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Breathe before Speaking:
Efficient Information Dissemination
despite Noisy, Limited and Anonymous Communication

Ofer Feinerman Bernhard Haeuplér Amos Kormant

Abstract

Distributed computing models typically assume reliablsomnication between processors. While
such assumptions often hold for engineered networks,dug.to underlying error correction protocols,
their relevance to biological systems, wherein messagesfaen distorted before reaching their destina-
tion, is quite limited. In this study we take a first step todsareducing this gap by rigorously analyzing
a model of communication in large anonymous populationspas®ad of simple agents which interact
through short and highly unreliable messages.

We focus on the broadcast problem and the majority-consepisablem. Both are fundamental
information dissemination problems in distributed conipgitin which the goal of agents is to con-
verge to some prescribed desired opinion. We initiate thdysbf these problems in the presence of
communication noise. Our model for communication is exglgmveak and follows the push gossip
communication paradigm: In each round each agent that wishsend information delivers a message
to a random anonymous agent. This communication is furttstricted to contain only one bit (essen-
tially representing an opinion). Lastly, the system is assd to be so noisy that the bit in each message
sent is flipped independently with probability2 — ¢, for some smalk > 0.

Even in this severely restricted, stochastic and noisynggtte give natural protocols that solve the
noisy broadcast and the noisy majority-consensus protééii@ntly. Our protocols run i@ (log n/e?)
rounds and us@(n log n/e?) messages/bits in total, whetds the number of agents. These bounds are
asymptotically optimal and, in fact, are as fast and messféfgeent as if each agent would have been
simultaneously informed directly by an agent that knowsptescribed desired opinion. Our efficient,
robust, and simple algorithms suggest balancing betwdencsi and transmission, synchronization,
and majority-based decisions as important ingredientatdsvunderstanding collective communication
schemes in anonymous and noisy populations.

*The Shlomo and Michla Tomarin Career Development Chair, We&zmann Institute of Science, Rehovot, Israel. E-mail:
ofer.feinerman@weizmann.ac.ilSupported in part by the Clore Foundation, the Israel Seidfoundation (FIRST grant no.
1694/10) and the Minerva Foundation.

fCarnegie Mellon University. E-maihaeupler@cs.cmu.edSupported in part by the NSF grant XXXX.

fContact author. CNRS and Univ. Paris Diderot, Paris, 75@tance. E-mail:amos.korman@Iliafa.univ-paris-diderot.fr.
Supported in part by the ANR project DISPLEXITY, and by theRIM project GANG. This work has received funding from the
European Research Council (ERC) under the European Urtitmrigon 2020 research and innovation program (grant ageaem
No 648032).


http://arxiv.org/abs/1311.3425v3

1 Introduction

1.1 Background and motivation

Information theory originated as a search for methods toagarcommunication noise in engineered sys-
tems [57]. In many ways, this search has reached its goals.eXistence of coding methods that reduce
error rates to practically zero were proven to exisi [57]t Mses important, such codes have been realized
in a myriad of real-world systems [61]. In other words, givgelarge enough bandwidth, one can encode a
message with a large number of error correcting bits in a Walyrhakes communication noise essentially a
non-issue. It is perhaps for this reason that fault-tolegastudies in distributed computing have somewhat
neglected the issue of noise in communication. Indeed, Stucties focus either on weak faults such as node
crashesand messagmilures, or on very strong faults modeled as adversaBaizanting interventions, but
messages that are transmitted from one processor arealtypassumed to reach their destination without
distortion.

In contrast, communication in the natural world is inhelyenbisy. Biology, for one, is replete with
communicating ensembles on all levels of organizatiormfrolecules (e.g., the immune complement sys-
tem [15]), and cells (e.qg., bacterial populations [8]) toisties (e.g., a superorganism of social insects [61]).
Whereas it is unrealistic to assume adversarial interopsjibiological signals are extremely vulnerable to
random distortion as they are being generated (e.g., pila@bvesicle release in neuronal synapses [3]),
transmitted over noisy media (e.g., acoustic communinatianoisy environments [14]) and received (e.g.,
non-reliable measurements taken by immune cells [29].)eNbeless, many studies show that, in practice,
biological ensembles function reliably despite commutiicanoise [26, 55].

How biological systems overcome communication noise isglvasic and intriguing question. Indeed,
for systems composed of simple and restricted individuadsis often the case in biology, it may not be
reasonable to assume sophisticated error-correctingeatetkel of an individual channel. Furthermore,
when message size is highly restricted, redundancy dailgtieduces the available alphabet and hence
could not be used extensively. On the other hand, with ottlg liedundancy, a random fault in the content
of a transmitted message may lead to the reception of a ngfahimessage that is inconsistent with the

original one [45].

Our work is a first attempt to rigorously study the impact ofmcounication noise on performing dis-
tributed information dissemination taBkswWe consider a basic and simple model of interaction between
agents. In the absence of noise in communication, the irdgtom dissemination problems discussed here
are well understood, and in particular, the broadcast proldan be trivially solved. It turns out, however,
that adding noise to the communication, even in a very sirfgola (e.g., noise is chosen from some given
simple distribution and is independent between messasigsjficantly complicates the situation. Indeed,
our main efforts in this paper are devoted to understanditfieutties incurred by adding the noise.

At this point, we would like to stress that although our madehspired by biological systems, we do
not claim that it fully represents any particular biolodisgstem. Rather, the model we consider is highly
abstract, aiming to capture a fundamental phenomena thit Iposely) relates to many biological systems.
We believe, however, that the results of this preliminarggvacan be useful for further research, that will
focus on more concrete biological settings.

INetwork information theory[32] discusses the problem afsdiminating information from one or more sources to a large
number of recipients over noisy information channels. Tétérgys there are, however, different from those that égeus as they
are non-distributed in nature and allow for complex codicigesnes that may be computationally complex for simple agjddf.



1.2 Context and related work

Our paper falls within the scope of natural algorithms, &nréattempt to investigate biological phenomena
from an algorithmic perspectivel[1,112]17]27,,28, 46]. \iitthis framework, many works in the computer
science discipline have studied different computatiospkats of abstract systems composed of simple and
restricted individuals. This includes, in particular, gtady ofpopulation protocold4,5,7[10, 47], which
considers individuals with constant memory size interacin pairs (using constant size messages) in a
communication pattern which is either uniformly at randanadversarial, and thigeepingmodel [1/ 2, 25],
which assumes a fixed network with extremely restricted camioation. However, despite interesting
results obtained in such models, the understanding of fhelt-tolerance aspects is still lacking| [5]10].
Here, we study basic distributed tasks in a model that irdudghly restricteéind noisy communication.

