
Knowledge, Level of Symmetry, and Time of Leader Election ∗

Emanuele G. Fusco1 and Andrzej Pelc†2

1Department of Computer, Control, and Management Engineering “Antonio Ruberti”
Sapienza, University of Rome. fusco@diag.uniroma1.it

1Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X
3X7, Canada. pelc@uqo.ca

October 29, 2018

Abstract

We study the time needed for deterministic leader election in the LOCAL model, where in every
round a node can exchange any messages with its neighbors and perform any local computations. The
topology of the network is unknown and nodes are unlabeled, but ports at each node have arbitrary fixed
labelings which, together with the topology of the network, can create asymmetries to be exploited in
leader election. We consider two versions of the leader election problem: strong LE in which exactly one
leader has to be elected, if this is possible, while all nodes must terminate declaring that leader election is
impossible otherwise, and weak LE, which differs from strong LE in that no requirement on the behavior
of nodes is imposed, if leader election is impossible. We show that the time of leader election depends
on three parameters of the network: its diameter D, its size n, and its level of symmetry λ, which, when
leader election is feasible, is the smallest depth at which some node has a unique view of the network. It
also depends on the knowledge by the nodes, or lack of it, of parameters D and n.

keywords: leader election, anonymous network, level of symmetry

1 Introduction

1.1 The model and the problem

Leader election is one of the fundamental problems in distributed computing, first stated in [23]. Every
node of a network has a boolean variable initialized to 0 and, after the election, exactly one node, called
the leader, should change this value to 1. All other nodes should know which node is the leader. If nodes
of the network have distinct labels, then leader election is always possible (e.g., the node with the largest
label can become a leader). However, nodes may refrain from revealing their identities, e.g., for security or
privacy reasons. Hence it is desirable to have leader election algorithms that do not rely on node identities
but exploit asymmetries of the network due to its topology and to port labelings. With unlabeled nodes,
leader election is impossible in symmetric networks [1].

A network is modeled as an undirected connected graph. We assume that nodes are unlabeled, but ports
at each node have arbitrary fixed labelings 0, . . . , d − 1, where d is the degree of the node. Throughout
the paper, we will use the term “graph” to mean a graph with the above properties. We do not assume

∗A preliminary version of this paper appeared in the Proc. of the 20th Annual European Symposium on Algorithms (ESA
2012), LNCS 7501, 479–490.
†Andrzej Pelc was partially supported by NSERC discovery grant and by the Research Chair in Distributed Computing at

the Université du Québec en Outaouais.

ar
X

iv
:1

50
8.

01
30

0v
1

 [
cs

.D
C

]
 6

 A
ug

 2
01

5

any coherence between port labelings at various nodes. Nodes can read the port numbers. When sending a
message through port p, a node adds this information to the message, and when receiving a message through
port q, a node is aware that this message came through this port. The topology of the network is unknown to
the nodes, but depending on the specification of the problem, nodes may know some numerical parameters of
the network, such as the number n of nodes (size), and/or the diameter D. We consider two versions of the
leader election problem (LE): strong LE and weak LE. In strong LE one leader has to be elected whenever
this is possible, while all nodes must terminate declaring that leader election is impossible otherwise. Weak
LE differs from strong LE in that no requirement on the behavior of nodes is imposed, if leader election is
impossible. In both cases, upon election of the leader, every non-leader is required to know a path (coded
as a sequence of ports) from it to the leader.

In this paper we investigate the time of leader election in the extensively studied LOCAL model [26]. In
this model, communication proceeds in synchronous
rounds and all nodes start simultaneously. In each round each node can exchange arbitrary messages with
all its neighbors and perform arbitrary local computations. The time of completing a task is the number of
rounds it takes. In particular, the time of weak LE is the number of rounds required by the last node to elect
a leader if leader election is possible, and the time of strong LE is the number of rounds required by the last
node to elect a leader if this is possible, and to terminate by declaring that this is impossible, otherwise.

It should be observed that the synchronous process of the LOCAL model can be simulated in an asyn-
chronous network, by defining for each node separately its asynchronous round i in which it performs local
computations, then sends messages stamped i to all neighbors, and waits until getting messages stamped
i from all neighbors. (To make this work, every node is required to send a message with all consecutive
stamps, until termination, possibly empty messages for some stamps.) All our results concerning time can
be translated for asynchronous networks by replacing “time of completing a task” by “the maximum number
of asynchronous rounds to complete it, taken over all nodes”.

If nodes have distinct labels, then time D in the LOCAL model is enough to solve any problem solvable
on a given network, as after this time all nodes have an exact copy of the network. By contrast, in our
scenario of unlabeled nodes, time D is often not enough, for example to elect a leader, even if this task is
feasible. This is due to the fact that after time t each node learns only all paths of length t originating at it
and coded as sequences of port numbers. This is far less information than having a picture of the radius t
neighborhood. A node v may not know if two paths originating at it have the same other endpoint or not.
It turns out that these ambiguities may force time much larger than D to accomplish leader election.

We show that the time of leader election depends on three parameters of the network: its diameter D,
its size n, and its level of symmetry λ. The latter parameter is defined for any network (see Section 2 for
the formal definition) and, if leader election is feasible, this is the smallest depth at which some node has a
unique view of the network. The view at depth t from a node (formally defined in Section 2) is the tree of
all paths of length t originating at this node, coded as sequences of port numbers on these paths. It is the
maximal information a node can gain after t rounds of communication in the LOCAL model.

It turns out that the time of leader election also crucially depends on the knowledge of parameters n
and/or D by the nodes. On the other hand, it does not depend on knowing λ, although it often depends on
this parameter as well.

1.2 Our results

Optimal time of weak LE is shown to be Θ(D + λ), if either D or n is known to the nodes. More precisely,
we give two algorithms, one working for the class of networks of given diameter D and the other for the class
of networks of given size n, that elect a leader in time O(D + λ) on networks with diameter D and level of
symmetry λ, whenever election is possible. Moreover, we prove that this complexity cannot be improved.
We show, for any values D and λ, a network of diameter D and level of symmetry λ on which leader election
is possible but takes time at least D + λ, even when D, n and λ are known. If neither D nor n is known,
then even weak LE is impossible [32].

For strong LE, we show that knowing only D is insufficient to perform it. Then we prove that, if only
n is known, then optimal time is Θ(n). We give an algorithm working for the class of networks of given

2

KNOWLEDGE
none diameter size diameter & size

T
A
S
K WLE

impossible Θ(D + λ)
[32] (fast)

SLE impossible
Θ(n) Θ(D + λ)
(slow) (fast)

Table 1: Summary of the results

size n, which performs strong LE in time O(n) and we show, for arbitrarily large n, a network Gn of size n,
diameter O(log n) and level of symmetry 0, such that any algorithm performing correctly strong LE on all
networks of size n must take time Ω(n) on Gn. Finally, if both n and D are known, then optimal time is
Θ(D+λ). Here we give an algorithm, working for the class of networks of given size n and given diameter D
which performs strong LE in time O(D+λ) on networks with level of symmetry λ. In this case the matching
lower bound carries over from our result for weak LE. Table 1 gives a summary of our results. The main
difficulty of this study is to prove lower bounds on the time of leader election, showing that the complexity
of the proposed algorithms cannot be improved for any of the considered scenarios.

