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Abstract

We revisit the classic problem of spreading a piece of information in a group of n fully
connected processors. By suitably adding a small dose of randomness to the protocol of
Gasienic and Pelc (1996), we derive for the first time protocols that (i) use a linear number
of messages, (ii) are correct even when an arbitrary number of adversarially chosen processors
does not participate in the process, and (iii) with high probability have the asymptotically
optimal runtime of O(log n) when at least an arbitrarily small constant fraction of the pro-
cessors are working. In addition, our protocols do not require that the system is synchronized
nor that all processors are simultaneously woken up at time zero, they are fully based on
push-operations, and they do not need an a priori estimate on the number of failed nodes.

Our protocols thus overcome the typical disadvantages of the two known approaches,
algorithms based on random gossip (typically needing a large number of messages due to
their unorganized nature) and algorithms based on fair workload splitting (which are either
not time-efficient or require intricate preprocessing steps plus synchronization).

1 Introduction

Disseminating information to all nodes of a network is one of the basic communication primitives.
Basically all collaborative actions in networks imply that some information has to be sent to all
nodes, and surprisingly complex tasks like computing aggregates can be reduced to essentially
solving a dissemination problem [MAS08]. We are interested in disseminating a single piece
of information, the rumor, to all n nodes in a communication network in which all nodes can
exchange information with each other but where individual nodes can initially crash; i.e., they
do not participate in the rumor spreading process. More precisely, we study dissemination
protocols that are robust against adversarial initial node crashes [TKM89].

1.1 Previous Results

Rumor spreading protocols that are robust against adversarial node failures have been studied
mainly in complete communication networks. In such networks, essentially two types of fast
fault-tolerant rumor spreading protocols have been proposed: (i) whispering protocols, which
assume that in every round every informed node passes the information to at most one other
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nodes, and (ii) gossip-based protocols, which build on the paradigm that nodes call randomly
chosen others. The latter, due to their randomized nature, usually are highly robust against all
kinds of faults, typically at the price of a higher communication effort and non-trivial termina-
tion criteria.

Whispering Protocols: It is easy to see that in fault-free communication networks there
are protocols disseminating a rumor in ⌈log n⌉ communication rounds using a total of n − 1
messages and that both these measures are strictly optimal. A simple protocol for n = 2k nodes
indexed by the numbers from 0 to n − 1 would be that in round i, each node x having the
rumor calls node x XOR 2i−1 and forwards the message to it. From the sender ID the recipient
of a message can infer the round number i, and can thus decide when to stop forwarding the
message. Hence this protocol indeed uses only n− 1 messages in total. This algorithm, like the
other ones mentioned in this subsection but in contrast to gossip-based algorithms discussed
further below, maintains the whispering property [GP96,DP00]: in each round, the edges along
which the rumor is transferred form a matching. It has two further advantages, namely (i) it
requires no synchronization, in the sense that its correctness does not assume the existence of
a global clock, or any restriction on the relative speeds of the processors, and (ii) nodes know
when to stop forwarding the rumor.

The downside of this simple approach is that it is not at all robust. If a node is not available
(“crashed”), then all other nodes that would have been informed via it will remain uninformed.
This problem was overcome in the preliminary version of [GP96],1 where a protocol is presented
that is strictly optimal if no failures occur and which informs all nodes in the network even if
an arbitrary number f of nodes do not participate in the collaborative process. The number
of messages sent in all cases is n − 1. In this result, as in most other fault-tolerant rumor
spreading algorithms (but unlike in standard randomized rumor spreading), it is assumed that
a node calling a crashed node learns that his call was unsuccessful.

The stability of the algorithm from [GP96] comes at the cost of an increased runtime: if f
nodes are crashed, the protocol may terminate only after f + ⌈log(n− f)⌉ rounds. That is, the
increase of the runtime bound is in the worst case almost equal to the number of crashed nodes.
This is certainly unsatisfactory for large f , e.g., f ∈ ω(log n).

Subsequent fault-tolerant whispering protocols reduced this running time by adding an
opening phase2 which precedes the actual spreading of the rumor, and connects a large portion
of the non-faulty processors in an appropriate subnetwork. The added opening phase comes
with a price: (i) it is tailored for a linear lower bound αn on the number of non-faulty processors,
which needs to be determined by the user in advance; hence, when the number of non-faulty
processors is smaller than αn, these protocols may run into a deadlock and the rumor is not
guaranteed to reach all non-faulty processors; also, the actual running time and number of
messages of these protocols are determined by the αn bound rather than by the actual number
of faulty processors; (ii) unlike the fault-free whispering protocols, it assumes the presence of
a global clock and requires synchronization; (iii) it requires that all the non-faulty nodes are
simultaneously activated at time 0.

[GP96] introduces such an opening phase which runs in O(log2 n) time. A more intricate
opening phase was later introduced in [DP00]; to the best of our knowledge, [DP00] is the only
published paper which shows that for any fixed constant ε there is a protocol which can tolerate

1The simple workload splitting protocol of Gasieniec and Pelc which we describe and use below appeared only
in the preliminary version of [GP96] and not in the journal paper itself. As indicated in the reference section, this
preliminary version is available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3838.

2We distinguish between opening phase, which is repeated each time a rumor is spread, and a preprocessing

phase, which is performed only once, when the network is established.
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up to εn node failures, and whose time and message complexities are both asymptotically
optimal. The algorithm of [DP00] requires that a certain, rather complex, virtual expander is
stored by the network nodes during the system setup in a preprocessing phase. This expander is
used in the opening phase for constructing the paths along which the rumor is communicated.
The construction of the expander is based on the explicit expanders of [LPS88], and on the
properties of these expanders presented in [Upf94].

Gossip-based Protocols: In gossip-based communication protocols the nodes of the network
are assumed to have access to random bits, which allows them to decide at random which other
node to contact. Gossip-based communication algorithms are therefore also called randomized
rumor spreading protocols. Randomized rumor spreading has been analyzed in various vari-
ants for different network topologies. Despite the very simple approach of talking to random
neighbors, these protocols often achieve a surprisingly good runtime combined with extreme
robustness. Their main advantages over the fault-tolerant whispering protocol of [DP00] is that
they avoid the need for an opening phase and for storing intricate subnetworks in a prepro-
cessing time, they tolerate runtime failures (i.e., it may happen that a node works initially but
stops working after some time), they do not assume that failures are detected, and usually they
also do not assume that processor names are mutually known. On the negative side, they do
require asymptotically larger message complexities, and they typically lack a simple termination
criterion (i.e., the nodes do not know when every node is guaranteed to have learned the rumor
so that they can stop spreading the message). In this section, we briefly describe the results
that are relevant for our work on robustness against adversarial failures in complete graphs.

The first rumor spreading result is due to Frieze and Grimmett [FG85], who studied the
simple protocol in which each informed node calls in every round a neighbor that is chosen
uniformly at random from the list of all its neighbors (synchronized push-protocol). Pittel [Pit87]
showed that the round complexity of this protocol is log n+lnn+h(n), where h(n) is any function
tending to infinity. Note that randomized rumor spreading in this push-model violates the
whispering property, but when counting only messages which carry the rumor (see Section 2.1),
this violation can be undone by assuming that nodes accept only one incoming call.

The first to analyze rumor spreading as communication protocol were Demers et
al. [DGH+88]. They studied the problem of maintaining the consistency of replicated databases.
In applications like this, where one may assume that updates are to be disseminated frequently,
also a push-pull randomized rumor spreading protocol makes sense. Here all nodes and not
only those already knowing the rumor call random neighbors, allowing that uninformed nodes
“pull” information from informed ones.

A possible weakness of protocols using randomized pull operations is the inherent violation
of the whispering property: Many uninformed nodes may randomly select the same informed
one, thus forcing the selected node to forward the rumor to many neighboring nodes in a single
round.3 In models which allow a processor to send at most one message each round, this may
result in a considerable increase in running time.

The robustness of randomized rumor spreading comes at a price: a slightly higher dissemi-
nation time when no failures occur, and more importantly a relatively large number of messages
sent until the rumor is disseminated, and a large number of additional messages caused by the
fact that in the basic protocol the nodes do not know when to stop sending out messages: In

3Using, e.g., [RS98], it is not hard to see that in a push-pull gossip-based algorithm, in each round in which
the fraction of informed processors is bounded away from 0 and from 1, with high probability some informed
processor is contacted by Ω(log(n)/ log log n) uninformed neighbors each of which wants to receive the rumor
from the informed node. This node therefore has to forward the rumor to Ω(log(n)/ log log n) neighbors in one
round.
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independent randomized rumor spreading in the push-model, only after Θ(n log n) messages are
sent, the rumor is known to all vertices.