Broadcast and majority-consensus problems. Disseminating information to all the nodes of a network
is one of the most fundamental communication primitives.pamticular, thebroadcastproblem, where

a single piece of information initially residing at some sminode is to be disseminated, and variants
of it have received a lot of attention in the literature, see,, [16/ 19, 23, 30, 33-37.139/43]. Much of this
research was devoted to bounding measures such as the mfirdaands, and the total number of messages.
Fault tolerant broadcast algorithms have also been stadiethsively, especially in complete networks and
in synchronous environments, where the focus has been ok tyees of failures such as (probabilistic)
message failures and initial node crashes. Essentialigsibeen shown that there exist broadcast protocols
that can overcome such faults with a relatively little penf21,23[24, 35, 38, 39, 43, 60].

In the majority-consensuproblem processors are required to agree on a common oudjug which
is the majority initial input valuel[]6,/9]. While we look at ageralized version of this problem where
only a subsetd may hold an opinion initially, most previous works consgtérthe case that all nodes
have an initial opinion. Furthermore, similarly to this mt work, many previous papers also considered
clique networks, where agents contact other agents urlifahtandom. For example, the task of majority-
consensus was studied in a clique network by Angluin el §l. The authors therein gave an algorithm
that uses only three states and converge® (ilog ) rounds. That algorithm is robust under a very small
fraction of agents being Byzantine, but is not robust unadenmunication noise. We note that for our
purposes, we could not use variants of the algorithnmlin [6pbee it inherently usegblreesymbols in the
communication, while we are restricted to otlyo symbols (a single opinion). On the other hand, similarly
to the method we use in Stage Il of our algorithm, severalrgthpers have solved the majority-consensus
based on repeatedly sampling the opinions of few other agamt re-setting the opinion of the observing
agent according to the majority of these samgles[[11, 18,2&] example, Doerr et al. [22] considered the
algorithm where each agent repeatedly samples the opinioms other agents uniformly at random then
taking the majority over its own and the two sampled opini@theee opinions in total). They show that this
algorithm converges with high probability to the majoritytial opinion inO(logn) rounds, provided that
atleast al /2 + Q(/log n/n) fraction of the agents agree initially.

It is important to stress that in the theoretical distribut®mputing discipline, none of the works on
broadcast and consensus related problems have considgsedmthe communication.

Related work in engineering and physics. Broadcast related problems were studied in other contexts a
well, often with settings where communication noise is ieiné Engineers have studied the related problem
of sensor network consensus formation in the presence afncomcation noise and have demonstrated, for
example, tradeoffs between consensus quality and runimmeg[#2]. Physicists have studied the spreading
of epidemics([4B] and the formation of consensus around btzeavoter models[[49, 50] within prob-



abilistic settings that include communication noise. Ehphysically inspired studies often assume very
simple algorithms and analyze their performance - thisffer@int from a computer science approach which
focuses on identifying the most efficient algorithms. Irdlde&roadcast within a noisy voter model setting is
expected to yield long convergence times, polynomial imilvber of agents.

Examples in biology. In the biological world, broadcast is a common phenomenoithwhallows, for
example, a single receptor to activate an entire cell [58inall number of cells to trigger large population
responses [26], or a small number of vigilant individualsatert their herd[[56]. There have been several
direct experimental demonstrations of reliable broaduoastg unreliable messaging in biological systems.
Examples include knowledgeable ants informing their nagésiregarding available fodd |55] and precise
temporal codes achieved by coordinated neuronal popo&afé)]. Such examples serve as motivation for
a more thorough theoretical understanding of how rumorsaspthrough groups of simple individuals that
communicate by noisy messages. Majority-consensus pngbleve also been shown to be relevant for
several biological systems: Ants choosing between twardtive nesting sites and reach consensus on a
nest that attracts a larger number of scouts$ [31] and a grbfiphothat reach consensus around the larger
group of leaderd [58] being two examples.

1.3 Model and problems
1.3.1 Problem definitions

As a first step into the study of noisy information dissemoratwe study a very simple scenario in which
there are only two possible states @miniong for the environment, namely, and1, one of which is the
correctopinion, denoted bys. We study two information dissemination problems both ofolttonsist of
n anonymousagents

The noisy broadcast problem. In this problem we start the execution with one designatezhtagalled
the source(representing the environment) that holds the correctiopi®, while all othern — 1 agents
initially have no information regardinj. Agents can propagate information and update their knayedxy
using (noisy) interactions as specified below. The goalas ¢éventuallywith high probability all agents
adopt B as their final opinion. Throughout we denote with high pralitgbany probability of at least
1 —1/n¢, for some sufficiently large constant> 2.

The noisy majority-consensus problem. In this problem we consider that initially we have a subdet
of agents, each of which has an opinion{in 1} (all other agents do not have an opinion), whBres the
majority opinion among the agents ih The problem is parameterized by the extent to whicis more
common. That is, thenajority-biasof A is defined as;(Az — Ag)/|A|, where4,; is the number of agents
in the initial opinionated group4, with opinions, for i € {0,1}. As in the noisy broadcast problem, the
goal of the agents is to guarantee that with high probab#itghe end of the execution, all agents hold the
opinion B.

1.3.2 TheFlip model of communication

We assume aynchronousetting, in which all agents start the execution simultaisgoand communication
takes place in discrete rounds [53]. As mentioned, agemtsisa their (noisy) interactions to inform and



update their opinion. In each round, each agent can choagaitd.e, do nothing, or teéenda message.

The interaction pattern we study follows the standandhgossip model[[19, 43, 54], where in each
round each agent that chooses to send a message sends sagetesanother agent, chosen uniformly at
random, without sender or receiver learning about each’stidentity. If an agent receives several messages
at the same round, it can only accept one of them (chosenrmiif@t random), and all other messages are
dropped. The message size is extremely restricted, spgifieach message sent consists of a single bit
essentially encoding an opinion. Let> 0 be a parameter of the Flip model. All messages are subject to
noise, specifically, for each message sent by an agent, @geiving it, the bit in the messageflipped
independently with probability at mo$y2 — e.

