In addition, we present a more refined analysis for the family of languages that
can be decided randomly but not deterministically. That is, we focus on the family of languages that can
be decided locally by a (p, q)-decider, where p2 + q ≤ 1, and introduce an infinite hierarchy of classes
within this family, characterized by the specific relationships between the parameters p and q. As we shall
see, our results imply that the distributed computing setting contrasts significantly with the sequential one
as far as randomization is concerned. Indeed, we prove that in some cases, the ability to increase the success
probability for deciding distributed languages is very limited.

1.2 Model

We consider the LOCAL model (cf. [28]), which is a standard distributed computing model capturing the
essence of spatial locality. In this model, processors are woken up simultaneously, and computation proceeds
in fault-free synchronous rounds during which every processor exchanges messages of unlimited size with
its neighbors, and performs arbitrary computations on its data. It is important to stress that all the algorithmic
constructions that we employ in our positive results use messages of constant size (some of which do not
use any communication at all). Hence, all our results apply not only to the LOCAL model of computation
but also to more restricted models, for example, the CONGEST (B) model1, where B = O(1).

A distributed algorithm A that runs on a graph G operates separately on each connected component of
G, and nodes of a component C of G cannot distinguish the underlying graph G from C. For this reason,
we consider connected graphs only.

We focus on distributed decision tasks. Such a task is characterized by a finite or infinite set Σ of
symbols (e.g., Σ = {0, 1}, or Σ = {0, 1}∗), and by a distributed language L defined on this set of symbols
(see below). An instance of a distributed decision task is a pair (G, x) where G is an n-node connected
graph, and x ∈ Σn, that is, every node v ∈ V (G) is assigned as its local input a value x(v) ∈ Σ. (In some
cases, the local input of every node is empty, i.e., Σ = {ε}, where ε denotes the empty binary string.) We
define a distributed language as a decidable collection L of instances2.

1Essentially, the CONGEST (B) model is similar to the LOCAL model, except that the message size is assumed to be bounded
by at most B bits (for more details, see [28]).

2Note that an undecidable collection of instances remains undecidable in the distributed setting too.
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In the context of distributed computing, each processor must produce a boolean output, and the decision
is defined by the conjunction of the processors outputs, i.e., if the instance belongs to the language, then
all processors must output “yes”, and otherwise, at least one processor must output “no”. Formally, for a
distributed language L, we say that a distributed algorithm A decides L if and only if for every instance
(G, x) and id-assignment Id, every node v of G eventually terminates and produces an output denoted
outA(G, x, Id, v), which is either “yes” or “no”, satisfying the following decision rules:

• If (G, x) ∈ L then outA(G, x, Id, v) = “yes” for every node v ∈ V (G) ;
• If (G, x) /∈ L then outA(G, x, Id, v) = “no” for at least one node v ∈ V (G) .

Observe that decision problems provide a natural framework for tackling fault-tolerance: the processors
have to collectively check whether the network is fault-free, and a node detecting a fault raises an alarm. In
fact, many natural problems can be phrased as decision problems, for example: “is the network planar?” or
“is there a unique leader in the network?”. Moreover, decision problems occur naturally when one aims at
checking the validity of the output of a computational task, such as “is the produced coloring legal?”, or “is
the constructed subgraph an MST?”.

The class of decision problems that can be solved in at most t communication rounds is denoted by
LD(t), for local decision. More precisely, let t be a function of triplets (G, x, Id), where Id denotes the
identity assignment to the nodes of G. Then LD(t) is the class of all distributed languages that can be de-
cided by a distributed algorithm that runs in at most t communication rounds. The randomized (Monte Carlo
2-sided error) version of the class LD(t) is denoted BPLD(t, p, q), which stands for bounded-error proba-
bilistic local decision, and provides an analog of BPP for distributed computing, where p and q respectively
denote the yes-error and the no-error guarantees. More precisely, a randomized distributed algorithm is a
distributed algorithm A that enables every node v, at any round r during its execution, to generate a certain
number of random bits. For constants p, q ∈ (0, 1], we say that a randomized distributed algorithm A is
a (p, q)-decider for L, or, that it decides L with “yes” success probability p and “no” success probability
q, if and only if for every instance (G, x) and id-assignment Id, every node of G eventually terminates and
outputs “yes” or “no”, and the following properties are satisfied:

• If (G, x) ∈ L then Pr[∀v ∈ V (G),
outA(G, x, Id, v) = “yes”] ≥ p ;

• If (G, x) /∈ L then Pr[∃v ∈ V (G),
outA(G, x, Id, v) = “no”] ≥ q .

The probabilities in the above definition are taken over all possible coin tosses performed by the nodes.
The running time of a (p, q)-decider executed on a node v depends on the triple (G, x, Id) and on the results
of the coin tosses. In the context of a randomized algorithm, Tv(G, x, Id) denotes the maximal running time
of the algorithm on v over all possible coin tosses, for the instance (G, x) and id-assignment Id. Now, just
as in the deterministic case, the running time T of the (p, q)-decider is the maximum running time over all
nodes. Note that by definition of the distributed Monte-Carlo algorithm, both Tv and T are deterministic.
For constant p, q ∈ (0, 1] and a function t of triplets (G, x, Id), BPLD(t, p, q) is the class of all distributed
languages that have a randomized distributed (p, q)-decider running in time at most t (i.e., can be decided
in time at most t by a randomized distributed algorithm with “yes” success probability p and “no”success
probability q).

Our main interest within this context is in studying the connections between the classes BPLD(t, p, q). In
particular, we are interested in the question of whether one can “boost” the success probabilities of a (p, q)-
decider. (Recall that in the sequential Monte Carlo setting, such “boosting” can easily be achieved by repeat-
ing the execution of the algorithm a large number of times.) Our starting point is the recent result of [13] that,
for the class of hereditary languages (i.e., closed under sub-graphs), the relation p2+q = 1 is a sharp thresh-
old for randomization. That is, for hereditary languages,

⋃
p2+q>1 BPLD(t, p, q) collapses to LD(O(t)), but
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for any p, q ∈ (0, 1] such that p2 + q ≤ 1 there exists a language L ∈ BPLD(0, p, q), while L /∈ LD(t)
for any t = o(n). We conjecture that the hereditary assumption can be removed and we give some evi-
dence supporting this conjecture. Aiming at analyzing the collection of classes

⋃
p2+q≤1 BPLD(t, p, q), we

consider the following set of classes:

Bk(t) =
⋃

p1+1/k+q>1

BPLD(t, p, q)

for any positive integer k, as well as the class

B∞(t) =
⋃

p+q>1

BPLD(t, p, q) .

Hence, our conjecture states that B1(t) = LD(O(t)). Note that the class
⋃
p+q≥1 BPLD(0, p, q) contains all

languages, using a (1, 0)-decider that systematically returns “yes” at every node (without any communica-
tion). Hence, the classes Bk provide a smooth spectrum of randomized distributed complexity classes, from
the class of deterministically decidable languages (under our conjecture) to the class of all languages. The
ability of boosting the success probabilities of a (p, q)-decider is directly related to the question of whether
these classes are different, and to what extent.

