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Breathe before Speaking:
Efficient Information Dissemination

despite Noisy, Limited and Anonymous Communication

Ofer Feinerman∗ Bernhard Haeupler† Amos Korman‡

Abstract

Distributed computing models typically assume reliable communication between processors. While
such assumptions often hold for engineered networks, e.g.,due to underlying error correction protocols,
their relevance to biological systems, wherein messages are often distorted before reaching their destina-
tion, is quite limited. In this study we take a first step towards reducing this gap by rigorously analyzing
a model of communication in large anonymous populations composed of simple agents which interact
through short and highly unreliable messages.

We focus on the broadcast problem and the majority-consensus problem. Both are fundamental
information dissemination problems in distributed computing, in which the goal of agents is to con-
verge to some prescribed desired opinion. We initiate the study of these problems in the presence of
communication noise. Our model for communication is extremely weak and follows the push gossip
communication paradigm: In each round each agent that wishes to send information delivers a message
to a random anonymous agent. This communication is further restricted to contain only one bit (essen-
tially representing an opinion). Lastly, the system is assumed to be so noisy that the bit in each message
sent is flipped independently with probability1/2− ǫ, for some smallǫ > 0.

Even in this severely restricted, stochastic and noisy setting we give natural protocols that solve the
noisy broadcast and the noisy majority-consensus problemsefficiently. Our protocols run inO(log n/ǫ2)
rounds and useO(n log n/ǫ2) messages/bits in total, wheren is the number of agents. These bounds are
asymptotically optimal and, in fact, are as fast and messageefficient as if each agent would have been
simultaneously informed directly by an agent that knows theprescribed desired opinion. Our efficient,
robust, and simple algorithms suggest balancing between silence and transmission, synchronization,
and majority-based decisions as important ingredients towards understanding collective communication
schemes in anonymous and noisy populations.
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1 Introduction

1.1 Background and motivation

Information theory originated as a search for methods to manage communication noise in engineered sys-
tems [57]. In many ways, this search has reached its goals. The existence of coding methods that reduce
error rates to practically zero were proven to exist [57]. Not less important, such codes have been realized
in a myriad of real-world systems [51]. In other words, givena large enough bandwidth, one can encode a
message with a large number of error correcting bits in a way that makes communication noise essentially a
non-issue. It is perhaps for this reason that fault-tolerance studies in distributed computing have somewhat
neglected the issue of noise in communication. Indeed, suchstudies focus either on weak faults such as node
crashesand messagefailures, or on very strong faults modeled as adversarial (Byzantine) interventions, but
messages that are transmitted from one processor are, typically, assumed to reach their destination without
distortion.

In contrast, communication in the natural world is inherently noisy. Biology, for one, is replete with
communicating ensembles on all levels of organization: from molecules (e.g., the immune complement sys-
tem [15]), and cells (e.g., bacterial populations [8]) to societies (e.g., a superorganism of social insects [61]).
Whereas it is unrealistic to assume adversarial interventions, biological signals are extremely vulnerable to
random distortion as they are being generated (e.g., probabilistic vesicle release in neuronal synapses [3]),
transmitted over noisy media (e.g., acoustic communication in noisy environments [14]) and received (e.g.,
non-reliable measurements taken by immune cells [29].) Nevertheless, many studies show that, in practice,
biological ensembles function reliably despite communication noise [26,55].

How biological systems overcome communication noise is a very basic and intriguing question. Indeed,
for systems composed of simple and restricted individuals,as is often the case in biology, it may not be
reasonable to assume sophisticated error-correcting at the level of an individual channel. Furthermore,
when message size is highly restricted, redundancy drastically reduces the available alphabet and hence
could not be used extensively. On the other hand, with only little redundancy, a random fault in the content
of a transmitted message may lead to the reception of a meaningful message that is inconsistent with the
original one [45].

Our work is a first attempt to rigorously study the impact of communication noise on performing dis-
tributed information dissemination tasks1. We consider a basic and simple model of interaction between
agents. In the absence of noise in communication, the information dissemination problems discussed here
are well understood, and in particular, the broadcast problem can be trivially solved. It turns out, however,
that adding noise to the communication, even in a very simpleform (e.g., noise is chosen from some given
simple distribution and is independent between messages),significantly complicates the situation. Indeed,
our main efforts in this paper are devoted to understand the difficulties incurred by adding the noise.

At this point, we would like to stress that although our modelis inspired by biological systems, we do
not claim that it fully represents any particular biological system. Rather, the model we consider is highly
abstract, aiming to capture a fundamental phenomena that (very loosely) relates to many biological systems.
We believe, however, that the results of this preliminary paper can be useful for further research, that will
focus on more concrete biological settings.

1Network information theory [32] discusses the problem of disseminating information from one or more sources to a large
number of recipients over noisy information channels. The settings there are, however, different from those that interest us as they
are non-distributed in nature and allow for complex coding schemes that may be computationally complex for simple agents [44].
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1.2 Context and related work

Our paper falls within the scope of natural algorithms, a recent attempt to investigate biological phenomena
from an algorithmic perspective [1, 12, 17, 27, 28, 46]. Within this framework, many works in the computer
science discipline have studied different computational aspects of abstract systems composed of simple and
restricted individuals. This includes, in particular, thestudy ofpopulation protocols[4, 5, 7, 10, 47], which
considers individuals with constant memory size interacting in pairs (using constant size messages) in a
communication pattern which is either uniformly at random or adversarial, and thebeepingmodel [1,2,25],
which assumes a fixed network with extremely restricted communication. However, despite interesting
results obtained in such models, the understanding of theirfault-tolerance aspects is still lacking [5, 10].
Here, we study basic distributed tasks in a model that includes highly restrictedandnoisy communication.

Broadcast and majority-consensus problems. Disseminating information to all the nodes of a network
is one of the most fundamental communication primitives. Inparticular, thebroadcastproblem, where
a single piece of information initially residing at some source node is to be disseminated, and variants
of it have received a lot of attention in the literature, see,e.g., [16, 19, 23, 30, 33–37, 39, 43]. Much of this
research was devoted to bounding measures such as the numberof rounds, and the total number of messages.
Fault tolerant broadcast algorithms have also been studiedextensively, especially in complete networks and
in synchronous environments, where the focus has been on weak types of failures such as (probabilistic)
message failures and initial node crashes. Essentially, ithas been shown that there exist broadcast protocols
that can overcome such faults with a relatively little penalty [21,23,24,35,38,39,43,60].

In the majority-consensusproblem processors are required to agree on a common output value which
is the majority initial input value [6, 9]. While we look at a generalized version of this problem where
only a subsetA may hold an opinion initially, most previous works considered the case that all nodes
have an initial opinion. Furthermore, similarly to this current work, many previous papers also considered
clique networks, where agents contact other agents uniformly at random. For example, the task of majority-
consensus was studied in a clique network by Angluin et al. [6]. The authors therein gave an algorithm
that uses only three states and converges inO(log n) rounds. That algorithm is robust under a very small
fraction of agents being Byzantine, but is not robust under communication noise. We note that for our
purposes, we could not use variants of the algorithm in [6] because it inherently usesthreesymbols in the
communication, while we are restricted to onlytwosymbols (a single opinion). On the other hand, similarly
to the method we use in Stage II of our algorithm, several other papers have solved the majority-consensus
based on repeatedly sampling the opinions of few other agents and re-setting the opinion of the observing
agent according to the majority of these samples [11, 18, 22]. For example, Doerr et al. [22] considered the
algorithm where each agent repeatedly samples the opinionsof two other agents uniformly at random then
taking the majority over its own and the two sampled opinions(three opinions in total). They show that this
algorithm converges with high probability to the majority initial opinion inO(log n) rounds, provided that
at least a1/2 + Ω(

√

log n/n) fraction of the agents agree initially.

It is important to stress that in the theoretical distributed computing discipline, none of the works on
broadcast and consensus related problems have considered noise in the communication.

Related work in engineering and physics. Broadcast related problems were studied in other contexts as
well, often with settings where communication noise is inherent. Engineers have studied the related problem
of sensor network consensus formation in the presence of communication noise and have demonstrated, for
example, tradeoffs between consensus quality and running time [42]. Physicists have studied the spreading
of epidemics [48] and the formation of consensus around a zealot in voter models [49, 50] within prob-
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abilistic settings that include communication noise. These physically inspired studies often assume very
simple algorithms and analyze their performance - this is different from a computer science approach which
focuses on identifying the most efficient algorithms. Indeed, broadcast within a noisy voter model setting is
expected to yield long convergence times, polynomial in thenumber of agents.

Examples in biology. In the biological world, broadcast is a common phenomenon which allows, for
example, a single receptor to activate an entire cell [59], asmall number of cells to trigger large population
responses [26], or a small number of vigilant individuals toalert their herd [56]. There have been several
direct experimental demonstrations of reliable broadcastusing unreliable messaging in biological systems.
Examples include knowledgeable ants informing their nestmates regarding available food [55] and precise
temporal codes achieved by coordinated neuronal populations [40]. Such examples serve as motivation for
a more thorough theoretical understanding of how rumors spread through groups of simple individuals that
communicate by noisy messages. Majority-consensus problems have also been shown to be relevant for
several biological systems: Ants choosing between two alternative nesting sites and reach consensus on a
nest that attracts a larger number of scouts [31] and a group of fish that reach consensus around the larger
group of leaders [58] being two examples.

