
Getting Close Without Touching: Near-Gathering for

Autonomous Mobile Robots∗

Linda Pagli∗ Giuseppe Prencipe∗ Giovanni Viglietta†

Abstract

In this paper we study the Near-Gathering problem for a finite set of dimensionless,
deterministic, asynchronous, anonymous, oblivious and autonomous mobile robots with lim-
ited visibility moving in the Euclidean plane in Look-Compute-Move (LCM) cycles. In this
problem, the robots have to get close enough to each other, so that every robot can see all
the others, without touching (i.e., colliding with) any other robot. The importance of solving
the Near-Gathering problem is that it makes it possible to overcome the restriction of
having robots with limited visibility. Hence it allows to exploit all the studies (the majority,
actually) done on this topic in the unlimited visibility setting. Indeed, after the robots get
close enough to each other, they are able to see all the robots in the system, a scenario that
is similar to the one where the robots have unlimited visibility.

We present the first (deterministic) algorithm for the Near-Gathering problem, to the
best of our knowledge, which allows a set of autonomous mobile robots to nearly gather
within finite time without ever colliding. Our algorithm assumes some reasonable conditions
on the input configuration (the Near-Gathering problem is easily seen to be unsolvable
in general). Further, all the robots are assumed to have a compass (hence they agree on the
“North” direction), but they do not necessarily have the same handedness (hence they may
disagree on the clockwise direction).

We also show how the robots can detect termination, i.e., detect when the Near-
Gathering problem has been solved. This is crucial when the robots have to perform
a generic task after having nearly gathered. We show that termination detection can be
obtained even if the total number of robots is unknown to the robots themselves (i.e., it is
not a parameter of the algorithm), and robots have no way to explicitly communicate.

1 Introduction

Consider a distributed system whose entities are a finite set of dimensionless robots or agents
that can freely move on the Euclidean plane, operating in Look-Compute-Move (LCM) cycles.
During each cycle, a robot takes a snapshot of the positions of the other robots (Look); executes
a deterministic protocol, the same for all robots, using the snapshot as an input (Compute); and
moves towards the computed destination (Move). After each cycle, a robot may stay idle for
some time. With respect to the LCM cycles, the most common models used in these studies are
the fully synchronous (Fsync), the semi-synchronous (Ssync), and the asynchronous (Async).
In the asynchronous (Async) model, each robot acts independently from the others and the
duration of each cycle is finite but unpredictable; thus, there is no common notion of time,
and robots can compute and move based on “obsolete” observations. In contrast, in the fully

∗This work has been partially supported by MIUR of Italy under project ARS TechnoMedia.
∗Dipartimento di Informatica, Università di Pisa, {linda.pagli,giuseppe.prencipe}@unipi.it
†School of Electrical Engineering and Computer Science, University of Ottawa, Canada, viglietta@gmail.com

1

ar
X

iv
:1

50
5.

07
16

8v
1

 [
cs

.D
C

]
 2

7
M

ay
 2

01
5

synchronous (Fsync) model, there is a common notion of time, and robots execute their cycles
synchronously. In this model, time is assumed to be discrete, and at each time instant all robots
are activated, obtain the same snapshot, compute and move towards the computed destination;
thus, no computation or move can be made based on obsolete observations. The last model,
the semi-synchronous (Ssync), is like Fsync where, however, not all robots are necessarily
activated at each time instant.

In the last few years, the study of the computational capabilities of such a system has
gained much attention, and the main goal of the research efforts has been to understand the
relationships between the capabilities of the robots and their power to solve common tasks.
The main capabilities of the robots that, to our knowledge, have been studied so far in this
distributed setting are visibility, memory, orientation, and direct communication. With respect
to visibility, the robots can either have unlimited visibility, if they sense the positions of all other
robots, or have limited visibility, if they sense just a portion of the plane, up to a given distance
V [2, 12]. With respect to memory, the robots can either be oblivious, if they have access only
to the information sensed or computed during the current cycle (e.g., [20]), or non-oblivious,
if they have the capability to store the information sensed or computed since the beginning
of the computation (e.g., [3, 21, 22]). With respect to orientation, the two extreme settings
studied are the one where the robots have total agreement, and agree on the orientation and
direction of their local coordinate systems (i.e., they agree on a compass), e.g., [13], and the
one where the robots have no agreement on their local coordinate axes, e.g., [21, 22]. In the
literature, there are studies that tackle also the scenarios in between; for instance, when the
robots agree on the direction of only one axis, or there is agreement just on the orientation
of the coordinate system (i.e., right-handed or left-handed), e.g., [10]. With respect to direct
communication, some recent studies introduced the use of external signals or lights to enhance
the capabilities of mobile robots. These were first suggested in [19], and were also referenced
in [11], which provided the earliest indication that incorporating some simple means of signaling
in the robot model might positively affect the power of the team. Recently, a study that tackles
this particular capability more systematically has been presented in [7].

In this paper, we solve the Near-Gathering problem: the robots are required to get close
enough to each other, without ever colliding during their movements. Here, the team of robots
under study executes the cycles according to the Async model, the robots are oblivious and have
limited visibility. The importance of solving the Near-Gathering problem is that it allows
to overcome the limitations of having robots with limited visibility, and it makes it possible
to exploit all the studies (the majority, actually) done in the unlimited visibility setting, such
as, for instance, the Arbitrary Pattern Formation Problem [10,13,21,22], or the Uniform Circle
Formation (e.g., [8, 9]). Indeed, if all the robots get close enough, they eventually become able
to see one another, reaching a configuration in which they may be assumed to have unlimited
visibility (recall that the robots are dimensionless). Since most of the studies related to the
unlimited visibility case assume a starting configuration where no two robots coincide (i.e., they
do not share the same location in the plane), it is of crucial importance to ensure that no collision
occurs during the process.

A problem that is similar to Near-Gathering is the gathering problem, in which the robots
have to meet, within finite time, in a point of the plane not agreed upon in advance. Note that the
gathering problem requires all robots to actually become coincident, while in Near-Gathering
they have to approach a point, but they are not allowed to collide with each other. Another
related problem is the convergence problem, in which the robots have only to approach a point
in the plane and converge to it in the limit, but they do not necessarily have to reach it in finite
time, and they may collide with each other in the process. Hence, the convergence problem is

2

x

y

x

y

x

y

x

y

x

y

(a)

r

s

(b)

Figure 1: (a) The robots in the swarm agree on the y-axis but not on the x-axis. (b) In the
limited visibility setting a robot can only see robots that are within its radius of visibility. As
a consequence, when s starts moving (the left end of the arrow), r and s do not see each other.
While s is moving, perhaps r Looks and sees s; however, s is still unaware of r. After s passes
the area of visibility of r, it is still unaware of r.

easier than both gathering and Near-Gathering. For a discussion on previous solutions to
the problems of gathering and convergence, and how they fail to solve Near-Gathering, refer
to Section 3.1.

A preliminary solution to the Near-Gathering problem has been presented by the authors
in [18]; however, that solution worked with distances induced by the infinity norm.1 In this paper
we drop that assumption, presenting a more general solution that works with the usual Euclidean
distance. We emphasize that the technique used in this paper can be easily adapted to solve
the Near-Gathering problem under any p-norm distance with p ≥ 1, including the infinity
norm distance used in [18]. We also note that, in contrast with [18] and other works on limited
visibility, such as [12], we only assume that the robots have agreement on one axis (as opposed to
both axes). In order to detect termination, the algorithm in [18] requires either the knowledge of
the number of robots in the system, or the ability of the robots to communicate through visible
lights that can be turned on or off. In the present paper we are able to drop both requirements,
and still detect termination.

It is worth mentioning that in [18] a tacit assumption is made on the starting positions of
the robots. Namely, we consider the graph on the robot set, with an edge connecting two robots
if their initial distance is at most D, where D is a known constant that is smaller than the
visibility radius of the robots (but may be arbitrarily close to it). The assumption is that such
a graph is connected. Here we make this assumption explicit, and we give a more rigorous proof
of our algorithm’s correctness. Finally, we remark that, since the algorithm presented here is
for the Async model, it solves the problem a fortiori also in the Ssync and Fsync models.

The organization of the paper is as follows: in Section 2 the formal definition of the robot
model is presented; in Section 3 the collision-free algorithm that solves the Near-Gathering
problem is presented, after discussing why previous solutions to related problems fail to solve it;
in Section 4 the correctness of our algorithm is proven. Finally, Section 5 concludes the paper,
suggesting some directions for future research.

1The infinity norm of a vector (x, y) ∈ R2 is defined as ‖(x, y)‖∞ = max{|x|, |y|}.

3

2 The Model

The system is composed of a team of finitely many mobile entities, called robots, each representing
a computational unit provided with its own local memory and capable of performing local
computations. The robots are modeled as points in the Euclidean plane R2. Let r(t) denote the
“absolute” position of robot r at time t (i.e., with respect to an absolute coordinate system),
where 0 ≤ t ∈ R; also, we will denote by r(t).x and r(t).y the abscissa and the ordinate value
of r(t), respectively. When no ambiguity arises, we shall omit the temporal indication; also, the
configuration of the robots at time t is the set of robots’ positions at time t.