The comparison of our results for various scenarios shows two exponential gaps. The first is between the
time of strong and weak LE. When only the size n is known, strong LE takes time Ω(n) on some graphs
of logarithmic diameter and level of symmetry 0, while weak LE is accomplished in time O(log n) for such
graphs. The second exponential gap is for the time of strong LE, depending on the knowledge provided.
While knowledge of the diameter alone does not help to accomplish strong LE, when this knowledge is added
to the knowledge of the size, it may exponentially decrease the time of strong LE. Indeed, strong LE with
the knowledge of n alone takes time Ω(n) on some graphs of logarithmic diameter and level of symmetry 0,
while strong LE with the knowledge of n and D is accomplished in time O(log n), for such graphs.

1.3 Related work

Leader election was first studied for rings, under the assumption that all labels are distinct. A synchronous
algorithm, based on comparisons of labels, and using O(n log n) messages was given in [18]. It was proved in
[14] that this complexity is optimal for comparison-based algorithms. On the other hand, the authors showed
an algorithm using a linear number of messages but requiring very large running time. An asynchronous
algorithm using O(n log n) messages was given, e.g., in [27] and the optimality of this message complexity
was shown in [6]. Deterministic leader election in radio networks has been studied, e.g., in [19, 20, 24] and
randomized leader election, e.g., in [29].

Many authors [2, 3, 5, 11, 21, 22, 28, 30, 32] studied various computing problems in anonymous networks.
In particular, [4, 32] characterize networks in which leader election can be achieved when nodes are anony-
mous. In [31] the authors study the problem of leader election in general networks, under the assumption
that labels are not unique. They characterize networks in which this can be done and give an algorithm
which performs election when it is feasible. They assume that the number of nodes of the network is known
to all nodes. In [13] the authors study feasibility and message complexity of sorting and leader election in
rings with nonunique labels, while in [12] the authors provide algorithms for the generalized leader election
problem in rings with arbitrary labels, unknown (and arbitrary) size of the ring and for both synchronous
and asynchronous communication. In [16] the leader election problem is approached in a model based on
mobile agents. Characterizations of feasible instances for leader election and naming problems have been
provided in [7, 8, 9]. Memory needed for leader election in unlabeled networks has been studied in [15]. To
the best of our knowledge, the problem of time of leader election in arbitrary unlabeled networks has never
been studied before.

3

0

0

0
1
2

00

2

0
1

11 1

100

0

0
1

1
0

1

20

Figure 1: A graph and a fragment of the corresponding view from its degree 3 node.

2 Preliminaries

We say that leader election is possible for a given graph, or that this graph is a solvable graph, if there exists
an algorithm which performs LE for this graph.

We consider two versions of the leader election task for a class C of graphs :
• Weak LE. Let G be any graph in class C. If leader election is possible for the graph G, then it is
accomplished.
• Strong LE. Let G be any graph in class C. If leader election is possible for the graph G, then it is
accomplished. Otherwise, all nodes eventually declare that the graph is not solvable and stop.

Hence weak LE differs from strong LE in that, in the case of impossibility of leader election, no restriction
on the behavior of nodes is imposed: they can, e.g., elect different leaders, or no leader at all, or the algorithm
may never stop.

We will use the following notion from [32]. Let G be a graph and v a node of G.

Definition 2.1 (View) The view from v is the infinite rooted tree V(v) with labeled ports, defined recursively
as follows. V(v) has the root x0 corresponding to v. For every node vi, i = 1, . . . , k, adjacent to v, there is
a neighbor xi in V(v) such that the port number at v corresponding to edge {v, vi} is the same as the port
number at x0 corresponding to edge {x0, xi}, and the port number at vi corresponding to edge {v, vi} is the
same as the port number at xi corresponding to edge {x0, xi}. Node xi, for i = 1, . . . , k, is now the root of
the view from vi.

See Fig. 1 for an example of a view. The following proposition directly follows from [32] and expresses
the feasibility of leader election in terms of views.

Proposition 2.1 Let G be a graph. The following conditions are equivalent:
1. Leader election is possible in G;
2. Views of all nodes are different;
3. There exists a node with a unique view.

In particular, the impossibility of deterministic leader election, when there are two nodes with identical
views, is implied by proposition 4 from [32], while corollary 1 from [32] implies that one node has a unique
view if and only if all views of the nodes are different.

By Vt(v) we denote the view V(v) truncated to depth t. We call it the view of v at depth t. In particular,
V0(v) consists of the node v, together with its degree. The following proposition was proved in [25].

Proposition 2.2 For a n-node graph, V(u) = V(v), if and only if Vn−1(u) = Vn−1(v).

For graphs of sublinear diameter a better bound than that of Proposition 2.2 has been proved by Hen-
drickx [17] after the publication of the conference version of this paper; for an n-node graph of diameter d,
V(u) = V(v), if and only if Vk(u) = Vk(v), where k ∈ O(d+ d log(n/d)).

4

Define the following equivalence relations on the set of nodes of a graph. u ∼ v if and only if V(u) = V(v),
and u ∼t v if and only if Vt(u) = Vt(v). Let Π be the partition of all nodes into equivalence classes of ∼,
and Πt the corresponding partition for ∼t. It was proved in [32] (corollary 1) that all equivalence classes in
Π are of equal size σ. In view of Proposition 2.2 this is also the case for Πt, where t ≥ n− 1. On the other
hand, for smaller t, equivalence classes in Πt may be of different sizes. Every equivalence class in Πt is a
union of some equivalence classes in Πt′ , for t < t′. The following result was proved in [25] (lemma 1). It
says that if the sequence of partitions Πt stops changing at some point, it will never change again.

Proposition 2.3 If Πt = Πt+1, then Πt = Π.

For a set A, let |A| denote its size. By definition of partitions Πt, if |Πt| = |Πt+1| then Πt = Πt+1. Hence
in order to see when partitions stabilize, it is enough to check when their sizes stabilize. This allows us to
modify Proposition 2.3 and obtain Proposition 2.4 below, which we will use in some of our algorithms.

Proposition 2.4 If |Πt| = |Πt+1|, then Πt = Π.

Definition 2.2 (Level of symmetry) For any graph G we define its level of symmetry λ as the smallest
integer t, for which there exists a node v satisfying the condition {u : Vt(u) = Vt(v)} = {u : V(u) = V(v)}.

By Proposition 2.1, for solvable graphs, the level of symmetry is the smallest t for which there is a node
with a unique view at depth t. In general, the level of symmetry is the smallest integer t for which some
equivalence class in Πt has size σ.

Definition 2.3 Define Λ to be the smallest integer t for which Πt = Πt+1.

We have

Proposition 2.5 Λ ≤ D + λ.