1.3.3 Synchronization

Each agent is equipped with a clock that enables it to coumd®. In the standard model, the clock at
an agent is initialized to 0 when the agent is activated (aniag activated when it receives a message
for the first time). We also consider thielly-synchronoussetting in which all agents start the execution
simultaneously at the same time, or in other words, theysallthe samglobal clock initialized to 0 at the
beginning of the execution.

1.3.4 Symmetric algorithms

We view the two possible opinionf), 1} as abstract symmetric opinions that cannot affect any idecis
made by individual agents, except for which message tomﬁsAccordingly, we consider onlgymmetric
algorithms, in which the choices of individuals of whethernot to send a message at a given time are
oblivious of the value of3. That is, when fixing all random bits involved in an executitihe message-
pattern (i.e., who sends who and at what time) in symmetgoréghms is the same regardless of whetBRer
equals 1 or O.

1.4 Lower bounds

The restriction of the symmetric noisy broadcast problenthie majority-consensus problem) to two parties
is, In some sense, classical for the area of informationrihétere, a source ageatwishes to deliver its bit
opinion B to the second agehtthrough a binary symmetric channel with crossover proliggil= 1/2 —e.
The seminal result by Shanndn [57] implies that using thenebbO(1/¢2) times is both necessary and
sufficient, for allowingb to possess the opiniofi with sufficiently high constant probability. This imme-
diately implies a©(1/¢?) bound for the number of rounds needed for the same confidera@mgee in
the two-party noisy broadcast problem, since each messagecbntains precisely one bit. When it comes
to a population of: agents, the goal is to have each agent possess the ogiiniotih high probability (at
leastl — 1/n°). In this case, each agent would individually need to Obfzﬂljz— log n) messages, even if
all messages would come directly from the source node. Tiheseds immediately imply a lower bound
of Q(}Qn log n) on the total bit complexity and hence also on the total nuroberessages sent. Moreover,
since we assume that an agent can handle at most one messatjmatwe get tha‘ﬂ(}2 logn) is also a
lower bound on the number of rounds. All these bounds apmn éwall messages would be as informative

20ne could view this trait as a consequence of a symmetry ofvtitld, in which an agent can decide if two opinions are the
same or not but has no access to their actual values. For éxaafiock of birds following a source (e.g., a bird that hastgd a
predator) that travels either north or south can do this @van environment where there is complete symmetry betweesettwo
directions. The only demand is that the escape directiofi birds agree with that of the source.
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as those originated directly by the source agent. Hencg,apply in much stronger models of communi-
cation, such as ones that allow an agent to send messagedtiglerdestinations at the same round, and
ones that consider non-anonymous populations, where ant ageld direct a message to a desired des-
tination. Note that the same arguments hold also for theynwoigjority-consensus problem if the initial
subsetA of agents is small. On the other hand, without interactinip wther agents and simply waiting to
receive sufficiently many samples from the source agennoisy broadcast problem could only be solved
in O(Znlogn) rounds.

1.5 Our results

Our main result, presented in Sectldn 2, considers the-fylhchronous setting, where it is assumed that
agents start their operation simultaneously at the same. tiFor this setting we present a randomized
symmetric algorithm that solves the noisy broadcast probie O(Ei2 logn) rounds and uses a total of
O(?lznlog n) messages (or bits). These bounds are both asymptoticdlipa@nd, in fact, are as fast and
message efficient as if each agent would have been simulisiygaformed by the source directly. We also
show that the same asymptotically tight bounds (for the ingniiime and message complexity) hold also for
solving the noisy majority-consensus problem with anyiah#gubsetA of agents of sizéA| = Q(ei2 logn)

and whose majority-bias B(,/logn/|A|).

In SectionB we show how to remove the global-clock assumptithis modification applies to both
algorithms and comes at an additive costffog? n) to the running time, while the message complexity
remains the same.

Our results imply that even in severely restricted, stobbasd noisy settings one can still solve the
noisy broadcast and the noisy majority-consensus probédfitsently by applying simple protocols. In-
deed, our basic algorithms employ very simple rules thatlmmmplemented using restricted memory,
specifically, usingD(loglogn + log(1/¢)) memory bits. Essentially, each agent has some waiting gberio
(in which it does not send any message), and after whichrilsstending its current opinion at each round
until the protocol terminates. Furthermore, its opinioro¢gasionally updated following a majority-type
procedure based on its recently received messages.

1.6 Insights on the difficulty of the problem

Before we describe our algorithms, let us first highlight sarfithe complex features of the noisy broadcast
problem (the same difficulties arise also in the noisy mgjaronsensus problem). Consider an agethtat
receives its first message. This agent now has several sgtoiits actions. One option is to keep silent
(wait) until receiving another message. This strategy @oesult in an algorithm that requires huge amount
of time. Indeed, the first agent that hears two messages raastioth of them from the source (since all
other agents are silent), and this would require waiting¥oy/n) rounds, by the birthday paradox. Another
possible action for such an agent is to immediately forwhel message it just received to others. This
strategy would result in the typical agent hearing a veneligole message for the first time. That is, the
number of intermediate agents on the path between the sandcihe typical agent would be roughbg n.
Now, each time the message passes from an agent to an ageptobability of preserving the original
opinion drastically reduces. Specifically, it is not difficto show that a message following a path of size
is correct with probability at most/2 + (2¢)¢. This means that i€ is small, the probability that a typical
agent receives the correct opinion on the first messageris ieeat most /2 + 1/n. If this is the case with

all agents, it seems, again, almost impossible to recowkregonstruct the correct opinidh



Another difficulty in the strategy of immediately forwardimessages, is that the execution seems to be
dependent on the quality of the first messages to be receivectly from the source, and these messages
can be corrupted with non-negligible probability. Indegdthe beginning of the execution, the pattern of
meeting looks like a tree, rooted at the source agent. Meredhe collection of subtrees hanging down
from the children of the root (the agents directly informedtlbe source agent) do not have the same size,
as the subtrees hanging down from the first informed childfeihe root grow much faster and dominate
the population. Hence, the initial opinion of agents coudd Ime more reliable than the initial opinions of
the roots of the corresponding subtrees. At this point, with-negligible probability, the majority of agents
would have obtained the wrong opinion, from which it seemaraglmost impossible to recover.