Each robot has its own local orthogonal coordinate system, centered at its location, and we
assume that the local coordinate systems of the robots agree on the directions of the x- and
y-axes. As discussed in Section 5, the algorithms that we present in this paper also works in the
more restricted model in which the robots agree on the direction of just one axis, as illustrated
in Figure 1(a). A robot is endowed with sensorial capabilities and it observes the world by
activating its sensors, which return a snapshot of the positions of all other robots with respect
to its local coordinate system. The visibility radius of the robots is limited: robots can sense
only points in the plane within distance V . This setting, referred to in the literature as limited
visibility, is understandably more difficult; for example, a robot with limited visibility might not
even know the total number of robots nor where they are located, if outside its visibility range.
Also, when combined with the asynchronous behavior of the robots, it introduces a higher level
of difficulty in the design of collision-free protocols. For instance, in the example depicted in
Figure 1(b), robot s, in transit towards its destination, might be seen by r; however, s is not
aware of r’s existence and, if it starts the next cycle before r starts moving, s will continue to
be unaware of r; hence, since r does not see s when s starts its movement, it must take care of
the possible arrival of s when computing its destination.

All robots are identical: they are indistinguishable from their appearance and they execute
the same protocol. Robots are autonomous, without a central control. Robots are silent, in the
sense that they have no means of direct communication (e.g., radio, infrared) of information to
other robots. Robots are endowed with motorial capabilities, and can move freely in the plane.
As a robot moves, its coordinate system is translated accordingly, in such a way the the robot’s
location is always at the origin.

Each robot continually performs Look-Compute-Move (LCM) cycles, each consisting of three
different phases:

(i) Look: The robot observes the world by activating its sensor, which returns a snapshot of
the positions of all robots within its radius of visibility with respect to its own coordinate
system (since robots are modeled as points, their positions in the plane are just the set of
their coordinates).

(ii) Compute: The robot executes its (deterministic) algorithm, using the snapshot as input.
The result of the computation is a destination point, expressed in the robot’s own coordi-
nate system. There is no time limit to perform such a computation, although the robot
can only compute finite sequences of algebraic functions on the visible robots’ coordinates
(actually, the algorithm proposed in this paper uses only arithmetic operations and square
roots).

(iii) Move: The robot moves monotonically towards the computed destination along a straight
line; if the destination is the current location, the robot stays still (performs a null move-
ment). No assumptions are made on the speed of the robot, as it may vary arbitrarily

4

throughout the whole phase.

The robots do not have persistent memory, that is, memory whose content is preserved from
one cycle to the next; they are said to be oblivious. The only available memory they have is
used to store local variables needed to execute the algorithm, which are erased at each cycle.
All robots are initially idle, until they are activated by a scheduler and start executing the Look
phase of the first cycle. The amount of time to complete a cycle is assumed to be finite, but
unpredictably variable from cycle to cycle and from robot to robot (i.e., the scheduler model is
Async), but the Look phase is assumed to be instantaneous. As a consequence, a robot may
even stay still for a long time after it has reached its current destination point, before performing
the Look phase of the next cycle, or it can stop for a while in the middle of a move and then
proceed, etc. All these actions are controlled by the scheduler, which is an entity independent of
the robots and their protocol, and may be seen as an “adversary” whose purpose is to prevent
the robots from accomplishing their task.

The scheduler may also end the Move phase of a robot before it has reached its destination,
forcing it to start a new cycle with a new input and a new destination: this feature is intended
to model, for instance, a limit to a robot’s motion energy. However, there exists a constant
δ > 0 such that, if the destination point computed by a robot has distance smaller than δ from
the robot’s current location, the robot is guaranteed to reach it; otherwise, it will move towards
it by at least δ. Note that, without this assumption, the scheduler could make it impossible for
a robot to ever reach its destination, even if the robot keeps computing the same destination
point. For instance, the scheduler may force the robot to move by smaller and smaller amounts
at every cycle, converging to a point that is not the robot’s intended destination. Instead, if
the robot cannot be interrupted by the scheduler before it has moved by at least δ, and it keeps
computing the same destination point, it is guaranteed to reach it in finitely many cycles. The
value of δ is not known to the robots, hence it cannot be used in their computations.

We will denote by L(t), C(t), M(t) the sets of robots that are, respectively, active in a Look
phase, in a Compute phase, and in a Move phase at time t.

We stress that robots are modeled as just points in the plane, and as such they do not
have an associated vector indicating their “heading” or “forward direction”. Likewise, a robot’s
coordinate system never rotates, but only translates following the robot’s movements. Moreover,
all robots have the same visibility radius V , which is known to them and can be used in their
computations. V also serves as a common unit distance for the robots.

2.1 Notation and Assumptions

We will denote by R = {r1, · · · , rn} the set of robots in the system. The purpose of this paper
is to study the Near-Gathering problem:

Definition 1 (Near-Gathering). The Near-Gathering problem requires all robots to ter-
minate their execution in a configuration such that there exists a disk of radius ε containing all
the robots, where ε is a fixed constant, and no two robots occupy the same location.

All the robots are required to execute the same protocol during their Compute phase. The
input to such a protocol is the snapshot of the robots’ locations obtained by the executing robot
during its previous Look phase, along with the visibility radius V (which is the same for all
robots), and of course the value of ε.

The protocol executed by the robots must be independent of the initial configuration of
the robots, and must make the robots solve the Near-Gathering problem from any initial

5

configuration. However, in the limited visibility model, this requirement is known to be too
strong, and some additional assumptions must be made on the initial distance graph in order to
make the problem solvable.

Definition 2 (Initial Distance Graph [12]). The initial distance graph I = (R, E) of the robots
is the graph such that, for any two distinct robots r and s, {r, s} ∈ E if and only if r and s are
initially at distance not greater than the visibility radius V , i.e., dist(r(0), s(0)) ≤ V .

By “dist” we denote the usual Euclidean distance. In [12] it is proven that, if the initial
distance graph I is not connected, then the gathering problem may be unsolvable; the same
result clearly holds also for the Near-Gathering problem:

Observation 1. If the initial distance graph I is not connected, the Near-Gathering problem
may be unsolvable.

However, our solution to the Near-Gathering problem requires a slightly more restrictive
initial condition. Let σ be an arbitrary small and positive constant, and let D = V − σ.

Definition 3 (Initial Strong Distance Graph). The initial strong distance graph J = (R, E) of
the robots is the graph such that, for any two distinct robots r and s, {r, s} ∈ E if and only if r
and s are initially at distance not greater than D, i.e., dist(r(0), s(0)) ≤ D.

In the following, we will assume that:

Assumption 1. The initial strong distance graph J is connected.

We remark that D (or at least lower bound on D) must be known to the robots. This is not
much of a benefit to the robots in terms of raw computational power, since V is already known to
all the robots and can already be used in their computations as a common unit distance. Besides,
by choosing σ to be small enough, the set of initial configurations ruled out by Assumption 1
becomes negligible.

The reasons why we need such a slightly more restrictive assumption are technical, and will
become apparent in Section 4, when the correcntess of our algorithm will be proven. We stress
that Assumption 1 only refers to the initial strong distance graph, while it does not require such
a graph to be connected at all times. However, as we will prove in Section 4, our algorithm will
indeed preserve the connectedness of a closely related distance graph throughout the execution.

Note that the definition of Near-Gathering does not require the robots to avoid collisions
during the execution, but it only requires them to occupy distinct locations when they all
have terminated their execution. However, for Near-Gathering to be solvable, the robots
must necessarily occupy distinct locations in the initial configuration, otherwise the scheduler
could always activate coinciding robots simultaneously, and never allow them to occupy distinct
locations. The algorithm we will describe in this paper is in fact collision-free, that is, it always
prevents robots from colliding, provided that they start from distinct locations. As a by-product,
our algorithm works regardless of the ability of the robots to detect the presence of more than
one robot in the same location (called multiplicity detection in the literature [3, 12]).

Another necessary assumption is that no robot is moving at time t = 0. If the robots are
already moving when the execution starts, and two robots have the same destination point,
nothing can prevent them from colliding. Moreover, after they have collided, the scheduler can
force them to remain coincident forever, by activating them synchronously. If this happens, the
Near-Gathering cannot be solved.

Summarizing, we will make Assumption 1 on the initial configuration of the robots, and we
will also assume that initially no robot is moving, and no two robots occupy the same location.
The protocol executed by the robots in the Compute phase takes this input:

6

• an array of points expressed in the local coordinate system of the executing robot, denoting
the locations of the visible robots observed during the previous Look phase;

• the visibility radius V (the same for all robots);

• the value of D (the same for all robots);

• the value of ε (required for termination).

Observe that the value of δ is not part of the input, and therefore the robots do not have a
lower bound on the minimum distance that they are guaranteed to cover in a single Move phase.

3 The Near-Gathering Problem and Its Solution

In Section 3.1 we discuss some previous solutions to the gathering and convergence problems,
explaining why they cannot be easily adapted to solve Near-Gathering. Then, in Section 3.2
we give our solution to the Near-Gathering problem.