1.3 Model and problems

1.3.1 Problem definitions

As a first step into the study of noisy information dissemination, we study a very simple scenario in which
there are only two possible states (oropinions) for the environment, namely,0 and1, one of which is the
correctopinion, denoted byB. We study two information dissemination problems both of which consist of
n anonymousagents.

The noisy broadcast problem. In this problem we start the execution with one designated agent, called
the source(representing the environment) that holds the correct opinion B, while all othern − 1 agents
initially have no information regardingB. Agents can propagate information and update their knowledge by
using (noisy) interactions as specified below. The goal is that eventually,with high probability, all agents
adoptB as their final opinion. Throughout we denote with high probability any probability of at least
1− 1/nc, for some sufficiently large constantc > 2.

The noisy majority-consensus problem. In this problem we consider that initially we have a subsetA
of agents, each of which has an opinion in{0, 1} (all other agents do not have an opinion), whereB is the
majority opinion among the agents inA. The problem is parameterized by the extent to whichB is more
common. That is, themajority-biasof A is defined as12(AB − AB̄)/|A|, whereAi is the number of agents
in the initial opinionated group,A, with opinion i, for i ∈ {0, 1}. As in the noisy broadcast problem, the
goal of the agents is to guarantee that with high probability, at the end of the execution, all agents hold the
opinionB.

1.3.2 TheFlip model of communication

We assume asynchronoussetting, in which all agents start the execution simultaneously and communication
takes place in discrete rounds [53]. As mentioned, agents can use their (noisy) interactions to inform and
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update their opinion. In each round, each agent can choose towait, i.e, do nothing, or tosenda message.

The interaction pattern we study follows the standardpushgossip model [19, 43, 54], where in each
round each agent that chooses to send a message sends this message to another agent, chosen uniformly at
random, without sender or receiver learning about each other’s identity. If an agent receives several messages
at the same round, it can only accept one of them (chosen uniformly at random), and all other messages are
dropped. The message size is extremely restricted, specifically, each message sent consists of a single bit
essentially encoding an opinion. Letǫ > 0 be a parameter of the Flip model. All messages are subject to
noise, specifically, for each message sent by an agent, upon receiving it, the bit in the message isflipped
independently with probability at most1/2− ǫ.

1.3.3 Synchronization

Each agent is equipped with a clock that enables it to count rounds. In the standard model, the clock at
an agent is initialized to 0 when the agent is activated (an agent is activated when it receives a message
for the first time). We also consider thefully-synchronoussetting in which all agents start the execution
simultaneously at the same time, or in other words, they all use the sameglobal clock, initialized to 0 at the
beginning of the execution.

1.3.4 Symmetric algorithms

We view the two possible opinions{0, 1} as abstract symmetric opinions that cannot affect any decision
made by individual agents, except for which message to transmit2. Accordingly, we consider onlysymmetric
algorithms, in which the choices of individuals of whether or not to send a message at a given time are
oblivious of the value ofB. That is, when fixing all random bits involved in an execution, the message-
pattern (i.e., who sends who and at what time) in symmetric algorithms is the same regardless of whetherB
equals 1 or 0.

1.4 Lower bounds

The restriction of the symmetric noisy broadcast problem (or the majority-consensus problem) to two parties
is, in some sense, classical for the area of information theory. Here, a source agenta wishes to deliver its bit
opinionB to the second agentb through a binary symmetric channel with crossover probability p = 1/2− ǫ.
The seminal result by Shannon [57] implies that using the channel Θ(1/ǫ2) times is both necessary and
sufficient, for allowingb to possess the opinionB with sufficiently high constant probability. This imme-
diately implies aΘ(1/ǫ2) bound for the number of rounds needed for the same confidence guarantee in
the two-party noisy broadcast problem, since each message here contains precisely one bit. When it comes
to a population ofn agents, the goal is to have each agent possess the opinionB with high probability (at
least1 − 1/nc). In this case, each agent would individually need to obtainΩ( 1

ǫ2
log n) messages, even if

all messages would come directly from the source node. Thesebounds immediately imply a lower bound
of Ω( 1

ǫ2
n log n) on the total bit complexity and hence also on the total numberof messages sent. Moreover,

since we assume that an agent can handle at most one message ata time, we get thatΩ( 1
ǫ2 log n) is also a

lower bound on the number of rounds. All these bounds apply even if all messages would be as informative

2One could view this trait as a consequence of a symmetry of theworld, in which an agent can decide if two opinions are the
same or not but has no access to their actual values. For example, a flock of birds following a source (e.g., a bird that has spotted a
predator) that travels either north or south can do this evenin an environment where there is complete symmetry between these two
directions. The only demand is that the escape direction of all birds agree with that of the source.
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as those originated directly by the source agent. Hence, they apply in much stronger models of communi-
cation, such as ones that allow an agent to send messages to multiple destinations at the same round, and
ones that consider non-anonymous populations, where an agent could direct a message to a desired des-
tination. Note that the same arguments hold also for the noisy majority-consensus problem if the initial
subsetA of agents is small. On the other hand, without interacting with other agents and simply waiting to
receive sufficiently many samples from the source agent, thenoisy broadcast problem could only be solved
in O( 1

ǫ2
n log n) rounds.

1.5 Our results

Our main result, presented in Section 2, considers the fully-synchronous setting, where it is assumed that
agents start their operation simultaneously at the same time. For this setting we present a randomized
symmetric algorithm that solves the noisy broadcast problem in O( 1

ǫ2 log n) rounds and uses a total of
O( 1

ǫ2
n log n) messages (or bits). These bounds are both asymptotically optimal and, in fact, are as fast and

message efficient as if each agent would have been simultaneously informed by the source directly. We also
show that the same asymptotically tight bounds (for the running time and message complexity) hold also for
solving the noisy majority-consensus problem with any initial subsetA of agents of size|A| = Ω( 1

ǫ2
log n)

and whose majority-bias isΩ(
√

log n/|A|).
In Section 3 we show how to remove the global-clock assumption. This modification applies to both

algorithms and comes at an additive cost ofO(log2 n) to the running time, while the message complexity
remains the same.

Our results imply that even in severely restricted, stochastic and noisy settings one can still solve the
noisy broadcast and the noisy majority-consensus problemsefficiently by applying simple protocols. In-
deed, our basic algorithms employ very simple rules that canbe implemented using restricted memory,
specifically, usingO(log log n + log(1/ǫ)) memory bits. Essentially, each agent has some waiting period
(in which it does not send any message), and after which it starts sending its current opinion at each round
until the protocol terminates. Furthermore, its opinion isoccasionally updated following a majority-type
procedure based on its recently received messages.

1.6 Insights on the difficulty of the problem

Before we describe our algorithms, let us first highlight some of the complex features of the noisy broadcast
problem (the same difficulties arise also in the noisy majority-consensus problem). Consider an agenta that
receives its first message. This agent now has several options for its actions. One option is to keep silent
(wait) until receiving another message. This strategy would result in an algorithm that requires huge amount
of time. Indeed, the first agent that hears two messages must hear both of them from the source (since all
other agents are silent), and this would require waiting forΩ(

√
n) rounds, by the birthday paradox. Another

possible action for such an agent is to immediately forward the message it just received to others. This
strategy would result in the typical agent hearing a very unreliable message for the first time. That is, the
number of intermediate agents on the path between the sourceand the typical agent would be roughlylog n.
Now, each time the message passes from an agent to an agent, the probability of preserving the original
opinion drastically reduces. Specifically, it is not difficult to show that a message following a path of sizec
is correct with probability at most1/2 + (2ǫ)c. This means that ifǫ is small, the probability that a typical
agent receives the correct opinion on the first message it hears is at most1/2 + 1/n. If this is the case with
all agents, it seems, again, almost impossible to recover and reconstruct the correct opinionB.
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Another difficulty in the strategy of immediately forwarding messages, is that the execution seems to be
dependent on the quality of the first messages to be received directly from the source, and these messages
can be corrupted with non-negligible probability. Indeed,in the beginning of the execution, the pattern of
meeting looks like a tree, rooted at the source agent. Moreover, the collection of subtrees hanging down
from the children of the root (the agents directly informed by the source agent) do not have the same size,
as the subtrees hanging down from the first informed childrenof the root grow much faster and dominate
the population. Hence, the initial opinion of agents could not be more reliable than the initial opinions of
the roots of the corresponding subtrees. At this point, withnon-negligible probability, the majority of agents
would have obtained the wrong opinion, from which it seems again almost impossible to recover.

To overcome these difficulties, we use a third option for the behavior of an agent, allowing it to wait
for a prescribed number of rounds before sending a message. For doing so, we rely on synchronization,
which we use to balance the sizes of the aforementioned subtrees and, therefore, constrain the deterioration
of reliability.

1.7 Chernoff’s inequalities

The analysis of our algorithms relies on an extensive use of Chernoff’s bounds. For completeness, we
remind the reader of these equalities.

Let X1, · · · ,Xn be independent random variables taking values in{0, 1}. Let X =
∑n

i=1 Xi denote
their sum, and letE(X) denote the expected value ofX. Then, for any0 < δ < 1, we have the following
bounds.