To overcome these difficulties, we use a third option for tekdvior of an agent, allowing it to wait
for a prescribed number of rounds before sending a messamgedoihg so, we rely on synchronization,
which we use to balance the sizes of the aforementionedesséind, therefore, constrain the deterioration
of reliability.

1.7 Chernoff’s inequalities

The analysis of our algorithms relies on an extensive usehafn@ff's bounds. For completeness, we
remind the reader of these equalities.

Let Xi,---, X, be independent random variables taking valueflin}. LetX = > " , X; denote
their sum, and lef/(X') denote the expected value &f. Then, for any0 < § < 1, we have the following
bounds.

Pr(X > (14 0)E(X)) < e~ 5% (1)
Pr(X < (1 - 0)B(X)) < e 52 @)

Negatively-correlated random variables. In some cases, the aforementioned Chernoff's inequalities
hold also if the random variables are negatively associdtegarticular, sampling from a larger set without
replacement leads to negatively associated random vesiédy which Chernoff's bounds continue to hold.
For this and related basic results on negative associatieri2)| 41]. Since we will only be dealing with
Bernoulli variables we can alternatively use a slightly kexabut simpler notion from [52] which defines
random Bernoulli variables(, - - - , X,, asnegativelyl-correlatedor simply negatively-correlatedf for
every subsef C {1,2,--- ,k}, we have:

Pr (/\Xi = 1) < e Pr(X; = 1),

el

Pr (/\ X; = o) > Tlier Pr(X; = 0).

iel

Panconesi and Srinivasan showed/in| [52] that this conditioids when sampling without replacement
and furthermore proved that Chernoff's inequalities nmrad in Equationg]1 arid 2 continue to hold for
negatively-correlated Bernoulli variables.



2 Algorithms for the fully-synchronous setting

In this section we assume that all agents start the algontitmtheir clocks set to zero. In Sectiéh 3 we
show how to remove this global-clock assumption at sometigddiost in the running time.

The interesting cases are wheis a small constant, but we allow it to be much smaller. Spelfj,
lete > 1/n!/?2=7, for some arbitrarily small constant > 0. We present symmetric and simple random-
ized algorithms that solve the noisy broadcast and the Itha@onsensus problems. The running times
and message complexities of both algorithms are asymaligtioptimal, that is, they both terminate after
O(Z logn) rounds and use a total 6f(Z;n log n) messages.

Although our algorithms are simple, their analysis is quiteolved. Most of the technical ideas in
this paper are used for the analysis of our noisy broadcgstigim, hence we focus on this algorithm.
The algorithm consists of two stages. The first stage of therihm is intended tactivateall agents (an
agent is considered as activated upon receiving its firssagey, and to make sure that overall, the average
initial opinion of activated agents has some non-negliglibs towards the correct opinion. Stage Il of the
algorithm is meant to boost the bias using repeated sansplintgl consensus is reached.

2.1 Stage I: Spreading the information

Our goal in the first stage of the algorithm is to quickly alleach agents to set an opinion, so that the
fraction of correct agents is at ledst2 + Q(,/logn/n). Then the second stage will be employed to boost
this bias using more standard techniques of repeatedlggakajority.

2.1.1 Intuition

In order to spread the correct opinishwhile controlling the deterioration of the average biasrméimed
agents towards, the first idea we employ is to delay propagation of messagessynchronize them, by
grouping the time slots intphases That is, we propagate the information in layers, formingeg twhose
root is the source agent S (layer 0). To control the religbileterioration of the messages, we synchronize
the phases so that all activated agents broadcast in a phthigesame time. In particular, in the first phase,
called phase 0, only the source agent transmits messafj@e®riadource agents are waiting). Recall that
every such message is correct with probability at lé#38t+ e. Phase O lasts fof, := @(Ei2 log n) rounds,
and is meant to allow the source agent to directly inform sigffitly many agents, and guarantee that with
high probability the bias toward8 of the opinions that these agents have heard is bounded awmy f
zero, specifically, the bias is at leag®. Note that at this point, we are left with solving the noisyjoniy-
consensus problem with an initial s€bf agents of siz@(el2 log n) whose majority-bias i€(/logn/|Al).

The general description of our algorithm in Stage | is a®fedl: any agent receiving a message in some
phasei (also including the case = 0) keepssilent (waits, and does not send messages) until phase
completed and, at the end of the phase, it chooses unifortmigndom an arbitrary message among the
messages it has received, and setsnitgal opinion as the value of this message. Only after phase
completed, will such an agent send messages. That is, whemetti phasé + 1 starts, each such agent
will start to send its initial opinion repeatedly in everyra until the whole of Stage | is completed. Hence,
phasei is responsible for passing information between all theaalyeactivated agents (these are the agents
in layers0, 1, ...7 — 1) to the newly activated agents in phaggorming layeri).

Because of the noise in the messages, the quality of infasm#tat propagates between layers dete-
riorates exponentially fast in Specifically, if the fraction of correct agents at laydas somel/2 + §;,
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then the expected fraction of correct messages reachingsagelayeri + 1 is 1/2 + 2¢4;. To guarantee
that this controlled level of deterioration holds w.h.ps,veell as to account for this already problematic
phenomena, our phasing process makes sure that the nundmggrds informed in the next layer increases
guadratically faster than the deterioration factor. Thattie number of newly informed agents increases by
a factor larger than /e2. Maintaining this property throughout all phases allowsaiguarantee that when

x agents are activated (whereis sufficiently large), then, w.h.p., the bias towards theext opinion is
Q(/logn/x). In particular, this implies that when all agents are activated, the bias towards the correct

opinion isQ(y/logn/n).

2.1.2 Formal description of Stage |

Choose parameters 3, s = O(1/¢?) such thatf > c¢;8 > cas > c3/€?, for sufficiently large constants
c1,c2,c3 > 0. Let f; = slogn, andBy = flogn. In addition, letl” = [log(n/20,)/log(s + 1)|. Note

that3,(8 + 1)" < n/2 and thatl = O(;555).