1.3 Our results

One of the main outcomes of this paper is a proof that boosting success probabilities in the distributed
setting appears to be quite limited. By definition, Bk(t) ⊆ Bk+1(t) for any k and t. We prove that these
inclusions are strict. In fact, our separation result is much stronger. We prove that there exists a language in
Bk+1(0) that is not in Bk(t) for any t = o(n). Moreover, we prove that Tree /∈ B∞(t) for any t = o(n),
where Tree = {(G, ε) : G is a tree}. Hence, B∞(t) does not contain all languages, even for t = o(n). In
summary, we obtain the following hierarchy.

B1(t) ⊂ B2(t) ⊂ · · · ⊂ B∞(t) ⊂ All .

These results demonstrate that boosting the probability of success might be doable, but only from a (p, q)
pair satisfying p1+1/(k+1) + q > 1 to a (p, q) pair satisfying p1+1/k + q > 1 (with the extremes excluded).
It is an open question whether Bk+1(t) actually collapses to BPLD(O(t), p, q), where p1+1/k + q = 1, or
whether there exist intermediate classes.

Recall that every hereditary language in B1(t) is also in LD(O(t)) [13]. We conjecture that this deran-
domization result holds for all languages and not only for hereditary ones. We give evidence supporting
this conjecture by showing that restricted to path topologies, finite input and constant running time t, the
statement B1(t) ⊆ LD(O(t)) holds without assuming the hereditary property. This evidence seems to be
quite meaningful especially since all our separation results hold even if we restrict ourselves to decision
problems on path topologies.

Finally, we show that the situation changes drastically if the distribution of inputs can be restricted in
certain ways. Indeed, we show that for every two reals 0 < r < r′, there exists a language in Cr′(0) that is
not in Cr(t) for any t = o(n), where the C-classes are the extension of the B-classes to decision problems
in which the inputs can be restricted.

All our results hold not only with respect to the LOCAL model but also with respect to more restrictive
models of computation such as the CONGEST (B) model (for B = O(1)).
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1.4 Related work

The notion of local decision and local verification of languages has received quite a lot of attention recently.
In the LOCALmodel, for example, solving a decision problem requires the processors to independently in-
spect their local neighborhood and collectively decide whether the global instance belongs to some specified
language. Inspired by classical computation complexity theory, Fraigniaud et al.[13] suggested that the study
of decision problems may lead to new structural insights also in the more complex distributed computing
setting. Indeed, following that paper, efforts were made to form a fundamental computational complexity
theory for distributed decision problems in various other aspects of distributed computing [13, 14, 15, 16].

The classes LD, NLD and BPLD defined in [13] are the distributed analogues of the classes P, NP and
BPP, respectively. The contribution of [13] is threefold: it establishes the impact of nondeterminism, ran-
domization, and randomization + nondeterminism, on local computation. This is done by proving structural
results, developing a notion of local reduction and establishing completeness results. One of the main results
is the existence of a sharp threshold for randomization, above which randomization does not help (at least
for hereditary languages). More precisely the BPLD classes were classified into two: below and above the
randomization threshold. The current paper “zooms” into the spectrum of classes below the randomization
threshold, and defines a hierarchy of an infinite set of BPLD classes, each of which is separated from the
class above it in the hierarchy.

The question of whether randomization helps in improving locality for construction problems has been
studied extensively. Naor and Stockmeyer [26] considered a subclass of LD(O(1)), called LCL3, and studied
the question of how to compute in O(1) rounds the constructive versions of decision problems in LCL. The
paper demonstrates that randomization does not help, in the sense that if a problem has a local Monte
Carlo randomized algorithm, then it also has a local deterministic algorithm. There are several differences
between the setting of [26] and ours. First, [26] considers the power of randomization for constructing a
solution, whereas we study the power of randomization for deciding languages4. Second, while [26] deals
with constant time computations, our separation results apply to arbitrary time computations, potentially
depending on the size of the instance (graph and input). To summarize, the different settings imply different
impacts for randomization: while this current paper as well as [13] show that randomization can indeed help
for improving locality of decision problems, [26] shows that when it comes to constructing a solution for a
problem in LCL in constant time, randomization does not help. The question of whether randomization helps
for constructing solutions to some specific problems in localized computational models such as MIS, (∆ +
1)-coloring, and maximal matching has been also studied in [2, 5, 23, 24, 25, 27, 29]. The original theoretical
basis for nondeterminism in local computation was laid by the theories of proof-labeling schemes [17, 19,
20, 21], which resemble the notion of NLD, and local computation with advice [7, 10, 11, 12]. These notions
also bear some similarities to the notions of local detection [1], local checking [4], or silent stabilization [9],
which were introduced in the context of self-stabilization [8]. In addition, NLD seems to be related also to
the theory of lifts [3].

Finally, the classification of decision problems in distributed computing has been studied in several other
models. For example, [6] and [18] study specific decision problems in the CONGEST model. In addition,
decision problems have been studied in the asynchrony discipline too, specifically in the framework of wait-
free computation [15, 16] and mobile agents computing [14]. In the wait-free model, the main issues are not
spatial constraints but timing constraints (asynchronism and faults). The main focus of [16] is deterministic
protocols aiming at studying the power of the “decoder”, i.e., the interpretation of the results. While this

3LCL is essentially LD(O(1)) restricted to languages involving graphs of constant maximum degree and processor inputs taken
from a set of constant size.

4There is a fundamental difference between such tasks when locality is concerned. Indeed, whereas the validity of constructing
a problem in LCL is local (by definition), the validity in our setting is “global”, in the sense that in an illegal instance, it is sufficient
that at least one vertex in the entire network outputs “no”.
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paper essentially considers the AND-checker, (as a global “yes” corresponds to all processes saying “yes”),
[16] deals with other interpretations, including more values (not only “yes” and “no”), with the objective of
designing checkers that use the smallest number of values.

2 Preliminaries

This section recalls some previous results from the literature, to be used throughout in the paper. Let us
first recall that in the LOCAL (respectively CONGEST (B)) model, processors perform in synchronous
rounds, and, in each round, every processor (1) sends messages of arbitrary (resp., O(B) bits) size to its
neighbors, (2) receives messages from its neighbors, and (3) performs arbitrary individual computations.
After a number of rounds (that may depend on the network G connecting the processors, and may vary
among the processors, since nodes have different identities, potentially different inputs, and are typically
located at non-isomorphic positions in the network), every processor v terminates and generates its output.

Consider a distributed (p, q)-decider A running in a network G with input x and identity assignment
Id (assigning distinct integers to the nodes of G). The output of processor v in this scenario is denoted by
outA(G, x, Id, v), or simply out(v) when the parameters are clear from the context. In the case of decision
problem, out(v) ∈ {“yes”, “no”} for every processor v.

An n-node path P is represented as a sequence P = (1, . . . , n), oriented from left to right. (However,
node i does not know its position in the path.) Given an instance (P, x) with ID’s Id and a subpath S ⊂
P , let xS (respectively IdS) be the restriction of x (resp., Id) to S. We sometimes refer to subpath S =
(ui, . . . , uj) ⊂ P as S = [i, j]. For a set U ⊆ V (G), let E(G, x, Id, U) denote the event that, when running
A on (G, x) with id-assignment Id, all nodes in U output “yes”. Given a language L, an instance (G, x) is
called legal iff (G, x) ∈ L.