Proof: It is enough to show that if VD+λ(w) = VD+λ(w′), for some nodes w and w′, then V(w) = V(w′).
Let v be a node for which {u : Vλ(u) = Vλ(v)} = {u : V(u) = V(v)}. Consider nodes w and w′ for which
VD+λ(w) = VD+λ(w′). Let p be a shortest path (coded as a sequence of ports) from w to v. Let v′ be the
node at the end of the same path p starting at w′. Vλ(v) is included in VD+λ(w) and Vλ(v′) is included
in VD+λ(w′). It follows that Vλ(v) = Vλ(v′) and hence V(v) = V(v′). Suppose for contradiction that
V(w) 6= V(w′). Let q and q′ be paths in views V(w) and V(w′) witnessing to their difference. Let p be the
reverse of path p. Then the concatenations pq and pq′ are paths witnessing to the difference of V(v) and
V(v′), which gives a contradiction.

We fix a canonical linear order on all finite rooted trees with unlabeled nodes and labeled ports, e.g., as
the lexicographic order of DFS traversals of these trees, starting from the root and exploring children of a
node in increasing order of ports. For any subset of this class, the term “smallest” refers to this order. Since
views at a depth t are such trees, we will elect as leader a node whose view at some depth is the smallest in
some class of views. The difficulty is to establish when views at some depth are already unique for a solvable
graph, and to decide fast if the graph is solvable, in the case of strong LE.

All our algorithms are written for a node u of the graph.

3 Weak leader election

In this section we show that the optimal time of weak leader election is Θ(D + λ), if either the diameter D
of the graph or its size n is known to the nodes. We first give two algorithms, one working for the class of
graphs of given diameter D and the other for the class of graphs of given size n, that elect a leader in time
O(D + λ) on graphs with diameter D and level of symmetry λ, whenever election is possible.

Our algorithms use the subroutine COM to exchange views at different depths with their neighbors.
This subroutine is detailed in Algorithm 1.

Algorithm 2 works for the class of graphs of given diameter D.

5

Algorithm 1 COM(i)

let Vi(u) be the view of node u at depth i
send Vi(u) to all neighbors;
foreach neighbor v of u

receive Vi(v) from v

Algorithm 2 WLE-known-diameter(D)

for i := 0 to D − 1 do COM(i)
compute |Π0|; j := 0
repeat

COM(D + j); j := j + 1; compute |Πj |
until |Πj | = |Πj−1|
V := the set of nodes v in VD+j(u) having the smallest Vj−1(v)
elect as leader the node in V having the lexicographically smallest path from u

Theorem 3.1 Algorithm 2 - WLE-known-diameter(D) - elects a leader in every solvable graph of diameter
D, in time O(D + λ), where λ is the level of symmetry of the graph.

Proof: All nodes of the graph find |Π0| (i.e., the number of different node degrees in the graph) after D
rounds, and then they find sizes of consecutive partitions Πj , for j = 1, . . . ,Λ + 1 (by counting the number
of distinct views at depth j). At this time the exit condition of the “repeat” loop is satisfied. All nodes
stop simultaneously and elect a leader. Since the graph is solvable, by the definition of Λ and in view of
Propositions 2.1 and 2.4, all elements of the partition ΠΛ are singletons (recall that equivalence classes in Π,
and thus in ΠΛ, are of equal size σ, and σ = 1 in solvable graphs). Hence all nodes in V correspond to the
same node in the graph and consequently all nodes elect as leader the same node. All nodes stop in round
D + Λ, which is at most 2D + λ by Proposition 2.5.

Algorithm 3 works for the class of graphs of given size n.

Algorithm 3 WLE-known-size(n)

i := 0; x := 1;
while x < n do

COM(i); i := i+ 1
for j := 0 to i do

Lj := the set of nodes in Vi(u) at distance at most j from u (including u)
numj := the number of nodes in Lj with distinct views at depth i− j

x := max {numj : j ∈ {0, 1, . . . , i}}
compute Λ and D
V := the set of nodes v in Vi(u) having the smallest VΛ(v)
elect as leader the node in V having the lexicographically smallest path from u
while i ≤ D + Λ do

COM(i); i := i+ 1 //Allow late nodes to terminate their protocol!

Theorem 3.2 Algorithm 3 - WLE-known-size(n) - elects a leader in every solvable graph of size n, in time
O(D + λ), where λ is the level of symmetry of the graph.

Proof: Consider a node u. After i ≤ D+ Λ rounds, node u gets a view Vi(u) that contains views VΛ(v),
for all nodes v. Since the graph is solvable, all views VΛ(v) are different, and hence u exits the first “while”
loop after seeing n different views at this depth. At this point u can reconstruct an isomorphic copy of
the graph and hence compute D and Λ. The election rule is as in Algorithm 2. The second “while” loop

6

guarantees that every node v will be able to get VD+Λ(v) and hence will exit the first while loop and elect
the same leader.

In order to show that Algorithm 2 is optimal for the class of graphs of diameter D and Algorithm 3 is
optimal for the class of graphs of size n we prove the following theorem. It shows a stronger property: both
above algorithms have optimal complexity even among weak LE algorithms working only when all three
parameters n, D and λ are known.

Theorem 3.3 For any D ≥ 1 and any λ ≥ 0, with (D,λ) 6= (1, 0), there exists an integer n and a solvable
graph G of size n, diameter D and level of symmetry λ, such that every algorithm for weak LE working for
the class of graphs of size n, diameter D and level of symmetry λ takes time at least D+ λ on the graph G1

Before proving Theorem 3.3 we present a construction of a family Qk of complete graphs (cliques) that
will be used in the proof of our lower bound. The construction consists in assigning port numbers. In order
to facilitate subsequent analysis we also assign labels to nodes of the constructed cliques. We will use
induction to describe the construction of Qk.

Q1 is the single node graph. Q2 is a 4-node clique with port numbers defined as follows. For a node u,
we say that edge (i, j) is incident to u, if the edge corresponding to port i at node u corresponds to port j
at some node v. Nodes in Q2 are uniquely identifiable by the set of their incident edges. Below we assign
distinct labels to the four nodes of the clique depending on the sets of their incident edges (see Fig. 2.a):

• set of edges {(0, 0), (1, 1), (2, 2)} – corresponding to label a;

• set of edges {(0, 0), (1, 1), (2, 0)} – corresponding to label b;

• set of edges {(0, 2), (1, 1), (2, 0)} – corresponding to label c;

• set of edges {(0, 2), (1, 1), (2, 2)} – corresponding to label d.

We additionally assign colors 0, 1, and 2 to edges of Q2 as follows: edges {a, b} and {c, d} get color 0,
edges {a, c} and {b, d} get color 1, and edges {a, d} and {b, c} get color 2.

Q3 is constructed starting from two disjoint copies of clique Q2 as follows. Denote by Q2 one of the
copies and by Q2 the other one. For each node x in Q2, we denote by x its corresponding node in Q2.