3.1 Previous Solutions to Related Problems

Gathering. Of course, since the gathering problem requires all robots to collide, no solution
to this problem is a valid solution to Near-Gathering. However, we may wonder if a simple
modification of an existing gathering algorithm may solve Near-Gathering.

The gathering problem has been studied in the literature in all models but, to the best of our
knowledge, the most pertinent paper is [12], which considers robots with limited visibility in the
Async setting. The algorithm in [12] assumes all robots to agree on the direction of both axes,
and ideally it makes the leftmost and topmost robots move first, rightwards and downwards,
until all the robots gather. According to the protocol, a robot r will occasionally compute a
destination point that coincides with another visible robot s’s location. To avoid this type of
move, we may make r move toward s without reaching it. If we consider an initial configuration
in which all robots lie on the same vertical line, the only robot that is allowed to move according
to the algorithm in [12] is the topmost robot r. Moreover, if r moves downward without ever
reaching the next robot, then no robot other than r will ever be able to move. Therefore,
we ought to let robots other than r move, as well. Unfortunately, the proof of correctness of
the algorithm, given in [12], strongly depends on the fact that the robots in the swarm move
in a strictly ordered fashion. If we let any robot move, then we have to make sure that the
visibility graph remains connected throughout the execution, and that the robots still converge
to a single point. Clearly, even if a suitable adaptation of this idea can be effectively applied
to solve Near-Gathering, the modified protocol would require a radically new analysis and
proof of correctness.

Convergence. Several solutions to the convergence problem have been proposed, as well.
If we manage to obtain a solution that also avoids collisions, we can successfully apply it to
Near-Gathering.

Perhaps the most natural strategy, at least in the unlimited visibility model, is to make all
robots move to their center of gravity. This simple protocol has been analyzed in [4], and it has
been proven correct even in the Async model. In the limited visibility setting, the only relevant
work, to the best of out knowledge, is [2], which gives a convergence algorithm that assumes the
Ssync scheduler. However, in the special case in which the robots’ locations are the vertices of

7

a regular polygon and they are all mutually visible, both the center-of-gravity algorithm and the
algorithm in [2] behave in the same way, and make any active robot move to the center of the
polygon. Hence, if two robots are activated simultaneously from this configuration, they collide
and fail to solve Near-Gathering.

Therefore, we may modify the protocol and make each robot approach the center of gravity
by, say, moving half-way towards it. We show that this protocol may still cause collisions in the
Async model, even in the very simple case in which the system consists of only two robots. Let
r and s be two mutually visible robots, such that r(0) = (0, 0) and s(0) = (3124, 0). Let the
scheduler activate r, which observes that the center of gravity is point (1562, 0), and therefore
computes the destination point (781, 0) (i.e., the point half-way toward the center of gravity).
Now the scheduler lets r start moving and, as soon as it reaches point (52, 0), it temporarily
delays the remaining part of the move and makes s quickly perform five complete cycles. As
r is always seen in (52, 0), s moves first to (2356, 0), then to (1780, 0), (1348, 0), (1024, 0), and
finally to (781, 0). Now the scheduler lets r finish its original move, and this causes a collision
with s in (781, 0). Observe that, even if the protocol does not make the robots move half-way
toward the center of gravity, but to some other fraction of the distance, similar examples can be
constructed in which the robots collide.

Further literature. Several other papers considered the gathering or the convergence prob-
lems in various models, but these results are either not relevant to Near-Gathering in our
model, or they can be reduced to solutions already discussed above, and therefore discarded.

In [20], the gathering problem is studied for robots with limited visibility, the Ssync sched-
uler, and temporarily unreliable compasses. In the special case in which the robots are close
enough and their compasses are reliable, the proposed algorithm becomes equivalent to that
of [12], which has already been analyzed and discussed.

The gathering problem is studied in [14] in the context of non-convex environments and
limited visibility, but with the Fsync scheduler. However, if the robots are close enough and
they all see each other, the algorithm makes them all move to the center of the smallest enclosing
circle. Hence, in the special case in which they form a small-enough regular polygon, they move
to the center of gravity, and therefore the algorithm becomes equivalent to those of [2,4], which
have already been discussed.

The convergence problem with limited visibility has been studied also for robots whose level
of asynchronicity lies strictly between Ssync and Async. In [17], it is assumed that the time
spent in a Look or Move phase is bounded, and the algorithm is a slight modification of that
of [2]. In particular, it suffers from the issues that have already been discussed for [2].

On the other hand, in [16] the scheduler is 1-bounded Async, which means, roughly, that no
robot can perform more than one Look phase between two consecutive Look phases of another
robot. As it turns out, if the number of robots is even and they are vertices of a small-enough
regular polygon, the algorithm makes them move to the center of gravity. Once again, this type
of move has already been analyzed and discarded.

In [15], the gathering problem is considered for the Ssync scheduler and the unlimited
visibility setting. Here the focus is on the expected termination time of a randomized algorithm
where the robots have some sort of multiplicity detection, i.e., the ability to detect the presence
of more than one robot in the same location. Unfortunately, both algorithms presented in this
paper make all robots move to the center of the smallest enclosing circle, except in some special
cases. When applied to the Near-Gathering problem, this approach suffers from the same
issues of the center-of-gravity approach.

8

In [6], the gathering problem in Async is studied for fat robots, i.e., robots that are modeled
as solid discs rather than dimensionless points. Unfortunately, the problem is solved only for a
swarm of at most four robots, and the technique involves a case analysis that does not generalize
to bigger swarms. Therefore this solution is irrelevant to our problem.

The above result has been generalized in [1], which solves the gathering problem for any
number of fat robots. The robots considered have an unlimited visibility radius, and therefore
the limitations posed by a bounded visibility radius are not addressed in the paper. Additionally,
letting fat robots collide is not an issue, but instead it is a necessary event that is sought by the
algorithm. For these reasons, the approach of this paper can hardly be adapted to our problem.

Another work that considers the gathering problem for fat robots is [5], which works in the
unlimited visibility setting and the Fsync scheduler. Moreover, the gathering point is given as
input to all the robots. Because of these differences with our model, it is impossible to extract
a sound algorithm for Near-Gathering from this work: indeed, the task of making such fat
robots touch each other is simple, and the paper focuses on how to make robots slide around
each other in order to occupy a small area. All these issues are meaningless in our model, and
the real issues of our model become meaningless with fat robots.

3.2 Solving the Near-Gathering Problem

We conjecture that no solution to Near-Gathering exists in the Async model in which the
robots do not agree at least on one axis. Therefore, in the following we will assume to have
agreement on both axes, and in Section 5 we will observe that our solution works even in the
case of agreement on just one axis.

The general high-level idea of the algorithm is to make the robots move upward and to the
right, until they aggregate around the top-right corner of the smallest box that contains all of
them. A robot’s destination point is carefully computed, taking into account several factors.
To avoid collisions, robots try to move in order, never “passing” each other, and never getting
in each other’s way. This is not a trivial task, because the visibility of the robots is limited,
and they cannot predict the moves of the robots they cannot see. On the other hand, robots
try to preserve mutual visibility by not moving too far from other visible robots, avoiding to
leave them behind. This is supposed to prevent the robots from separating into different groups,
which may be unaware of each other and aggregate around different points. As it turns out, the
robots are unable to always preserve mutual visibility, but they can indeed preserve “mutual
awareness”, which is a concept that will be introduced shortly. These different behaviors are
blended together and balanced in such a way that the robots are not only guaranteed to avoid
collisions and remain mutually aware, but also to effectively aggregate around some point, and
never “get stuck” or converge to different limit points. This is obtained by always making robots
move by the greatest possible amount, compatibly with the above restrictions.

The details of our Near-Gathering protocol are reported in Figure 2. The protocol is
executed by each robot during every Compute phase. In the following, we denote by r∗ the robot
that is currently executing the algorithm. The returned value is dp, which is the destination
point for r∗. The algorithm computes separately the horizontal and the vertical components of
the movement of r∗, i.e., dp.x and dp.y. Note that the computation of the horizontal component
dp.x is symmetrical to the computation of the vertical component, hence any proposition that
holds for the x coordinate holds symmetrically for the y coordinate.

Referring to the Near-Gathering protocol and to Figure 3, let D1 and D2 be the (closed)
disks with radius V −ρ/2 and V −ρ, respectively, and center in the current position of r∗. Also,
let S be the closed square circumscribed around D2 (with sides parallel to the x- and y-axes),

9

State Look

Take the snapshot of the positions of the visible robots, which returns, for each robot r ∈ R at
distance at most V , Pos[r], the position in the plane of robot r, according to my coordinate system
(i.e., my position is (0, 0)).