Given a time bound t, a subpath S = [i, j] is called an internal subpath of P if i ≥ t+2 and j ≤ n−t−1.
Note that if the subpath S is internal to P , then when running a t-round algorithm, none of the nodes in S
“sees” the endpoints of P .

We now define an important concept, which is crucial in the proofs of our separation results.

Definition 2.1 Let S be a subpath of P . For δ ∈ [0, 1], S is said to be a (δ, λ)-secure subpath if |S| ≥ λ
and Pr[E(P, x, Id, V (S))] ≥ 1− δ.

We typically use (δ, λ)-secure subpaths for values of λ ≥ 2t + 1 where t is the running time of the
(p, q)-deciderA on (P, x) for some fixed identity assignment Id. Indeed, it is known [13] that if (P, x) ∈ L,
then every long enough subpath S of P contains an internal (δ, λ)-secure subpath S′. More precisely, define

`(δ, λ) = 4(λ+ 2t)dlog p/ log(1− δ)e. (1)

We have the following:

Fact 2.2 ([13]) Let (P, x) ∈ L, δ ∈ [0, 1], λ ≥ 1. Then for every `(δ, λ)-length subpath S there is a subpath
S′ (internal to S) that is (δ, λ)-secure.

For completeness, we provide the proof of this fact in the Appendix. To avoid cumbersome notation, when
λ = 2t+ 1, we may omit it and refer to (δ, 2t+ 1)-secure subpaths as δ-secure subpaths. In addition, set

`(δ) := `(δ, 2t+ 1).

Let us next illustrate a typical use of Fact 2.2. Recall that t denotes the running time of the (p, q)-decider A
on (P, x) ∈ L with IDs Id. Let S be a subpath of P of length `(δ). Denote by L (resp., R) the subpath of
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P to the “left” (resp., “right”) of S. Informally, if the length of S is larger than 2t + 1, then S serves as a
separator between the two subpaths L and R. This follows since as algorithmA runs in t rounds, each node
in P is affected only by its t neighborhood. As the t neighborhood of every node u ∈ L and v ∈ R do not
intersect, the events E(P, x, Id, L) and E(P, x, Id, R) are independent.

The secureness property becomes useful when bounding the probability that at least some node in
P says “no”. A natural approach to upper bound this probability is by applying a union bound on the
events E (P, x, Id, V (L) ∪ V (R)) and E (P, x, Id, V (S)). Letting E ′ denote the event complementary to
E(P, x, Id, V (P )), we have

Pr[E ′] = 1− Pr[E(P, x, Id, V (P ))]

≤ (1− Pr[E(P, x, Id, V (L))]

· Pr[E(P, x, Id, V (R))])

+ (1− Pr[E(P, x, Id, V (S))])

≤ 1− Pr[E(P, x, Id, V (L))]

· Pr[E(P, x, Id, V (R))] + δ .

The specific choice of λ and δ depends on the context. Informally, the guiding principle is to set δ small
enough so that the role of the central section S can be neglected, while dealing separately with the two
extreme sections L and R become manageable for they are sufficiently far apart.

3 The Bk hierarchy is strict

In this section we show that the classes Bk, k ≥ 1, form an infinite hierarchy of distinct classes, thereby
proving that the general ability to boost the probability of success for a randomized decision problem is
quite limited. In fact, we show separation in a very strong sense: there are decision problems in Bk+1(0),
i.e., that have a (p, q)-decider running in zero rounds with p1+1/(k+1) + q > 1, which cannot be decided by
a (p, q)-decider with p1+1/k + q > 1, even if the number of rounds of the latter is as large as n1−ε for every
fixed ε > 0.

Theorem 3.1 Bk+1(0) \Bk(t) 6= ∅ for every k ≥ 1 and every t = o(n).

Proof: Let k be any positive integer. We consider the following distributed language, which is a generalized
variant AMOS-k of the problem AMOS introduced in [13]. As in AMOS, the input x of AMOS-k satisfies
x ∈ {0, 1}n, i.e., each node v is given as input a boolean x(v). The language AMOS-k is then defined by:

At-Most-k-Selected (AMOS-k) =

{(G, x) s.t. ‖ x ‖1 ≤ k}.

Namely, AMOS-k consists of all instances containing at most k selected nodes (i.e., at most k nodes with
input 1), with all other nodes unselected (having input 0). In order to prove Theorem 3.1, we show that
AMOS-k ∈ Bk+1(0) \Bk(t) for every t = o(n).

We first establish that AMOS-k belongs to Bk+1(0). We adapt algorithm A presented in [13] for AMOS
to the case of AMOS-k. The following simple randomized algorithm runs in 0 time: every node v which
is not selected, i.e., such that x(v) = 0, says “yes” with probability 1; and every node which is selected,
i.e., such that x(v) = 1, says “yes” with probability p1/k, and “no” with probability 1 − p1/k. If the
graph has s ≤ k nodes selected, then all nodes say “yes” with probability ps/k ≥ p, as desired. On
the other hand, if there are s ≥ k + 1 selected nodes, then at least one node says “no” with probability
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1− ps/k ≥ 1− p(k+1)/k = 1− p1+1/k. We therefore get a (p, q)-decider with p1+1/k + q ≥ 1, that is, such
that p1+1/(k+1) + q > 1. Thus AMOS-k ∈ Bk+1(0).

We now consider the harder direction, and prove that AMOS-k /∈ Bk(t), for any t = o(n). To prove
this separation, it is sufficient to consider AMOS-k restricted to the family of n-node paths. Fix a function
t = o(n), and assume, towards contradiction, that there exists a distributed (p, q)-decider A for AMOS-k
that runs in O(t) rounds, with p1+1/k + q > 1. Let ε ∈ (0, 1) be such that p1+1/k+ε + q > 1. Let P be an
n-node path, and let S ⊂ P be a subpath of P . Let δ ∈ [0, 1] be a constant satisfying

0 < δ < p1+1/k (1− pε) /k . (2)

Consider a positive instance and a negative instance of AMOS-k, respectively denoted by

I = (P, x) and I ′ = (P, x′) .

Both instances are defined on the same n-node path P , where n ≥ k (`(δ) + 1) + 1.
Recall that `(δ) = `(δ, 2t+ 1) (see Eq. (1)). We consider executions ofA on these two instances, where

nodes are given the same id’s. Both instances have almost the same input. In particular, the only difference
is that instance I contains k selected nodes, whereas I ′ has the same selected nodes as I plus one additional
selected node. Therefore I is legal, while I ′ is illegal. In I ′, the path P is composed of k + 1 sections,
each containing a unique selected node, and where each pair of consecutive sections separated by a δ-secure
subpath. More precisely, let us enumerate the nodes of P from 1 to n, with node v adjacent to nodes v − 1
and v + 1, for every 1 < v < n. Consider the k subpaths of P defined by:

Si = [(i− 1)`(δ) + i+ 1, i · `(δ) + i]

for i = {1, . . . , k}. Let the selected nodes in I ′ be positioned as follows. Let u1 = 1 and let ui =
(i− 1)`(δ) + i for i = 2, . . . , k + 1. Then set

x′(v) =

{
1, if v = ui for some i ∈ {1, ..., k + 1}
0, otherwise.