To summarize, randomized gossip based algorithms have asymptotically larger message com-
plexities than optimal deterministic whispering algorithms, but they maintain stronger robust-
ness, and are considerably simpler.

1.2 Our Results

The aim of our work is to design simple fault-tolerant rumor spreading protocols with optimal
message and time complexities. We achieve this by adding a natural randomization to the
elegant whispering protocol of [GP96]. Our protocols inherit from the algorithm in [GP96] the
following properties.

• They do not need to construct and store, in a preprocessing time, an intricate network
structure.

• They do not need an opening phase, or simultaneous wakeup of all processors at time 0.

• They use only push operations.

• They are asynchronous, in the sense that they do not require that the nodes perform
actions at the same time or speed.

• They have a very simple termination criterion.

• They maintain always strictly optimal message complexity; i.e., they use n − 1 messages
to inform all non-crashed nodes in the network.

• They are correct for any number of non-faulty processors.

• Their runtimes are determined by the actual fraction p of the non-faulty processors, and
not by a predetermined lower bound on p.

In particular, our protocols are the first rumor spreading protocols combining the following
three properties: (i) they disseminate the rumor to all nodes in the network, regardless of how
many nodes are crashed by an adversary, (ii) if an arbitrarily small constant fraction p of nodes
(including the starting node) is working correctly, the rumor is spread in logarithmic time, and
(iii) the number of messages sent is linear in n (the protocols actually use strictly minimal n−1
messages).

Table 1 compares the properties and advantages of the two whispering protocols from [DP00]
and [GP96], respectively, with those of our new whispering protocols. In this table we state
only asymptotic time complexities as there is a trade-off between the exact running time and
the probability to achieve this runtime bound. These trade-offs are detailed in the respective
theorems. The bit complexity counts the total and maximum number of bits that need to be
appended to the original message, respectively.

Analysis of Random Initial Node Failures (Section 3): We first show that for random
node crashes, the basic protocol of [GP96], denoted GP, has a much better performance than
what the worst-case bound in [GP96] states. In particular, when each node is crashed with con-
stant probability 0 < c < 1 independently at random, then with high probability the algorithm
terminates within Θ(log n) rounds. We prove this result by first introducing an intermediate
failure model, the wakeup model. We believe that the wakeup model itself is of independent
interest.
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[DP00] GP [GP96] GPuniform GPSec. 5 GPa
Sec. 6 GPb

Sec. 6
time complexity O(log n) O(n) O(log n) O(log n) O(log n) O(log n)

message complexity O(n) n− 1 n− 1 n− 1 n− 1 n− 1

bit complexity
total O(n log n) O(n logn) O(n log2 n) O(n log n) O(n log2 n) O(n log2(n)h(n))

max O(log n) O(log n) O(n) O(log n) O(log2 n) O(log2(n)h(n))

preprocessing yes no no yes no no

extra memory yes no no yes no no

opening phases yes no no no no no

simultaneous wakeup yes no no no no no

global clock yes no no no no no

dependance on p yes no no no yes no

Table 1: Comparison of the fault-tolerant whispering protocols. The asymptotic time complex-
ities are stated for the case that at least pn nodes are non-faulty, for some constant p ∈ (0, 1),
and they hold in the worst case for the deterministic protocols and w.h.p. for the randomized
ones. “dependance on p” indicates that the protocol is determined by the value of p; for the two
protocols which depend on p, the one in [DP00] is guaranteed to be correct only if the number
of non-faulty nodes is at least pn, and the one in GPa

Sec. 6 is guaranteed to have O(log n) time
complexity only in this case. In the rightmost column, h can be any slow growing function
which tends to infinity.

Simple Randomized Version of the GP Algorithm (Section 4): For adversarial node
failures, the robustness of the GP algorithm against random initial node crashes suggests the
following straightforward randomized solution: The node which originally holds the rumor picks
a random permutation π of the other nodes and initiates the GP protocol with node labels
permuted according to π. This gives the same time bounds as for random node failures. The
downside is that to make the other nodes adopt this strategy, sufficient information on the
permutation π has to be communicated to the other nodes as well. This can be achieved by
adding in total O(n log2 n) bits to all the messages, with at most n bits appended to a single
message.

Randomized Version with Logarithmic Message Sizes (Section 5): The message sizes
can be reduced to O(log n), which is the messages size in the original GP protocol and the
one in [DP00]: We prove that instead of choosing the permutation randomly from all permuta-
tions, it suffices to choose the permutation uniformly from a set of only O(nh(n)/ log n) random
permutations, where h ∈ ω(1) is an arbitrary function tending to infinity. (The number of
permutations can be varied to adjust runtimes and failure probabilities, see Theorem 5.2 for the
details.) This allows to encode the permutation via only Θ(log n) bits. This approach can be
implemented by choosing, for an arbitrary function h ∈ ω(1), O(nh(n)/ log n) random permu-
tations, communicating them to all nodes in the network, and storing them at all processors.
This preprocessing procedure is repeated each time processors join or leave the network. Thus,
this protocol is particularly appealing when communication is expensive, memory is cheap, and
processors are not added or removed from the network too often.

Preprocessing-Free Version (Section 6): While the algorithm from Section 5 is certainly
an efficient way to disseminate rumors in a network whose topology does not change too often
and in which messages need to be exchanged frequently, there are many situations in which the
required preprocessing phase is undesirable. In Section 6, we avoid the preprocessing stage by a
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natural application of adaptive k-wise almost independent permutations [KNR09]. In a nutshell,
this is a probability distribution over a small number of permutations with two properties: (i)
a permutation chosen randomly from this set has, in the context of our application, almost
the same features as a uniform random permutation, and (ii) each of the permutations can
be computed efficiently from an encoding of O(k log n) bits. Consequently, we do not need to
communicate or store the permutations, but it suffices to append to each rumor the O(k log n)
bits encoding the permutation selected by the node initiating the rumor. The value of k in this
algorithm is O(log n), where the constant of proportionality is determined by the fraction p of
non-faulty processors. We present also a variant of this algorithm in which the value of k does
not depend on p, in the price of slightly increased asymptotic messages size. These variants are
denoted in Table 1 by GPa

Sec. 6 and GPb
Sec. 6, respectively.

2 Preliminaries

Before we present a few basics about rumor spreading protocols, let us briefly fix the notation
used throughout this work. We consider executions of rumor spreading algorithms by n proces-
sors whose IDs (0, 1, . . . , n− 1) are mutually known, where 0 is the start processor, and where
each node can contact each other node.

We use the following notation: For a sequence s = (s1, s2, . . .), odd(s) = (s1, s3, . . .) is the
subsequence of the odd indexed elements of s, and even(s) = (s2, s4, . . .) is the subsequence of
the even-indexed elements of s. For a binary vector ~b , |~b |0 is the number of zeros in ~b , and |~b |1
denotes the number of ones in ~b .

For a rooted tree T , height(T ) is the height of T , i.e., the maximum length of a path from
the root to a leaf.

For n ∈ N (N denotes the positive integers) we abbreviate [n] := {1, 2, . . . , n}. By Sn we
denote the set of all permutations of the set [n].

By ln we denote the natural logarithm to base e. All other logarithms are to base 2.
An event is said to happen with high probability if it happens with probability 1− o(1).

2.1 Rumor Spreading Protocols

We give a short description of rumor spreading protocols, which aims at formalizing the concepts
used in this paper.

Let the undirected graph G = (V,E) describe the underlying communication network, that
is, nodes of this graph represent processors and a direct communication between two processors
is possible if and only if there is an edge between the corresponding nodes. Let n := |V |.

A synchronous execution of a rumor-spreading algorithm on G consists of rounds R1,R2, . . ..
A roundRt is initiated by a set of processors Vt ⊆ V (the exact nature of Vt depends on the model
assumed and/or on the specific algorithm): each processor u ∈ Vt sends a (u, v) communication
request (in short “(u, v) request”) to one of its neighbors v; the request contains a bit informing
v whether u holds the rumor already. A (u, v) request is valid if exactly one of u and v holds the
rumor. Each communication request is received at the same round in which it was sent. After
receiving all the requests sent to it at Rt, each processor v may (but does not have to) approve
some of the valid requests that it has received. The round Rt is then completed by transferring
the rumor along the edges of the approved requests.4 The execution terminates at time t if
Vt 6= ∅ and Vs = ∅ for all s > t. We call t the time (or round) complexity of the execution of
the rumor spreading algorithm. Note that in some other works, in particular those on gossip

4Some models assume that an informed processor u always sends the rumor on the selected edge (u, v), even
if v is already informed.
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based randomized rumor spreading, only the first time at which all processors know the rumor
is regarded—this event can happen much before all nodes stop performing any action. In rumor
spreading algorithms which assume that all executions are synchronous, the round number can
be used by the local programs of the processors for checking termination etc. In such algorithms
the round number can thus be viewed as a discrete-time global clock. In contrast, asynchronous
executions are executions which do not have such a global clock. For the sake of this paper,
asynchronous executions of a rumor spreading protocol differ from synchronous executions by
the following: (a) the round numbers are not known to the processors, and (b) the processors
can have different speeds, which may vary in each round, i.e., a (u, v) communication request
sent at round Rt can be received by v at round Rt+s, where s can be any nonnegative integer
which depends on u, v, and t.5 Note that if processors use round numbers in their programs,
the resulted algorithm may err in asynchronous executions. A rumor spreading protocol is said
to be asynchronous if it is correct also in asynchronous executions.