Pr(X ≥ (1 + δ)E(X)) ≤ e−
δ2E(X)

3 (1)

Pr(X ≤ (1− δ)E(X)) ≤ e−
δ2E(X)

2 (2)

Negatively-correlated random variables. In some cases, the aforementioned Chernoff’s inequalities
hold also if the random variables are negatively associated. In particular, sampling from a larger set without
replacement leads to negatively associated random variables for which Chernoff’s bounds continue to hold.
For this and related basic results on negative association see [20, 41]. Since we will only be dealing with
Bernoulli variables we can alternatively use a slightly weaker but simpler notion from [52] which defines
random Bernoulli variablesX1, · · · ,Xn asnegatively1-correlatedor simply negatively-correlatedif for
every subsetI ⊆ {1, 2, · · · , k}, we have:

Pr

(

∧

i∈I
Xi = 1

)

≤ Πi∈I Pr(Xi = 1),

Pr

(

∧

i∈I
Xi = 0

)

≥ Πi∈I Pr(Xi = 0).

Panconesi and Srinivasan showed in [52] that this conditionholds when sampling without replacement
and furthermore proved that Chernoff’s inequalities mentioned in Equations 1 and 2 continue to hold for
negatively-correlated Bernoulli variables.
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2 Algorithms for the fully-synchronous setting

In this section we assume that all agents start the algorithmwith their clocks set to zero. In Section 3 we
show how to remove this global-clock assumption at some additive cost in the running time.

The interesting cases are whenǫ is a small constant, but we allow it to be much smaller. Specifically,
let ǫ > 1/n1/2−η , for some arbitrarily small constantη > 0. We present symmetric and simple random-
ized algorithms that solve the noisy broadcast and the majority-consensus problems. The running times
and message complexities of both algorithms are asymptotically optimal, that is, they both terminate after
O( 1

ǫ2
log n) rounds and use a total ofO( 1

ǫ2
n log n) messages.

Although our algorithms are simple, their analysis is quiteinvolved. Most of the technical ideas in
this paper are used for the analysis of our noisy broadcast algorithm, hence we focus on this algorithm.
The algorithm consists of two stages. The first stage of the algorithm is intended toactivateall agents (an
agent is considered as activated upon receiving its first message), and to make sure that overall, the average
initial opinion of activated agents has some non-negligible bias towards the correct opinion. Stage II of the
algorithm is meant to boost the bias using repeated samplings until consensus is reached.

2.1 Stage I: Spreading the information

Our goal in the first stage of the algorithm is to quickly alloweach agents to set an opinion, so that the
fraction of correct agents is at least1/2 + Ω(

√

log n/n). Then the second stage will be employed to boost
this bias using more standard techniques of repeatedly taking majority.

2.1.1 Intuition

In order to spread the correct opinionB while controlling the deterioration of the average bias of informed
agents towardsB, the first idea we employ is to delay propagation of messages,and synchronize them, by
grouping the time slots intophases. That is, we propagate the information in layers, forming a tree, whose
root is the source agent S (layer 0). To control the reliability deterioration of the messages, we synchronize
the phases so that all activated agents broadcast in a phase at the same time. In particular, in the first phase,
called phase 0, only the source agent transmits messages (all non-source agents are waiting). Recall that
every such message is correct with probability at least1/2 + ǫ. Phase 0 lasts forβs := Θ( 1

ǫ2
log n) rounds,

and is meant to allow the source agent to directly inform sufficiently many agents, and guarantee that with
high probability the bias towardsB of the opinions that these agents have heard is bounded away from
zero, specifically, the bias is at leastǫ/2. Note that at this point, we are left with solving the noisy majority-
consensus problem with an initial setA of agents of sizeΘ( 1

ǫ2
log n) whose majority-bias isΩ(

√

log n/|A|).
The general description of our algorithm in Stage I is as follows: any agent receiving a message in some

phasei (also including the casei = 0) keepssilent (waits, and does not send messages) until phasei is
completed and, at the end of the phase, it chooses uniformly at random an arbitrary message among the
messages it has received, and sets itsinitial opinion as the value of this message. Only after phasei is
completed, will such an agent send messages. That is, when the next phasei + 1 starts, each such agent
will start to send its initial opinion repeatedly in every round until the whole of Stage I is completed. Hence,
phasei is responsible for passing information between all the already activated agents (these are the agents
in layers0, 1, . . . i− 1) to the newly activated agents in phasei (forming layeri).

Because of the noise in the messages, the quality of information that propagates between layers dete-
riorates exponentially fast inǫ. Specifically, if the fraction of correct agents at layeri is some1/2 + δi,
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then the expected fraction of correct messages reaching agents at layeri + 1 is 1/2 + 2ǫδi. To guarantee
that this controlled level of deterioration holds w.h.p., as well as to account for this already problematic
phenomena, our phasing process makes sure that the number ofagents informed in the next layer increases
quadratically faster than the deterioration factor. That is, the number of newly informed agents increases by
a factor larger than1/ǫ2. Maintaining this property throughout all phases allows usto guarantee that when
x agents are activated (wherex is sufficiently large), then, w.h.p., the bias towards the correct opinion is
Ω(
√

log n/x). In particular, this implies that when alln agents are activated, the bias towards the correct
opinion isΩ(

√

log n/n).

2.1.2 Formal description of Stage I

Choose parametersf, β, s = Θ(1/ǫ2) such thatf > c1β > c2s > c3/ǫ
2, for sufficiently large constants

c1, c2, c3 > 0. Let βs = s log n, andβf = f log n. In addition, letT = ⌊log(n/2βs)/log(β + 1)⌋. Note
thatβs(β + 1)T ≤ n/2 and thatT = O( logn

log(1/ǫ)).

We group the rounds of Stage I intoT +2 phases, such that for each0 ≤ i ≤ T , phasei+1 immediately
follows phasei. Phase 0 takesβs rounds, phasei, for 1 ≤ i ≤ T , takesβ rounds, and phaseT + 1 takesβf
rounds. Formally, letting[x, y) denote the time period from roundx until roundy − 1, we have: phase0 =
[0, βs), for 1 ≤ i ≤ T, phasei = [βs + (i− 1)β, βs + iβ), and, phaseT + 1 = [βs + Tβ, βs + Tβ + βf ).

At a given time, a non-source agent is calledactivatedif it already heard a message by that time (the
source agent is always considered activated). A non-activated agent is calleddormant. For an agenta, let ta
denote the first timea was activated, and letia be the integeri for which ta belongs to phasei. An agenta
is at leveli if ia = i. In particular, the source is of level 0.

The rule of Stage I: Consider an activated agenta of level i. Agenta waits until phasei + 1 starts
before sending any message. During phasei it collects all messages it heard in the phase, chooses one of
them uniformly at random, and sets itsinitial opinion B0(a) to be the opinion it heard in that message.
The agent then sends its initial opinionB0(a) in each round during the phasesia+1, ia+2, · · · , T +1.
(In other words, Agenta waits until phaseia is completed and then it starts sending its initial opinion
repeatedly in every round until the end of Stage I.) An agent is calledinitially correct if the message it
heard for the first time is correct, i.e., ifB0(a) = B.

Remark 2.1. It may be the case that an agent activated in some phasei (especially for largei) receives
several messages throughout that phase. We have chosen to let the agent set its initial opinion according to a
message chosen uniformly at random among these messages. For the purposes of this current section, where
a global clock is assumed, all proofs would have carried out in the same manner, had we chosen instead,
to let the agent set its initial opinion according to the firstmessage it received. The reason for choosing a
random message is to guarantee that the order in which the agent receives its messages during any phase
does not influence the actions of this agent. This property will be more important in Section 3, which relaxes
the synchronization requirement.

Note first, that in particular, in phase 0, the source S is the only agent sending any messages. LetX0

be the number of agents activated at phase0. More generally, fori a non-negative integer defineXi as the
random variable indicating the number of agents that were activated at some time before the end of phasei.
LetYi denote the random variable indicating the number of agents that were activated during phasei. Hence,
we have:Xi =

∑i
j=0 Yj. LetZi denote the number of initially correct agents among theYi agents that were

activated during phasei and letǫi be such thatZi = (1/2 + ǫi)Yi. We callǫi the bias of phasei.
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Claim 2.2. By choosings > c/ǫ2 for a large enough constantc, it is guaranteed that at the end of phase 0,
w.h.p., we haveβs/3 ≤ X0 ≤ βs activated agents whose bias towards the correct opinionB is at leastǫ/2,
that is,ǫ0 ≥ ǫ/2.

Proof. Recall thatZ0 denotes the number of initially correct agents among theX0 = Y0 agents that were
activated during phase0 and letǫ0 be such thatZ0 = (1/2 + ǫ0)Y0. Our goal is to show thatǫ0 ≥ ǫ/2.

Recall that phase 0 lasts forβs = s log n rounds, and that until the phase is completed only the source
agent S is sending messages. Hence, during phase 0, there arealways at mostβs activated agents, and in
particular, at leastn/2 dormant agents. Hence, each message sent during phase 0 has probability at least
1/2 to activate an agent. The number of activated agents at the end of phase 0 is thus dominated byβs
independent Bernoulli(1/2) random variables and by Chernoff’s inequality, we can choose the parameters
(in the definition ofβs) to be a sufficiently large constant so that w.h.p., at the endof phase 0, we have at
leastβs/3 activated agents, that is,X0 = Y0 ≥ βs/3.