See Fig. 2(a) for a schematic representation of I ′. Our next goal is to define the legal instance I = (P, x).
To do so, we begin by claiming that each Si contains a δ-secure internal subpath S′i = [ai, bi]. Naturally, we
would like to employ Fact 2.2. However, Fact 2.2 refers to subpaths of valid instances (P, x) ∈ L, and I ′ is
illegal. So instead, let us focus on the instance (Si, x′Si

). Since (Si, x′Si
) contains no leaders, ‖ x′Si

‖1 = 0,
it follows that (Si, x′Si

) ∈ L, and Fact 2.2 can be applied on it. Subsequently, since |Si| > `(δ) it follows
that Si contains an internal δ-secure subpath S′i = [ai, bi], whose t neighborhood is strictly in Si. Therefore,
when applying algorithm A on (Si, x′Si

, IdSi) and on (P, x′, Id), the nodes in the (2t + 1)-length segment
S′i behave the same, thus Pr[E(P, x′, Id, V (S′i))] = Pr[E(Si, x′Si

, IdSi , V (S′i))]. Hence, S′i is a δ-secure
subpath in (P, x′, Id) as well, for every i ∈ {1, ..., k}, see Fig. 2(b).

The δ-secure subpaths S′i’s are now used to divide P into 2k+ 1 segments. Specifically, there are k+ 1
segments Ti, i = 1, . . . , k + 1, each with one selected node. The δ-secure subpaths S′i = [ai, bi] separate Ti
from Ti+1. More precisely, set T1 = [1, a1−1], Ti = [bi−1+1, ai−1] for i ∈ 2, ..., k, and Tk+1 = [bk+1, n],
getting

P = T1 ◦ S′1 ◦ T2 ◦ S′2 ◦ . . . ◦ Tk ◦ S′k ◦ Tk+1

where ◦ denotes path concatenation. Let Ti = E(P, x′, Id, V (Ti)) be the event that all nodes in the subpath
Ti say “yes” in the instance I ′, for i ∈ {1, ..., k + 1} and let pi = Pr[Ti] be its probability. Let j be such
that pj = maxi pi. We are now ready to define the valid instance I = (P, x):

x(v) =


1, if v = ui for some i ∈ {1, ..., k + 1},

i 6= j
0, otherwise.
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Note that ‖ x′ ‖1 = k + 1 and ‖ x ‖1 = k, thus I ∈ AMOS-k while I ′ /∈ AMOS-k. See Fig. 2(c,d) for an
illustration of I versus I ′.

We now make the following observation.

Claim 3.2 ∀i 6= j, Pr[E(P, x, Id, V (Ti))] = pi.

Proof: This follows since the distance between any two nodes u (resp., v) in distinct T ′is is greater than t,
which implies that x(Li ◦Ti ◦Ri) = x′(Li ◦Ti ◦Ri) where Li (resp., Ri) is the subpath of length t to the left
(resp., to the right) of Ti in P , from which it follows that underA the nodes of Ti have the same behavior in
both instances I and I ′.

LetN (resp.,N ′) be the event that there exists at least one node in I (resp., I ′) that says “no” when apply-
ing algorithm A. Similarly, let Y (resp., Y ′) be the event stating that all nodes in the configuration I (resp.,
I ′) say “yes”. Let T =

⋃k+1
i=1 Ti be the event that all nodes in each subpaths Ti, for i ∈ {1, ..., k + 1} say

“yes” in the instance I ′. For every i ∈ {1, ..., k}, let Si = E(P, x′, Id, V (S′i)) be the event that all nodes in
the δ-secure subpath S′i say “yes” in the instance I ′. We have Pr(Y) = Pr[E(P, x, Id, V (P ))] and Pr(Y ′) =
Pr[E(P, x′, Id, V (P )), while Pr(N ) = 1− Pr(Y) and Pr(N ′) = 1− Pr(Y ′).

Since A is a (p, q)-decider, as we assume by contradiction that AMOS-k in Bk, we have Pr(N ′) ≥ q,
and thus Pr(N ′) > 1 − p1+1/k+ε. Therefore, Pr(Y ′) < p1+1/k+ε. Moreover, since I ∈ AMOS-k, we also
have that Pr(Y) ≥ p. Therefore, the ratio ρ̂ = Pr(Y ′)/Pr(Y) satisfies

ρ̂ < p1/k+ε . (3)

On the other hand, note that by applying the union bound to the k + 1 events T ,
⋃k
i=1 Si, we get

Pr(N ′) ≤ (1− Pr[T ]) +

(
k∑
i=1

(1− Pr[Si])

)
≤ 1− pj ·

∏
i 6=j

pi + k · δ,

where the last inequality follows by the fact that each S′i is a (δ, 2t + 1)-secure subpath, thus the events
Ti1 , Ti2 are independent for every i1, i2 ∈ {1, ..., k + 1} (since the distance between any two nodes u ∈ Ti1
and v ∈ Ti2 is at least 2t + 1). This implies that Pr(Y ′) ≥ pj ·

∏
i 6=j pi − k · δ . Since Pr(Y) ≤

∏
i 6=j pi

(by the independence of the events Ti1 , Ti2 , for every i1, i2 ∈ {1, ...k + 1}), it then follows that the ratio ρ̂
satisfies

ρ̂ ≥
pj ·

∏
i 6=j pi − k · δ∏
i 6=j pi

≥ pj −
k · δ∏
i 6=j pi

≥ pj − k · δ/p , (4)

where the last inequality follows by the fact that I ∈ AMOS-k and thus
∏
i 6=j pi ≥ Pr(Y) ≥ p. Finally, note

that pj ≥ p1/k. This follows since pj ≥ pi for every i ∈ {1, ..., k + 1}, so pkj ≥
∏
i 6=j pi ≥ p. By Eq. (4),

we then have that ρ̂ ≥ p1/k − k · δ/p. Combining this with Eq. (3), we get that p1/k − k · δ/p < p1/k+ε ,
which is in contradiction to the definition of δ in Eq. (2).

Finally, we show that the Bk(t) hierarchy does not capture all languages even for k =∞ and t as large
as o(n). The proof of the following theorem is deferred to the Appendix.

Theorem 3.3 There is a language not in B∞(t), for every t = o(n).
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4 A sharp threshold between determinism and randomization

It is known [13] that beyond the threshold p2 + q = 1, randomization does not help. This result however
holds only for a particular type of languages, called hereditary, i.e., closed under inclusion. In this section,
we provide one more evidence supporting our belief that the threshold p2 + q = 1 identified in [13] holds
for all languages, and not only for hereditary languages. Indeed, we prove that, restricted to path topologies
and finite inputs, every language L for which there exists a (p, q)-decider running in constant time, with
p2 + q > 1, can actually be decided deterministically in constant time.

Theorem 4.1 Let L be a distributed language restricted to paths, with a finite set of input values. If L ∈
B1(O(1)), then L ∈ LD(O(1)).

Proof: Let L ∈ B1(O(1)) be a distributed language restricted to paths, and defined on the (finite) input set
Σ. Consider a distributed (p, q)-decider A for L that runs in t = O(1) rounds, with p2 + q > 1. Fix a
constant δ such that 0 < δ < p2 + q − 1.

Given a subpath S of a path P , let us denote by Sl (respectively, Sr) the subpath of P to the left (resp.,
right) of S, so that P = Sl ◦ S ◦ Sr.