Let Et denote the set of edges along which requests are sent in Rt, and let Ft denote the set of
edges of the approved requests, along which the rumor is transferred at Rt (thus |Et| ≤ |Vt| ≤ n
and Ft ⊆ Et). A rumor spreading algorithm satisfies the whispering property if Ft always forms
a matching, meaning that each processor may either send or receive at most one copy of the
rumor at each round. Some authors actually require any rumor spreading algorithm to satisfy
the whispering property, see, e.g., [GP96,DP00].

Besides the time complexity, the communication effort and the robustness against faults
are two further important performance measures. There are some variants of the definition
of message complexity of rumor spreading algorithms. The strictest definition counts all com-
munication requests, i.e.

∑

t |Et|, e.g., [GP96, DF11]. A more permissive definition assumes
that communication between uninformed processors is given for free due to frequent injec-
tions of other rumors [KSSV00, CHHKM12], and hence it reduces to

∑

t |{(u, v) : (u, v) ∈
Et and either u or v holds the rumor }|. As will be noted soon, our algorithms have the mini-
mum possible message complexity by both definitions.

The faults assumed in this paper are initial crash failures: A processor is faulty in a given
execution if it never sends a message during the execution. We consider two types of failure
policies, associated with a success parameter p ∈ (0, 1): random failures, in which each process
may fail independently with probability 1− p, and adversarial failures, in which the adversary
may fail (before the execution of the algorithm starts) any subset of up to (1− p)n processors,
excluding the start processor. An (i, j) request is failed if j is faulty, and it is successful otherwise.
Note that in our synchronized model, a faulty node j is identified by not responding to an (i, j)
request.

2.2 The Algorithm of Gasieniec and Pelc

We use the following variant of the divide-and-conquer algorithm of Gasieniec and Pelc [GP96],
to be denoted GP. Initially the start processor 0 holds a list (1, 2, . . . , n− 1) of all uninformed
processors, and all other processors hold empty lists. At each round, each processor i which
holds a nonempty list (j1, . . . , jk), sends an (i, j1) request and deletes j1 from its list. If the
request is successful then i also sends to j1 the rumor, appends to it the list even(j2, . . . , jk) =
(j3, j5, . . .), and sets its own list to odd(j2, . . . , jk). Thus, in this case, the next round starts
with i holding the list odd(j2, . . . , jk) and processor j1 holding the list even(j2, . . . , jk). The
algorithm terminates when all processors hold empty lists.
Implementation note: Observe that each list of the form even(j2, . . . , jk) generated during
the algorithm is an arithmetic progression whose difference is 2m for some integer m ≤ log n.

5For a formal definition of asynchronous protocols see, e.g., [Lyn96, Chapter 14].
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Sending such a list can be done by sending the first element j3 and the exponent m. Overall,
this requires an addition of less than 2 log n bits to the rumor.

Note that this protocol automatically ensures that (i) each node receives at most one com-
munication request per round (hence the whispering property is satisfied), (ii) only requests
from informed nodes to uninformed ones are issued (hence there is no reason not to approve a
request), and (iii) the protocol terminates as soon as all processors know the rumor.

The optimality of the message complexity of the GP algorithm (under the different variants
of “message complexity” discussed in Section 2.1) is implied by the following straightforward
observation.

Lemma 2.1 ([GP96]). The GP algorithm performs the minimum possible number of commu-
nication requests, namely n− 1 communication requests in each possible execution.

In the presence of f crashed nodes, the time complexity of the GP algorithm is given by the
following lemma.

Lemma 2.2 ([GP96]). For up to f initial node failures the time complexity of the GP algorithm
is at most f + ⌈log(n− f)⌉. This bound is tight if processors 1, . . . , f are failed.

2.3 Reminder: Chernoff’s Bounds

We apply several versions of Chernoff’s bound, see, for example, [MU05] or [DP09] for an
introduction to these elementary tail bounds.

Theorem 2.3 (Chernoff’s bounds). Let X =
∑n

i=1Xi be the sum of n independently distributed
random variables Xi, where each variable Xi takes values in [0, 1]. Then the following statements
hold.

∀t > 0 : (1)

Pr[X > E[X] + t] ≤ exp(−2t2/n),

Pr[X < E[X] − t] ≤ exp(−2t2/n) .

∀1 > ε > 0 : (2)

Pr
[

X < (1− ε) E[X]
]

≤ exp
(

− ε2 E[X]/2
)

,

Pr
[

X > (1 + ε) E[X]
]

≤ exp
(

− ε2 E[X]/3
)

.

∀t > 2eE[X] : Pr[X > t] ≤ 2−t . (3)

Chernoff’s bounds apply also to random geometric variables. A proof of the following
theorem can be found, e.g., in [Doe11, Theorem 1.14].

Theorem 2.4 (Chernoff’s bound for random geometric variables). Let p ∈ (0, 1). Let
X1, . . . ,Xn be independent geometric random variables with Pr[Xi = k] = (1 − p)k−1p for
all k ∈ N. Let X :=

∑n
i=1Xi.

Then for all δ > 0,

Pr[X ≥ (1 + δ) E[X]] ≤ exp

(

−
δ2(n− 1)

2(1 + δ)

)

.
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3 Random Failure Analysis of the GP Algorithm via a New

Random Wakeup Model

In this section we show that the GP algorithm has a much better performance against random
node failures than the worst case performance given in Lemma 2.2 against adversarial node
failures. We assume that each processor may fail with probability 1− p independently. It is not
hard to see that the expected runtime is bounded from below by the solution to the recursive
formula F (1) = 0;F (n) = p · F (n/2) + (1 − p) · F (n − 1) + 1, which is log n/p + O(1). On
the other hand, we show that every processor is informed after 3.5 log n/p rounds, with high
probability.

We refer to p as the success rate, and to 1−p as the failure rate. Due to the sequential nature
of the GP protocol, even a very small change in the failure pattern (that is, the set of failed
nodes) may imply a large change in the time complexity. This makes a straightforward analysis
of this model a bit tricky. To ease the analysis, we start by considering a similar protocol in a
simpler model, the random wakeup model, which we believe to be of independent interest. We
then transfer the results to the standard random node failure model by coupling the models.

3.1 The Random Wakeup Model

We regard the following divide-and-conquer wake-up protocol, which is inspired by the GP
algorithm. The start processor 0 starts with the list (1, 2, . . . , n−1) of nodes to be informed. It
sends in every round a communication (“wakeup”) requests to processor 1, until this processor
is woken up. It then forwards to it the rumor, appended by the list even(2, ..., n − 1), thus
keeping for itself the list odd(2, ..., n−1) as its todo-list. It then tries to wake up processor 2 in
the next round, and so on. In this model, each wakeup request is successful with probability p,
independently of previous requests. Hence in the implied rumor spreading algorithm, to be
denoted WU, whenever u selects an edge (u, v), it repeatedly sends (u, v) requests until v is
woken up. Informally, the time complexity of the algorithm in this model is larger than in the
standard initial-failures model, since in the standard model only one request is sent to each
processor. A formal proof of this statement is given in Section 3.3.2. Note also that similar to
the GP algorithm, the WU algorithm performs the minimum possible number of communication
requests in each execution: n+ f − 1 requests when there are f failed wakeup messages.

The time complexity of the random wakeup model is easier to analyze since the implied
WU algorithm sends communication requests along a fixed set of edges, which is independent of
the specific failure pattern. For analyzing this time complexity we represent the WU algorithm
by a full binary tree T with n leaves, in which each vertex x is labeled by a processor name
L(x) ∈ {0, . . . , n − 1} according to the following scheme (cf. Figure 1). The leaves of T are
labeled by the processor names 0, . . . , n − 1, according to some arbitrary but fixed order. The
labeling of an internal vertex x with children y, z is L(x) = min{L(y), L(z)}. Thus L(r) = 0
(where r is the root of the tree), and for each processor k, the vertices of T labeled by k form
a directed path, Pathk, ending at a leaf of T .

The algorithm for processor k ∈ {0, . . . , n − 1} implied by the above labeled tree T is the
following: After receiving the rumor, k moves along the vertices of Pathk. When k steps on
a non-leaf vertex x ∈ Pathk with children y, z, it repeatedly sends communication requests to
j = max{L(y), L(z)} until j wakes up.