State Compute (returns destination point dp = (dp.x, dp.y)

ρ = min {V/4, V −D};
ε′ = min{ε, ρ/2};
Z = Set of visible robots (including myself);
If ∀r1, r2 ∈ Z, dist(Pos[r1], Pos[r2]) ≤ ε′ Then Terminate;
D0 = Closed disk with radius V and center in (0, 0);
D1 = Closed disk with radius V − ρ/2 and center in (0, 0);
D2 = Closed disk with radius V − ρ and center in (0, 0);
p1 = Leftmost intersection between D1 and the horizontal line through (0, V − ρ);
p2 = Bottommost intersection between D1 and the vertical line through (V − ρ, 0);
S = Full closed square circumscribed around D2 with edges parallel to the x- and y-axes;
R = D1 ∩ S;
Q1 = Set of points of D0 with positive y-coordinate and non-positive x-coordinate;
Q2 = Set of points of D0 with positive x-coordinate and non-positive y-coordinate;
H1 = Set of points of (R \D2) ∩Q1 whose x-coordinate is lower than p1.x;
H2 = Set of points of (R \D2) ∩Q2 whose y-coordinate is lower than p2.y;
NW = {r ∈ Z | Pos[r] ∈ Q1};
SE = {r ∈ Z | Pos[r] ∈ Q2};
dp.x = min

{
min
r∈SE

{Pos[r].x} , max
r∈Z
{Pos[r].x} , ρ/2

}
;

dp.y = min

{
min

r∈NW
{Pos[r].y} , max

r∈Z
{Pos[r].y} , ρ/2

}
;

For Each r ∈ Z Do
If Pos[r] ∈ H1 Then dp.x = 0;
Else If Pos[r] ∈ R Then
s1 = Leftmost intersection between R \H1 and the horizontal line through Pos[r];
dp.x = min {dp.x, Pos[r].x− s1.x};

If Pos[r] ∈ H2 Then dp.y = 0;
Else If Pos[r] ∈ R Then
s2 = Bottommost intersection between R \H2 and the vertical line through Pos[r];
dp.y = min {dp.y, Pos[r].y − s2.y};

If dp.x > dp.y Then dp = (dp.x/2, 0); Else dp = (0, dp.y/2);

State Move

Move(dp).

Figure 2: The Near-Gathering protocol

and R = D1 ∩ S. Finally, let H1 and H2 be the halt zones of r∗, and NW and SE the sets of
visible robots in Q1 and Q2, respectively (note that Q1 contains its right border, but not the
bottom one; similarly, Q2 contains its top border, but not the left one).

Because no robot ever moves leftwards or downwards, we give the following definition:

Definition 4 (Move Space). The Move Space of a robot r at time t, denoted by MS(r, t), is

10

1p

2p

1H

2H

0D1D

2D

1Q

2Q

Figure 3: Some of the elements computed by the Near-Gathering protocol. The computing
robot lies in the center, and the thick line represents the boundary of R.

the set
{

(x′, y′) ∈ R2 | x′ ≥ r(t).x ∧ y′ ≥ r(t).y
}

.

The destination point of r∗ is computed according to the rules below:

1. r∗ only moves rightward or upward (not diagonally) at every move. It moves by the
greatest possible amount, compatibly with the following restrictions (this is needed for the
algorithm’s convergence, see Section 4.4).

2. r∗ never enters the move space of a visible robot, unless it already is in its move space
(this is required for collision avoidance, Section 4.3);

3. r∗ never moves to the right of (resp. above) the rightmost (resp. topmost) robot it can see
(needed for convergence, Section 4.4);

4. If r∗ sees a robot in the halt zone to its left (i.e., H1 in Figure 3), r∗ does not move
rightward. Symmetrically, if r∗ sees a robot in the bottom halt zone (i.e., H2 in Figure 3),
r∗ does not move upward. This is needed for the preservation of mutual awareness, see
Section 4.2;

5. If r∗ sees a robot r in R \H1 (resp. R \H2), it moves so that r stays inside R \H1 (resp.
R\H2) (preservation of mutual awareness, Section 4.2). Note that this does not guarantee
a priori that r will actually stay inside R\H1 (resp. R\H2), since r moves asynchronously
and independently of r∗;

6. The length of the so-computed movement is capped at ρ/2 (where ρ = min {V/4, V −D}),
and then halved (this is needed for both mutual awareness preservation and collision
avoidance, see Sections 4.2 and 4.3).

To correctly detect termination, we make sure that ε is not greater than ρ/2, by setting ε′ =
min{ε, ρ/2}. This is necessary to prove Lemma 6.

11

4 Correctness

In this section, we will prove that the protocol reported in Figure 2 correctly solves the Near-
Gathering problem. The proof will be articulated in three parts: first, we will prove that a
suitably-defined distance graph remains connected during the execution; second, we will prove
that no collisions occur during the movements of the robots; finally, we show that all the robots
converge to the same limit point, and correctly terminate their execution.

4.1 Preliminary Definitions and Observations

Before presenting the correctness proof, we will introduce a few preliminary definitions and
observations. First, it is easy to observe the following:

Observation 2. No robot’s x- or y-coordinate may ever decrease. No robot’s x- and y-coordinates
can both increase during the same move. Furthermore, a robot can move rightward (resp. up-
ward) only if there is another robot strictly to the right of (resp. strictly above) its destination
point.

Observation 3. During each cycle, a robot travels a distance not greater than ρ/4 ≤ V/16.

We may assume that, in the last line of the algorithm, if dp.x and dp.y are equal, then one
of the two values (dp.x/2, 0) and (0, dp.y/2) is chosen arbitrarily as the destination point dp.
With this assumption, the following holds.

Observation 4. The algorithm is symmetric with respect to x- and y-coordinates.

Definition 5 (First and Last). Given a robot r, let First(r, t) = min{t′ > t|r ∈ L(t′)} be the
first time, after time t, at which r performs a Look operation. Also, let Last(r, t) = max{t′ ≤
t|r ∈ L(t′)} be the last time, from the beginning up to time t, at which r has performed a Look
operation; if r has not performed a Look yet, then Last(r, t) = 0.

Now, we define the destination point of a robot at a time t as follows:

Definition 6 (Destination Point). Given a robots r, we define the destination point DP(r, t) of
r at time t as follows:

• If r ∈ L(t), then DP(r, t) is the point dp as computed in the next Compute phase after t (in
the current cycle).

• If r ∈ C(t), then DP(r, t) is the point dp as computed in the current Compute phase.

• If r ∈ M(t), then DP(r, t) is the point dp as computed in the last Compute phase before t
(in the current cycle).

From the previous definition, we can state the following:

Observation 5. Let r be a robot. During the time strictly between two consecutive Looks, the
destination point of r does not change.

Proof. Let t be any time when r executes a Look; then, by definition, DP(r, t) is the point dp as
computed in the next Compute phase after t (in the current cycle). Also, the destination point
does not change in the next Compute and Move phases of r.

12

The following proposition states a straightforward geometric fact (refer also to Figure 3):
among the segments contained in the annulus D1 \D2, with one endpoint on the boundary of
D1 and the other endpoint on the boundary of D2, the shortest are those that are collinear with
the center of D2. This will be often used in conjunction with Observation 3, to show that robots
cannot lose visibility to each other under certain conditions.

Proposition 1. The length of a segment contained in the annulus D1 \D2, with one endpoint
on the boundary of D1 and the other endpoint on the boundary of D2, is at least ρ/2.

Proof. Due to the rotational symmetry of the annulus, it is enough to prove the proposition for
vertical segments only. The claim is equivalent to saying that, if x ∈ [0, V − ρ] ⊂ R, then

√
(V − ρ/2)2 − x2 −

√
(V − ρ)2 − x2 ≥ ρ/2.

Let f(x) =
√

(V − ρ/2)2 − x2 −
√

(V − ρ)2 − x2. Then, f(0) = ρ/2, and f(x) is monotonically
increasing on [0, V − ρ]. Indeed, the derivative of f(x) on (0, V − ρ) is

d

dx
f(x) = x

(
1√

(V − ρ)2 − x2
− 1√

(V − ρ/2)2 − x2

)
,

which is positive.

Let Q1 be defined as in the Near-Gathering protocol reported in Figure 2; in the following,
we will denote by Q1(r, t) the set Q1 as robot r would compute it if it were in a Compute phase
at time t (this set is expressed in the global coordinate reference system). A similar notation
will be used for the other sets and points computed in our protocol (e.g., D0, D1, Q2, etc.).

4.2 Preservation of Mutual Awareness

We define yet another notion of distance graph on the robots. This is useful, because in Corol-
lary 3 we will prove that this graph remains connected throughout the execution of our Near-
Gathering protocol.

Definition 7 (Intermediate Distance Graph). The intermediate distance graph at time t ≥ 0
is the graph G(t) = (R, E(t)) such that, for any two distinct robots r and s, {r, s} ∈ E(t) if and
only if r and s are at distance not greater than V −ρ/2 at time t, i.e., dist(r(t), s(t)) ≤ V −ρ/2,
where ρ = min{V/4, V −D}.

Recall that, by assumption, the initial strong distance graph J is connected. This implies
that G(0) is connected, because V − ρ/2 > D, and hence J ⊆ G(0). We will now prove that the
connectedness of the intermediate distance graph is preserved during the entire execution of the
algorithm. We will do so after introducing the notion of mutual awareness, in Definition 9.

First we define the auxiliary relation AW(p, q).

Definition 8. Given two points p, q ∈ R2, we denote by AW(p, q) the (symmetric) relation2

‖p− q‖2 ≤ V − ρ/2 ∧ ‖p− q‖∞ ≤ V − ρ.