Informally, a collection of three paths P, P ′, and P ′′ (of possibly different lengths) is called a λ-path
triplet if (1) the inputs of those paths agree on some “middle” subpath of size at least λ, (2) paths P and P ′′

coincide on their corresponding “left” parts, and (3) paths P ′ and P ′′ coincide on their “right” parts. See Fig-
ure 4. Formally, a λ-path triplet is a triplet [(P, S, x), (P ′, S′, x′), (P ′′, S′′, x′′)] such that |P |, |P ′|, |P ′′| ≥ λ,
x, x′, x′′ are inputs on these paths, respectively, and S ⊂ P , S′ ⊂ P ′, S′′ ⊂ P ′′ are three subpaths satisfying
(1) |S| = |S′| = |S′′| ≥ λ, (2) xS = x′S′ = x′′S′′ , and (3) x′′S′′l = xSl

and x′′S′′r = x′S′r . The proof of the
following claim is deferred to the Appendix.

Claim 4.2 Let [(P, S, x), (P ′, S′, x′), (P ′′, S′′, x′′)] be a λ-path triplet. If λ ≥ `(δ), for ` as defined in
Eq. (1), then

(
(P, x) ∈ L and (P ′, x′) ∈ L

)
⇒ (P ′′, x′′) ∈ L.

We now observe that, without loss of generality, one can assume that in all instances (P, x) of L, the
two extreme vertices of the path P have a special input symbol ⊗. To see why this holds, let ⊗ be a symbol
not in Σ, and consider the following language L′ defined over Σ ∪ {⊗}. Language L′ consists of instances
(P, x) such that (1) the endpoints of P have input ⊗, and (2) (P ′, x′) ∈ L, where P ′ is the path resulting
from removing the endpoints of P , and where x′v = xv for every node v of P ′. Any (p, q) decider algorithm
for L (resp., L′), can be trivially transformed into a (p, q) decider algorithm for L′ (resp., L) with the same
success guarantees and running time. Hence, in the remaining of the proof, we assume that in all instances
(P, x) ∈ L, the two extreme vertices of the path P have input ⊗.

We say that a given instance (P, x) is extendable if there exists an extension of it in L, i.e., if there exists
an instance (P ′, x′) ∈ L such that P ⊆ P ′ and x′P = x. The proof of the following claim is deferred to the
Appendix.

Claim 4.3 There exists a (centralized) algorithm X that, given any configuration (P, x) with |P | ≤ 2`(δ)+
1, decides whether (P, x) is extendable. Moreover, algorithm X uses messages of constant size.

We may assume, hereafter, that such an algorithm X , as promised by Claim 4.3, is part of the language
specification given to the nodes. We show that L ∈ LD(O(t)) by proving the existence of a deterministic
algorithmD that recognizesL inO(t) rounds. Given a path P , an input x over P , and an identity assignment
Id, algorithm D applied at a node u of P operates as follows. If xu = ⊗ then u outputs “yes” if and only
if u is an endpoint of P . Otherwise, i.e., if xu 6= {⊗}, then u outputs “yes” if and only if (Bu, xBu) is
extendable (using algorithm X ), where Bu = B(u, `(δ)) is the ball centered at u, and of radius `(δ) in P .
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AlgorithmD is a deterministic algorithm that runs in `(δ) rounds. We claim that AlgorithmD recognizes
L. To establish that claim, consider first an instance (P, x) ∈ L. For every node u, (P, x) ∈ L is an
extension of (Bu, xBu). Therefore, every node u outputs “yes”, as desired. Now consider an instance
(P, x) /∈ L. Assume, for the purpose of contradiction, that there exists an identity assignment Id such that,
when applying D on (P, x, Id), every node u outputs “yes”.

Claim 4.4 In this case, |P | > 2`(δ) + 1.

Proof: Assume by contradiction that |P | ≤ 2`(δ) + 1, and consider the middle node s of P . Since s
outputs “yes”, it follows that (P, x) can be extended to (P ′, x′) such that (P ′, x′) ∈ L. However, since the
extremities of P output “yes”, it means that their input is ⊗. Therefore, as |P ′| > |P |, we get that there is
an internal node of P ′ which has input ⊗, contradicting (P ′, x′) ∈ L.

Let S ⊆ P be the longest subpath of P such that there exists an extension (P ′, x′) of (S, xS), with
(P ′, x′) ∈ L. Since |P | > 2`(δ)+1, and since the middle node of P outputs “yes”, we have |S| ≥ 2`(δ)+1.
The proof carries on by distinguishing two cases for the length of S.

If S = P , then (P, x) can be extended to (P ′, x′) ∈ L. By the same arguments as above, since each
extremity w of P has input⊗, we conclude that P = P ′, with x = x′. Contradicting the fact that (P, x) /∈ L.
Therefore 2`(δ)+1 ≤ |S| < |P |. Let a and b be such that S = [a, b]. As S is shorter than P , it is impossible
for both a and b to be endpoints of P . Without loss of generality, assume that a is not an endpoint of P .
Since a outputs “yes”, there exists an extension (P ′′, x′′) ∈ L of (Ba, xBa). In fact, (P ′′, x′′) is also an
extension of x[a,a+`(δ)]. Since x′ and x′′ agree on [a, a + `(δ)], and since both (P ′, x′), and (P ′′, x′′) are in
L, we get from Lemma 4.2 that x[a−1,b] can be extended to an input (P ′′′, x′′′) ∈ L, which contradicts the
choice of S. The theorem follows.

5 On the impossibility of boosting

Theorems 3.1 and 3.3 demonstrate that boosting the probability of success might be doable, but only from
(p, q) satisfying p1+1/(k+1) + q > 1 to (p, q) satisfying p1+1/k + q > 1 (with the extremes excluded). In
this section, we prove that once the inputs may be restricted in certain ways, the ability to boost the success
probability become almost null. More precisely, recall that so far we considered languages as collections
of pairs (G, x) where G is a (connected) n-node graph and x ∈ Σn is the input vector to the nodes of G,
in some finite of infinite alphabet Σ, that is, x(v) ∈ Σ for all v ∈ V (G). An instance of an algorithm
A deciding a language L was defined as any such pair (G, x). We now consider the case where the set of
instances is restricted to some specific subset of inputs I ⊂ Σn. That is, the distributed algorithmA has now
the promise that in the instances (G, x) admissible as inputs, the input vector x is restricted to x ∈ I ⊂ Σn.

We define the classes Cr(t) in a way identical to the classes Bk(t), but generalized in two ways. First,
the parameter r is not bounded to be integral, but can be any positive real. Second, the decision problems
under consideration are extended to the ones in which the set of input vectors x can be restricted. So, in
particular, Bk(t) ⊆ Ck(t), for every positive integer k, and every function t. The following theorem proves
that boosting can made as limited as desired. The proof of this theorem is deferred to the Appendix.

Theorem 5.1 Let r < r′ be any two positive reals. Then, Cr′(0) \ Cr(t) 6= ∅ for every t = o(n).

Note that Theorem 5.1 demonstrates not only the (almost) inability of boosting the probability of success
when the inputs to the nodes are restricted to specific kinds, but also the inability of derandomizing, even
above the threshold p2 + q = 1. Indeed, the following is a direct consequence of Theorem 5.1.