Let us now focus on the random faults occurring in the messages sent during phase 0. Each of theY0

activated agents chooses one message uniformly at random among the messages it heard (typically it only
heard one message anyways). The opinion received by this chosen message (and, in fact, by any message)
has probability at least1/2+ ǫ to be correct. Hence, the agent has probability at least1/2+ ǫ to be activated
with the correct opinionB. It follows that the expected number of agents that were activated with the
correct opinion during phase 0 is at least(1/2 + ǫ)Y0. In the terminology of Chernoff’s inequality (see
Equation 2), we haveE(X) ≥ (1/2+ ǫ)Y0. By takingδ = ǫ/2, we get that(1− δ)E(X) > (1/2+ ǫ/2)Y0.
According to Chernoff’s inequality, the probability that the expected number of agents that were activated
with the correct opinion during phase 0 is less than this amount, is at moste−δ2E(X)/2 = e−O(ǫ2Y0). Since
Y0 ≥ βs/3 = (s/3) log n, then for sufficiently larges ≫ 1/ǫ2 it follows that this probabilitye−O(ǫ2Y0) is
polynomially small. In other words, w.h.p., the numberZ0 of initially correct agents during phase 0 is at
least(1/2 + ǫ/2)Y0. This establishesǫ0 ≥ ǫ/2 and the proof of the claim.

Observe that by Claim 2.2, phase 0 essentially reduces the noisy broadcast problem to an instance of
the noisy majority-consensus problem, with an initial set of sizeX0 = Θ(βs) = Θ( 1

ǫ2
log n) and majority-

bias of at leastǫ/2 = Ω(
√

log n/|X0|). What we shall show is that in general, phases0, 1, . . . i, where
i ≤ T , take us to an instance of the noisy majority-consensus problem, with an initial setAi of size|Ai| =
Θ( 1

ǫ2i+2 log n) and majority-bias of at leastǫi+1/2 = Ω(
√

log n/|Ai|). ForT = ⌊log(n/2βs)/log(β + 1)⌋
this would lead to showing that w.h.p., afterT phases, the number of activated agents isΩ(ǫ2n) and the
fraction of initially correct agents is at least1/2 + Ω(

√

log n/(ǫ2n)). The last phase of the stage taking
βf ≫ log n/ǫ2 rounds would then lead to the following lemma summarizing the performances of Stage I.

Lemma 2.3. Stage I takesO( 1
ǫ2 log n) rounds. At the end of the stage the following eventE holds w.h.p:

1. All agents are activated.

2. The fraction of initially correct agents is at least1/2 + Ω(
√

log n/n).

The remainder of this subsection is devoted to the proof of Lemma 2.3. It is easy to verify that the number
of rounds in Stage I isβs + βT + βf = O( 1

ǫ2
log n). Our goal thus is to show that eventE mentioned in

the lemma holds with high probability. The proof considers asequence of eventsE1, E2, · · ·Eτ , for some
τ = O(log n), whereEτ = E. We will show that eventEi occurs w.h.p., givenEi−1. This would imply
thatE occurs w.h.p., by repeatedly invoking the standard argument |Pr(Ei+1 | Ei)−Pr(Ei+1)| ≤ Pr(Ēi).
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Recall that Claim 2.2 asserts that w.h.p., we haveβs/3 ≤ X0 ≤ βs andǫ0 ≥ ǫ/2. In what follows, we
assume that this highly likely event holds (see the paragraph above).

Analysis for phasei, where 1 ≤ i ≤ T : It is easy to see thatXi, the number of activated agents at the
end of phasei is at mostXi ≤ (β + 1)iX0 = O

(

1
ǫ2i+2 log n

)

. This follows trivially from the fact that
Xi = Xi−1 + Yi, and from the fact thatYi ≤ βXi−1 (because fori ≥ 1, phasei is composed ofβ rounds
and in each such round preciselyXi−1 messages are being sent). The following claim states that w.h.p., the
value ofXi is, in fact, very close to(β + 1)iX0. Establishing this claim will enable us to show that up to
phaseT , the valuesYi are increasing exponentially and that at the beginning of phaseT we already have
Ω(ǫ2n) activated agents. The proof of the following claim extensively uses concentration properties given
by Chernoff’s inequality:

Claim 2.4. W.h.p., for everyi, 1 ≤ i ≤ T , we have:(β + 1)iX0/16 ≤ Xi ≤ (β + 1)iX0.

Proof. As mentioned, with probability 1, we have:

Xi ≤ (β + 1)iX0. (3)

Hence, our goal is to prove the other part of the claim, namely, the lower bound(β + 1)iX0/16 ≤ Xi. This
statement trivially holds fori = 0. Hence, we shall prove the statement by induction oni, where the basis
of the induction is the trivial casei = 0. Fix an integeri ≥ 1 and assume by induction that the claim holds
for i− 1. Consider a roundr in phasei (where1 ≤ r ≤ β). Equation 3 implies that the number of dormant
agents in roundr − 1 of phasei is always at leastn − Xi ≥ n − (β + 1)iX0. Therefore, the probability
that a given message sent in roundr activates an agent is at least1 − (β + 1)iX0/n. Note that at roundr
of phasei (in fact, at any round of phasei), preciselyXi−1 messages are being sent. LettingAi,r denote
the number of agents that are activated in roundr of phasei, we thus have thatAi,r is dominated byXi−1

independent Bernoulli(1 − (β + 1)iX0/n) variables with an expected value of:

E(Ai,r) ≥
(

1− (β + 1)iX0/n
)

Xi−1. (4)

In particular, sincei ≤ T , and sinceβs(β+1)T ≤ n/2, we haveE(Ai,r) ≥ Xi−1/2. Furthermore, applying
Chernoff’s inequality, for anyδ > 0, we have:

Pr ((1− δ)E(Ai,r) ≤ Ai,r) ≥ 1− e−
δ2E(Ai,r)

2 = 1− e−Ω(δ2Xi−1).

By the induction hypothesis, we get thatXi−1 ≥ (β + 1)i−1X0/16 = Ω((β + 1)i−1 log n), w.h.p. Taking
δ = 1/2i, we thus get that:

Pr
(

(1− 1/2i)E(Ai,r) ≤ Ai,r

)

≥ 1− e−Ω((β+1)i−1 logn/22i).

Takingβ to be sufficiently large thus implies that, w.h.p., we have:
(

1− 1/2i
)

E(Ai,r) ≤ Ai,r. A union
bound over all roundsr in phasei then guarantees that, w.h.p:

(

1− 1/2i
)

β
∑

r=1

E(Ai,r) ≤
β
∑

r=1

Ai,r .

Using the bound from Equation 4 and observing thatYi =
∑β

r=1Ai,r, we get that w.h.p:

(

1− 1/2i
) (

1− (β + 1)iX0/n
)

· βXi−1 ≤ Yi . (5)
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SinceXi = Yi +Xi−1, we get that, w.h.p:

(

1− 1/2i
) (

1− (β + 1)iX0/n)
)

· (β + 1)Xi−1 ≤ Xi .

Hence,
(β + 1)iX0 ·Πi

j=1

(

1− 1/2j
)

Πi
j=1(1− (β + 1)jX0/n) ≤ Xi . (6)

Observe,

Πi
j=1

(

1− 1/2j
)

= 2
log Πi

j=1

(

1− 1

2j

)

= 2
∑i

j=1 log
(

1− 1

2j

)

> 2−2
∑∞

j=1
1

2j = 1/4 .

Also,

Πi
j=0

(

1− (β + 1)jX0/n
)

> 2−2
∑i

j=0
(β+1)jX0

n

= 2−
2X0
n

∑i
j=0(β+1)j

> 2−
4X0
n

(β+1)i ≥ 2−
4s log n

n
(β+1)i .

Now, i < T , andT is chosen so thats(β + 1)T log n ≤ n/2, hence,s(β+1)i logn
n < 1/2, implying that:

Πi
j=0

(

1− (β + 1)jX0/n
)

> 1/4.

Finally, By Equation 6, we get:
(β + 1)iX0/16 ≤ Xi,

which establishes the proof of Claim 2.4.

Relying on the definition ofT , the fact thatX0 ≥ βs/3 holds w.h.p., and takingβ = O(1/ǫ2) such
thatβ > 3s, we ensure that w.h.p., we have(β + 1)T+1X0 ≥ n/6. Hence, Claim 2.4 implies the following
lower bound onXT , the number of activated agents at the beginning of the last phase in Stage I.

Corollary 2.5. W.h.p., we haveXT = Ω((β + 1)TX0) = Ω(ǫ2n).

This also guarantees that settingf > c/ǫ2 for a large enough constantc suffices for thef log n rounds
in phaseT + 1 to activate all agents:

Corollary 2.6. W.h.p., at the end of Stage I, all agents are activated.

Proof. Recall that phaseT + 1 consists ofβf = f log n rounds, in which allXT agents that were activated
before the beginning of the phase are sending their initial opinion in each round of the phase. According
to Corollary 2.5 we have, w.h.p., thatXT > c′(ǫ2n) for some constantc′. Settingf > c/ǫ2 for a large
enough constantc guarantees that the number of messages sent out over the course of phaseT +1 is, w.h.p.,
βfXT > c′cn log n. Note that each agent has a probability of1/n to be the recipient of any such message
which is further independent between the messages. The probability that an agent is not activated by the
receipt of any message after phaseT + 1 is thus at most(1− 1/n)c

′cn logn = n−Θ(c′c).
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The next corollary gives a lower bound on the growth ofYi, the number of newly activated agents in phasei.
This lower bound will be used for bounding the bias from below(see Claim 2.8). Note that the duration of
the last phase,T + 1, is taken to be longer than that of phasesi = 1 . . . T to guarantee a large number of
newly activated agents even in this last phase. Indeed, continuing with phases of durationβ would activate
all agents relatively early, but would also restrict the number of newly activated agents at later phases.