A simple fact to observe is the following (recall that r(t) denotes the position of robot r at
time t).

2By ‖a‖2 =
√

a.x2 + a.y2 we denote the usual Euclidean norm; by ‖a‖∞ = max {|a.x|, |a.y|} we denote the
infinity norm.

13

Observation 6. For any two robots r and s, AW(r(t), s(t)) is equivalent to s(t) ∈ R(r, t), which
is equivalent to r(t) ∈ R(s, t).

Recall that, according to the algorithm, if a robot r sees a robot s in R, it will make its next
move in such a way that s, as it was observed, does not exit R (see how s1 and s2 are computed
in the algorithm). This is stated in the next observation.

Observation 7. If r and s are two robots, r ∈ L(t) and AW(r(t), s(t)), then AW(DP(r, t), s(t)).

Before introducing the next lemmas, let us recall that D1 and D2 are the closed disks
with radius V − ρ/2 and V − ρ, respectively, and center in (0, 0); S is the full closed square
circumscribed around D2 with sides parallel to the x- and y-axes; and that R = D1 ∩ S (refer
to the Near-Gathering protocol, and to Figure 3).

The next two lemmas are technical, and will be used in the proof of Lemma 3.

Lemma 1. Let two robots r and s be given, with r ∈ L(t). If AW(r(t), s(t)) and AW(r(t), DP(s, t)),
then AW(DP(r, t), s(t)) and AW(DP(r, t), DP(s, t)).

Proof. From Observation 7 it immediately follows that AW(DP(r, t), s(t)). Next we prove that
AW(DP(r, t), DP(s, t)).

Without loss of generality we may assume that s is not moving horizontally at time t, that is,
s(t).x = DP(s, t).x and 0 ≤ DP(s, t).y−s(t).y ≤ ρ/4 (cf. Observations 2–4). Let ∆ = DP(r, t)−r(t);
first observe that AW(DP(r, t), DP(s, t)) is equivalent to AW(r(t), DP(s, t)−∆). Hence we have to
prove that the point DP(s, t)−∆ lies in R(r, t) = R, provided that s(t) and DP(s, t) do.

If ∆ is the null vector, there is nothing to prove. So, let us assume first that ∆.x = 0 and
∆.y > 0. Referring to Figure 4(a), and by the convexity of R, it is sufficient to prove that
s(t)−∆ lies in R, which is equivalent to AW(DP(r, t), s(t)), which has already been proven.

)t(r

∆

∆−
)t(s

)s, t(DP

2H

(a)

)t(r ∆

∆−)t(s

)s, t(DP

1p

1H

(b)

Figure 4: Proof of Lemma 1. The thick line is the border of R. In (a), r moves vertically. In (b),
r moves horizontally and s is to the right of r at time t.

Otherwise, ∆.x > 0 and ∆.y = 0. Referring to Figure 4(b), if s(t).x ≥ r(t).x, our claim that
DP(s, t) −∆ lies in R(r, t) is trivially true, due to Proposition 1 and recalling that ∆.x ≤ ρ/4:

14

indeed, s(t) and DP(s, t) move leftward in the coordinate system of r by at most ρ/4, hence they
stay to the right of p1. Moreover, s(t) cannot lie in H1 or else r would not move rightward.

)t(r ∆

∆−)t(s

)s, t(DP

1p

1H

(a)

)t(r ∆

∆−)t(s

)s, t(DP

1p

(b)

Figure 5: Proof of Lemma 1. The thick line is the border of R. In (a), r moves horizontally and
s is to the left of p1 at time t. In (b), s is to the right of p1 at time t.

The only case left is that in which s(t) belongs to R \H1 and lies to the left of r(t). Recall
that, according to the algorithm, s(t)−∆ belongs to R\H1 as well. Since DP(s, t).y−s(t).y ≤ ρ/4,
and due to Proposition 1, it is clear that DP(s, t) −∆ lies in R, provided that s(t) −∆ lies to
the left of p1 (see Figure 5(a)). Otherwise (see Figure 5(b)), if p1.x ≤ s(t).x−∆.x < r(t).x, the
claim follows from the fact that DP(s, t).y ≤ p1.y (because by assumption AW(r(t), DP(s, t))), and
therefore DP(s, t)−∆ lies below p1 and to its right.

Lemma 2. Let two robots r and s be given, with r ∈ L(tr) and ts = Last(s, tr). If AW(r(ts), s(ts))
and AW(r(tr), s(tr)), then AW(r(tr), DP(s, tr)).

Proof. From ts = Last(s, tr) it follows that ts ≤ tr. If ts = tr, then s ∈ L(tr) and, due
to Observation 7, AW(DP(s, tr), r(tr)), which is our claim. So let us assume that ts < tr. If
DP(s, ts) = s(ts), there is nothing to prove, because in this case DP(s, tr) = DP(s, ts) = s(ts) =
s(tr). So we may assume that s moves strictly vertically (cf. Observation 4), and therefore
DP(s, ts).x = s(ts).x and s(ts).y < DP(s, ts).y ≤ s(ts).y + ρ/4. Let ∆ = DP(s, ts) − s(ts). Also
observe that, by definition of ts, DP(s, tr) = DP(s, ts).

We reason by considering the “point of view” of robot r. Let ∆′ = r(tr) − r(ts). Hence
DP(s, tr) − r(tr) = DP(s, ts) −∆′ − r(ts). In other terms, as a consequence of r moving upward
and rightward (by ∆′) between ts and tr, DP(s, t) moves downward and leftward in the coordinate
system of r, as t varies from ts to tr.

Recall that AW(r(tr), s(tr)) by hypothesis, and hence s(tr) ∈ R(r, tr). If s(tr).y ≤ r(tr).y,
then, by Proposition 1, DP(s, tr) ∈ R(r, tr), as desired. Therefore, assume that s(tr).y > r(tr).y.
This also implies that DP(s, t).y > r(t).y for all t ∈ [ts, tr]. Note that |s(t).x − r(t).x| ≤ V − ρ,
for every t ∈ [ts, tr]. Indeed, the inequality holds at times ts and tr by the hypotheses of the
lemma, and moreover s(t).x is independent of t ∈ [ts, tr], while r(t).x may only increase.

15

Let t′ = First(r, ts). We claim that both s(t′) and DP(s, t′) belong to R(r, t′). Assume first
that r moves upward (or stays still) between ts and t′. Then, by Observation 7 and the convexity
of R, the segment with endpoints s(ts) and DP(s, ts) lies in R(r, ts). If such a segment moves
downward in the coordinate system of r (as a consequence of r moving upward), and, at time
t′, s lies strictly below R(r), this implies that DP(s, t′).y cannot be greater than r(t′).y, due
to Proposition 1 (recall that DP(s, t′).y − s(t′).y ≤ ρ/4). This contradicts the assumption on
DP(s, t′).y made in the previous paragraph.

So, let r move rightward, and let r(t′) = r(ts) + ∆′′, with 0 < ∆′′.x ≤ ρ/4. Hence, if
s(ts).x ≥ r(ts).x, our claim is once again easily proven. Indeed, by Observation 7, DP(s, ts) lies
in R(r, ts), as well as s(ts). Then, by Proposition 1, these two points cannot move outside of
R(r) as r moves rightward by at most ρ/4, provided that s(ts).x = DP(s, ts).x ≥ r(ts).x. So, let
us assume that s(ts).x < r(ts).x.

Since by hypothesis s moves strictly upward based on a Look performed at time ts, it means
that r(ts) /∈ H2(s, ts). Equivalently, s(ts) does not belong to the region symmetric to H2(r, ts)
with respect to r(ts), which we denote by −H2(r, ts) (see Figure 6(a)). As a consequence of the
algorithm (in particular, by Rule 5 of Section 3.2), s does not compute a destination point that
would make r enter the region H2. Equivalently, in r’s coordinate system, DP(s, ts) /∈ −H2(r, ts).

2H

)st(r

2H−

′′∆

(a)

−

)st(s

2H\1H −
)′s, t(DP

)′t(s′′∆

(b)

Figure 6: Proof of Lemma 2. In (a), the gray area in the upper-left corner is −H2(r, ts). In (b),
a detail of the set difference H1 \ −H2 is shown.

In particular, as illustrated in Figure 6(b), if s(ts) ∈ H1(r, ts) \ −H2(r, ts), then also
DP(s, ts) ∈ H1(r, ts) \ −H2(r, ts). Hence both s(t′) and DP(s, t′) belong to R(r, t′) (recall that
|s(t′).x− r(t′).x| ≤ V − ρ).

Suppose now that s(ts) ∈ D2(r, ts). Note that, as a consequence of the algorithm (again, by
Rule 5 of Section 3.2), DP(s, ts).y ≤ r(ts).y + V − ρ. Additionally, s has to move by more than
ρ/2 in the coordinate system of r in order to cross the boundary of D1(r). But ‖∆ + ∆′′‖2 ≤
ρ/4+ρ/4 = ρ/2. As a consequence, both s(t′) and DP(s, t′) still belong to D1(r, t

′), and therefore
also to R(r, t′) (note that we already proved that |s(t′).x− r(t′).x| ≤ V − ρ).