Corollary 5.2 For every positive real r, there is a decision problem in Cr(0) which cannot be decided
deterministically in o(n) rounds.
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APPENDIX

A Some proofs

Proof of Fact 2.2: Fix any identity assignment Id and let S ⊂ P be a subpath of length d ≥ `(δ, λ), where
S = (v1, . . . , vd). In what follows, we may override the nodes vi with their indices in S, namely i. Let
r` = d(λ− 1)/2e. Given a vertex vi ∈ S, for i ∈ (r`, d− r`), let Bi be the subpath of its r` neighborhood
in S. Formally, Bi = [i − r`, i + r`]. In addition, let Bi be the event that all nodes in Bi say “yes” when
applying A on P . That is Bi = E(P, x, Id, V (Bi)). Let

R = (r` + t+ 1, d− r` − t)

be the ranges of indices i whose r` neighborhood Bi is internal in S, i.e., Bi ⊂ [t + 1, d − t − 1]. That is
by definition, for every i ∈ R, it holds that Bi is at least of length λ and is internal in S. See Fig. 1 for
illustration. We would like to show that there exists i∗ ∈ R, such that Bi∗ is a (δ, λ)-secure subpath, i.e.,
that Pr[Bi] ≥ 1− δ.

To establish the existence of i∗ ∈ R, we bound from above the size of the set H containing all indices
j ∈ R whose Bj is not a (δ, λ)-secure subpath. Formally, define

H = {j ∈ R | Pr[Bj ] < 1− δ}.

We next upper bound the size ofH, by covering the integers in R by at most

Q = 2(t+ r`) + 1

sets, each being a Q-independent set. That is, every two integers in the same set, are at least Q apart in P .
Let J1, . . . ,JQ be the Q-independent sets that cover the indices of R.

Specifically, for s ∈ [1, Q] and m(S) = d(d− 4(r` + t))/Qe, we define

Js = {s+ r` + t+ 1 + j ·Q | j ∈ [0,m(S)]} ∩ [1, n].

Observe, that as desired, R ⊂
⋃
s∈[1,Q] Js, and for each s ∈ [1, Q], Js is a Q-independent set. In what

follows, fix s ∈ [1, Q] and let J = Js. Let J ′ = J ∩H, the indices in J whose r` neighborhood does not
correspond to (δ, λ)-secure subpath. On the one hand, since to a (P, x) ∈ L, we have that

Pr

[ ⋃
i∈J ′
Bi

]
≥ p. (A.1)

On the other hand, observe that for every two indices i1, i2 ∈ J ′, it holds that the distance between every
u ∈ Bi1 and v ∈ Bi2 is at least 2t + 1 (since J ′ is Q-independent). Hence, the events Bi1 and Bi2 are
independent. We therefore get that

Pr

[ ⋃
i∈J ′
Bi

]
=
∏
i∈J ′

Pr [Bi] < (1− δ)|J ′|, (A.2)

where the last inequality follows by the fact that J ′ ⊂ H. Combining Eq. (A.1) and (A.2) we get that

|J ′| < log p/ log(1− δ).
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We are now ready to upper bound the size ofH. Noting that S can be covered by an union of Q sets Js each
of which is Q-independent, we get that

|H| =
Q∑
i=1

|J ′i | < Q · log p

log(1− δ)
, (A.3)

where J ′i = Ji ∩ H. Finally note that |R| > |H|. This follows by the fact that |R| = |S| − 2(r` + t + 1)
and |S| ≥ `(δ, λ). Hence,

|R| = |S| − 2(r` + t+ 1)

≥ `(δ, λ)− 2(r` + t+ 1)

≥ Q · log p

log(1− δ)
> |H|,

where the last inequality follows by Eq. (A.3). By the pigeonhole principle we get that there exists i∗ ∈ R
which is not inH. Thus Bi∗ is a (δ, λ)-secure subpath, as required. The fact follows.

Proof of Theorem 3.3: We exhibit one specific language not in B∞(t), for every t = o(n). This language
consists of determining whether the underlying network is acyclic. Specifically, let

Tree = {(G, ε) | G is a tree},

where ε is the null input. Fix a function t = o(n). Assume, towards contradiction, that there exists some
finite k such that Tree ∈ Bk(t). Then there is a (p, q)-decider for Tree, given by A, running in t rounds,
with p1+1/k + q − 1 > 0. Hence, in particular, there exists some ε > 0 such that p+ q − 1 > ε. Define

δ = ε < p+ q − 1. (A.4)

We consider graphs G of size n >
⌈

21·log p
log(1−δ)

⌉
. We will show that Tree /∈ Bk(t) for any

t ≤
⌊

log(1− δ)
21 · log p

⌋
· n = o(n). (A.5)

Consider the cycle C with n nodes labeled consecutively from 1 to n, and the path P with nodes labeled
consecutively from 1 to n. This labeling defines the identity assignment Id1. In the input configuration
(P, ε), the probability that all nodes say “yes” when executing A is at least p. Let us identify a subpath
S = [x− t, . . . , x+ t+ 1] of P to be used as an internal (δ, 2(t+ 1))-secure subpath in P . I.e.,

Pr[E(P, ε, Id1, V (S))] ≥ 1− δ . (A.6)

Note that, by Eq. (1, A.4, A.5), it follows that n > `(δ, 2(t+ 1)). Hence by Fact 2.2, since (P, ε) ∈ L, there
exists such internal subpath S ⊂ P . Consider the event E(P, x, Id, V (S)) stating that all nodes in subpath S
of P with input x and identity-assignment Id return “yes”. We have that

Pr[E(P, ε, Id1, V (S))] = Pr[E(C, ε, Id1, V (S))] . (A.7)

Consider a subpath Ŝ composed of the subpath S padded with a block L of t nodes before it and a block R
of t nodes after it. Indeed, since S is an internal subpath of P (i.e., it is at distance at least t + 1 from P ’s
endpoints), the set of nodes of Ŝ = L ◦ S ◦ R = [x− 2t, . . . , x+ 2t+ 1] appears consecutively in both P
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and in C with identity assignment Id1, and Ŝ have the same identities (with Id1) and degrees in both C and
P . We now consider another identity-assignment Id2 for P , with nodes labeled consecutively from x+ 1 to
n, and then from 1 to x. Consider the (n− 2(t+ 1))-node subpath

S′ = [x+ t+ 2, . . . , n, 1, . . . , x− t− 1] .

We have
Pr[E(P, ε, Id2, V (S′))] = Pr[E(C, ε, Id1, V (S′))] , (A.8)

Consider a subpath Ŝ′ composed of the subpath S′ padded with a block L′ of t nodes before it and a block
R′ of t nodes after it, i.e., Ŝ′ = L′ ◦ S′ ◦ R′. Indeed, the set of Ŝ′ nodes appears consecutively in both C
and P with identity assignment Id2, and L′ ◦ S′ ◦R′ have the same identities (with Id2) and degrees in both
C and P , where L′ (resp., R′) is the subpath composed of the t nodes with identities Id2 immediately larger
than x + t + 1 (resp., smaller than x − t). Formally, we have that Id1

Ŝ′
= Id2

Ŝ′
. See Fig. 3 for illustration.