Corollary 2.7. W.h.p., for every phasei, where1 ≤ i ≤ T + 1, we haveYi ≥ βi−1 log n .

Proof. Note that Equation 5 in the proof of Claim 2.4 implies that forany integer1 ≤ i ≤ T , we have
βXi−1/4 ≤ Yi. Together with the lower bound onXi−1 given in Claim 2.4 (i.e.,(β+1)i−1X0/16 ≤ Xi−1),
and taking sufficiently largeβ ands, we get that, w.h.p.,βi−1 log n ≤ Yi, which establishes the claim for any
i, such that1 ≤ i ≤ T . By definition ofT , and the fact that (with probability 1) fori ≥ 1, Xi ≤ (β+1)iX0,
we getXT ≤ n/2. Hence, Corollary 2.6 implies that, w.h.p.,YT+1 ≥ n/2 ≥ βT log n.

Recall that1/2 + ǫi is the fraction of initially correct agents among theYi agents that were activated in
phasei, i.e., ǫi is the bias towardB among theseYi agents. Corollary 2.7 will be useful for obtaining the
following claim.

Claim 2.8. W.h.p., for every phasei, where0 ≤ i ≤ T + 1, we haveǫi ≥ ǫi+1/2.

Proof. We prove the claim by induction oni. The basis of the induction isi = 0, which has already been
established in Claim 2.2. Consider now phasei, where1 ≤ i ≤ T +1. By the induction hypothesis, we can
assume that w.h.p.ǫi−1 ≥ ǫi/2. Fix a configuration at the end of phasei− 1 for which ǫi−1 ≥ ǫi/2, and let
φ = ǫi−1. Thus, the fraction of initially correct agents among theXi−1 activated agents in the beginning of
phasei is 1/2 + φ ≥ 1/2 + ǫi/2. For any of the newly activated agentsa in phasei, the probability that the
initial opinion ofa is correct is at least:

(1/2 + φ) · (1/2 + ǫ) + (1/2 − φ) · (1/2 − ǫ) = 1/2 + 2ǫφ.

By linearity of expectation, this equation implies thatE(Zi) ≥ (1/2 + 2ǫφ)Yi ≥ (1/2 + ǫi+1)Yi . Taking
δ = ǫi+1/2 gives(1− δ)E(Zi) > Yi(1/2 + ǫi+1/2).

For any given roundj of phasei, letYi,j denote the set of agents that received a messages in roundj, and
furthermore, decided to set their initial opinion according the message received in that round. The random
variables indicating which of the agents inYi,j has the correct initial opinion are negatively-correlatedsince
the corresponding samples are taken without replacement (see Section 1.7). Between different rounds of the
phase, these random variables are furthermore independent. Hence, overall, the random variables indicating
which of the agents inYi = ∪jYi,j has the correct initial opinion are negatively-correlated. This allows us
to apply Chernoff’s inequality which together with the lower bound onYi from Corollary 2.7 gives that:

Pr[Zi < Yi(1/2 + ǫi+1/2)] ≤ e−δ2E(Zi)/2 < e−δ2Yi/4 = e−ǫ2i+2Yi/16 = 1/eΩ(ǫ2iβi−1 logn).

Takingβ > 3/ǫ2 to be sufficiently large therefore implies that, w.h.p., we haveZi ≥ Yi(1/2 + ǫi+1/2), or
in other words,ǫi ≥ ǫi+1/2.

Claim 2.8 together with the definition ofT and the fact thatβ > 1/ǫ2 imply that w.h.p., the fraction of
initially correct agents at the end of Stage I is at least

1/2 + ǫT+2/2 = 1/2 + Ω(
√

log n/n),

completing the proof of Lemma 2.3.
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2.2 Stage II: Boosting the bias

We have proved that, w.h.p., at the end of Stage I all agents are activated and the bias of correct agents is
at leastδ1, whereδ1 = Ω(

√

log n/n). Stage II is meant to gradually boost the bias towards the correct
opinion, so that, w.h.p., it will equal 1 (that is, all agentsare correct) at the end of the stage. For that purpose
we use standard techniques of repeatedly taking majority, see, e.g., [11, 22]. We note however that our
setting is different than those used in previous papers, mainly because we assume noise in communication.
The difficulties resulting from noise required us to come up with an analysis that uses somewhat different
arguments than the ones used in previous majority-based papers.

2.2.1 Intuition

Stage II is executed ink+1 phases, wherek = ⌈log(1/δ1)⌉ = O(log n). Informally, phasei, for 1 ≤ i ≤ k,
is associated with a parameterδi, such that it is guaranteed w.h.p., that when the phase starts, the fraction of
correct agents is at least1/2+ δi. (Note that a sample from such a population is correct with strictly smaller
probability than1/2 + δi, because of noise.) Essentially, in phasei, each agent takesγ = O(1/ǫ2) samples
from the population (duringγ rounds) and then sets its opinion according to the majority opinion of these
samples. Despite the noise in the samples, we will prove that, as long asδi is sufficiently small, this majority
process increases the fraction of correct agents, w.h.p., from 1/2 + δi to at least1/2 + 2δi. Moreover, we
shall prove that ifδi is large, then the majority process does not decreaseδi too much. Hence, for the next
phase, we can safely assume that eitherδi+1 = 2δi or thatδi+1 is already sufficiently large.

To establish the required boosting, the fact thatδi may be very small prevented us from directly applying
Chernoff’s inequality. To see why, let us consider the simpler noiseless case (ǫ = 1/2). In this case, each
agent receivesγ = O(1) samples, each of which is correct with probability1/2 + δi. We want the majority
of these samples to be correct. That is, we want that the number X of correct samples would be at leastγ/2.
Note that ifδi is very small, then the expected number of correct samples isonly slightly larger thanγ/2,
specifically,E(X) = γ(1/2+δi). Now recall that Chernoff’s inequality states thatPr(X > (1−δ)E(X)) ≥
1 − exp(−δ2E(X)/2). Since we aim to boundPr(X > γ/2) using this inequality, we need to takeδ such
thatγ/2 ≤ (1− δ)E(X) = γ(1− δ)(1/2 + δi), which amount to choosingδ = O(δi). But with this choice
of δ, Chernoff’s inequality only tells us thatPr(X > γ/2) > 1 − exp(−O(δ2i )), which is meaningless
whenδi is very small (since this lower bound is even smaller than1/2).

The aforementioned reasoning required us to come up with more involved arguments. To lower bound
the probability that the majority opinion in theγ samples is correct, we perceive the samples as obtained by
an imaginary process composed of two steps taken overγ players. In the first step, for each player we flip
a fair coin which determines its opinion (i.e., probability1/2 for having each opinion). Then, at the second
step, each of the players with the wrong opinion, (independently) has a small probability (close toǫδi) of
flipping its opinion to the correct one. The parameters are chosen such that at the end of this imaginary
process, the probability that the majority opinion among the γ players is correct is the same as probability
that the majority opinion in the originalγ samples is correct. To bound the latter probability, we thusanalyze
the imaginary two-step process.

Informally, the imaginary process allows us to understand the situation in a more modular manner.
Indeed, the probability that the first step is successful (yielding a correct majority) is precisely 1/2, and once
the first step is successful, the second step cannot harm the situation (because in the latter step, only wrong
players can change their opinion). The probability of beingcorrect after the two-step process is thus1/2
plus the probability of obtaining a wrong configuration in the first step and fixing it in the second step.
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Let us dwell a bit into this later probability. If the first step turns out to be unsuccessful, then before the
second step starts there areγ/2 + x wrong players andγ/2− x correct ones, for some integerx. Whenx is
small, Stirling’s formula comes handy for bounding from below the probability that such a situation occurs
after the first step. Specifically, this probability isΩ(x/

√
γ). For such a situation to be fixed, we need

that in the second step, at leastx + 1 wrong players flip their opinion. Depending on the particular value
of δi, we choose a different value forx, and carefully analyze the probability of having a corrective event
in the second step. For example, as mentioned, the probability that the second step starts withγ/2 + 1
wrong players andγ/2 − 1 correct ones (a bias of one player to the wrong opinion) isΩ(1/

√
γ) = Ω(ǫ).

In this case (x = 1), the corrective event amounts to having one wrong player among theγ/2 + 1 wrong
players changing its opinion in the second step. Ifδi is very small, this happens with probability roughly
γ · ǫδi = O(δi/ǫ). Furthermore, for sufficiently smallδi, the constant factors hidden in the aforementioned
Ω andO notations, turn out to be such that, the probability of having both a bias of one player to the wrong
opinion in the first step and a corrective event in the second step is at least4δi. Together with the probability
(at least1/2) that the first step yielded the correct majority opinion to begin with, we get that the probability
of having a correct opinion after the second step is at least1/2 + 4δi. Recall, that example was with respect
to δi being very small. In general, regardless of the value ofδi, our analysis makes sure that the majority is
correct with probabilitymin{1/2 + 25δi, 5/9}.