The only case left is when s(ts) lies in the lower-left area bounded by R(r, ts) and D2(r, ts).
By Proposition 1 and because DP(s, ts).y − s(ts).y ≤ ρ/4, DP(s, t′) certainly lies in R(r, t′).

16

However, we also know that DP(s, t′).y > r(t′).y, and that DP(s, t′).y − s(t′).y ≤ ρ/4. Hence,
again by Proposition 1, s(t′) must lie in R(r, t′) as well.

Now our claim is proven. If t′ = tr, we are done. Otherwise, we apply Lemma 1 by setting
t := t′. As a result, AW(DP(r, t′), s(t′)) and AW(DP(r, t′), DP(s, t′)). Let t′′ = First(r, t′). By the
convexity of R, it follows that both s(t′′) and DP(s, t′′) belong to R(r, t′′) (recall that DP(s, t)
does not depend on t ∈ [ts, tr]). If t′′ = tr, we are done. Otherwise, we keep applying Lemma 1
(with t := t′′, etc.) and repeating the previous reasoning, until we prove that DP(s, tr) ∈ R(r, tr),
which concludes the proof.

Now we are ready to give the full definition of mutual awareness and the related graph.

Definition 9 (Mutual Awareness). Two distinct robots r and s are mutually aware at time t if
both conditions hold:

1. AW(r(tr), s(tr)), with tr = Last(r, t), and

2. AW(r(ts), s(ts)), with ts = Last(s, t).

Definition 10 (Mutual Awareness Graph). The mutual awareness graph at time t ≥ 0 is the
graph G̃(t) = (R, E(t)) such that, for any two distinct robots r and s, {r, s} ∈ E(t) if and only
if r and s are mutually aware at time t.

We recall that D = V − σ, with σ > 0 arbitrary small. By definition of Last and of mutual
awareness, we have the following.

Observation 8. All the pairs of robots that are at (Euclidean) distance not greater than D from
each other at time t = 0 are initially mutually aware. Hence J ⊆ G̃(0), and therefore G̃(0) is
connected.

In the following lemma, we will prove that any two robots that are mutually aware at some
point keep being so during the entire execution.

Lemma 3. If robots r and s are mutually aware at time t, they are mutually aware at any time
t′ ≥ t.

Proof. Let (ti)i≥0 be the strictly increasing sequence of time instants at which either r or s
executes a Look; if both r and s execute a Look simultaneously, such a time instant appears
only once in the sequence. Without loss of generality, we may assume that r and s first become
mutually aware at time tm, when r enters a Look phase.

We will prove by induction that, for all i ≥ m, the following conditions hold:

1. AW(r(ti), s(ti)),

2. AW(DP(r, ti), s(ti)),

3. AW(r(ti), DP(s, ti)),

which will clearly imply our claim (Condition 1 actually suffices).
Let i = m, and observe that Condition 1 holds by definition of mutual awareness. More-

over, by Lemma 2 with tr := tm, Condition 3 holds, too. Finally, Condition 2 is implied by
Conditions 1 and 3 and by Lemma 1 with t := tm.

17

Suppose now that i > m, and let the three conditions hold at every time tj with m ≤ j ≤ i−1.
Without loss of generality, we may assume that r ∈ L(ti−1) (if s ∈ L(ti−1), we just exchange r
and s in our proof). By Conditions 1 and 3 on ti−1, we have

AW(r(ti−1), s(ti−1)) and

AW(r(ti−1), DP(s, ti−1)).

By Lemma 1 with t := ti−1, we have also AW(DP(r, ti−1), s(ti−1)) and AW(DP(r, ti−1), DP(s, ti−1)).
These are equivalent, respectively, to

AW(r(ti−1), s(ti−1)− DP(r, ti−1) + r(ti−1)) and

AW(r(ti−1), DP(s, ti−1)− DP(r, ti−1) + r(ti−1)).

Collectively, s(ti−1), DP(s, ti−1), s(ti−1)−DP(r, ti−1)+r(ti−1) and DP(s, ti−1)−DP(r, ti−1)+r(ti−1)
are four points whose convex hull C is either a rectangle or a segment (depending if r and s
move orthogonally or parallel to each other between ti−1 and ti). Because the vertices of C are
contained in R(r, ti−1) (cf. the definition of R in the algorithm), and because R is convex, C is
entirely contained in R(r, ti−1) (refer to Figure 3).

Moreover, r(ti) (resp. s(ti)) lies on the segment with endpoints in r(ti−1) and DP(r, ti−1)
(resp. s(ti−1) and DP(s, ti−1)). Let r(ti) = r(ti−1) + ∆r and s(ti) = s(ti−1) + ∆s. So, the point
s(ti−1) + ∆s −∆r belongs to C, and therefore to R(r, ti−1). In other terms,

AW(r(ti−1), s(ti−1) + ∆s −∆r),

which is equivalent to AW(r(ti−1) + ∆r, s(ti−1) + ∆s), and to AW(r(ti), s(ti)). Hence Condition 1
holds at ti.

Once again, without loss of generality, we may assume that r ∈ L(ti). Then, Condition 3 at
ti follows from Condition 1 and Lemma 2 with tr := ti. Condition 2, on the other hand, follows
from Conditions 1 and 3, and from Lemma 1 with t := ti.

Corollary 2. G̃(t) is connected at any time t ≥ 0.

Proof. G̃(0) is connected by Observation 8. By Lemma 3, G̃(0) is a subgraph of G̃(t), and
therefore G̃(t) is connected.

Corollary 3. G̃(t) ⊆ G(t), and therefore G(t) is connected at any time t ≥ 0.

Proof. Suppose that robots r and s are mutually aware at time t. Then, by Lemma 3, they are
mutually aware at any time after t, regardless of the scheduler’s choices. Moreover, observe that
the proof of Lemma 3 goes through even if the scheduler can stop the robots before they have
moved by at least δ (recall that the fairness assumption of our robot model normally forbids the
scheduler to interrupt a robot’s Move phase before it has moved by at least δ).

Let us therefore modify the execution of r and s, and let the scheduler interrupt their
Move phase precisely at time t, regardless of how much they have actually moved during that
phase. By the previous observations, r and s are mutually aware at time t′ = First(r, t), and
additionally r(t) = r(t′) and s(t) = s(t′). Hence, by definition of mutual awareness, r and s are
at (Euclidean) distance not grater than V − ρ/2 at time t′, and therefore also at time t.

This implies that G̃(t) ⊆ G(t), and hence that G(t) is connected, by Corollary 2.

18

4.3 Collision Avoidance

In this section, we will prove that no collision occurs during the execution of the algorithm.

Lemma 4. No collision ever occurs between any pair of robots during the execution of the
algorithm.

Proof. Let us assume by contradiction that two distinct robots r and s collide during their
execution. Because r(t) and s(t) are continuous functions, there exists a minimum time instant
t > 0 at which r(t) = s(t) = p. At least one robot, say r, must make a strictly positive movement
toward p, at some point. Let t′ < t be the last time at which r performs a Look phase such that
r(t′) 6= p. Recall that, by Observation 2, r and s move either upward or rightward at each move.
Without loss of generality (cf. Observation 4), let us assume that r moves strictly rightward
between t′ and t. Then, by Observation 3, 0 < p.x− r(t′).x ≤ V/16. Several cases arise.

If s(0) = p, then s(t′) = p ∈ Q2(r, t
′), which is a contradiction because, by the algorithm

(specifically, by Rule 2 of Section 3.2), DP(r, t′).x must be less than the x-coordinate of every
robot in Q2(r, t

′), and therefore r cannot be found in p at time t.
If s(0) 6= p, then s performs at least one positive movement to reach p. Let t′′ < t be the

last time at which s performs a Look phase such that s(t′′) 6= p. By symmetry between r and s,
we may assume that t′′ ≤ t′ < t.

Suppose that s moves strictly upward between t′′ and t (see Figure 7(a)). Hence 0 <
p.y− s(t′′).y ≤ V/16. Because t′′ ≤ t′, it follows that s(t′) ∈ Q2(r, t

′), which contradicts the fact
that r reaches p in the next move.

)′t(r

)′t(s

)′′t(s

p

(a)

)′t(r)′t(s)′′t(s p

)′′t(r

)′′′t(r

)′′′t(s)t̃(s)t̃(r

)′′s, t(2Q

(b)

Figure 7: Proof of Lemma 4. In (a), s moves upward between t′′ and t. In (b), s moves rightward.

Otherwise, s moves strictly rightward between t′′ and t. Since t′′ ≤ t′, it follows that s(t′′).y =
s(t′).y = p.y (see Figure 7(b)). s(t′) cannot lie to the right of r(t′), otherwise it would be in
Q2(r, t

′), yielding a contradiction with the algorithm (Rule 2 of Section 3.2). Hence s(t′′).x ≤
s(t′).x ≤ r(t′).x < p.x. We claim that r(t′′).y < s(t′′).y. Indeed, suppose by contradiction that
r(t′′).y = s(t′′).y. If r(t′′).x > s(t′′).x, then r(t′′) ∈ Q2(s, t

′′) and s computes a destination point
that is not to the left of r, which again contradicts Rule 2 of the algorithm. Otherwise r(t′′).x ≤
s(t′′).x, which implies that r and s collide between t′′ and t′, contradicting the minimality of t.