Let S = E(C, ε, Id1, V (S)), (resp., S ′ = E(C, ε, Id1, V (S′))) be the event that all nodes of S ⊂ C (resp.,
S′ ⊂ C) say “yes”. We can now combine these previous results to derive a contradiction. Since C /∈ Tree,
by applying the union bound on the events S and S ′, and using Eq. (A.7) and (A.8), we get that

q ≤ 1− Pr[E(C, ε, Id1, V (C))]

≤
(
1− Pr[S ′]

)
+ (1− Pr[S])

=
(
1− Pr[E(P, ε, Id2, V (S′))]

)
+
(
1− Pr[E(P, ε, Id1, V (S))]

)
≤

(
1− Pr[E(P, ε, Id2, V (S′))]

)
+ δ

where the last inequality holds by Eq. (A.6). Therefore we get

q ≤ 1− p+ δ ,

by noticing that Pr[E(P, ε, Id2, V (S′))] ≥ p since P ∈ Tree. Finally, by Eq. (A.4), we eventually get
q < 1− p+ p+ q − 1 or q < q, contradiction.

Proof of Claim 4.2: Consider an identity assignment Id′′ for (P ′′, x′′). Let Id and Id′ be identity assign-
ments for (P, x), and (P ′, x′), respectively, which agree with Id′′ on the corresponding nodes. That is: (a)
assignments Id, Id′, and Id′′ agree on the nodes in S, S′ and S′′, respectively; (b) Id and Id′′ agree on the
nodes in S` and S′′` , respectively; and (c) Id and Id′′ agree on the nodes in S′r and S′′r , respectively. Since
(P, x) ∈ L, and since |S| = λ ≥ `(δ), it follows from Fact 2.2 that S contains an internal δ-secure subpath
H . Then, let H ′ and H ′′ be the subpaths of P ′ and P ′′ corresponding to H . Since S and S′′ coincide in
their inputs and identity assignments, then H,H ′, H ′′ have the same t-neighborhood in P, P ′, P ′′ respec-
tively. Hence, H ′′ is also a δ-secure (when running algorithmA in instance (P ′′, x′′)). Since both (P, x) and
(P ′, x′) belong to L, we have

Pr[E(H ′′` , Id
′′, x′′) = Pr[E(H`, Id, x)])] ≥ p

and
Pr[E(H ′′r , Id

′′, x′′) = Pr[E(H ′r, Id
′, x′)])] ≥ p.

Moreover, as |H ′′| ≥ 2t+ 1, the two events E(H ′′` , Id
′′, x′′) and E(H ′′r , Id

′′, x′′) are independent. Hence

Pr[E(H ′′` ∪H ′′r , Id′′, x′′)] ≥ p2.
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In other words, the probability that some node in H ′′` ∪ H ′′r says “no” is at most 1 − p2. It follows, by
union bound, that the probability that some node in H ′′ says “no” is at most 1 − p2 + δ < q. Since A is a
(p, q)-decider for L, it cannot be the case that (H ′′, x′′) /∈ L.

Proof of Claim 4.3: Observe that since the running time t is constant, then 2`(δ) + 1 is also constant.
Therefore, there are only finitely many configurations (P̂ , x) with |P̂ | ≤ 2`(δ) + 1 (since Σ is finite). Call
this set of configurations C. Each of the configurations in C is either extendable or not. Hence, there exists a
function f : C → {0, 1} such that for every configuration C ∈ C, f(C) = 1 if and only if C is extendable.
This function f can be described in a finite manner, and hence gives rise to an algorithm as required by the
claim.

Proof of Theorem 5.1: Let r̂ = a/b ∈ [r, r′) be a positive rational where a and b are two co-prime
integers. By the density of the rational numbers, such r̂ is guaranteed to exist. To establish the theorem, we
consider the language AMOS-a restricted to instances in I, where

I = {x ∈ {0, 1}∗ : ‖ x ‖1 /∈ [a+ 1, a+ b− 1]}.

In other words, the promise says that an input either satisfies AMOS-a, or is far from satisfying AMOS-a
(very many selected nodes). We prove that AMOS-a ∈ Cr′(0) \ Cr(t) for every t = o(n).

We begin by showing that AMOS-a ∈ Cr′(0) by considering the following simple randomized algorithm
that runs in 0 time: every node v which is not selected, i.e., such that x(v) = 0, says “yes” with probability
1; and every node which is selected, i.e., such that x(v) = 1, says “yes” with probability p1/a, and “no”
with probability 1 − p1/a. If the graph has s ≤ a nodes selected, then all nodes say “yes” with probability
ps/a ≥ p, as desired. Else, there are s ≥ a + b leaders, (this follows from the promise), and at least one
node says “no” with probability 1 − ps/a ≥ 1 − p(a+b)/a = 1 − p1+1/r̂. We therefore get a (p, q)-decider
with p1+1/r̂ + q ≥ 1, thus p1+1/r′ + q > 1 as r′ > r̂. It therefore follows that AMOS-a ∈ Cr′(0).

We now consider the harder direction, and prove that AMOS-a /∈ Cr(t), for any t = o(n). Since r̂ ≥ r,
it is sufficient to show that AMOS-a /∈ Cr̂(t). To prove this separation, consider the AMOS-a problem
restricted to the family of n-node paths. Fix a function t = o(n), and assume, towards contradiction, that
there exists a distributed (p, q)-decider A for AMOS-a that runs in O(t) rounds, with p1+1/r̂ + q > 1. Let
ε ∈ (0, 1) be such that p1+1/r̂+ε + q > 1. Let P be an n-node path, and let S ⊂ P be a subpath of P . Let
δ ∈ [0, 1] be a constant satisfying

0 < δ < p1+1/r̂ (1− pε) /(a+ b− 1). (A.9)

Consider a positive instance and a negative instance of AMOS-a, respectively denoted by

I = (P, x) and I ′ = (P, x′).

Both instances are defined on the same n-node path P , where

n ≥ (a+ b− 1) (`(δ) + 1) + 1.

where `(δ) = `(δ, 2t+ 1), as defined by Eq. (1). We consider executions ofA on these two instances, where
nodes are given the same id’s. Both instances have almost the same input. In particular, the only difference
is that instance I contains a selected nodes, whereas I ′ has the same selected nodes as I plus b additional
selected nodes. Therefore I is legal, while I ′ is illegal. In addition, both inputs x and x′ satisfy the promise.

In I ′, the path P is composed of a+ b sections, each containing a unique selected node, and where each
pair of consecutive sections separated by δ-secure subpaths. More precisely, let us enumerate the nodes of
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P from 1 to n, with node v adjacent to nodes v − 1 and v + 1, for every 1 < v < n. Consider the a+ b− 1
subpaths of P defined by:

Si = [(i− 1)`(δ) + i+ 1, i · `(δ) + i]

for i = {1, . . . , a + b − 1}. Let the selected nodes in I ′ be positioned as follows. Let u1 = 1 and let
ui = (i− 1)`(δ) + i for i = 2, . . . , a+ b. Then set

x′(v) =

{
1 if v = ui for some i ∈ {1, ..., a+ b}
0 otherwise.