We group the rounds of Stage I info+ 2 phases, such that for eagh< i < T, phase + 1 immediately
follows phase. Phase 0 takes, rounds, phasé for 1 < i < T, takess rounds, and phasg + 1 takesfs
rounds. Formally, lettingz, y) denote the time period from rounduntil roundy — 1, we have: phase =
[0,8s),for1 <i <T, phasel = [3s + (i — 1), Bs + i), and, phas€’ + 1 = 5, + T3, Bs + T8 + By).

At a given time, a non-source agent is calltdivatedif it already heard a message by that time (the
source agent is always considered activated). A non-aethegent is calledormant For an agent, lett,
denote the first time was activated, and lé}, be the integet for which ¢, belongs to phasé An agenta
is atleveli if i, = 4. In particular, the source is of level 0.

The rule of Stage |: Consider an activated agemtof level i. Agenta waits until phase + 1 starts
before sending any message. During phidseollects all messages it heard in the phase, chooses one of
them uniformly at random, and setsiiitétial opinion By (a) to be the opinion it heard in that message.
The agent then sends its initial opini®(a) in each round during the phasigst1,i, +2,--- , T+ 1.
(In other words, Agent waits until phase€, is completed and then it starts sending its initial opinipn
repeatedly in every round until the end of Stage I.) An agewalledinitially correct if the message it
heard for the first time is correct, i.e. i (a) = B.

Remark 2.1. It may be the case that an agent activated in some phdsspecially for largei) receives
several messages throughout that phase. We have chose¢thmdgent set its initial opinion according to a
message chosen uniformly at random among these messagée parposes of this current section, where
a global clock is assumed, all proofs would have carried outhe same manner, had we chosen instead,
to let the agent set its initial opinion according to the firsessage it received. The reason for choosing a
random message is to guarantee that the order in which thatageeives its messages during any phase
does not influence the actions of this agent. This propettyp@imore important in Sectidd 3, which relaxes
the synchronization requirement.

Note first, that in particular, in phase 0, the source S is tilg agent sending any messages. Xet
be the number of agents activated at phasklore generally, for a non-negative integer definé; as the
random variable indicating the number of agents that welresdied at some time before the end of phase
LetY; denote the random variable indicating the number of aghatsiere activated during phaseHence,
we have:X; = Z;':o Y;. Let Z; denote the number of initially correct agents amonghagents that were
activated during phaseand lete; be such thaZZ; = (1/2 + ¢;)Y;. We calle; the bias of phasé
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Claim 2.2. By choosings > c¢/¢? for a large enough constan it is guaranteed that at the end of phase 0,
w.h.p., we haves, /3 < X, < 3, activated agents whose bias towards the correct opifias at leaste/2,
that is,ep > €/2.

Proof. Recall thatZ, denotes the number of initially correct agents amongXhe= Y, agents that were
activated during phasgand letey be such tha, = (1/2 + €;)Y). Our goal is to show thafy > €/2.

Recall that phase 0 lasts f6t = slogn rounds, and that until the phase is completed only the source
agent S is sending messages. Hence, during phase 0, thexlevays at mosp; activated agents, and in
particular, at least/2 dormant agents. Hence, each message sent during phase @balsilty at least
1/2 to activate an agent. The number of activated agentseatril of phase 0 is thus dominated fy
independent Bernoulli(/2) random variables and by Chernoff’s inequality, we can seabe parameter
(in the definition of3;) to be a sufficiently large constant so that w.h.p., at thearmhase 0, we have at
leasts3, /3 activated agents, that iX, = Yy > 3,/3.

Let us now focus on the random faults occurring in the messaget during phase 0. Each of thg
activated agents chooses one message uniformly at randomgaime messages it heard (typically it only
heard one message anyways). The opinion received by ths®cohnessage (and, in fact, by any message)
has probability at leadt/2 + € to be correct. Hence, the agent has probability at [e&st- € to be activated
with the correct opinions. It follows that the expected number of agents that werevateti with the
correct opinion during phase 0 is at le@sf2 + €)Y;. In the terminology of Chernoff's inequality (see
Equatior2), we hav&(X) > (1/2+¢€)Yy. By takingd = ¢/2, we gettha{l — 6) E(X) > (1/2+¢/2)Yb.
According to Chernoff’s inequality, the probability théiet expected number of agents that were activated
with the correct opinion during phase 0 is less than this arhasi at mose =" £(X)/2 = ¢=0(<*Y0) ' Since
Yy > Bs/3 = (s/3)logn, then for sufficiently larges > 1/¢2 it follows that this probabilitye=C(<*¥0) is
polynomially small. In other words, w.h.p., the numki&y of initially correct agents during phase 0 is at
least(1/2 + €/2)Y}. This establishes, > ¢/2 and the proof of the claim. O

Observe that by Claimh 2.2, phase 0 essentially reduces tlbg hmadcast problem to an instance of
the noisy majority-consensus problem, with an initial detive X, = ©(5;) = @(Ei2 log n) and majority-
bias of at least/2 = Q(y/logn/|Xo|). What we shall show is that in general, pha8es, ..., where
i < T, take us to an instance of the noisy majority-consensudemglwith an initial setd; of size|A;| =
O (=t log n) and majority-bias of at least™ /2 = Q(y/log n/[A;]). ForT = |log(n/24s)/log(8 +1)]
this would lead to showing that w.h.p., aftérphases, the number of activated agentQ(g’n) and the
fraction of initially correct agents is at leasf2 + Q(/logn/(e2n)). The last phase of the stage taking
B > log n/e? rounds would then lead to the following lemma summarizireggkrformances of Stage .

Lemma 2.3. Stage | takea;?(gi2 log n) rounds. At the end of the stage the following evéititolds w.h.p:

1. All agents are activated.

2. The fraction of initially correct agents is at least2 + Q(y/logn/n).

The remainder of this subsection is devoted to the proof ofine2.3. Itis easy to verify that the number
of rounds in Stage | ig, + 8T + By = O(ei2 logn). Our goal thus is to show that eveARtmentioned in
the lemma holds with high probability. The proof considerseguence of evenis;, Fs, - - - E., for some
7 = O(logn), whereE. = E. We will show that even¥; occurs w.h.p., giver®;_;. This would imply
that £ occurs w.h.p., by repeatedly invoking the standard arguien{E;.1 | E;) — Pr(E;.1)| < Pr(E;).