Ports 3, 4, 5, and 6 are used to connect each node in Q2 to all nodes in Q2 to construct an 8-node clique.
We will use two types of edges. Monochromatic edges will have port 3 or 4 at both endpoints, while skew
edges will have port 5 at one endpoint and port 6 at the other endpoint. For monochromatic edges we call
color the port number at both their endpoints. We will also consider as monochromatic the edges in Q2.

More precisely, edges of color 3 connect nodes {a, c}, {a, c}, {b, d}, and {b, d}. Edges of color 4 connect
nodes {a, d}, {a, d}, {b, c}, and {b, c}.

Notice that until now, this construction results in a graph for which each node has exactly one other
node with the same view, e.g., a and a have the same view. Uniqueness of all views at depth 2 is guaranteed
in clique Q3 by the definitions of the skew edges.

In particular, skew edges connect nodes:

• {a, a}, {b, b}, {c, c}, and {d, d} with port 6 at nodes a, b, c, and d and port 5 at nodes a, b, c, and d;

• {a, b}, {b, a}, {c, d}, and {d, c} with port 6 at nodes a, b, c, and d and port 5 at nodes a, b, c, and d.

This concludes the construction of Q3 (see Fig. 2.b).
A node x in Q3 whose outgoing port 6 leads to a node y receives as its label the concatenation of the

labels of nodes x and y in their respective copies of Q2 (removing all overlines).
The complete labeling of nodes in Q3 is: aa, ab, bb, ba, cc, cd, dd, and dc.
For k ≥ 3, the clique Qk+1 is produced starting from disjoint copies Qk and Qk of clique Qk as follows.

1Notice that there is no solvable graph with D = 1 and λ = 0, because the latter condition, for solvable graphs, means that
there is a node of a unique degree, contradicting the requirement D = 1, i.e., having a clique of at least 2 nodes.

7

(a)

0 0

0 2

11

1 1
2

02

2

a b

cd

(b)

5

a

b

c

d

Q2 Q2

5

4

6
5 a6
4 43

5

3

c

6
6 b5
4 4 33

3 34
6 5
5 6

4 43 3
5

d
6

6

(c)

13

Q3

aa

ab

bb

ba

Q3

aa

ab

ba

14 13

14 13

bb13

13

14

14

13

14

14

13

13

14

7 7

7 7

7

7

7

7

12

1212

12

12

12

12

12

14

(d)

8

Q3

aa

ab

bb

ba

Q3

9

cd

dd

dc

8
10

9
11

cc8
10 11

9
10
8
119

10
8

119

8
10

9 11 11
8
10

11 9
10
8

119
10

Figure 2: a) Clique Q2. b) Clique Q3 (internal edges of Q2 and Q2 are omitted). c) and d) Extracts of
graph Q4.

8

The set of nodes of the clique Qk+1 is the union of the sets of nodes of Qk and Qk. The skew edges
connecting nodes of Qk and Qk will have port numbers (2k+1− 2, 2k+1− 3), while the monochromatic edges
will use the same port i, for i ∈ [2k − 1, 2k+1 − 4], on both endpoints. We denote by αj a string of length 2j

over the alphabet {a, b, c, d}. For h ≤ j, αh is the prefix of length 2h of string αj . We assign port numbers
to the edges according to the following two rules.

1. Skew edges: the edge that has port 2k+1 − 2 at a node αk−3βk−3, has port 2k+1 − 3 at its other
endpoint αk−3βk−3; the edge that has port 2k+1−2 at a node αk−3βk−3, has port 2k+1−3 at its other
endpoint αk−3γk−3 (where βk−3 6= γk−3).

2. Monochromatic edges: let node αk−3βk−3 and node γk−3δk−3 be connected by a monochromatic
edge of color i; then node αk−3βk−3 and node
γk−3δk−3 are connected by a monochromatic edge of color i. Moreover, for each j ∈ [0, k − 3], any
node αjη is connected to some node γjζ by a monochromatic edge of color i.

The label of a node v in Qk+1 is given by the concatenation of the labels of the node in Qk (respectively
in Qk) corresponding to v and its neighbor in Qk (respectively Qk) connected by the skew edge (2k+1 −
2, 2k+1 − 3) incident to v.

While rule 1 is constructive, rule 2 is not. However, a port assignment for monochromatic edges of Qk+1

that fulfills rule 2, can be obtained, for k ≥ 3, by exploiting the already defined edges of Qk as follows. If
there is a monochromatic edge with color i between nodes {u, v} in Qk, then nodes {u, v} and nodes {u, v}
are connected by a monochromatic edge with color 2k + i − 1. If {u, v} are connected by the skew edge
(2k − 3, 2k − 2) incident to u, then nodes {u, v} and nodes {u, v} are connected by monochromatic edges
of color 2k+1 − 4. Now consider the skew edges from previous steps of the construction i.e., skew edges
with port numbers (2j − 2, 2j − 3) of graph Qj , with j ≤ k − 1). Let {u, u, v, v} be four nodes connected
by these edges, where {u, v} are nodes from copy Qj−1 in the construction of Qj , and nodes {u, v} are the
corresponding nodes in copy Qj−1. More precisely, let:

• edge (2j − 2, 2j − 3) incident to u connect nodes u and u;

• edge (2j − 2, 2j − 3) incident to v connect nodes v and v;

• edge (2j − 2, 2j − 3) incident to u connect nodes u and v;

• edge (2j − 2, 2j − 3) incident to v connect nodes v and u.

Finally, let u and v from Qj correspond to nodes w and z, respectively, in copy Qk of the construction of
Qk+1. Then nodes {u,w}, {u,w}, {v, z}, {v, z} are connected by monochromatic edges of color 2k + 2j − 4;
nodes {u, z}, {u, z}, {v, w}, {v, w} are connected by monochromatic edges of color 2k+2j−3. This concludes
the definition of monochromatic edges of Qk+1, and thus completes its construction. Extracts from graph
Q4 are depicted in Fig. 2.c and 2.d.

A node of the clique Qk is said to be of type a, b, c, or d if it is obtained from a node with label a, b, c,
or d (respectively) in a copy of Q2 in the construction of Qk. Notice that the type of a node corresponds to
the first letter of its label. Consider a path p defined as a sequence of consecutive monochromatic and skew
edges (i.e., p is uniquely defined by the sequence of outgoing port numbers). If a skew edge e is traversed
from node u to v by p, then the color of e in p is given by its port number at u. We call p a distinguishing
path for nodes x and y in Qk, if it yields two different sequences of node types a, b, c, and d traversed
proceeding along p, depending on whether the origin of p is x or y.

Lemma 3.1 The clique Qk+1 has level of symmetry k.

Proof: We will prove a stronger statement. We will show that, for k ≥ 2, if j ∈ [0, k− 2] and two nodes
u and v in Qk+1 are such that their labels have a common prefix αj but no common prefix αj+1, then the
views of u and v are identical up to depth j + 1 and differ at depth j + 2.