Consider now a specific execution EWU of the above random wakeup algorithm. For each
internal vertex x ∈ T with children y, z, let kx = L(x) and jx = max{L(y), L(z)}. Denote by
Delay(x) the number of (kx, jx) requests sent by kx in EWU. Then Delay(x) is a geometric
random variable with probability p, that is Pr[Delay(x) = ℓ] = (1 − p)ℓ−1p for all positive
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Figure 1: Illustration of the rumor spreading in the random wakeup model for five
processors: Each vertex of T is labeled by a processors name. The red bold edges indicate
rumor transfers. Thus processor 0 always transfers the rumor to processors 3, 2, and 1 (in this
order). The numbers in parentheses beneath internal vertices indicate the number of wakeup
calls in a specific execution. That is, in the depicted execution processor 1 woke up only by the
seventh (0, 1) request. The time complexity of this execution is 3 + 2 + 7 = 12.

integers ℓ, and E(Delay(x)) = 1/p.
For a processor j ∈ [0 . . . n− 1], let Pj be the path from the root r of T to the (unique) leaf

labeled by j, and let Delay(Pj) :=
∑

x∈Pj
Delay(x). Then the time complexity of EWU is given

by
time(EWU) = max

j∈[0...n−1]
{Delay(Pj)}.

3.2 The Time Complexity of the Random Wakeup Model

Theorem 3.1. Let c > 1 be a constant and let p ∈ (0, 1) be arbitrary (possibly p = 1− o(1)).
With probability at least

1 − n exp
(

− (c−1)2

2c (⌈log(n− 1)⌉ − 1)
)

, the WU algorithm with success rate p has delivered the

rumor to all processors after c
p(⌈log(n− 1)⌉+ 1) rounds.

The success probability in Theorem 3.1 becomes 1 − o(1) for c with (c−1)2

2c ln 2 > 1, e.g., for
c ≥ 7/2. The theorem follows essentially from the Chernoff bound for random geometric
variables, cf. Theorem 2.4.

Proof of Theorem 3.1. By construction, for each processor j ∈ [0 . . . n − 1] we have that path
Pj has at least ⌈log(n−1)⌉ and at most ⌈log(n−1)⌉+1 nodes. Therefore the expected delay of
path Pj , E[Delay(Pj)], equals (1/p)⌈log(n − 1)⌉ or (1/p)(⌈log(n − 1)⌉ + 1), respectively. Since
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the variables {Delay(x) : x ∈ Pj} are mutually independent, by Theorem 2.4 we have

Pr[Delay(Pj) > (c/p)(⌈log(n − 1)⌉ + 1)]

≤ Pr[Delay(Pj) > (1 + (c− 1))E[Delay(Pj)]]

≤ exp

(

−
(c− 1)2

2c
(⌈log(n− 1)⌉ − 1)

)

.

A simple union bound over all n paths concludes the proof.

3.3 Coupling the GP and WU Models

To relate the time complexities of the random wakeup model and the GP algorithm in the
presence of random node failures, we embed the failure patterns of both models in the probability
space consisting of infinite binary vectors {~b | ~b ∈ {0, 1}N}, where the entries ~b 1,~b 2, . . . are i.i.d.
with a Bernoulli distribution parametrized by the success rate p—see, e.g., Chapter 2 of [Bil95].
We need to consider infinite sequences since the number of possible failures in executions of
the WU algorithm is unbounded. The embedding of failure patterns induces distributions
over executions of rumor spreading algorithms, similarly to the way randomized algorithms are
presented in the classical work of Yao [Yao77].

In Section 3.3.1 we define the mappings of infinite binary vectors to failure patterns, and
then to execution trees, whose heights represent time complexity of the corresponding execution
of the GP and the WU protocol, respectively. In Section 3.3.2 we use this mapping to present
our coupling argument (Lemma 3.3).

Section 3.3.1 is quite technical. The reader only interested in the main results may want
to skip these details and jump directly to Section 3.3.2, considering height(TGP(n,~b )) and
height(TWU(n,~b )) defined to be the time complexity of one particular execution of the GP
algorithm and the WU algorithm, respectively.

3.3.1 Failure Patterns and Execution Trees

Any execution of the GP or of the WU algorithm with a single start processor is determined by
the initial system configuration (in short configuration). A configuration is a pair (n,~b ), where
n is the number of processors to which the rumor has to be delivered, and ~b = (b1, b2, . . .) is
an infinite binary vector representing a failure pattern. An entry bi = 0 corresponds to a failed
request and bi = 1 corresponds to a successful request. For each configuration (n,~b ), EGP(n,~b )
denotes the execution of the GP algorithm on (n,~b ), and EWU(n,~b ) denotes the execution of the
WU algorithm on (n,~b ) (EGP(n,~b ) is always determined by the first n bits of ~b - see Figure 2,
while EWU(n,~b ) is usually determined by a longer prefix of ~b ).

EGP(n,~b ) is defined by the execution tree TGP(n,~b ) as follows. The vertices of TGP(n,~b ) are
configurations. The root of TGP(n,~b ) is the configuration (n,~b ). If ~b = 0~c (for some infinite
binary vector ~c ) then the first request sent by the execution failed. Hence in the next round
there is still only one informed processor, with n− 1 uninformed processors in its list. Thus the
only child of (n,~b ) is (n− 1,~c ). If ~b = 1~c then the first request is successful, and hence (n,~b )
has a left child (⌈n−1

2 ⌉,odd(~c )) and a right child (⌊n−1
2 ⌋, even(~c )).

This rule applies to all vertices of the tree: For k > 0 and binary (infinite) vector ~c , a vertex
(k, 0~c ) in TGP is an internal vertex with one child: (k − 1,~c ), and a vertex (k, 1~c ) has a left
child (⌈k−1

2 ⌉,odd(~c )) and a right child (⌊k−1
2 ⌋, even(~c )). Vertices of the form (0,~c ) are leaves.

Figure 2 illustrates the execution tree of the GP Algorithm.
The execution EWU(n,~b ) of the WU algorithm with initial configuration (n,~b ) is described

by an execution graph TWU(n,~b ) in a similar manner, with one exception: the unique child of
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Figure 2: TGP(4; 1001...): This tree describes the execution EGP(4; 1001 . . .) of the GP algorithm
for 5 processors and a failure pattern (1001...). Each vertex is a system configuration (k;~b ),
where k is the number of processors to which the rumor need to be delivered, and ~b is the
corresponding failure pattern.

a vertex of the form (k, 0~c ) for k > 0 is (k,~c ) (and not (k− 1,~c ))—reflecting the fact that in a
failed request the number of uninformed processors remains unchanged. Note that TWU(n,~b )
may not be a tree, since it may contain vertices (configurations) of the form (k, 0N) which have
one outgoing edge which is a self loop (corresponding to the event of infinite sequence of failed
requests by a processor). It is not hard to see that TWU(n,~b ) has no other cycles and no other
directed infinite paths. Hence TWU(n,~b ) is a finite rooted tree or a finite rooted tree with self
loops added to some of its leaves. This latter case correspond to executions in which some
processor has an infinite succession of failures.

The following observation is implied by the definitions of TGP and TWU.

Observation 3.2. For each system configuration (n,~b ) it holds that:

1. The time complexity of EGP(n,~b ) is height(TGP(n,~b )).

2. If TWU(n,~b ) contains a self loop, then the time complexity of EWU(n,~b ) is infinite. The
time complexity of EWU(n,~b ) is height(TWU(n,~b )), otherwise.

3.3.2 Coupling the Models

Here and in the remainder of the paper we abbreviate hGP (n,~b ) = height(TGP(n,~b )) and
hWU (n,~b ) = height(TWU(n,~b )).
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The main coupling argument is the following lemma, whose inductive proof makes use of
the fact that both functions hGP and hWU are monotone increasing in their first argument, i.e.,
the number of processors to be informed.

Lemma 3.3. For each system configuration (n,~b ) it holds that hGP (n,~b ) ≤ hWU (n,~b ).

For proving Lemma 3.3, we first observe that both hGP and hWU are monotone increasing
in the number of uninformed processors.

Lemma 3.4. Let h ∈ {hGP , hWU}. The function h is monotone increasing in its first argument.

This lemma follows immediately from the observation that for all ~b and n, TGP(n,~b ) is
isomorphic to a proper subtree of TGP(n + 1,~b ), and TWU(n,~b ) is isomorphic to a proper
subgraph of TWU(n+ 1,~b ).

We are now ready to prove the main coupling argument, Lemma 3.3.

Proof of Lemma 3.3. For n = 0 and for all vectors ~b ∈ {0, 1}N we have

hGP (0,~b ) = 0 = hWU (0,~b ) .