Our next goal is to construct a legal input I = (P, x) with a leaders. Towards this, we begin by showing
that each Si contains a δ-secure internal subpath S′i = [xi, yi] (internal to Si). Note that Fact 2.2 refers to
subpaths in valid instances (P, x) ∈ L, and since I ′ is illegal it cannot be directly applied. So instead, let
us focus on the instance (Si, x′Si

) with IDs IdSi . Since Si contains no leaders, ‖ x′Si
‖1 = 0, it follows that

(Si, x′Si
) ∈ L. Now we can safely apply Fact 2.2. Indeed, since |Si| > `(δ) it follows by the fact that Si con-

tains an internal δ-secure subpath S′i = [xi, yi]. Therefore, when applying algorithmA on (Si, x′Si
, IdSi) and

on (P, x′, Id), the nodes of S′i behave the same, thus Pr[E(P, x′, Id, V (S′i))] = Pr[E(Si, x′Si
, IdSi , V (S′i))].

Hence, S′i is a δ-secure subpath in I ′ as well, for every i ∈ {1, ..., a+ b− 1}.
The δ-secure subpaths S′i are used to divide P into 2(a+ b− 1) + 1 segments. There are a+ b segments

Ti, i = 1, . . . , a + b, each with one selected nodes. The δ-secure subpaths S′i = [xi, yi] separate Ti from
Ti+1. More precisely, we set

T1 = [1, x1 − 1], Ti = [yi−1 + 1, xi − 1]

for i ∈ 2, ..., a+ b− 1, and Ta+b = [ya+b + 1, n], getting

P = T1 ◦ S′1 ◦ T2 ◦ S′2 ◦ . . . ◦ Ta+b−1 ◦ S′a+b−1 ◦ Ta+b

where ◦ denotes path concatenation. For i ∈ {1, ..., a+ b}, let Ti = E(P, x′, Id, V (Ti)) be the event that all
nodes in the subpath Ti say “yes” in instance I ′, and let pi = Pr[Ti] its probability. Let J = {j1, . . . , jb} be
the set of b indices with maximal values in {p1, . . . , pa+b}. I.e., pj ≥ max{pi | i ∈ {1, ..., a + b} \ J} for
every j ∈ J . We are now defining the valid instance I = (P, x):

x(v) =

{
1 if v = ui for some i ∈ {1, ..., a+ b} \ J
0 otherwise.

We therefore have that ‖ x′ ‖1 = a + b and ‖ x ‖1 = a, thus I ∈ AMOS-a while I ′ /∈ AMOS-a, and both
I, I ′ satisfy the promise. We now make the following immediate observation.

Claim A.1 Pr[E(P, x, Id, V (Ti))] = pi, for every i /∈ J .

This follows since the distance between any two nodes u (resp., v) in distinct T ′is is greater than t, which
implies that x(Li ◦ Ti ◦ Ri) = x′(Li ◦ Ti ◦ Ri) where Li (resp., Ri) is the subpath of length t to the left
(resp., to the right) of Ti in P , from which it follows that underA the nodes of Ti have the same behavior in
both instances I and I ′ for every i /∈ J .

Let N (resp., N ′) be the event that there exists at least one node in I (resp., I ′) that says “no” when
applying algorithmA. Similarly, let Y (resp., Y ′) be the event that all nodes in the configuration I (resp., I ′)
say “yes”. Let T =

⋃a+b
i=1 Ti be the event that all nodes in the subpaths Ti, for i ∈ {1, ..., a + b} say “yes”

in the instance I ′. For every i ∈ {1, ..., a + b − 1}, let Si = E(P, x′, Id, V (S′i)) be the event that all nodes
in the δ-secure subpath S′i say “yes” in the instance I ′. We have

Pr(Y) = Pr[E(P, x, Id, V (P ))]
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and

Pr(Y ′) = Pr[E(P, x′, Id, V (P ))]

while
Pr(N ) = 1− Pr(Y)

and
Pr(N ′) = 1− Pr(Y ′).

Since A a (p, q)-decider, as we assume by contradiction that AMOS-a ∈ Bk, we have

Pr(N ′) ≥ q,

and thus
Pr(N ′) > 1− p1+1/r̂+ε.

Therefore, Pr(Y ′) < p1+1/r̂+ε. Moreover, since I ∈ AMOS-a, we also have that Pr(Y) ≥ p. Therefore,

Pr(Y ′)
Pr(Y)

< p1/r̂+ε . (A.10)

On the other hand, by applying the union bound to the a+ b events T ,
⋃a+b−1
i=1 Si, we get that

Pr(N ′) ≤ (1− Pr[T ]) +

a+b−1∑
i=1

(1− Pr[Si])

≤ 1− (
∏
i/∈J

pi ·
∏
j∈J

pj) + (a+ b− 1) · δ,

where the last inequality follows since S′i’s are δ-secure subpaths and hence the events Ti’s are independent.
We therefore get that

Pr(Y ′) ≥

∏
i/∈J

pi ·
∏
j∈J

pj

− (a+ b− 1) · δ .

Since Pr(Y) ≤
∏
i/∈J pi, it then follows that

Pr(Y ′)
Pr(Y)

≥
∏
i/∈J pi ·

∏
j∈J pj − (a+ b− 1) · δ∏

i/∈J pi

≥
∏
j∈J

pj −
(a+ b− 1) · δ∏

i/∈J pi
.

Now, since I ∈ AMOS-a, we have
∏
i/∈J pi ≥ Pr(Y) ≥ p, and thus

Pr(Y ′)
Pr(Y)

≥
∏
j∈J

pj −
(a+ b− 1) · δ

p
. (A.11)

Note that ∏
j∈J

pj ≥ p1/r̂. (A.12)
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By the definition of J , |J | = b, and
∏
j∈J pj ≥ pbi for every i /∈ J . In addition, since there are a indices

i /∈ J , we get that (
∏
j∈J pj)

a/b ≥
∏
i/∈J pi ≥ Pr(Y) ≥ p. Combining with the definition of r̂, Eq. (A.12)

follows. Hence, by Eq. (A.11), we get

Pr(Y ′)/Pr(Y) ≥ p1/r̂ − (a+ b− 1) · δ
p

.

Combining with Eq. (A.10) we get that

p1/r̂ − (a+ b− 1) · δ/p < p1/r̂+ε ,

which is in contradiction to the definition of δ in Eq. (A.9). We therefore get that AMOS-a /∈ Cr̂(t), and
since r ≤ r̂, it also holds that AMOS-a /∈ Cr(t) as required. The theorem follows.
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B Figures

l(δ,L) 
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rl+t+1 

vi 

Bi 

rl rl 

R 

Figure 1: Presented is path P . The green `(δ, λ)-length segment corresponds to S. The red subpath Bi
whose center is vi is a (δ, λ)-secure subpath candidate, as i ∈ R.
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Figure 2: Illustration of the constructions for Theorem 3.1. (a) The instance I ′ = (P, x′) with k + 1
leaders separated by `(δ)-length segements, Si. (b) The δ-secure subpaths S′i in each Si are
internal to Si. (c) The leader-segments Ti interleaving with δ-secure subpaths S′i. (d) The legal
instance I = (P, x), the jth leader of I ′ is discarded, resulting in a k leader instance.
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Figure 3: Illustration of the constructions for Theorem 3.3. Shown are paths P1,P2 and cycle C. When
applying AlgorithmA on path P1 (respectively, P2) and on cycleC, the nodes in the segment [x−t, x+t+1]
(resp., [x+ t+ 2, . . . , 1, . . . , x+ t+ 1]) behave the same.
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Figure 4: Example of a λ-path triplet (the red zone is of length at least λ).
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