9

The base step of the inductive proof is for k = 2. Indeed, node aa in Q3 has the same view as node ab
at depth 1, while their views differ at depth 2. The same happens for the views of nodes bb and ba, cc and
cd, dd and dc. The views of any other pair of nodes are different at depth 1.

Consider the construction of clique Qk+1. Let j ∈ [0, k− 3] and consider two nodes u and v whose labels
have a common prefix αj but no common prefix αj+1. Let i ∈ [2k − 1, 2k+1 − 2], and consider the neighbors
u′ and v′ (of u and v respectively) that are the other endpoints of the edges having port i at u and v. The
labels of u′ and v′ have a common prefix βj . Indeed, if port i is a port number of a monochromatic edge,
rule 2 immediately implies that u′ and v′ have a common prefix βj . On the other hand, if i is a port number
of a skew edge then the first half of the label of u′ must coincide with that of u, and the first half of the
label of v′ with that of v in graph Qk, which in turn implies that u′ and v′ have a common prefix βj = αj in
graph Qk+1. It follows that edges with colors in [2k − 1, 2k+1 − 2] cannot appear in any distinguishing path
of minimal length between two nodes u and v whose labels have a common prefix of length up to 2k−3, and
therefore the depth at which views of such nodes differ in Qk+1 is the same as that of their corresponding
nodes in Qk.

It remains to consider the case of nodes u ∈ Qk and u ∈ Qk, sharing a label prefix αk−2 in Qk+1. For
any such pair of nodes, if i ∈ [2k − 1, 2k+1 − 4] is the color of a monochromatic edge connecting u to v, then
another monochromatic edge of color i connects u to v. Any pair of such nodes have the same view (at any
depth) in Qk. On the other hand, the skew edge (2k+1 − 2, 2k+1 − 3) incident to u and that incident to
u lead, by rule 1, to two nodes having a common label prefix of length αk−3, but no common prefix αk−2

(the same reasoning applies to the skew edges (2k+1 − 3, 2k+1 − 2) incident to u and u). These nodes have
identical views up to depth k − 2 in Qk, but distinct at depth k − 1, by the inductive hypothesis. Hence u
and u have the same view up to depth k − 1 and distinct views at depth k in Qk+1, which concludes the
proof.

Remark 3.1 After the publication of the conference version of this paper a more general version of Lemma 3.1
has been proved in [10]: for any D ≤ n there exists a Θ(n)-node graph of diameter Θ(D) with level of sym-
metry Ω(D log(n/D)).

We will also use the following family of cliques Q̃k. Q̃1 is the clique on 2 nodes, with port number 0. Q̃2

is a clique on 4 nodes, where all nodes have the same set of incident edges {(0, 0), (1, 1), (2, 2)}. For k ≥ 2,

Q̃k+1 is a clique obtained from two disjoint copies of Qk. The construction of Q̃k+1 mimics the construction
of Qk+1 for all edges but the skew edges between nodes in Qk and Qk, that are replaced by monochromatic
edges with port number 2k+1 − 2 at both endpoints, connecting nodes u and u, and by monochromatic
edges with port number 2k+1 − 3 at both endpoints, connecting nodes αk−3αk−3 and αk−3βk−3 and nodes

αk−3αk−3 and αk−3βk−3. Notice that, in graph Q̃k, nodes x and x have identical views. Nevertheless, in
order to describe our construction, we artificially assign to nodes x and x the label they would respectively
receive in the construction of graph Qk.

We finally define a family of graphs that allow us to prove Theorem 3.3. For any pair of integers (D,λ),
with D ≥ 2 and λ ≥ 2, the graph RD,λ is obtained using one copy of graph Qλ+1 and 2D−1 copies of graph

Q̃λ+1. The construction of graph RD,λ proceeds as follows. Arrange 2D − 1 disjoint copies of Q̃λ+1 and
one copy of Qλ+1 in a cyclic order. Connect each node in a clique with all nodes in the subsequent clique.
Let {x, y} be two nodes in Qλ+1 and let i be the color that would be assigned to edge edge (x, y) in the

construction of Q̃λ+2. Assign port numbers (i, i + 2λ+1) to the edge connecting node x′ in some clique to
node y′′ in the subsequent clique, where x′ has label x and y′′ has label y.

A distinguishing path in RD,λ is defined in the same way as in Qλ+1, which is possible, since in both
graphs each node has type a, b, c, or d.

Lemma 3.2 Let λ ≥ 2 and D ≥ 2. Let x and y be two nodes in Qλ+1 and let ` ≤ λ − 1 be the maximum
depth at which views of x and y in Qλ+1 are identical. Then the views at depth ` of nodes x and y belonging
to the copy of Qλ+1 in RD,λ are identical.

Proof: It follows from the definition that the length of a shortest distinguishing path for nodes x
and y in Qλ+1 is `. By construction of Qλ+1, nodes x and y have labels with an identical prefix of length

10

2`+1. Suppose, for contradiction, that views of x and y at depth ` are different in RD,λ. Hence a shortest
distinguishing path for these nodes has length t < ` in RD,λ. Let p be a distinguishing path of length t in
RD,λ for nodes x and y. We will show how to construct a distinguishing path p′ of length at most t in Qλ+1,
which will give a contradiction.

Edge colors {0, 1, 2} inside each clique Q̃λ+1 are assigned according to the rules used for cliques Qλ+1.
Monochromatic edges with port number i at both endpoints get color i. For edges connecting nodes from
different cliques in RD,λ we assign as color the smaller of their port numbers. (Notice that edges connecting
nodes with the same label in their cliques will get the same color 2λ+2−2 but these edges will be subsequently
deleted in the construction of the distinguishing path.) For the remaining edges (i.e., skew edges in the
construction of a graph Qk, for some k ≤ λ), the color is defined by the outgoing port number, according to
path p.

The distinguishing path p′ is constructed as follows. Consider all edges e in p, in reverse order. If e has
color h = 2λ+2 − 2 then we remove it; if e has color h such that 2λ+2 − 3 ≥ h ≥ 2λ+1 − 1 then we replace it
with an edge with color h− 2λ+1. This corresponds to replacing edges going from one copy of Q̃λ+1 or from

Qλ+1 to another copy of Q̃λ+1 or to Qλ with internal edges of some clique Q̃λ+1 or of Qλ+1. Deleted edges
are those going to corresponding nodes of different cliques, hence their deletion corresponds to removing self
loops. We show that path p′ is distinguishing for nodes x and y in Qλ+1.

Indeed, the only edge replacements that could modify the sequence of a, b, c, and d types yielded by paths
p and p′, when starting from nodes x and y, are those of edges with color and 2λ+2 − 3, as these edges may
be replaced by skew edges of the last step of the construction of the clique Qλ+1, that are defined differently

in cliques Q̃λ+1. For each such edge leading to a node with label αλ−2βλ−2, the corresponding skew edge
in Qλ+1 leads to a node with label αλ−2γλ−2. Hence, views in Qλ+1 of nodes αλ−2βλ−2 and αλ−2γλ−2 are
identical up to depth λ− 1, as shown in the proof of Lemma 3.1, and thus the path p′, of length at most t,
is distinguishing for x and y in Qλ+1, contradiction.