A direct application of Chernoff’s inequality, relying on the fact thatδi = Ω(
√

log n/n), will then show
that w.h.p., the bias increases fromδi at phasei to at leastmin{23δi, 1/40} at phasei + 1. Hence, after
invoking k = ⌈log(1/δ1)⌉ = O(log n) phases, the fraction of correct agents becomes bounded awayfrom
1/2 by an additive constant. Hence, to achieve high probability that all agents are correct, it is sufficient that
in the last phase, namely phasek + 1, each agent takesO( 1

ǫ2 log n) samples of the population, and sets its
opinion according to the majority opinion in these samples.

2.2.2 Formal description of Stage II

As guaranteed by Lemma 2.3, at the end of Stage I, w.h.p., all agents are activated and the bias of their
initial opinion towardsB isΩ(

√

log n/n). Hence, Stage I brings us to an instance of the majority-consensus
problem, where the setA contains the whole population and the majority-bias isΩ(

√

log n/|A|). Stage II
is meant to solve this problem.

Let r = ⌈222/ǫ2⌉, and letγ = 2r + 1 (no attempt has been made to minimize the constant factors).We
definek = O(log n) and take Stage II to be composed ofk + 1 phases. Each of the firstk phases has2γ =
O(1/ǫ2) rounds, while phasek + 1 is composed ofO( 1

ǫ2
log n) rounds. Essentially, in each phase, agents

repeatedly send their current opinion. At the end of the phase, agents may choose to update their opinion.
Since the opinion of an agent may be updated only at the end of aphase, all messages sent by an agent
during any given phase are the same. For a phasei, let mi denote the number of rounds in the phase (i.e.,
mi = 2γ for i = 1, . . . , k, andmk+1 = O( 1

ǫ2 log n)). During phasei, an agent that received at leastmi/2
messages is calledsuccessfuland the messages it received are calledsamples. Only the successful agents
will update their opinion at the end of the phase, while the rest will remain with their previous opinion.

Claim 2.9. The number of successful agents in each phase is, w.h.p., at leastn/2.

Proof. In a given round, the probability that a given agenta did not receive a message is(1 − 1/n)n−1 ≤
1/2. Thus, the expected number of messages received by agenta in a given phasei is Ei ≥ mi/2. By
choosingmi large enough, Chernoff’s inequality can be used to guarantee that the probability that agenta is
unsuccessful is smaller thanc, wherec is as small as we want constant. The expected number of unsuccessful
agents is therefore at mostcn. As the random variables indicating whether an agent is unsuccessful or
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successful are negatively-correlated, we can employ Chernoff’s inequality (see Sectione 1.7), to deduce that
w.h.p., the number of successful agents in a phase is at leastn/2.

The rule of Stage II: For each round in each phasei, where1 ≤ i ≤ k + 1, each agent repeatedly
sends out its current opinion. The opinion of an agent in phase 1 of Stage II is its initial opinion. At
the end of each phase, a successful agenta in the phase will consider its set of samplesSa, will select
uniformly at random an arbitrary subsetS′

a ⊆ Sa containing preciselymi/2 samples, and update its
opinion according to the majority opinion in the samples inSa. An unsuccessful agent does not change
its opinion during the phase.

Remark 2.10. We have chosen to let a successful agent choose an arbitrary subset of sizemi/2 among
its samples, and update its opinion according to the majority opinion in this set. For the purposes of this
current section, where a global clock is assumed, all proofswould have carried out in the same manner, had
we chosen instead, to set this subset as the particular subset containing the firstmi/2 samples. Similarly to
Remark 2.1. The reason for choosing an arbitrary random subset of this size is to guarantee that the order
in which the agent receives the samples during the does not influence its actions. This property will be more
important in Section, which relaxes the synchronization requirement.

Lemma 2.11. Consider takingγ = 2r + 1 (noisy) samples from a population whose bias towards the
correct opinion is at leastδ. Then, the probability that the majority of theseγ samples is correct is at least
min{1/2 + 4δ, 1/2 + 1/100}.

Proof. Consider theγ = 2r+1 samples. We say that a sample iscorrectif it holds the correct opinionB. The
γ samples are chosen independently, and uniformly at random,among the population whose bias towards
the correct opinion is at leastδ. Let b = 2ǫδ. Accounting for the noise in the samples, for each sample, the
probability that the sample is correct is at least:

(1/2 + δ) · (1/2 + ǫ) + (1/2 − δ) · (1/2 − ǫ) = 1/2 + 2ǫδ = 1/2 + b.

Note thatb may be very small, so directly employing Chernoff’s inequality over theγ samples would not
imply the desired bound. Instead, let us look at the following imaginary two-step process that forms an
equivalent view of theγ samplings.

The imaginary two-step process: The imaginary process is performed over a setS consisting ofγ
Booleanplayers, namely,

S = σ1, σ2, . . . , σγ .

• First step: each playerσj flips a fair coin to form an initial opinion (i.e., a bit in{0, 1}).

• Second step:independently with probability2b, each playerσj gets to see the correct opinionB and
corrects its opinion if it was wrong initially (otherwise itremains with its correct opinion).

Note that after this two-step process, the probability thata player is correct is precisely1 − 1
2(1 − 2b) =

1/2 + b. Thus, the probability that the majority opinion among theγ players isB bounds from below the
probability that the majority of the originalγ samples gathered by agenta is B. To lower bound this latter
probability, in what follows, we focus on theγ players, in the two-step process. Letx be a positive integer.
Define the following events.
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• C = at the end of the first step, the majority of players inS is correct.

• Ux = after the first step, the numberw of wrong players inS satisfiesr + 1 ≤ w ≤ r + x.

• Fx = in the second step, the number of opinion flips is at leastx.

• F = the majority opinion at the end of the two-steps is correct.

Our goal is to lower bound the probability thatF occurs. Note first thatPr(C) = 1/2. Assume now thatC
did not occur, henceUx occurred for somex, that is, inS, the first step results in a setW of wrong players
whose sizew satisfiesr + 1 ≤ w ≤ r + x. In this case, forF to occur, it is sufficient that eventFx would
occur in the second step. That is, for every positive integerx, we have:

Pr(F ) ≥ Pr(C) + Pr(Fx | Ux) · Pr(Ux). (7)

Stirling’s formula can be used to lower bound the probability thatUx occurs, whenx is a small integer. The
bound is indicated by the following claim:

Claim 2.12. For 1 ≤ x ≤ √
r, we havePr(Ux) > x/10

√
r.

Proof. For eachj, letP (j) denote the probability that preciselyj players inS hold the wrong opinion after
the first step. We rely on the fact that the coins tossed in the first step are fair, and on Stirling’s formula to
show that for1 ≤ i ≤ √

r, we haveP (r + i) > 1/10
√
r. This will establish the claim since forx ≤ √

r,
the probability that EventUx occurs isPr(Ux) =

∑x
i=1 P (r + i) > x/10

√
r.

The bound onP (r + i) can be obtained as follows:

P (r + i) = 2−(2r+1)

(

2r + 1

r + i

)

= 2−(2r+1) (2r + 1)!

(r − i+ 1)!(r + i)!
≥

≥ 2−(2r+1) (2r + 1)!

(r −√
r + 1)!(r +

√
r)!

.

Applying Stirling’s formula
√
2π ≤ n!

e−n·nn+0.5 ≤ e on the right side of the equation, we get as desired:

P (r + i) >

√
2π

e2
· 2−(2r+1)(2r + 1)2r+1.5

(r −√
r + 1)r−

√
r+1.5(r +

√
r)r+

√
r+0.5

=
2
√
π

e2
· r−(2r+1.5)(1 + 0.5/r)2r+1.5

(r −√
r + 1)r−

√
r+1.5(r +

√
r)r+

√
r+0.5

=
2
√
π

e2
√
r
· r−(2r+1.5)(1 + 0.5/r)2r+1.5

(r −√
r)r−

√
r+1(r +

√
r)r+

√
r+0.5

· 1

(1 + 1.01
r )r−

√
r+1

=
2
√
π

e2
√
r
· 1 · e
(1− 1√

r
)r−

√
r+1(1 + 1√

r
)r+

√
r+0.5

· 1

e1.01

=
2
√
π

e
√
r
· 1

(1− 1
r )

r−√
r+1(1 + 1√

r
)2

√
r−0.5

· 1

e1.01

=
2
√
π

e
√
r
· 1

e−0.99 · e2 · e1.01 =
2
√
π

e3.02
√
r
>

1

10
√
r
.
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To successfully use Equation 7, we need to bound from below the value ofPr(Fx | Ux), that is, the
probability that givenUx, at leastx players (inW ) flip their opinion in the second step.

Claim 2.13. (1) If r ≤ 2/b thenPr(F1 | U1) ≥ rb/e4. (2) If rb > 2, then forx ≤ ⌈rb⌉, Pr(Fx | Ux) ≥ 1/3.