For the all-zeros vector ~b = ~0 and for all n > 0 it holds that

hGP (n,~0) = n < ∞ = hWU (n,~0) .

We proceed by induction on n, assuming ~b 6= ~0. Let bk be the first non-zero element in ~b (for
some k ≥ 1). It follows that

hGP (n,~b ) =k +max{hGP

(

⌈n−k
2 ⌉,odd(bk+1, ...)

)

,

hGP

(

⌊n−k
2 ⌋, even(bk+1, ...)

)

} ,

which, by induction hypothesis, can be bounded from above by

k +max{hWU

(

⌈n−k
2 ⌉,odd(bk+1, ...)

)

,

hWU

(

⌊n−k
2 ⌋, even(bk+1, ...)

)

} ,

which, by Lemma 3.4, is itself bounded from above by

k +max{hWU

(

⌈n−1
2 ⌉,odd(bk+1, ...)

)

,

hWU

(

⌊n−1
2 ⌋, even(bk+1, ...)

)

}

=hWU (n,~b ) .

Lemma 3.3 and Observation 3.2 show that, for any initial configuration (n,~b ), the execution
EGP(n,~b ) of the GP algorithm is at least as fast as the execution EWU(n,~b ) of the WU algorithm.
This implies that for any probability distribution D on {0, 1}N, if ~b is sampled from D then
Pr[hGP (n,~b ) ≤ H] ≥ Pr[hWU (n,~b ) ≤ H]. By letting D be the standard distribution on {0, 1}N

with success probability p, Theorem 3.1 easily implies the following.

Theorem 3.5. Let c > 1 be a constant. The execution time of the GP algorithm with
success probability p ∈ (0, 1) is at most c

p(⌈log(n − 1)⌉ + 1), with probability at least 1 −

n exp
(

− (c−1)2

2c (⌈log(n− 1)⌉ − 1)
)

.
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4 Adversarial Failures in the Randomized GP-Protocol

In this section we aim at analyzing adversarial failures. As mentioned in Lemma 2.2, it has
been proven in [GP96] that the time complexity of the GP algorithm is at most f +⌈log(n−f)⌉
when the number of failures is at most f . This bound is sharp when the first f nodes fail.
For f = ω(log n), this bound is not satisfactory in environments where random coin flips are
accessible. As we shall show in this section, adding randomization allows to disseminate the
rumor to all nodes in O(log n) rounds, with high probability, no matter which constant fraction
of the nodes fails. Our protocol can best be described as a randomized version of the basic GP
algorithm.

This randomized protocol works as follows. When the rumor is injected at processor 0, this
processor picks a permutation π ∈ Sn−1 uniformly at random. In round one it tries to contact
processor π(1). If this processor has a failure, processor 0 sends a communication request to
processor π(2) in round two. Otherwise, i.e., if processor π(1) is not failed, processor 0 sends
to it the rumor and appends to this rumor the list even(π(2), . . . , π(n− 1)). Processor 0 keeps
the list odd(π(2), . . . , π(n − 1)) as its own todo-list. The protocol continues as described in
Section 2.2. That is, all we have changed in our randomized version of the GP algorithm is
to substitute the list of processor 0—which is (1, . . . , n − 1) in the original GP algorithm—by
(π(1), . . . , π(n − 1)), where π is a random permutation of [n − 1]. We also have to append
information on π when transferring the rumor. It is not difficult to see (see Section 4.1 below)
that this requires a total number of Θ(n log2 n) bits that are appended to the rumors—compared
to Θ(n log n) in the GP algorithm. The maximum length of an individual message appendix is
n bits.

Here and in the remainder of this section we assume, as in all other parts of this work, that
the processor initially holding the rumor, node 0, does not fail. Recall that in our initial node
failure model, a processor either is a failed one or it does work throughout the execution.

Before we analyze the time complexity of the randomized GP algorithm, let us briefly discuss
its bit complexity ; i.e., the number of bits needed to encode the lists that are appended to the
initial rumor.

4.1 The Bit Complexity of the Randomized GP Algorithm

In a näıve implementation of the randomized GP algorithm, every processor passes to its neigh-
bor the list of nodes to be informed by that processor. As described above, in such an imple-
mentation, node 0 would pass to node π(1) the list even(π(2), . . . , π(n − 1)) of length smaller
than n/2. This requires O(n log n) bits to be appended to the initial rumor. Since the length
of the list halves with each successful communication request, let the level of processor 0 be
0, and for t > 0, a processor is at level t if it was waken up by a processor at level t − 1.
In every level of the execution tree the total number of bits that need to be communicated is
O(n log n): For t ≤ log(n − 1), in the tth level, there are at most 2t informed processors, all
of which send the rumor to their descendants. Each such processor needs to append a list of
length at most n/2t+1. This makes a total number of O(n log n) additional bits that need to be
communicated on the tth level. Since there are O(log n) levels in total, the total bit complexity
of this implementation is O(n log2 n).

Another implementation of the randomized GP algorithm with the same asymptotic bit
complexity but a smaller maximal appendix is the following. If a processor needs to commu-
nicate to its neighbor a list L = (j1, . . . , jk) of length k > n/ log n, it appends to the rumor
the incidence list of L; i.e. a 0/1 vector x of length n − 1 with xi = 1 if i ∈ {j1, . . . , jk} and
xi = 0 otherwise. If a processor has received such a rumor with appended task list x, it creates
a random permutation πx of the indices {i | xi = 1}. It then proceeds as usual, trying to
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spread the rumor to processor πx(1) in the next round. If less than n/ log n indices need to be
communicated, it is cheaper to pass the list itself. It is easily verified, using similar arguments
as above, that this implementation yields a total bit complexity of O(n log2 n). The length of
the longest appendix is linear in n. That is, while the total bit complexity is comparable up to a
log n factor to that of the GP algorithm, the maximum message size can be significantly larger
in the randomized protocol. In Sections 5 and 6 we describe two alternative algorithms in which
the maximal size of a message appendix is in the order of log n and log2 n bits, respectively.

4.2 The Time Complexity of the Randomized GP Algorithm

For bounding the time complexity of the randomized GP algorithm we first show that hGP (n,~b ),
the time complexity of this algorithm for given n and ~b , is monotone decreasing in the failure
pattern ~b , according to the following natural partial order on binary sequences: (b1, b2, ...) ≤
(c1, c2, ...) if and only if for all i ∈ N we have bi ≤ ci.

Lemma 4.1. The function hGP (·, ·) : N0 × {0, 1}N → R is monotone decreasing in its second
argument. That is, for any failure pattern ~b , replacing failed processors by non-faulty ones
cannot increase the time complexity.

The proof of Lemma 4.1 uses the following statement, which—informally—says that for
each possible failure pattern ~b , splitting the rumor spreading at the very beginning between
two processors cannot increase the time complexity of the execution.

Lemma 4.2. For all n ∈ N0 and all ~b ∈ {0, 1}N it holds that

hGP (n,~b ) ≥ max{hGP (⌈
n
2 ⌉,odd(

~b )),

hGP (⌊
n
2 ⌋, even(

~b ))} . (4)

Proof of Lemma 4.2. The proof is by induction on n. The lemma clearly holds for n = 0 and
n = 1. So let n ≥ 2. Assume first that ~b = 0~c . Then by the definition of TGP,

hGP (n, 0~c ) = 1 + hGP (n− 1,~c ).

Using the identities ⌈k2⌉ − 1 = ⌊k−1
2 ⌋ and ⌊k2⌋ = ⌈k−1

2 ⌉, we also have

hGP (⌈
n
2 ⌉,odd(0~c )) = 1 + hGP (⌊

n−1
2 ⌋, even(~c )),

hGP (⌊
n
2 ⌋, even(0~c )) = hGP (⌈

n−1
2 ⌉,odd(~c )) ,

which implies (4) by induction.
The case ~b = 1~c follows along the same lines. To simplify the notations for this case, define

n1 = ⌈n−1
2 ⌉, n2 = ⌊n−1

2 ⌋, ~d = odd(~c ), and ~e = even(~c ). Then by the definition of TGP,

hGP (n, 1~c ) = 1 + max{hGP (n1, ~d ), hGP (n2, ~e )}.