Proof of Theorem 3.3: Lemma 3.3 below proves the theorem if either D or λ are less than 2. Here
we give the general argument for D,λ ≥ 2. Consider the clique Q̃λ+1 antipodal to the clique Qλ+1 in graph
RD,λ. Consider nodes x and x from this clique. Any distinguishing path for nodes x and x in RD,λ must
contain a node from Qλ+1. Let q be a minimum length distinguishing path for nodes x and x and assume
without loss of generality that y and y are the first nodes from Qλ+1 found along path q, if starting from x
and x, respectively. By Lemmas 3.1 and 3.2, nodes y and y have the same views at depth λ−1 and different
views at depth λ in the graph RD,λ. Thus the minimum length distinguishing path in RD,λ for y and y has
length λ− 1. Since nodes y and y are at distance D from x and x, respectively, the views at depth D+λ− 1
of x and x are identical.

The following lemma proves Theorem 3.3 in the case when either D or λ are small, thus concluding the
proof of Theorem 3.3.

Lemma 3.3 For D = 1 and any λ ≥ 1, and for any D ≥ 2 and 0 ≤ λ ≤ 1, there exists an integer n and
a solvable graph G of size n, diameter D and level of symmetry λ, such that every algorithm for weak LE,
working for the class of graphs of size n, diameter D and level of symmetry λ, takes time at least D + λ on
the graph G.

Proof: Consider the following cases.
Case 1. λ = 0 and D ≥ 2.

The required graph G is depicted in Fig. 3. The lower bound D on the time of weak LE is straightforward.
Case 2. λ = 1 and D ≥ 2.

The construction of the graph G is analogous to the general construction of RD,λ. We take one copy of

clique Q2 and 2D−1 copies of clique Q̃2 in circular order. In copies of cliques Q̃2 we arbitrarily assign labels
a, b, c, and d to nodes. The argument remains the same as in the general case.
Case 3. λ ≥ 1 and D = 1.

Consider the clique constructed from cliques Qλ+1 and Q̃λ+1 by connecting each node with label x in

Qλ+1 to each node with label y in Q̃λ+1 by an edge having the color that would be assigned to edge (x, y)

in the construction of Q̃λ+2. The obtained clique requires time 1 + λ for weak LE.

11

1

0

0

0

0
1

1

02

3

1

2

2 2

1

1

21

0

0

0

2

1

1

2

2

1

1

2

0

0

2

2

0

Figure 3: Graph G of diameter D ≥ 1 and level of symmetry 0.

4 Strong leader election

For strong leader election more knowledge is required to accomplish it, and even more knowledge is needed
to perform it fast. We first prove that knowledge of the diameter D is not sufficient for this task. The idea
is to show, for sufficiently large D, one solvable and one non-solvable graph of diameter D, such that both
graphs have the same sets of views.

Theorem 4.1 For any D ≥ 4 there is no strong LE algorithm working for all graphs of diameter D.

Proof: Let k ≥ 3. We will use the following family of graphs Tk (see also Fig. 4.a). Consider a 2 × 2k
torus τ . Let R and R′ be the two rings of size 2k in τ . For each node u ∈ R, let u′ be its unique neighbor
from R′ in τ . The graph Tk is obtained by connecting each node u ∈ R with nodes v′ and w′ in R′, where
v and w are the two neighbors of u in R. An additional node z of degree 2, connected to a pair of nodes u,
u′, completes the construction of Tk. The assignment of port numbers can be performed arbitrarily and is
thus omitted in the construction.

Consider the following family Mk of graphs (see also Fig. 4.b). The graph Mk is obtained from two copies
of the graph Tk. Let us call Tk one copy, and T k, the other. Similarly we call u the copy in T k of node
u ∈ Tk. The graph Mk is obtained by removing all edges {u, v′} and {u, v′} from Tk and T k, and replacing
them with edges {u, v′} and {u, v′}, maintaining the same port numbers.

Since the graph Tk has exactly one node of degree 2, it is solvable for any assignment of port numbers.
By the construction of graph Mk, each node u from one copy of Tk has the same view as the corresponding
node u from the other copy. It follows that graph Mk is not solvable. To prove the theorem, it is thus enough
to show that graphs Tk and Mk have the same diameter. Indeed, this will imply that no algorithm knowing
only the diameter can tell apart some solvable graph from an unsolvable one.

The diameter of graph Tk is k + 1. Indeed, k + 1 is the distance from the unique node z of degree two
to the two nodes in rings R and R′ that are antipodal to the neighbors of z. All other pairs of nodes are
at distance at most k. Consider the graph Mk. Since no edge from the original torus in the copies of Tk is
modified in the construction of Mk, we have that all pairs of nodes from the copy Tk, as well as all pairs
from the copy T k are within distance k+ 1 from each other. By using one edge {u, u′} each node u ∈ R can
reach any node v′ in R′ within k steps (similarly for u′ ∈ R′). Nodes u ∈ R and u ∈ R are at distance 3 in
Mk, for any k ≥ 3. The two copies of the node of degree two are at distance 4 in Mk, for any k ≥ 3. Hence,
for any k ≥ 3, all pairs of nodes in Mk are within distance k + 1 from each other. On the other hand, the
distance in Mk from a node u in R and a node x in R, where x is the antipodal node of u in R, is equal to
k + 1. Hence the diameter of Mk is k + 1, which concludes the proof.

By contrast, knowledge of the size n alone is enough to accomplish strong leader election, but (unlike for
weak LE), it may be slow. We will show that optimal time for strong LE is Θ(n) in this case. We first show
Algorithm 4, working in time O(n).

12

(a) R′

z

R

(b)

R

z

R

R′

z

R′

Figure 4: a) The graph T4. b) The graph M4.

Algorithm 4 SLE-known-size(n)

for i := 0 to 2n− 3 do COM(i)
L := the set of nodes in V2n−2(u) at distance at most n− 1 from u (including u)
num := the number of nodes in L with distinct views at depth n− 1
if num < n then report “LE impossible”
else

V := the set of nodes v in V2n−2(u) having the smallest Vn−1(v)
elect as leader the node in V having the lexicographically smallest path from u

13

Theorem 4.2 Algorithm 4 - SLE-known-size(n) - performs strong LE in the class of graphs of size n, in
time O(n).

Proof: After 2n − 2 rounds of communication every node u has view V2n−2(u), which contains views
Vn−1(v) of all nodes v. A copy of each node appears in the set L. By Propositions 2.1 and 2.2 the graph
is solvable if and only if there are exactly n different views Vn−1(v) of nodes in L. Hence the report “LE
impossible” is correct when num < n. If LE is possible, the election rule is the same as in the weak LE
algorithms. Hence all nodes elect the same leader in this case.