Recall that Claini 2]2 asserts that w.h.p., we hdy&8 < X, < 3, andey > €¢/2. In what follows, we
assume that this highly likely event holds (see the pardgahpve).

Analysis for phasei, where1 < ¢ < T': Itis easy to see thak;, the number of activated agents at the
end of phase is at mostX; < (8 + 1)'Xy = O (i logn). This follows trivially from the fact that
X, = X;_1 +Y;, and from the fact that; < 5X;_; (because foi > 1, phase is composed off rounds
and in each such round precisely_; messages are being sent). The following claim states thapwthe
value of X; is, in fact, very close t@j3 + 1)’ X,. Establishing this claim will enable us to show that up to
phaseT’, the valuesy; are increasing exponentially and that at the beginning ekpf’ we already have
Q(e?n) activated agents. The proof of the following claim exteakiuses concentration properties given
by Chernoff’s inequality:

Claim 2.4. W.h.p., for every, 1 <i < T, we have:(8 + 1) X,/16 < X; < (8 + 1)" X,.

Proof. As mentioned, with probability 1, we have:
X; < (B+1)'Xo. (3)

Hence, our goal is to prove the other part of the claim, nantiedylower bound3 + 1)' X, /16 < X;. This
statement trivially holds fof = 0. Hence, we shall prove the statement by inductiori,amhere the basis
of the induction is the trivial case= 0. Fix an integeri > 1 and assume by induction that the claim holds
for i — 1. Consider a round in phasei (wherel < r < 3). Equatior 8 implies that the number of dormant
agents in round — 1 of phasei is always at least — X; > n — (8 + 1) Xq. Therefore, the probability
that a given message sent in roundctivates an agent is at ledst- (3 + 1)' Xy /n. Note that at round

of phasei (in fact, at any round of phasg, precisely.X;_; messages are being sent. Lettidg, denote
the number of agents that are activated in rourd phasei, we thus have thatl; , is dominated byX;_;
independent Bernoulli(— (3 + 1)’ X, /n) variables with an expected value of:

E(A;;) > (1—(B+1)"Xo/n) Xi—1. (4)

In particular, sincé < T, and since3,(3+1)T < n/2, we haveE (A;,) > X;_1/2. Furthermore, applying
Chernoff’s inequality, for any > 0, we have:

52E(A,;

2,7‘)
Pr((l - 5)E(A2,r) < Ai,r) >1—e" 2 =1- 6_9(62){%1)-

By the induction hypothesis, we get thait_; > (8 + 1)1 X,/16 = Q((8 + 1)" "' logn), w.h.p. Taking
§ = 1/2¢, we thus get that:

Pr((1-1/2)E(A;,) < Aip) >1— e~ (B+1)"" " logn/22)

Taking S to be sufficiently large thus implies that, w.h.p., we ha(/b:— 1/2i) E(Ai,;) < A;,. A union
bound over all rounds in phasei then guarantees that, w.h.p:

B B
(1-1/2)) E(Aip) <> Air.
r=1 r=1
Using the bound from Equatidni 4 and observing fiat Ele A; », we get that w.h.p:
(1-1/2") (1= (B+1)'Xo/n) - BXi1 < ;. (5)
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SinceX; =Y; + X;_1, we get that, w.h.p:

(1-1/2") (1= (B+1)'Xo/n)) - (B+ 1)Xig < X; .

Hence, 4 ' _ ' _
(B+1)'Xo -5y (1 - 1/27) 4 (1 — (B + 1)’ Xo/n) < X; . (6)
Observe,
) ) oo TTE _1
iy (1-1/27) =2 a5 (1-35)

_ o%iilos(1-35)

> 9725 e =14,
Also,

(B+1)7 xg
n

o (1= (B+1) Xo/n) > 272 %j~0
_ 9= 0 S (A1)

> 9~ TEBHT 5 o= BRER(BHY)

s(B+1) logn
n

Now, i < T', andT is chosen so that(3 + 1)” logn < n/2, hence, < 1/2, implying that:

‘o (1= (B+1)Xo/n) > 1/4.
Finally, By Equatioi b, we get: '
(B+1)"Xo/16 < X;,
which establishes the proof of Claim.4. O

Relying on the definition of”, the fact thatX, > /3 holds w.h.p., and taking = O(1/¢?) such
that3 > 3s, we ensure that w.h.p., we hage + 1) +1 X, > n/6. Hence, Claini.2}4 implies the following
lower bound onX, the number of activated agents at the beginning of the lesdein Stage |.

Corollary 2.5. W.h.p., we hav&(r = Q((8 + 1)T Xp) = Q(e%n).

This also guarantees that settifig> c/e? for a large enough constaasuffices for thef log n rounds
in phasel’ + 1 to activate all agents:

Corollary 2.6. W.h.p., at the end of Stage I, all agents are activated.

Proof. Recall that phas#&' + 1 consists of3; = f logn rounds, in which allX7 agents that were activated
before the beginning of the phase are sending their inipalion in each round of the phase. According
to Corollary[Z5 we have, w.h.p., thaf; > ¢/(¢2n) for some constant’. Settingf > c/e? for a large
enough constanrtguarantees that the number of messages sent out over tise afyhasd” + 1 is, w.h.p.,

By X7 > cenlogn. Note that each agent has a probabilityl ¢f to be the recipient of any such message
which is further independent between the messages. Thelgtityg that an agent is not activated by the
receipt of any message after phdse- 1 is thus at most1 — 1/n)‘3’c"1°g” =n=O9), O
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The next corollary gives a lower bound on the growttygfthe number of newly activated agents in phase
This lower bound will be used for bounding the bias from be(see Claini 2.18). Note that the duration of
the last phas€el’ + 1, is taken to be longer than that of phases 1...7 to guarantee a large number of
newly activated agents even in this last phase. Indeedincdmy with phases of duratiofi would activate
all agents relatively early, but would also restrict the tw@mof newly activated agents at later phases.

Corollary 2.7. W.h.p., for every phasgwherel < i < T + 1, we haveY; > 3~ logn .