And the inductive step follows from the inequalities

hGP (⌈
n
2 ⌉,odd(1~c ))

= 1 + max{hGP (⌈
n2
2 ⌉,odd(~e )),

hGP (⌊
n2
2 ⌋, even(~e ))}

≤ 1 + hGP (n2, ~e ) (by induction hypothesis),

and hGP (⌊
n
2 ⌋, even(1~c )) = hGP (n1, ~d ).
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Proof of Lemma 4.1. The proof is by induction on n. For n = 0 we have that hGP (0,~b ) = 0
for all ~b , and the lemma trivially holds. For the induction step, let n ≥ 0 and let ~b ,~c be two
vectors such that ~b ≤ ~c . Then ~b = b1~d and ~c = c1~e , where b1 ≤ c1 and ~d ≤ ~e . If b1 = c1 = 0
then ~b = 0~d ,~c = 0~e and the induction step holds by

hGP (n+ 1, 0~b ) = 1 + hGP (n, ~d ) ≥ 1 + hGP (n,~e )

= hGP (n+ 1, 0~c ) ,

where the inequality follows from the induction hypothesis. The case b1 = c1 = 1 is similar and
omitted. So we are left with the case ~b = 0~d ,~c = 1~e with ~d ≤ ~e . In this case we have

hGP (n+ 1, 0~d )

= 1 + hGP (n, ~d )

≥ 1 + max{hGP (⌈
n
2 ⌉,odd(

~d )),

hGP (⌊
n
2 ⌋, even(

~d ))}

≥ 1 + max{hGP (⌈
n
2 ⌉,odd(~e )),

hGP (⌊
n
2 ⌋, even(~e ))}

= hGP (n+ 1, 1~e ),

where the first inequality follows from Lemma 4.2, and the latter inequality follows from the
induction hypothesis on odd(~d ),odd(~e ) and on even(~d ), even(~e ).

Note: A similar but slightly more involved argument shows that Lemma 4.1 holds also for
the function hWU(·, ·).

Theorem 4.3. Let n ∈ N \ {1}. Let ε =
√

lnn
n−1 . Let f < (n− 1)(1 − ε) and let F ⊆ [n− 1] of

size |F | = f . Let p = 1− f
n−1 . Let c > 1 be a constant.

The probability that the randomized version of the GP algorithm has time complexity T ≤
c

p−ε(⌈log(n− 1)⌉ + 1) is at least

1− n3

n2−1 exp
(

− (c−1)2

2c (⌈log(n− 1)⌉ − 1)
)

, even if all processors in F fail.

As we mentioned after Theorem 3.1, the probability bound is 1 − o(1) for c satisfying
(c−1)2

2c ln(2) > 1. The proof of Theorem 4.3 is via a reduction to the random failure model analyzed in
Section 3.1. It makes use of several Chernoff bounds and the monotonicity proven in Lemma 4.1.
We basically show that the runtime of the randomized protocol is not worse than that of the
basic deterministic GP algorithm under the presence of independent random failures. In the
latter, we chose the failure probability to be slightly larger than the “fair” ratio f/(n − 1), so
that, with probability at least 1 − n−2, more than f nodes are crashed. Combining this with
the resulting runtime bound from Theorem 3.5 proves Theorem 4.3.

Proof of Theorem 4.3. It is easy to verify that the randomized GP algorithm with f adversarial
failures has the same performance as the original GP algorithm when a random subset of node
failures, R ⊆ [n− 1] with R = f , is selected uniformly. We analyze the latter.

Let p′ := p − ε and T := c
p′ (⌈log(n − 1)⌉ + 1). Let ~b ∈ {0, 1}n−1 with |~b |0 = f be chosen

uniformly at random. We need to show that

Pr[hGP (n,~b ) > T ]

≤
n3

n2 − 1
exp

(

−
(c− 1)2

2c
(⌈log(n− 1)⌉ − 1)

)

.
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Let ~c ∈ {0, 1}n−1 be such that Pr[~c i = 1] = p′ independently for all i ∈ [n− 1]. That is, the
probability that ~c i = 0 is f

n−1 + ε, for every i ∈ [n− 1]. We show

Pr[|~c |0 ≥ f ] ≥ 1− n−2 , (5)

which can be easily verified by Chernoff’s bound: The expected value of |~c |0 is f + ε(n − 1).
By Chernoff’s bound, cf. Theorem 2.3, equation (1), we have

Pr[|~c |0 < f ]

= Pr[|~c |0 < E[|~c |0]− ε(n− 1)]

≤ exp
(

−2(ε(n − 1))2/(n− 1)
)

= exp
(

−2ε2(n− 1)
)

= exp(−2 lnn) = n−2.

Next we argue that

Pr[hGP (n,~b ) ≥ T ]

≤ Pr[hGP (n,~c ) ≥ T | |~c |0 ≥ f ]. (6)

To verify (6), assume |~c |0 > f . Sample k := |~c |0 − f indices i1, . . . , ik from the 0-positions
{i ∈ [n − 1] | ~c i = 0} of ~c uniformly at random. Create ~d from ~c by replacing the zeros in
positions i1, . . . , ik by ones. Then ~d is uniform in the set {~b ∈ {0, 1}n−1 | |~b |0 = f}, as is
~b . Inequality (6) follows from the latter and the monotonicity of hGP (n,~b ) in ~b , as stated in
Lemma 4.1.

Using this inequality we bound

Pr[hGP (n,~b ) > T ] · Pr[|~c |0 ≥ f ]

≤ Pr[hGP (n,~c ) > T | |~c |0 ≥ f ] · Pr[|~c |0 ≥ f ]

≤ Pr[hGP (n,~c ) > T | |~c |0 ≥ f ] · Pr[|~c |0 ≥ f ]

+ Pr[hGP (n,~c ) > T | |~c |0 < f ] · Pr[|~c |0 < f ]

= Pr[hGP (n,~c ) > T ] .

The latter quantity can be bounded by Theorem 3.5. It shows that the time complexity of the
GP algorithm with success rate p′ satisfies

Pr[hGP (n,~c ) > T ]

≤ n exp

(

−
(c− 1)2

2c
(⌈log(n− 1)⌉ − 1)

)

.

Together with inequality (5), this concludes the proof.

5 Reducing the Message Size

Building on the results from the previous sections, we describe in this and the next section
two alternative fault-tolerant versions of the GP algorithm that have a message overhead of
only O(log n) and O(log2 n) bits per rumor transfer, respectively. The version with logarithmic
message overhead is described in this section. It requires a preprocessing phase and extra storage
space at each of the processors. In Section 6 we will see how the preprocessing phase can be
avoided by increasing the sizes of the appended message by a logarithmic factor.

More precisely, we show here in this section that for t ∈ O(nh(n)/ log n), h ∈ ω(1) being
an arbitrary function tending to infinity, there are t permutations such that, no matter which
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constant fraction of the processors fail, the probability that a permutation chosen uniformly at
random out of the t yields a runtime that is greater than c log n is o(1) (both the constant c
and the o(1) failure probability will be made precise below). The algorithm is based on storing
these t permutations at each of the processors.

Let {π1, . . . , πt} ⊆ Sn−1 be the stored permutations. Upon receiving a rumor, processor 0
chooses at random an index r ∈ [t]. The algorithm now is the following minor modification of the
original GP algorithm: At each round, a processor i which holds a nonempty list (j1, . . . , jk)
sends a communication request to processor πr(j1), and deletes j1 from its list. If πr(j1) is
non-faulty, then i sends it the rumor appended with (a) the index r, (b) the value j3, (c) the
length ⌊k−1

2 ⌋ of the list to be informed by processor πr(j1), and (d) the exponent m of the
arithmetic progression even(j2, . . . , jk). Processor πr(j1) starts the next round with the list
even(j2, . . . , jk), and processor i starts it with the list odd(j2, . . . , jk).

To pass information (b)–(d), 3(⌈log n⌉+ 1) bits suffice. To pass information (a), ⌈log t⌉+ 1
bits are needed. Thus, for t ∈ O(nd) for a constant d, the overall number of bits that need to
be appended to the rumor is O(log n).

As mentioned above, the main goal of this section is to show (Theorem 5.2) that for t ∈
ω(n/ log n) and suitably chosen permutations π1, . . . , πt this protocol, with high probability, is
robust against adversarial failures.

Definition 5.1. We call the GP(π1, . . . , πt) algorithm described above (f, r, T )-safe if, for each
possible failure pattern F ⊆ [n − 1] with |F | = f , it holds that with probability at least r the
runtime of the protocol GP(π1, . . . , πt) with failure pattern F is at most T .6

Interestingly, for any constant d < 1 and for t ∈ ω(n/ log n), t randomly chosen permutations
π1, . . . , πt are (dn, 1 − o(1), O(log n))-safe, with high probability.

Theorem 5.2. Let t ∈ ω(n/ log n). Let π1, . . . , πt be taken from Sn−1 independently and
uniformly at random. Let ε :=

√

lnn/(n− 1), f < (n − 1)(1− ε), and p := 1− f
n−1 .

There are c = c(n) ≤ 6 + o(1) and δ = δ(n) with limn→∞ δ(n) = 0, such that the probability
that GP(π1, . . . , πt) is (f, 1− δ, c

p−ε(⌈log(n− 1)⌉+ 1))-safe is 1− o(n−1).