Our next result shows that Algorithm 4 is optimal if only n is known. Compared to Theorem 3.2 it shows
that the optimal time of strong LE with known size can be exponentially slower than that of weak LE with
known size. Indeed, it shows that strong LE may take time Ω(n) on some graphs of diameter logarithmic
in their size and having level of symmetry 0, while weak LE takes time O(log n), on any solvable graph of
diameter O(log n) and level of symmetry 0.

The high-level idea of proving that Algorithm 4 is optimal if only n is known is the following. For
arbitrarily large n, we show one solvable and one non-solvable graph of size n, such that there are nodes in
one graph having the same view at depth Ω(n) as some nodes of the other.

Theorem 4.3 For arbitrarily large n there exist graphs Hn of size n, level of symmetry 0 and diameter
O(log n), such that every strong LE algorithm working for the class of graphs of size n takes time Ω(n) on
graph Hn.

Proof: Consider the following family of graphs Gk, for k ≥ 2. The construction of graph Gk starts from
a ring with (2k · 5) − 4 nodes , where all edges have port numbers 0 and 1 at the endpoints. All nodes in
Gk will have degree 3 at the end of the construction. Hence all edges that do not belong to the original ring
will have port number 2 at both endpoints.

Pick an edge {u, v} of the ring and call u its first node. Consider the whole ring as a segment Sk of
(2k · 5)− 3 edges having edge {u, v} as its first and last edge (hence nodes u and v appear twice in Sk).

Let {x, y} be the central edge of segment Sk, where x precedes y in Sk. Connect the second endpoint of
the first edge of Sk (i.e., node v) to x. Connect the first endpoint of the last edge of Sk (i.e., node u) to y.
Let S′k−1 be the segment obtained from Sk by removing the first edge, edge {x, y} and all subsequent edges.
Let S′′k−1 be the segment obtained from Sk by removing all edges preceding edge {x, y} (included) and the
last edge. If S′k−1 and S′′k−1 have length larger than 2, proceed recursively on both segments. If S′k−1 and
S′′k−1 have length 2, connect their central nodes. This concludes the construction of graph Gk (see Fig. 5.a

for an example). For n = (2k · 5)− 4 we define Hn = Gk.
Since the length of a segment Si is given by |S′i−1| + |S′′i−1| + 3 = 2|Si−1| + 3 and |S0| = 2, we get the

formula |Si| = (2i · 5)− 3. Hence every segment Si has a central edge if |Si| > 2. The diameter of graph Gk
is at most 4k + 2. Indeed, starting from node u it is possible to reach any other node in Gk using at most
2k + 1 edges. Views of all nodes in Gk are identical, hence leader election in graph Gk is impossible.

Consider the family of graphs G′k, obtained, for any k ≥ 2, from a ring with (2k · 5)− 5 nodes, where all
edges have port numbers 0 and 1 at the endpoints, as follows. Add a new node v and connect it to some
node u in the ring; divide the remaining (2k · 5) − 6 nodes of the ring into b((2k · 5) − 6)/4c groups of 4
consecutive nodes and connect the first node of each group with the third one of the same group, as well as
the second with the fourth. Again, new edges joining nodes of the original ring have port number 2 at both
endpoints. Leave the remaining 2 consecutive nodes unchanged (see Fig. 5.b for an example).

Suppose, for contradiction, that some algorithm A correctly solves strong LE for all graphs of known
size n = (2k · 5) − 4, where k = 2, 3, ..., in time at most n/5. In particular, for any k ≥ 5, algorithm A
must report “LE impossible” in graph Gk in time at most 2k − 1. However, any node w at distance at least
2k + 3 from the unique node of degree 1 in graph G′k has the same view, up to depth 2k − 1, as nodes in Gk.
Thus node w would report “LE impossible” in graph G′k and algorithm A would fail to elect a leader in the
solvable graph G′k, contradicting the assumption that A solves strong LE for all graphs of known size n, for
n = (2k · 5)− 4. This contradiction implies that every algorithm solving strong LE with known size n must
take time Ω(n) on graphs Hn which have diameter O(log n) and level of symmetry 0.

14

(a)

S0

uv

x y S1

(b)
u

v

Figure 5: a) Graph G2. b) Graph G′2.

Algorithm 5 SLE-known-size-and-diameter(n,D)

for i := 0 to D − 1 do COM(i)
compute |Π0|; j := 0
repeat

COM(D + j); j := j + 1; construct Πj

until |Πj | = |Πj−1|
if |Πj | < n then report “LE impossible”
else

V := the set of nodes v in VD+j(u) having the smallest Vj−1(v)
elect as leader the node in V having the lexicographically smallest path from u

15

We finally show that if both D and n are known, then the optimal time of strong LE is Θ(D + λ), for
graphs with level of symmetry λ. The upper bound is given by Algorithm 5 - SLE-known-size-and-diameter
(n,D). The algorithm is a variation of Algorithm 2 - WLE-known-diameter(D) - with an added test on the
size of the partition Πj after exiting the “repeat” loop..

The following result says that Algorithm SLE-known-size-and-diameter(n,D) is fast. In fact, compared
to Theorems 4.1 and 4.3, it shows that while knowledge of the diameter alone does not help to accomplish
strong LE, when this knowledge is added to the knowledge of the size, it may exponentially decrease the
time of strong LE.

Theorem 4.4 Algorithm SLE-known-size-and-diameter(n,D) performs strong LE in the class of graphs of
size n and diameter D, in time O(D + λ), for graphs with level of symmetry λ.

Proof: The time complexity O(D + λ) of Algorithm SLE-known-size-and-diameter(n,D) on solvable
graphs follows directly from the analysis of Algorithm 2. The test on the number of sets in partition Πj

correctly identifies solvable and non-solvable graphs. Indeed, in view of Proposition 2.3, Πj = Π and it
is a direct consequence of Proposition 2.1 that leader election is possible on an n-node graph, if and only
if, Π contains n sets. Proposition 2.5 guarantees completion time O(D + λ) on non-solvable graphs, while
uniqueness of the elected leader on solvable graphs follows from the analysis of Algorithm 2. This concludes
the proof.

Since the lower bound in Theorem 3.3 was formulated for known n, D and λ, it implies a matching lower
bound for the optimal time of strong LE with known n and D, showing that this time is indeed Θ(D + λ)
for graphs with level of symmetry λ.

5 Conclusion

We established the optimal time of weak and strong leader election, depending on the knowledge of the
size n and of the diameter D of the graph. For each scenario the upper bounds were shown by proposing
an algorithm, and matching lower bounds were proved. The optimal time turned out to depend on the
knowledge of one or both of the parameters n and D.