Proof. Note that Equatiofi]5 in the proof of Claim 2.4 implies that &my integerl < i < T, we have
BX;_1/4 <Y;. Together with the lower bound o¥j;_; given in Clainl2.# (i.e.(8+1)""1X,/16 < X;_1),
and taking sufficiently largg ands, we get that, w.h.p3'~! log n < Y;, which establishes the claim for any
i, such thatl < i < T. By definition ofT", and the fact that (with probability 1) far> 1, X; < (8+1)' X,
we getXt < n/2. Hence, Corollarj 2]6 implies that, w.h.pF 1 > n/2 > 57 logn. O

Recall thatl /2 + ¢; is the fraction of initially correct agents among thigagents that were activated in
phasei, i.e.,¢; is the bias toward3 among thesé&’; agents. Corollari 217 will be useful for obtaining the
following claim.

Claim 2.8. W.h.p., for every phasgwhere0 < i < T + 1, we have:; > ¢+1/2,

Proof. We prove the claim by induction oh The basis of the induction is= 0, which has already been
established in Claifn 2.2. Consider now phassherel < : < T + 1. By the induction hypothesis, we can
assume that w.h.p;_; > ¢'/2. Fix a configuration at the end of phase 1 for whiche; _; > €'/2, and let

¢ = ¢;_1. Thus, the fraction of initially correct agents among &ig | activated agents in the beginning of
phasei is 1/2 + ¢ > 1/2 + €' /2. For any of the newly activated agent#n phasei, the probability that the
initial opinion of a is correct is at least:

(1/24¢)-(1/2+¢€)+(1/2—¢) - (1/2 —€) = 1/2 + 2¢.

By linearity of expectation, this equation implies tHatZ;) > (1/2 + 2¢¢)Y; > (1/2 + €+1)Y; . Taking
§ = et /2gives(1 — 8)E(Z;) > Yi(1/2 4 €11/2).

For any given roungd of phase;, letY; ; denote the set of agents that received a messages in jpand
furthermore, decided to set their initial opinion accogdthe message received in that round. The random
variables indicating which of the agentslf; has the correct initial opinion are negatively-correlagatce
the corresponding samples are taken without replacemeatSsction 1]7). Between different rounds of the
phase, these random variables are furthermore independente, overall, the random variables indicating
which of the agents i; = U;Y; ; has the correct initial opinion are negatively-correlat&tiis allows us
to apply Chernoff’s inequality which together with the laviund onY; from Corollary[2.Y gives that:

PrlZi < Yi(1/2 + €71/2)] < e 0 BE)/2 < o= 0Wi/d = o= PTRV/16 g U T logm)

Taking 3 > 3/¢2 to be sufficiently large therefore implies that, w.h.p., veeéZ; > Y;(1/2 + ¢/t1/2), or
in other wordsg; > ¢i1/2. O

Claim[2.8 together with the definition @f and the fact thaB > 1/¢2 imply that w.h.p., the fraction of
initially correct agents at the end of Stage | is at least

1/2+€72/2 = 1/2 4+ Q(y/logn/n),
completing the proof of Lemnia 2.3.
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2.2 Stage Il: Boosting the bias

We have proved that, w.h.p., at the end of Stage | all agertaaivated and the bias of correct agents is
at leastd;, whereo; = Q(y/logn/n). Stage Il is meant to gradually boost the bias towards theecor
opinion, so that, w.h.p., it will equal 1 (that is, all ageats correct) at the end of the stage. For that purpose
we use standard techniques of repeatedly taking majoety, s.g.,[[11, 22]. We note however that our
setting is different than those used in previous papersplgnbecause we assume noise in communication.
The difficulties resulting from noise required us to come uthwen analysis that uses somewhat different
arguments than the ones used in previous majority-basestgap

2.2.1 Intuition

Stage Il is executed ih+ 1 phases, wherke = [log(1/d1)] = O(log n). Informally, phase, for1 <i < k,

is associated with a parametgr such that it is guaranteed w.h.p., that when the phases dfaetfraction of
correct agents is at leabt2 + 9;. (Note that a sample from such a population is correct withtst smaller
probability thanl /2 + ;, because of noise.) Essentially, in phaseach agent takeg= O(1/¢2) samples
from the population (during’ rounds) and then sets its opinion according to the majoptypion of these
samples. Despite the noise in the samples, we will provedisdong as; is sufficiently small, this majority
process increases the fraction of correct agents, w.Ingm, f/2 + ¢, to at leastl /2 + 24;. Moreover, we
shall prove that ib; is large, then the majority process does not decréagm much. Hence, for the next
phase, we can safely assume that either = 24; or thatd,, 1 is already sufficiently large.

To establish the required boosting, the fact thaihay be very small prevented us from directly applying
Chernoff's inequality. To see why, let us consider the senploiseless case & 1/2). In this case, each
agent receives = O(1) samples, each of which is correct with probabilit2 + ¢;. We want the majority
of these samples to be correct. That is, we want that the nuMlmé correct samples would be at leggt.
Note that ifd; is very small, then the expected number of correct sampleslysslightly larger thany/2,
specifically,E(X) = v(1/244¢;). Now recall that Chernoff’s inequality states tita{ X > (1-0)FE (X)) >
1 — exp(—6%2F(X)/2). Since we aim to boun#r(X > ~/2) using this inequality, we need to takesuch
thaty/2 < (1 —0)E(X) =~v(1—0)(1/2+ ¢;), which amount to choosing = O(¢;). But with this choice
of 6, Chernoff's inequality only tells us thatr(X > ~/2) > 1 — exp(—0(d?)), which is meaningless
whenJ; is very small (since this lower bound is even smaller th#).

The aforementioned reasoning required us to come up witle imaolved arguments. To lower bound
the probability that the majority opinion in thesamples is correct, we perceive the samples as obtained by
an imaginary process composed of two steps taken-pydayers. In the first step, for each player we flip
afair coin which determines its opinion (i.e., probability2 for having each opinion). Then, at the second
step, each of the players with the wrong opinion, (indepetiglehas a small probability (close t@;) of
flipping its opinion to the correct one. The parameters amseh such that at the end of this imaginary
process, the probability that the majority opinion amonrgtplayers is correct is the same as probability
that the majority opinion in the original samples is correct. To bound the latter probability, we tnadyze
the imaginary two-step process.