Proof. Recall that in the second step, each of the wrong players flipsits opinion with probability2b. Observe
thatPr(F1 | U1) is bounded from below by the probability that precisely one of the r + 1 wrong players
in W flipped its opinion in the second step (note,|W | = r + 1 sinceU1 occurred). This latter probability
is (r + 1) · 2b(1 − 2b)r, which is at leastrb/e4, if r ≤ 2/b. This establishes the first part of the claim. Let
us now turn to prove the second part of the claim. Assume thatrb > 2. Note that the expected number of
flips in W is at least2rb > 4. Chernoff’s inequality therefore implies that the probability that the number
of flips in W is at mostrb is bounded from above by1/e1/2, implying that for integerx ≤ ⌈rb⌉, we have:
Pr(Fx | Ux) ≥ Pr(F⌈rb⌉ | Ux) ≥ 1− 1/e1/2 > 1/3 .

Finally, to establish Lemma 2.11, we combine Equation 7 withClaims 2.12 and 2.13 for different values
of δ.

The case of smallδ: Consider the case thatδ ≤ ǫ/220. This restriction onδ implies thatrb ≤ 2. In this
case, the first part of Claim 2.13 tells us thatPr(F1 | U1) ≥ rb/e4. Hence, by Claim 2.12 and Equation 7,
we have:Pr(F ) ≥ Pr(C) + Pr(U1) Pr(F1 | U1) > 1/2 + (1/10

√
r)(rb/e4) > 1/2 + 4δ.

The case of mediumδ: Consider the case thatǫ/220 < δ < 1/212. In this case, we have4 < 2rb ≤
2(
√
r − 1). Let us setx := ⌈rb⌉. Hence,1 ≤ x ≤ √

r, and we can employ Claim 2.12, yieldingPr(Ux) >
x/25

√
r. By the second part of Claim 2.13, we obtain:Pr(F ) ≥ Pr(C) + Pr(Ux) · Pr(Fx | Ux) ≥

1/2 + (x/10
√
r)/3 ≥ 1/2 + b

√
r/30 > 1/2 + 4δ.

The case of largeδ: Consider the case thatδ ≥ 1/212. In this case, we setx := ⌈√r/3⌉. Since⌈√r/3⌉ <
⌈rb⌉, the second part of Claim 2.13 implies thatPr(Fx | Ux) ≥ 1/3. Hence, we get:Pr(F ) ≥ Pr(C) +
Pr(Ux) · Pr(Fx | Ux) ≥ 1/2 + x/30

√
r ≥ 1/2 + 1/100. This completes the proof of Lemma 2.11.

Lemma 2.11 provides a lower bound on the probability that a successful agent is correct at the end of a
phase. We are now ready to bound from below the increase in bias that a phase guarantees.

Lemma 2.14. Consider phasei ≤ k, and assume that the number of correct agents in the beginning of the
phase is1/2 + δi, whereδi > c(

√

log n/n), for sufficiently large constantc. Then, w.h.p., the fraction of
correct agents at the end of the phase is at leastmin{1/2 + 1.7δi, 1/2 + 1/800}.

Proof. Fix a phasei, for 1 ≤ i ≤ k, and assume that when phasei starts, the fraction of agents having
the correct opinion is at least1/2 + δi. Note that being successful in the phase is independent fromhaving
the correct opinion in the beginning of the phase. Since an unsuccessful agent does not change its opinion
during the phase, its probability of being correct at the endof the phase is therefore at least1/2 + δi.
Moreover, these probabilities are negatively-correlated. On the other hand Lemma 2.11 shows that each
successful agent in the phase has a probability of at least1/2 + min{4δi, 1/100} to be correct at the end
of the phase. Moreover, the random variables indicating whether the successful agents are correct are again
negatively-correlated. We can thus argue about lower bounds for expectations first, then continue with
related dominating negatively-correlated variables for which we finally apply standard Chernoff’s bounds.

In particular, we first consider the case thatδi ≥ 1/400. In this case, for each agent (whether suc-
cessful or unsuccessful) the probability of being correct is at least1/2 + 1/400 and thus dominated by a
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Bernoulli random variable with this expectation. As arguedbefore these dominating variables are further-
more negatively-correlated. LetI be the number of correct agents. We haveE(I) ≥ n(1/2 + 1/400).
Taking δ = 1/800, we get that(1 − δ)E(I) > n(1/2 + 1/800). Applying Chernoff’s inequality to the
dominating negatively-correlated random variables we obtain:

Pr(I ≤ n(1/2 + 1/800)) ≤ e−Ω(nδ2i ).

Sinceδi > c(
√

log n/n) for sufficiently largec, it follows that, w.h.p., the fraction of correct agents at the
end of the phase is at least1/2 + 1/800, as required by the lemma.

Next, we consider the case thatδi < 1/400. Recall from Claim 2.9 that the number of successful
agents in the phase is, w.h.p, at leastn/2. Condition on this event. Recall also that each unsuccessful
agent is correct with probabilitypu = 1/2 + δi and each successful agent is correct with probabilityps =
1/2 +min{4δi, 1/100} = 1/2 + 4δi.

Let u denote the number of unsuccessful agents. Recall that we condition on the highly likely event
u ≤ n/2. Let U be the set containing allu unsuccessful agents and additionaln/2 − u other arbitrary
successful agents. Note thatU contains preciselyn/2 agents. LetS be the set of the remaining agents (all
of which are successful).

Next, let us consider the numberIu of incorrect agents inU . Whether or not a given agent inU is
successful, the probability that this agent is incorrect isdominated by a Bernoulli random variable with
probability of1/2 − δi. Hence, the expectation of this number isE(Iu) ≤ n

2 (1/2 − δi). Takingδ = δi/10,
we get that(1+δ)E(Iu) ≤ n

2 (1/2−0.9δi). With these dominating random variables again being negatively-
correlated we apply Chernoff’s inequality and obtain:

Pr(Iu ≥ n

2
(1/2− 0.9δi)) ≤ e−δ2E(Iu)/3 = e−Ω(nδ2i ).

Therefore, w.h.p., the numberIu of incorrect unsuccessful players is at mostn
2 (1/2 − 0.9δi). We similarly

bound the numberIs of incorrect agents inS. In particular, we haveE(Is) ≤ n
2 (1/2 − 4δi). Taking

δ = δi, we have(1+ δ)E(Iu) >
n
2 (1/2−2.5δi). Apply Chernoff’s inequality to the dominating negatively-

correlated variables gives:

Pr(Is ≥
n

2
(1/2 − 2.5δi)) ≤ e−δ2E(Is)/3 = e−Ω(nδ2i ).

Hence, w.h.p., the numberIs of incorrect successful agents inS is at mostn2 (1/2 − 2.5δi). It follows that
the total number of incorrect agents (including both successful and unsuccessful ones) is w.h.p, at most

n

2
(1/2 − 0.9δi)) +

n

2
(1/2 − 2.5δi) = n(1/2 − 1.7δi).

In other words, the fraction of correct agents at the end of the phase is, w.h.p., at least1/2 + 1.7δi, as
desired.

Sinceδ1 = Ω(
√

log n/n), where the constant factor hiding in theΩ notation is as large as we want,
Lemma 2.14 implies the following corollary.

Corollary 2.15. After the firstk = Θ(log(
√

n/ log n)) phases, w.h.p., the fraction of correct agents is at
least1/2 + 1/800.

In the final phase, namely phasek+1, each agent collectsO( 1
ǫ2
log n) independent samples, uniformly at

random, from a population whose bias towards the correct opinion is at least1/400. Assuming the constant
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hiding behind theO-notation is sufficiently large, Chernoff’s inequality guarantees that, w.h.p., the majority
opinion of such samples is correct. Hence, a union bound argument guarantees that w.h.p, all agents are
correct at the end of Stage II. Let us now analyze the running time of Stage II. Each of the firstk phases
takesγ = O(1/ǫ2) rounds. Sincek = O(log n), the number of rounds required to perform the firstk phases
isO( 1

ǫ2
log n). The running time of phasek + 1 isO( 1

ǫ2
log n). Altogether, we obtain the following.

Lemma 2.16. Stage II takesO( 1
ǫ2 log n) rounds and at the end of the stage all agents are correct, withhigh

probability.

Lemmas 2.3 and 2.16 yield that our algorithm solves the noisybroadcast problem inO( 1
ǫ2
log n) rounds.

Since each message is composed of a single bit, and since in each round, each agent can send at most one
message, we get the boundO( 1

ǫ2
n log n) on the total number of messages and bits sent. Altogether, we

obtain our main result.

Theorem 2.17. Consider the fully-synchronous setting and letǫ be such that1/n1/2−η < ǫ, for some
arbitrarily small constantη > 0. The noisy broadcast problem can be solved usingO( 1

ǫ2 log n) rounds, and
a total ofO( 1

ǫ2n log n) messages (or bits).

Corollary 2.18. Consider the fully-synchronous setting and letǫ be such that1/n1/2−η < ǫ, for some
arbitrarily small constantη > 0. Consider the noisy majority-consensus problem with an initial setA of at
leastΩ( 1

ǫ2
log n) agents and majority-bias ofΩ(

√

log n/|A|). This problem can be solved inO( 1
ǫ2
log n)

rounds, and using a total ofO( 1
ǫ2
n log n) messages (or bits).