Because r.y < p.y at time t′′ and r.y = p.y at time t′, there is a time t̃ ∈ (t′′, t′] at which r.y
first becomes equal to p.y. Note that r(t̃).x > s(t̃).x, otherwise r and s would collide between

19

t̃ and t′. Hence r(t̃) ∈ Q2(s, t̃). Note also that r(t′′) 6∈ Q2(s, t
′′), because DP(s, t′′).x ≥ r(t′′).x.

Since each move covers at most V/16, r performs more than one move between t′′ and t̃: if r enters
Q2(s) for the last time from below, it must move vertically more than once; if r enters Q2(s)
for the last time from the left, then it must turn upwards at some point (refer to Figure 7(b)).
More precisely, r performs at least one Look phase in [t′′, t̃), the last of which at time t′′′, and r
moves strictly upward between t′′′ and t̃. Then

s(t′′).x ≤ s(t′′′).x ≤ s(t̃).x < r(t̃).x = r(t′′′).x.

It follows that 0 < r(t′′′).x − s(t′′′).x ≤ V/16. Moreover, 0 < s(t′′′).y − r(t′′′).y ≤ V/16, hence
s(t′′′) ∈ Q1(r, t

′′′). This contradicts Rule 2 of the algorithm, because DP(r, t′′′).y ≥ s(t′′′).y.

4.4 Convergence and Termination

In this final section, we will prove that the robots will converge to the same limit point
(Lemma 5), and then finally that our Near-Gathering algorithm is correct (Theorem 4).

Let ` be the point having the x-coordinate of the rightmost point in I, and the y-coordinate
of the topmost point in I. That is,

` =

(
max
r∈R
{r(0).x} ,max

r∈R
{r(0).y}

)
.

Lemma 5. If no robot ever terminates its execution, then all robots converge towards point `.

Proof. Let an execution of the robot set R be fixed, in which no robot ever terminates. By
Observation 2, the movement of each robot is monotonically increasing with respect to both
the x-coordinate and the y-coordinate. Also, at any time, each robot’s coordinates are bounded
from above by the coordinates of `. It follows that each robot r converges towards a point,
denoted by LIM(r), such that LIM(r).x ≤ `.x and LIM(r).y ≤ `.y.

If all robots have the same convergence point, then this point must be `, because there is a
robot whose x-coordinate is constantly `.x and a (possibly distinct) robot whose y-coordinate
is constantly `.y. Hence, in this case the lemma follows. Thus, let us assume that there is more
than one convergence point. Let λ ∈ R+ be any positive number such that:

• λ ≤ LIM(r).x− LIM(s).x for every r, s ∈ R with LIM(r).x > LIM(s).x;

• λ ≤ LIM(r).y − LIM(s).y for every r, s ∈ R with LIM(r).y > LIM(s).y;

• λ ≤ V − dist(LIM(r), LIM(s)) for every r, s ∈ R with dist(LIM(r), LIM(s)) < V ;

• λ ≤ min {ρ/2, δ}.

Because R is a finite set, there is a time t0 at which, for every r ∈ R,

dist(r(Last(r, t0)), LIM(r)) < λ/3.

By definition of λ, if dist(LIM(r), LIM(s)) < V , then dist(r(t), s(t)) < V for all t ≥ t0. On
the other hand, if AW(r(t), s(t)) for some t ≥ t0, then in particular dist(r(t), s(t)) ≤ V − ρ/2,
and therefore dist(LIM(r), LIM(s)) < V .

Let us choose t1 > t0 such that every robot in R executes at least one complete cycle
between t0 and t1 (i.e., from a Look phase to the next). We further assume that, for every
r ∈ R, if r(t0).x < LIM(r).x (resp. r(t0).y < LIM(r).y), then in at least one such cycle (i.e.,

20

executed between t0 and t1) r moves strictly rightward (resp. upward). Note that we can
make this assumption because LIM(r).x must be approached indefinitely by r.x, and therefore,
if r(t0).x < LIM(r).x, then r must make a rightward move at some point after t0 (and similarly
for y-coordinates and upward moves).

Let a be the lowest among the leftmost convergence points of the robots in R, and let A ⊂ R
be the set of robots that converge towards a.

Suppose first that there exists some robot s ∈ R\A converging to b 6= a, such that dist(a, b) <
V and b.x > a.x. Let r be any rightmost robot of A at time t1. As observed three paragraphs
above, r and s can see each other at any time since t0.

a

b

)∗t(r

s

(a)

a

b
′s

)∗t(′′r

(b)

)∗t(′′r

b
′s

(c)

Figure 8: Proof of Lemma 5. In (a), b lies strictly to the right of a. In (b), a.x = b.x and
r′′(t1).y < a.y. In (c), a.x = b.x and r′′(t1).y = a.y.

If r.x < a.x then, by construction, there exists a time t∗ ∈ [t0, t1] at which r performs a
Look phase, such that r(t∗).x < DP(r, t∗).x and r(First(r, t∗)).x = r(t1).x (see Figure 8(a)).
According to the algorithm (specifically, by Rule 2 of Section 3.2), if r is able to compute such a
destination point, it means that no robot of A lies in Q2(r) at time t∗. Therefore, by definition
of λ and by construction, every robot in Q2(r, t

∗) has an x-coordinate that is greater than
a.x + 2λ/3. Because s(t∗).x > a.x + 2λ/3 as well, it follows that DP(r, t∗).x > r(t∗).x + λ/3
(observe that no robot in Q1(r, t

∗) can prevent r from moving rightward by at least ρ/4 > λ/3,
due to Proposition 1). Additionally, λ/3 < δ, hence r actually moves by more than λ/3. But
r(t∗).x+ λ/3 > a.x, contradicting the fact that r.x monotonically converges to a.x.

Otherwise, r.x = a.x holds. Then, let t∗ = First(r, t1). At time t∗, r sees no robot q with
r(t∗).x < q(t∗).x ≤ r(t∗).x + 2λ/3. Moreover, r sees s, and s(t∗).x > r(t∗).x + 2λ/3. Hence,
DP(r, t∗) has distance greater than λ/3 from r(t∗), and r actually moves rightward or upward
by more than λ/3 < δ. When r is done moving, either r.x > a.x or r.y > a.y, contradicting the
fact that LIM(r) = a.

Suppose now that there is no limit point b 6= a such that dist(a, b) < V and b.x > a.x. By
Corollary 2, G̃(t0) is connected, hence there exist robots r′ ∈ A and s′ ∈ R\A that are mutually
aware at time t0 (and also at any time t ≥ t0, by Lemma 3). Let b = LIM(s′). Then, either
dist(a, b) ≥ V or a.x = b.x (recall that a is a leftmost convergence point). However, observe
that if dist(a, b) ≥ V , then r′ and s′ cannot be mutually aware at any time t ≥ t0, because
dist(r′(t), s′(t)) > V − ρ/2. Therefore, a.x = b.x and a.y < b.y < a.y + V .

Let r′′ be any topmost robot of A at time t1. By Corollary 3, r′ sees s′ at any time t ≥ t0.
Then, by definition of λ and t0, also r′′ sees s′ at any time t ≥ t0.

21

Suppose first that r′′(t1).y < a.y (see Figure 8(b)). By definition of t1, there exists a
time t∗ ∈ [t0, t1] at which r′′ performs a Look phase, such that r′′(t∗).y < DP(r′′, t∗).y and
r′′(First(r′′, t∗)).y = r′′(t1).y. According to the algorithm (specifically, by Rule 2 of Section 3.2),
if r′′ is able to compute such a destination point, it means that no robot ofA lies in Q1(r

′′) at time
t∗. Therefore, by definition of λ and by construction, every robot in Q1(r

′′, t∗) has a y-coordinate
that is greater than a.y + 2λ/3. On the other hand, r′′ sees no robot q with q(t∗).y < r′′(t∗).y
and dist(r′′(t∗), q(t∗)) ≤ V − ρ/2, hence r′′ is able to move upward by more than λ/3. But
indeed, r′′ does see s′, and s′(t∗).y > a.y+2λ/3, hence DP(r′′, t∗).y > r′′(t∗).y+λ/3. Once again,
this contradicts the fact that LIM(r′′) = a.

Finally, suppose that r′′(t1).y = a.y (see Figure 8(c)), and let t∗ = First(r′′, t1). At time
t∗, r′′ sees no robot q in Q1(r

′′, t∗) with r′′(t∗).y < q(t∗).y ≤ r′(t∗).y + 2λ/3. Similarly to the
previous paragraph’s case, no robot below r′′ can prevent r′′ from moving upward, and the
presence of s′ makes r′′ compute a destination point that is more than λ/3 < δ away from r′′.
Thus, r′′ moves either upward of rightward by more than λ/3, which is in contradiction with
the fact that LIM(r′′) = a.

To prove that termination is correctly detected, we need one last lemma.