The proof of Theorem 5.2 is based on Theorem 4.3: By that theorem we know that, for
a fixed failure set F and a random permutation π, the probability that the randomized GP
algorithm along permutation π and failure set F exceeds the desired runtime T is less than
n−c. Based on this, we show that the fraction of ω(n/ log n) randomly chosen permutations
that exceed runtime T is less than δ, with probability exponentially small in n. A union bound
over all possible failure patterns F concludes the proof.

Proof of Theorem 5.2. By the assumption on t we have a function δ = δ(n) satisfying δ · t >
2n/ log n and limn→∞ δ(n) = 0. Select such δ satisfying also δ(n) > e/n .

We now define c = c(n) > 1. Fix for the moment some failure set F ⊆ [n−1] of size |F | = f .
For given π1 . . . πt, let T i be the time complexity of the GP algorithm along permutation πi if
all processors in F fail. Since the index i is chosen uniformly, the probability that the runtime
of the GP algorithm with failure set F exceeds

T :=
c

p− ε
(⌈log(n− 1)⌉ + 1)

is the fraction of indices i ∈ [t] with T i > T . By Theorem 4.3 we know that, for a random
permutation σ of [n−1], the probability that the runtime of the GP algorithm along permutation

6The probability statement in this definition is with respect to the random choice of the permutation index
i ∈ [t].
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σ and failure set F exceeds T is at most

q :=
n3

n2 − 1
exp

(

−
(c− 1)2

2c
(⌈log(n− 1)⌉ − 1)

)

= n · exp

(

−
(c− 1)2

2c
log n(1 + o(1))

)

.

We select c = c(n) such that q < n−2. Using the fact that log n = ln(n)/ ln(2) ≈ 1.44 ln(n), it
can be easily verified that c can be chosen such that c ≤ 6 + o(1) as claimed.

We now show that for this value of c, the probability that the fraction of indices i with
T i > T is larger than δ, is exponentially small. To obtain the statement of the theorem, we will
then do a union bound over all possible choices of F .

The probability that for the fixed F and randomly chosen permutations σ1, . . . , σt at least
t0 of them yield a runtime exceeding T is at most

t
∑

j=t0

(

t

j

)

qj(1− q)t−j <

t
∑

j=t0

tj

j!
qj <

t
∑

j=t0

(

etq

j

)j

, (7)

where the right inequality is by Stirling approximation for j!.
We now set t0 := ⌈δt⌉, which, by definition of δ is at least 2n/ log n. By the definition of δ

and c, the sum above is dominated by the sum of the geometric progression (at0 , at0+1, . . . , at) for
a ≥ eqt/t0 ≈ eqδ. Since δ > e/n, the value of a can be chosen to be less than 1/n, for sufficiently
large n. Thus, the first element in this progression, at0 , is smaller than n−2n/ logn = 2−2n. Hence,
the sum in (7) is smaller than 2 · 2−2n.

We now do a union bound over all possible choices of F . There are at most
(n
f

)

< 2n different
choices. Therefore, the probability that for t randomly chosen permutations there exits a choice
of F such that the corresponding runtime is larger than T , is smaller than 2n·2·2−2n = 2·2−n.

Note that the definition of δ in the above proof implies that if t(n) > 2n2/ log n then δ in
Theorem 5.2 can be set to δ(n) = e/n.

6 Removing the Need for Preprocessing

In this section we show that if we are willing to compromise for messages of size Θ(log2 n), then
the need to distribute a set of random permutations among all processors in a preprocessing
time, upon system setup, can be eliminated. That is, we provide a rumor spreading algorithm
using O(log n) time and exactly n−1 messages, each one of them being only O(log2 n) bits larger
than the true message to be distributed, even when an adversary may crash a linear fraction of
nodes before the start of the protocol. Unlike our previous algorithms, this algorithm assumes
an upper bound on the number of failed processors (the algorithm will be correct also when the
number of failed processors is larger, but the time analysis will not hold). At the end of this
section we show that this requirement can be removed at the price of increasing the number of
bits appended to each message to Θ(h), where h = h(n) is any function such that h ∈ ω(log2 n).

To overcome the additional space and communication requirements of the approaches elab-
orated in the previous two sections we introduce a small set of permutations on [n − 1] such
that (i) a random permutation in this set is sufficiently close to a fully random permutation,
and (ii) each permutation π in this set has a short description rπ of O(log2 n) bits such that for
each j ∈ [n− 1] the image π(j) can be computed efficiently from rπ. This latter property is the
one which saves the need for appending the explicit permutation to the rumor (as opposed to
the strategy in Section 4), or storing a set of explicit permutations in a preprocessing phase (in
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contrast to the protocol presented in Section 5). It is instead enough to append the bits rπ to
the messages carrying the rumor.

Informally, the property of our randomized protocol that facilitates the use of such sets of
permutations is that in each execution of the protocol, the time required for the rumor to reach
a given processor depends with high probability on the failure pattern of only a small number
(O(log n)) of other processors. This feature is formalized through the notion of dissemination
paths defined below.

Dissemination Paths: Let EGP(F, π) be an execution of the GP protocol for a given set F
of failed processors and a given permutation π ∈ Sn−1, and let TGP(F, π) be the corresponding
execution tree as in Figure 2. Each node u in TGP(F, π) represents an event in which some
processor, sender(u), sends a request to another processor, target(u). For example, let r be the
root node. Then for all F , sender(r) = 0 and target(r) = π(1).

Definition 6.1. Let F ⊆ [n− 1] and π ∈ Sn−1 be as above. Let TGP(F, π) be the execution tree
defined by F and π. For a processor j ∈ [n− 1] and a permutation π, the dissemination path of
j given F and π, DIS(j, F, π), is the path in TGP(F, π) from the root to the unique node v for
which target(v) = π(j).

Note that in this definition we do not consider the path to processor j itself but to processor
π(j). The reason for this will become evident below (see the proof of Theorem 6.3). Let us first
give an informal outline of our argument: By Theorem 4.3, for each set F of failed processors of
size cn (for some c < 1), and for each j ∈ [n−1], the length of DIS(j, F, π) is with high probability
O(log n), where the probability is taken when π is drawn uniformly from Sn−1. Suppose now
that Q is a distribution over Sn−1 which looks “close to the uniform distribution” for an observer
who may inspect at most k entries of a random permutation from Q (a notion which will be
made precise soon). It is enough to show that for any failure pattern F , the dissemination paths
DIS(j, F, π), j ∈ [n − 1], are still with high probability of logarithmic length, when π is drawn
from Q. We show this by proving that otherwise, an observer who checks the failure status of
O(log n) processors will be able to tell apart whether the permutation π underlying the protocol
is drawn from Sn−1 uniformly or from Q, contradicting our indistinguishability assumption on
the distribution Q. In the remaining of this section we formalize this informal argument.

The “close to uniform” distributions which we use are called adaptive k-wise δ-dependent dis-
tribution. Specifically we use constructions of such distributions that are presented in [KNR09]
(we could also use earlier constructions of such distributions such as in [NR99]). For a detailed
exposition of these distributions and related results see [KNR09] and references within.

Adaptive k-Wise δ-Dependent Distributions: Let P and Q be two distributions defined
over Sn. A k-queries adaptive distinguisher for (P,Q) is a program (which may also use ran-
domness) D which gets as input a description of a permutation π ∈ Sn, and is allowed to query
at most k entries of π in an adaptive way, that is: in query i, for i = 1, . . . , k − 1, it specifies
ji ∈ [n] and receives the value of π(ji), and then it determines the value of ji+1 such that π(ji+1)
is queried next. Upon termination, D outputs one or zero. We say that D distinguishes between
P and Q with advantage δ if |Prπ∼Q[D(π) = 1]− Prπ∼P [D(π) = 1]| ≥ δ, where the probability
is taken over the distributions P and Q as well as the internal randomness of the program D.
We say that P and Q are adaptively (δ, k)-indistinguishable if there is no such distinguisher D.
Finally, we say that Q is adaptive k-wise δ-dependent if it is adaptively (δ, k)-indistinguishable
from the uniform distribution over Sn.

The distribution Q above is explicit if each permutation π with Q(π) > 0 (i.e., π is in the
support of Q) is indexed by a bit-string rπ such that the function j 7→ π(j) can be computed
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efficiently from rπ and j. The description length of Q is the maximal length (number of bits) of
rπ where π is in the support of Q. The time complexity of Q is the worst-case time complexity
of evaluating π(j) from j and π, for all j ∈ [n] and π in the support of Q (see [KNR09]).