Notice that the comparison of assumptions for our matching upper and lower bounds in various scenarios
of weak and strong leader election shows that, while the level of symmetry may significantly influence optimal
election time, the knowledge of this level is not important. Indeed, for each task and for various combinations
of knowledge of the size n and/or the diameter D, adding the knowledge of the symmetry level λ does not
help. More precisely, weak LE is impossible knowing neither n nor D, even if knowledge of λ, e.g., λ = 0 is
added, cf. [32]. On the other hand, Theorems 3.1, 3.2, and 3.3 show that with known D or n, optimal time
of weak LE is Θ(D+λ), regardless of whether λ is known or not (but the time itself depends on both D and
λ). The same is true for strong LE. Indeed, the impossibility result in Theorem 4.1 and the lower bound
from Theorem 4.3 hold even for known λ = 0, while the upper bound from Theorem 4.2 does not require
the knowledge of λ. For known D and n, the upper bound O(D + λ) holds without knowing λ by Theorem
4.4, while the lower bound carried over from Theorem 3.3 holds even when λ is known.

It would be interesting to investigate other complexity measures of the leader election problem, such as
the bit or message complexity of communication needed to accomplish it, in relation to the knowledge of the
three parameters of the network used in our present study.

References

[1] D. Angluin, Local and Global Properties in Networks of Processors (Extended Abstract), Proc. of the
12th Annual ACM Symposium on Theory of Computing (STOC 1980), 82–93

[2] H. Attiya, M. Snir, and M. Warmuth, Computing on an Anonymous Ring, Journal of the ACM 35,
(1988), 845–875.

16

[3] H. Attiya and M. Snir, Better Computing on the Anonymous Ring, Journal of Algorithms 12, (1991),
204–238.

[4] P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell, and J. Simon, Symmetry Breaking in
Anonymous Networks: Characterizations. Proc. 4th Israel Symposium on Theory of Computing and
Systems, (ISTCS 1996), 16–26.

[5] P. Boldi and S. Vigna, Computing Anonymously With Arbitrary Knowledge. Proc. 18th ACM Symp.
on Principles of Distributed Computing, 1999, 181–188.

[6] J.E. Burns, A formal Model for Message Passing Systems, Tech. Report TR-91, Computer Science
Department, Indiana University, Bloomington, September 1980.

[7] J. Chalopin, Local Computations on Closed Unlabelled Edges: The Election Problem and the Naming
Problem. Proc. SOFSEM 2005: Theory and Practice of Computer Science, 82–91.

[8] J. Chalopin, A.W. Mazurkiewicz, and Y. Métivier, Labelled (Hyper)Graphs, Negotiations and the
Naming Problem. Proc. 4th international conference on Graph Transformations (ICGT 2008), 54–68.

[9] J. Chalopin and Y. Métivier, Election and Local Computations on Edges. Proc. Foundations of Software
Science and Computation Structures (FoSSaCS 2004), 90–104.

[10] D. Dereniowski, A. Kosowski, and D. Pajak, Distinguishing Views in Symmetric Networks: A Tight
Lower Bound, Tech. Report hal-00875370, version 2, Inria, October 2013.

[11] K. Diks, E. Kranakis A. Malinowski, and A. Pelc, Anonymous Wireless Rings, Theoretical Computer
Science 145 (1995), 95–109.

[12] S. Dobrev and A. Pelc, Leader Election in Rings with Nonunique Labels, Fundamenta Informaticae 59
(2004), 333–347.

[13] P. Flocchini, E. Kranakis, D. Krizanc, F.L. Luccio, and N. Santoro, Sorting and Election in Anonymous
Asynchronous Rings, J. Parallel Distrib. Comput. 64(2), (2004), 254–265.

[14] G.N. Fredrickson and N.A. Lynch, Electing a Leader in a Synchronous Ring, Journal of the ACM 34
(1987), 98–115.

[15] E. Fusco, A. Pelc, How Much Memory is Needed for Leader Election, Distributed Computing 24 (2011),
65-78.

[16] M.A. Haddar, A.H. Kacem, Y. Métivier, M. Mosbah, and M. Jmaiel, Electing a Leader in the Local
Computation Model Using Mobile Agents. Proc. 6th ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA 2008), 473–480.

[17] J. M. Hendrickx, Views in a Graph: To Which Depth Must Equality be Checked?, IEEE Transactions
on Parallel and Distributed Systems, 25 (2014), 1907–1912.

[18] D.S. Hirschberg, and J.B. Sinclair, Decentralized Extrema-Finding in Circular Configurations of Pro-
cesses, Communications of the ACM 23 (1980), 627–628.

[19] T. Jurdzinski, M. Kutylowski, and J. Zatopianski, Efficient Algorithms for Leader Election in Radio
Networks. Proc. 21st ACM Symp. on Principles of Distributed Computing (PODC 2002), 51–57.

[20] D. Kowalski, and A. Pelc, Leader Election in Ad Hoc Radio Networks: A Keen Ear Helps. Journal of
Computer and System Sciences 79 (2013): 1164–1180.

[21] E. Kranakis, Symmetry and Computability in Anonymous Networks: A Brief Survey. Proc. 3rd Int.
Conf. on Structural Information and Communication Complexity, 1997, 1–16.

17

[22] E. Kranakis, D. Krizanc, and J. van der Berg, Computing Boolean Functions on Anonymous Networks,
Information and Computation 114, (1994), 214–236.

[23] G. Le Lann, Distributed Systems - Towards a Formal Approach. Proc. IFIP Congress, 1977, 155–160,
North Holland.

[24] K. Nakano and S. Olariu, Uniform Leader Election Protocols for Radio Networks, IEEE Transactions
on Parallel and Distributed Systems 13 (2002), 516–526.

[25] N. Norris, Universal Covers of Graphs: Isomorphism to Depth N−1 Implies Isomorphism to All Depths,
Discrete Applied Mathematics 56, 1 (1995), 61–74.

[26] D. Peleg, Distributed Computing, a Locality-Sensitive Approach, SIAM Monographs on Discrete Math-
ematics and Applications, Philadelphia 2000.

[27] G.L. Peterson, An O(n log n) Unidirectional Distributed Algorithm for the Circular Extrema Problem,
ACM Transactions on Programming Languages and Systems 4 (1982), 758–762.

[28] N. Sakamoto, Comparison of Initial Conditions for Distributed Algorithms on Anonymous Networks.
Proc. 18th ACM Symp. on Principles of Distributed Computing (PODC 1999), 173–179.

[29] D.E. Willard, Log-Logarithmic Selection Resolution Protocols in a Multiple Access Channel, SIAM J.
on Computing 15 (1986), 468–477.

[30] M. Yamashita and T. Kameda, Computing on Anonymous Networks. Proc. 7th ACM Symp. on Prin-
ciples of Distributed Computing (PODC 1988), 117–130.

[31] M. Yamashita and T. Kameda, Electing a Leader when Processor Identity Numbers are not Distinct.
Proc. 3rd Workshop on Distributed Algorithms, LNCS Vol 392, Springer-Verlag, (WDAG 1989), 303–
314.

[32] M. Yamashita and T. Kameda, Computing on Anonymous Networks: Part I - Characterizing the
Solvable Cases, IEEE Trans. Parallel and Distributed Systems 7 (1996), 69–89.

18

	1 Introduction
	1.1 The model and the problem
	1.2 Our results
	1.3 Related work

	2 Preliminaries
	3 Weak leader election
	4 Strong leader election
	5 Conclusion