Lemma 6. A robot r terminates its execution at time t only if it sees all the robots in R at
time Last(r, t).

Proof. Let r terminate its execution at time t, and let Z be the set of robots that are at distance
at most ε′ from r at time t′ = Last(r, t). Note that Z is not empty, because r ∈ Z. Because r
terminates, it follows that every robot in R \ Z has distance greater than V from r at time t′.

Assume for a contradiction that R\Z is not empty. By Corollary 3, G(t′) is connected, and
therefore there are a robot s ∈ Z and a robot s′ ∈ R \ Z such that dist(s(t′), s′(t′)) ≤ V − ρ/2.
Since dist(s′(t′), r(t′)) > V , then dist(s(t′), r(t′)) > ρ/2, by the triangle inequality. But s ∈ Z,
hence dist(s(t′), r(t′)) ≤ ε′ ≤ ρ/2, which yields a contradiction.

By putting together all the previous results, we obtain the following.

Theorem 4. The algorithm in Figure 2 correctly solves the Near-Gathering problem under
Assumption 1.

Proof. Assume for a contradiction that no robot ever terminates its execution. Due to Lemma 5,
all the robots converge to the same point `. Therefore, when all the robots are contained in a
square Q with diagonal length ε′ and upper-right vertex `, they all see each other at distance not
greater than ε′. From this time onward, whenever a robot executes a Look and then a Compute
phase, it terminates, contradicting our assumption.

Hence, at least one robot r will terminate its execution at some point in time t > 0. Due
to Lemma 6, r sees all the robots in R at time t′ = Last(r, t). This means that, at time t′, all
the robots are within distance ε′ from each other. Due to Observation 2 and Lemma 5, at any
time t′′ ≥ t′, all the robots are contained in a square Q with diagonal length ε′ and upper-right
vertex `. Then, by the same reasoning used in the previous paragraph, we conclude that every
robot eventually terminates its execution while lying in Q.

By Lemma 4, no two robots ever collide, and hence they correctly solve Near-Gathering.

22

5 Conclusions

In this paper we presented the first algorithm that solves the Near-Gathering problem using
the standard Euclidean distance (in contrast with [18]) for a set of autonomous mobile robots
with limited visibility. The protocol presented here is collision-free and handles termination:
this allows to potentially combine our protocol with solutions to other problems designed for
the unlimited visibility setting. This is achieved without assuming that the total number of
robots in the system is known to the robots themselves, and without allowing them to explicitly
communicate.

We remark that our algorithm can be easily modified to solve the Near-Gathering problem
in the robot models that use any p-norm distance as opposed to the Euclidean distance, including
the infinity norm distance.

Moreover, our algorithm is perfectly symmetric with respect to the x- and y-axes. This
implies that our solution works also when the robots agree only on the direction of one of the
two axes, say, the y-axis, and not necessarily on the orientation of the other axis.

Corollary 5. The Near-Gathering problem is solvable under Assumption 1 even if the robots
agree only on the direction of one of the two axes.

Proof. Suppose without loss of generality that the robots agree on the y-axis. Then, the following
algorithm is employed: the input snapshot is first rotated clockwise by 45◦, then the algorithm
in Figure 2 is applied to the resulting snapshot, and finally the computed destination point dp
is rotated counterclockwise by 45◦.

Indeed, the two rotations effectively tilt the coordinate systems of all robots, in such a way
that their y-axes become actually parallel to the line y = x in the “global” coordinate system.
This is equivalent to having the robots agree only on the positive direction of the line y = x,
but allowing them to disagree on which is the x-axis and which is the y-axis. The algorithm
in Figure 2 still works because, due to Observation 4, it is symmetric with respect to x- and
y-coordinates.

Therefore, under Assumption 1, the Near-Gathering protocol can also be used to solve
the classical gathering problem in the limited visibility scenario, when the robots have only this
form of partial agreement on their local coordination systems, thus improving on [12], which
requires total agreement on both axes and does not avoid collisions. Indeed, it is sufficient to
convert the termination command in the algorithm in Figure 2 with a move to point `, as defined
in Section 4.4.

We conjecture that no algorithm can solve Near-Gathering with no agreement on at least
one axis, and we leave this as an open problem. Another direction for future research would
be to solve Near-Gathering from any initial configuration in which the distance graph is
connected, with no further assumption on the initial strong distance graph (cf. Assumption 1).
Again, we conjecture this problem to be unsolvable in Async; note that in this case some extra
assumption is required, for instance that the total number of robots is known, or that robots are
able to communicate. Finally, the more general model in which robots do not necessarily have
the same visibility radius, and hence do not share a common unit distance, should be considered
in conjunction with both the gathering problem and Near-Gathering.

Acknowledgments

We would like to thank Paola Flocchini, Nicola Santoro, and Peter Widmayer, who contributed
to the writing of this paper by sharing their ideas. We also thank the anonymous reviewers for

23

precious comments that helped us improve the readability of this paper.

References

[1] C. Agathangelou, C. Georgiou, and M. Mavronicolas. A distributed algorithm for gathering
many fat mobile robots in the plane. In Proceedings of the 32nd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 250–259, 2013.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A distributed memoryless point conver-
gence algorithm for mobile robots with limited visibility. IEEE Transaction on Robotics
and Automation, 15(5):818–828, 1999.

[3] M. Cieliebak. Gathering non-oblivious mobile robots. In 6th Latin American Conference
on Theoretical Informatics (LATIN), LNCS 2976, pages 577–588, 2004.

[4] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithms in asyn-
chronous robots systems. SIAM Journal on Computing, 34(6):1516–1528, 2005.

[5] A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann, B. Kempkes, A. Klaas, P. Kling,
S. Kurras, M. Märtens, F. Meyer auf der Heide, C. Raupach, K. Swierkot, D. Warner,
C. Weddemann, and D. Wonisch. Collision-less gathering of robots with an extent. In
Proceedings of the 37th International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), pages 178–189, 2011.

[6] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few fat mobile robots in the plane.
Theoretical Computer Science, 410(6–7):481–499, 2009.

[7] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power of lights: syn-
chronizing asynchronoys robots using visibile bits. In Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pages 506–515, 2012.

[8] X. Défago and S. Souissi. Non-uniform circle formation algorithm for oblivious mobile robots
with convergence toward uniformity. Theoretical Computer Science, 396(1–3):97–112, 2008.

[9] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle formation of weak mobile robots.
ACM Transactions on Autonomous and Adaptive Systems, 3(4), 2008.

[10] Y. Dieudonné, F. Petit, and V. Villain. Leader election problem versus pattern formation
problem. In Proceedings of the 24th International Symposium on Distributed Computing
(DISC), LNCS 6343, pages 267–281, 2010.

[11] A. Efrima and D. Peleg. Distributed models and algorithms for mobile robot systems. In
Proceedings of the 33rd International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), LNCS 4362, pages 70–87, 2007.

[12] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of robots with limited
visibility. Theoretical Computer Science, 337(1–3):147–168, 2005.

[13] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous oblivious robots. Theoretical Computer Science, 407(1–3):412–447, 2008.

[14] A. Ganguli, J. Cortés, and F. Bullo. Multirobot rendezvous with visibility sensors in non-
convex environments. IEEE Transactions on Robotics, 25(2):340–352, 2009.

24

[15] T. Izumi, T. Izumi, S. Kamei, and F. Ooshita. Feasibility of polynomial-time random-
ized gathering for oblivious mobile robots. IEEE Transactions on Parallel and Distributed
Systems, 24(4):716–723, 2013.

[16] B. Katreniak. Convergence with limited visibility by asynchronous mobile robots. In Pro-
ceedings of the 18th International Colloquium on Structural Information and Communica-
tion Complexity (SIROCCO), pages 125–137, 2011.

[17] J. Lin, A.S. Morse, and B.D.O. Anderson. The multi-agent rendezvous problem—part
2: The asynchronous case. SIAM Journal on Control and Optimization, 46(6):2120–2147,
2007.

[18] L. Pagli, G. Prencipe, and G. Viglietta. Getting close without touching. In Proceedings of the
19th Colloquium on Structural Information and Communication Complexity (SIROCCO),
LNCS 7355, pages 315–326, 2012.

[19] D. Peleg. Distributed coordination algorithms for mobile robot swarms: New directions
and challenges. In Proceedings of the 7th International Workshop on Distributed Computing
(IWDC), LNCS 3741, pages 1–12, 2005.

[20] S. Souissi, X. Défago, and M. Yamashita. Using eventually consistent compasses to gather
memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and
Adaptive Systems, 4(1):1–27, 2009.

[21] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation of geometric
patterns. Siam Journal on Computing, 28(4):1347–1363, 1999.

[22] M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science, 411(26–28):2433–2453, 2010.

25

	1 Introduction
	2 The Model
	2.1 Notation and Assumptions

	3 The Near-Gathering Problem and Its Solution
	3.1 Previous Solutions to Related Problems
	3.2 Solving the Near-Gathering Problem

	4 Correctness
	4.1 Preliminary Definitions and Observations
	4.2 Preservation of Mutual Awareness
	4.3 Collision Avoidance
	4.4 Convergence and Termination

	5 Conclusions