Theorem 6.2. [KNR09] Let n be a power of two, let δ > 0, and let k ∈ [n] be given. There
exists a distribution Qn over Sn, such that Qn is adaptive k-wise δ-dependent, has description
length O(k log(n) + log(1/δ)), and time complexity that is polynomial in log n, k, and log(1/δ).

Discussion: Theorem 5.9 of [KNR09] implies Theorem 6.2 above for a static distinguisher, i.e.,
a distinguisher which has to select at the beginning of the computation the k-tuple (j1, . . . , jk)
for which π(ji), i = 1 . . . k, are queried (see [KNR09, Definition 3.3]). The generalization to
adaptive distinguishers follows by the observation that a static (δ/nk, k)-indistinguishability
implies an adaptive (δ, k)-indistinguishability [KNR09]. To see why this implication holds,
consider an adaptive distinguisher D, and assume without loss of generality that D makes
exactly k queries in each execution. Define a static distinguisher Ds which start by guessing at
random the k queries of D, each with equal probability of 1/

(

n
k

)

and then it simulates D. If
the guess was correct (i.e., on the given input D makes exactly the same k queries), Ds outputs
what D would have. It outputs 0 otherwise. It is not hard to see that if D outputs 1 with
probability ε then Ds outputs 1 with probability ε/

(n
k

)

. So if there is no static distinguisher for
Q with advantage δ/

(n
k

)

, then there is no adaptive distinguisher for Q with advantage δ.

The Protocol: We first assume that n, the number of processors, is such that n−1 is a power
of two. Let GPuniform be our original randomized protocol, defined in Section 4. Let δ := 1/n2.
If we have an upper bound of cn, c ∈ [0, 1), for the number of node failures we wish the protocol
to tolerate, we choose k = O(log n) in such a way that Theorem 4.3 guarantees that the running
time of GPuniform with at most cn failed processors is at most k with probability at least 1− δ.7

Finally, let Q = Qn−1 be the adaptive k-wise δ-dependent distribution guaranteed by The-
orem 6.2, and let GPQ be the protocol identical to GPuniform except that it selects a random
permutation according to distribution Q.

We implement GPQ with permutation π by the following modification of the basic GP
algorithm in Section 2.2: when a processor sends a todo-list (which is an arithmetic progression
represented by O(log n) bits) to another processor, it appends to it rπ, the short representation
of π (this requires additional (O(log2 n) bits). As before, if the next entry on a processor’s
todo-list is j, then the processor sends a communication request to π(j) and deletes j from its
list.

In the sequel we show that for any set F ⊆ [n − 1] of at most cn processors, the running
time of GPQ given that F is the set of failed processors is at most k with high probability.

Theorem 6.3. Let n, c, k, δ be as above and let F be an arbitrary set of at most cn processors.
Then the execution of the GPQ algorithm when the processors in F are faulty, terminates after
at most k rounds with probability at least 1−2nδ = 1−2/n. Moreover, the size of each message
in the protocol is only an additive number of O(k log n) bits larger than the original message.

Proof. First note that the “Moreover,...” part follows since the description length of Q is
O(k log n).

For the first part of the theorem note that, by the definition of k and δ, we have that when
running the protocol GPuniform, for each j ∈ [n− 1] the length of the path DIS(j, F, π) is larger
than k with probability smaller than δ.

7To ease the presentation of the algorithm we assume here that an upper bound cn on the number of failed
processors is known. In this case, Theorem 4.3 suggests to choose k = 10 log n

1−c−
√

ln(n)/n
. Estimating an a prior

bound on c can be avoided by setting k = ω(logn).
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For each processor j ∈ [n−1], let Dj be an algorithm which, upon receiving a permutation π
simulates the execution of GP along DIS(j, F, π) by starting from the root of TGP(F, π) and
following the nodes v for which the todo-lists of sender(v) contain j. If the the length of
DIS(j, F, π) is less than k then the algorithm outputs 0. Otherwise, if the algorithm reaches the
k’th node on this path, then the algorithm stops and outputs 1. Note that Dj queries at most
k entries of π: For each node v in DIS(j, F, π), Dj only need to query whether π(target(v)) is
faulty, and it stops after scanning at most k nodes (here we are using the fact that DIS(j, F, π)
is the dissemination path to processor π(j) rather than to processor j).

By the definition of k and δ, the following holds for any j ∈ [n − 1]: when Dj simulates
GPuniform (i.e., when π is completely random), then it outputs 1 with probability smaller than δ.
By the fact that Q is adaptive k-wise δ-dependent, we have that for every j ∈ [n − 1], when
Dj simulates GPQ (i.e., π is drawn from Q), Dj outputs 1 with probability smaller than 2δ
(otherwise Dj would distinguish Q from the uniform distribution on Sn with advantage ≥ δ).
In other words, when π is drawn from Q, it holds for every j ∈ [n − 1] that the length of
DIS(j, F, π) is greater than k with probability at most 2δ.

Using the union bound for all j ∈ [n− 1] we get that the probability that there exists an j
such that the length of DIS(j, F, π) is greater than k is at most 2nδ = 2/n. This implies that
the probability that GPQ terminates after more than k rounds is at most 2/n.

We extend the protocol GPQ described above to arbitrary value of n (recall that the con-
struction so far only works when n− 1 is a power of two). For general n, let n′ be the smallest
integer with n′ ≥ n and n′ − 1 is a power of two. We let the nodes 0, . . . , n − 1 imitate the
GPQ protocol for n′ nodes, however, whenever a node would call a node i ≥ n, it does nothing
and continues to the next node on its list. A run of this protocol in the presence of failed
nodes F ⊆ [n − 1] performs exactly identical to a run of the GPQ protocol on n′ nodes with
failed nodes F ′ = F ∪ {n, . . . , n′ − 1}, except that the nodes n, . . . n′ − 1 do not receive a call.
Consequently, this protocol uses exactly n−1 messages of size O(log2 n′) = O(log2 n) and takes
O(log n′) = O(log n) rounds—only the implicit constant in the runtime is slightly larger due to
the larger failure rate |F ′|/n′, which still satisfies |F ′|/n′ = (n′ − n+ |F |)/n′ < 1.

Finally, if we aim at a protocol having an O(log n) runtime with high probability for any
constant fraction cn, c ∈ [0, 1) of failed nodes (that is, a protocol that does not depend on a
known upper bound on c, the number of failed processors ), we choose k = ω(log n). Note that
this implies that for any constant fraction of failed processors, c, the protocol terminates in at
most O(log n) rounds with high probability. It also implies that the description length of Q is
Θ(k log n) = ω(log2 n). We thus have proven the following result.

Theorem 6.4. Let n ∈ N and let h ∈ ω(log2 n). There exists a protocol GPQ that disseminates
a rumor from an initially informed node to all other n − 1 nodes in the network with the fol-
lowing properties. (i) Exactly n − 1 messages are sent; each message contains the rumor and
an additional Θ(h) number of bits. (ii) With high probability, all nodes are informed after a
logarithmic number of rounds. (iii) These performance guarantees remain intact if an arbitrary
set of cn nodes is crashed before the beginning of the process, where c < 1 is a constant. Alter-
natively, if an upper bound on the number of crashed nodes is known, the overhead per message
can be reduced to O(log2 n) bits.

7 Conclusions and Future Work

We have studied randomized fault-tolerant rumor spreading algorithms in complete graph
topologies. The protocols can tolerate up to cn initial node failures, where c is an arbitrar-
ily large constant less than one.
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Our algorithms are based on introducing randomization to the elegant whispering algorithm
of [GP96]. They have minimal message complexity and asymptotically optimal time complexity,
do not require synchronization or activation of uninformed processors, do not need to assume
an a priori bound on the number of faulty processors, and do not need an opening phase.

We proved that the time complexity of the GP algorithm in the presence of random ini-
tial failures is asymptotically optimal, i.e., O(log n). The analysis is based on a new random
wakeup model and a novel coupling technique, which could be of independent interest. To deal
with adversarial failures, we have proposed a randomized version of the GP algorithm. While
the randomized GP algorithm achieves best possible message complexity and asymptotically
optimal time complexity, it requires up to a linear number of additional bits that need to be
communicated together with the original message. We have shown two different ways of re-
ducing this overhead. One is to add a preprocessing step for storing O(nh(n)/ log n) random
permutations at the processors (h ∈ ω(1) being an arbitrary function tending to infinity). This
decreases the message overhead to O(log n) bits. The preprocessing phase of this protocol can
be eliminated by making use of adaptive log n-wise almost independent permutations, which
can be encoded with O(log2 n) bits. An interesting problem is whether it is possible to eliminate
the need for preprocessing by adding overhead of only O(log n) bits per message.

Another interesting avenue for future work is the design of whispering protocols that tolerate
any-time failures (i.e., nodes must not be crashed initially but can stop spreading the rumor at
an arbitrary point in time). We are not aware of any existing work in this direction.
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