Proof. Recall that Claim 2.2 implies that after phase 0 is completed, we are left with solving the noisy
majority-consensus problem with an initial setA0 of agents of size|A0| = Θ( 1

ǫ2 log n) whose majority-bias

is Ω(
√

log n/|A0|). As we saw, this problem is solved by applying the remaining phasesi = 1, . . . T + 1
of Stage I, and then applying Stage II. Specifically, as givenby Claims 2.8 and 2.4, phasei of Stage I, for
eachi ∈ {1, . . . T + 1}, reduced the problem to the noisy majority-consensus problem with an initial set
Ai of sizeAi = Θ

(

1
ǫ2i+2 log n

)

and majority-bias ofΩ(
√

log n/|Ai|). Hence, after applying Stage I, we
were left with dealing with the noisy majority-consensus problem with an initial setX of agents composed
of all n agents and majority-bias ofΩ(

√

log n/n). Solving this latter problem is precisely the objective of
Stage II.

In light of this, the general case of the noisy majority-consensus problem can be solved as follows.
Recall, in this problem we consider an initial subsetA of agents of size|A| = Ω( 1

ǫ2
log n) and majority-bias

of Ω(
√

log n/|A|). To solve this problem, we first set:

iA :=
log(|A|/log n)
2 log(1/ǫ)

,

and then execute phasesiA, iA+1 . . . T + 1 of Stage I, and subsequently execute Stage II.

3 Removing the global clock assumption

In the previous section we considered the fully-synchronous setting where all clocks are set to zero at the
beginning of the execution. In this section we show how to remove this global-clock assumption, considering
the more standard synchronous setting in which the clock of an agent is set to zero when it receives a
message for the first time (the clock of the initiator is set tozero when the execution starts). The removal
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of this assumption will yield an additive increase ofO(log2 n) in the running time, while preserving the
optimalO( 1

ǫ2
n log n) message complexity.

Before completely removing the assumption of a global clock, let us first consider a relaxed version
of it where it is guaranteed that at the beginning of the execution, each clock is initialized to some integer
in the range[0,D), for a givenD. (In particular, any two clocks are at mostD apart.) Recall that the
algorithm mentioned in Section 2 for the fully-synchronoussetting considersO(log n) consecutive phases,
where phasei takes place during the time period[ri, ri + xi), for some integersri andxi (herexi is the
length of phasei, and we haveri+1 = ri + xi). In Section 2, assuming the global clock assumption, it is
guaranteed that all agents execute the same phase at the sametime. We now modify that algorithm to fit to
the relax setting where all clocks are initialized to a valuein the range[0,D).

3.1 A modified algorithm assuming all clocks differ by at mostD

In the modified algorithm, each agent will execute phasei as described in Section 2, except that instead
of starting it at timeri it will start it when its own clock showsri + iD. That is, Agenta will execute
phasei during the time interval when its own clock shows[ri + iD, ri + iD+xi). Let s (respectively,ℓ) be
the smallest (and respectively, the largest) value in[0,D) such that an agent (active in phasei) started the
execution with this time on its clock. For the sake of the analysis, assume we start the execution at theglobal
time 0 (in this time, all local clocks are in the range[0,D)). Each agenta will start phasei at some global
time, not before the times+ri+iD ≥ ri+iD, and will end it before timeℓ+ri+iD+xi < ri+1+(i+1)D.
Hence, all agents will execute phasei during the global time interval[ri + iD, ri+1 + (i+ 1)D). Note that
these intervals are disjoint for different values ofi.

Correctness. To show that the modified algorithm is correct we compare an execution of this algorithm to
an execution of the fully-synchronized algorithm operating under the global clock assumption (as described
and analyzed in Section 2). We assume that the same random choices are made by the message scheduler
in both executions. That is, if under the fully-synchronized algorithm, thek’th message that an agenta sent
was to agentb, then also in the modified algorithm, thek’th message sent by agenta was to agentb (note
that the timing of this message delivery and its content may potentially differ between executions).

Consider an agenta and a phasei of its algorithm. Recall that in both executions, all messages sent by
agenta during phasei are the same, essentially containing its opinion in the beginning of the phase (if it
had any, otherwise, it does not sent any messages anyways). Therefore if the opinions of all agents in the
beginning of their phasei are the same, respectively, in both executions, then the contents of the messages
sent by an agent in that phase are also the same, respectively, in both executions. Hence, the set of messages
(and their contents) received by any agenta in phasei is the same in both executions. Note, however, that the
order in which these messages are received by the agent may differ between the executions. These messages
will be used by the agent to determine its opinion at the end ofthe phase. We next argue that the fact that
these messages may arrive at a different order does not impact the decision made by the agent at the end
of that phase. This will imply, by induction on the phase numbers, that the two executions are essentially
the same.

Observe that the decisions made by an agent at the end of a phase (for setting or modifying its opinion)
are based on the messages it has received in that phase, but are invariant of the order in which they were
received (see also Remarks 2.1 and 2.10). Indeed, letS be the set of messages that agenta received during
phasei. At the end of the phase, agenta first selects a subset ofS of a certain size (this size could be 0,1,
or larger), chosen uniformly at random among the subsets ofS of this given size, and then sets its opinion
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to be the majority opinion in that subset3. This implies that there exists a bijective mappingσi between the
sequences of random choices made by the agents in the modifiedalgorithm in phasei and the sequences
of random choices made by the agents in the fully-synchronized algorithm in phasei, such that the same
subsets of messages are being chosen by all agents at the end of phasei, respectively. (Thusσi, takes into
account the different orders in which messages arrive to an agent, for every agent, in the two executions.)
This implies that if the opinions of all agents are the same inboth executions in the beginning of phasei,
then underσi, the opinions of all agents are the same at the end of the phase, in both executions. It follows
by induction on the phase numbers that there exists a bijective mappingσ := σ0 ◦σ1 ◦ · · · , σi ◦ · · · between
the sequences of random choices made by the agents in the modified algorithm throughout the execution
and the sequences of random choices made by the agents in the fully-synchronous algorithm throughout
the execution, such that the final opinion of each agent is thesame in both executions. The correctness
guarantee of the fully-synchronous algorithm therefore implies that for the modified algorithm, w.h.p., all
agents output the correct opinion at the end of the execution.

Complexities. Since the number of phases isO(log n), we immediately have that the increase in number
of rounds is an additive term ofO(D log n) rounds. On the other hand, the message complexity remains the
same as in the fully-synchronous case, since we only add waiting rounds over the original fully-synchronous
algorithm.

3.2 Removing the assumption that clocks areD apart

We now claim that ifD is initially unbounded, we can easily (and quickly) reduce it to D = 2 log n,
by first performing anactivation phase, in which each informed agent broadcasts an arbitrarymessage
for 2 log n rounds, and resetting the clock of an agent to be 0 after4 log n rounds passed since it heard a
message for the first time. W.h.p., after2 log n rounds all agents have been activated, ensuring that when
the clocks are initialized again, all clocks are at most2 log n apart. Furthermore, note that the messages
used in this activation phase all reach their destination within 4 log n rounds (at most2 log n rounds until
the agent sending the last message was activated and plus at most2 log n rounds until this agent sent its last
activation message). Hence, by the time the earliest agent resets its clock to 0, all messages corresponding
to the activation phase have reached there destination. This enables us to safely proceed with the simulation
above, assumingD = 2 log n. Hence, we obtain the following.

Theorem 3.1. Consider the synchronous setting. There exists algorithmssolving the noisy broadcast prob-
lem and the noisy majority-consensus problem (with an initial set of agentsA of size|A| = Ω( 1

ǫ2 log n) and

majority-bias ofΩ(
√

log n/|A|)). Both these algorithms terminate inO( 1
ǫ2
log n+ log2 n) rounds, and use

O( 1
ǫ2n log n) messages.

The termO(log2 n) added to the running time in both algorithms in Theorem 3.1 can be reduced if
agents could quickly synchronize their clocks by a smaller factor thanO(log n). Optimizing this clock-gap
between agents remains an intriguing question of independent interest.

3Specifically, in Stage 1, an agent activated in phasei, chooses a single message uniformly at random among the messages it
has received in phasei and sets its initial opinion to the content of that message. In Stage 2, at the end of each phasei, a successful
agent selects a subset of samples of sizemi/2 uniformly at random among the set of samples it has received in that phase, and then
update its opinion to be the majority opinion in that subset.
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4 Discussion

This paper is a first attempt to study the impact of communication noise on information dissemination prob-
lems, using a computational approach. We have presented theFlip model, a basic model of communication
wherein interactions are conveyed across noisy channels oflimited capacity. We have then presented ro-
bust and simple algorithms that efficiently solve two basic information dissemination problems within the
model’s constraints. Our algorithms suggest balancing between silence and transmission, synchronization,
and majority-based decisions as important ingredients towards understanding collective behavior in anony-
mous and noisy populations.

Our algorithms rely on synchronization. Although it is not realistic to assume that biological ensembles
are highly synchronous, some degree of synchronicity may still exist [13, 40]. (For example, agents could
potentially differentiate large enough windows of time considering each such window as a round.) An
intriguing question left for future work can be to quantify the minimal degree of synchronisation required
for solving the information dissemination problems efficiently.

As this is a first attempt at analyzing randomly distorted messages with distributed computing tools, we
did not attempt to describe a specific biological system or identify naturally occurring algorithms. Rather,
our results indicate that to understand natural systems onemust simultaneously consider communication
noise, limited messaging alphabet, and algorithm. Typically, works in different fields take only subset of
these three components into account.

Acknowledgments: The authors would like to thank Oded Goldreich, Kunal Talwar, James Aspnes, and
George Giakkoupis for helpful discussions.
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