Informally, the imaginary process allows us to understamal dituation in a more modular manner.
Indeed, the probability that the first step is successf@ldyng a correct majority) is precisely 1/2, and once
the first step is successful, the second step cannot harnitihéan (because in the latter step, only wrong
players can change their opinion). The probability of beingrect after the two-step process is tHyg
plus the probability of obtaining a wrong configuration i ffirst step and fixing it in the second step.
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Let us dwell a bit into this later probability. If the first gtéurns out to be unsuccessful, then before the
second step starts there ar& + x wrong players and /2 — = correct ones, for some integer Whenzx is
small, Stirling’s formula comes handy for bounding fromdyelthe probability that such a situation occurs
after the first step. Specifically, this probability iz /,/7). For such a situation to be fixed, we need
that in the second step, at least- 1 wrong players flip their opinion. Depending on the particialue
of ¢;, we choose a different value far, and carefully analyze the probability of having a cornezivent
in the second step. For example, as mentioned, the prdiyathifit the second step starts with2 + 1
wrong players and//2 — 1 correct ones (a bias of one player to the wrong opiniof)(is/,/7) = Q(e).

In this case { = 1), the corrective event amounts to having one wrong playemanthey,/2 + 1 wrong
players changing its opinion in the second stepg; lis very small, this happens with probability roughly
v - €6; = O(d;/€). Furthermore, for sufficiently smail, the constant factors hidden in the aforementioned
2 andO notations, turn out to be such that, the probability of hguioth a bias of one player to the wrong
opinion in the first step and a corrective event in the secteplis at leastd,;. Together with the probability
(at leastl /2) that the first step yielded the correct majority opinion égin with, we get that the probability
of having a correct opinion after the second step is at [e&st- 40;. Recall, that example was with respect
to 9; being very small. In general, regardless of the valug obur analysis makes sure that the majority is
correct with probabilitymin{1/2 + 2°§;, 5/9}.

A direct application of Chernoff’s inequality, relying ohe fact that; = Q(y/log n/n), will then show
that w.h.p., the bias increases frainat phase to at leastmin{234;, 1/40} at phase + 1. Hence, after
invoking k& = [log(1/61)] = O(logn) phases, the fraction of correct agents becomes boundedfeway
1/2 by an additive constant. Hence, to achieve high proibaliilat all agents are correct, it is sufficient that
in the last phase, namely phase- 1, each agent take@(gi2 logn) samples of the population, and sets its
opinion according to the majority opinion in these samples.

2.2.2 Formal description of Stage Il

As guaranteed by Lemnia 2.3, at the end of Stage |, w.h.p.galita are activated and the bias of their
initial opinion towards5 is Q2(1/log n/n). Hence, Stage | brings us to an instance of the majority exmss
problem, where the set contains the whole population and the majority-biag{s/logn/|Al). Stage II

is meant to solve this problem.

Letr = [222/¢%], and lety = 2r + 1 (no attempt has been made to minimize the constant facies).
definek = O(log n) and take Stage Il to be composedkiot- 1 phases. Each of the firktphases ha®y =
O(1/€?) rounds, while phasg + 1 is composed of)(ei2 logn) rounds. Essentially, in each phase, agents
repeatedly send their current opinion. At the end of the @hagents may choose to update their opinion.
Since the opinion of an agent may be updated only at the endobhse, all messages sent by an agent
during any given phase are the same. For a phdsém; denote the number of rounds in the phase (i.e.,
m; =2yfori=1,... k andmy i = O(;lz logn)). During phase, an agent that received at least/2
messages is callesliccessfuand the messages it received are caflachples Only the successful agents
will update their opinion at the end of the phase, while the véll remain with their previous opinion.

Claim 2.9. The number of successful agents in each phase is, w.h.pasihl/2.

Proof. In a given round, the probability that a given agerdid not receive a message(is— 1/n)" ! <
1/2. Thus, the expected number of messages received by agerd given phase is E; > m;/2. By
choosingm; large enough, Chernoff’s inequality can be used to guaeahts the probability that ageats
unsuccessful is smaller thapwherec is as small as we want constant. The expected number of essfat
agents is therefore at most. As the random variables indicating whether an agent is egessful or
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successful are negatively-correlated, we can employ @ffésmequality (see Sectiorie 1.7), to deduce that
w.h.p., the number of successful agents in a phase is ati¢ast O

The rule of Stage Il: For each round in each phasewherel < i < k + 1, each agent repeatedly
sends out its current opinion. The opinion of an agent in @Haef Stage Il is its initial opinion. At
the end of each phase, a successful agentthe phase will consider its set of samples will select

uniformly at random an arbitrary subsg}{ C S, containing preciselyn;/2 samples, and update it
opinion according to the majority opinion in the sample$in An unsuccessful agent does not change
its opinion during the phase.

1°2)

Remark 2.10. We have chosen to let a successful agent choose an arbitudses of sizen;/2 among

its samples, and update its opinion according to the majarjtinion in this set. For the purposes of this
current section, where a global clock is assumed, all prewdsld have carried out in the same manner, had
we chosen instead, to set this subset as the particular subetining the firsin; /2 samples. Similarly to
RemarK Z.IL. The reason for choosing an arbitrary random subkthis size is to guarantee that the order
in which the agent receives the samples during the does fia¢ite its actions. This property will be more
important in Section, which relaxes the synchronizatiaqumement.

Lemma 2.11. Consider takingy = 2r + 1 (noisy) samples from a population whose bias towards the
correct opinion is at leasd. Then, the probability that the majority of thegesamples is correct is at least
min{1/2 4+ 46, 1/2 + 1/100}.

Proof. Consider they = 2r+1 samples. We say that a sampleasrectif it holds the correct opinio8. The

~ samples are chosen independently, and uniformly at randamng the population whose bias towards
the correct opinion is at least Letb = 2¢§. Accounting for the noise in the samples, for each sampée, th
probability that the sample is correct is at least:

(1/2406) - (1/2+ )+ (1/2—68) - (1/2—¢) = 1/2+2e5 = 1/2+b.

Note thath may be very small, so directly employing Chernoff’s inedyabver they samples would not
imply the desired bound. Instead, let us look at the follgnvimaginary two-step process that forms an
equivalent view of the; samplings.

The imaginary two-step process: The imaginary process is performed over a Setonsisting of~y
Booleanplayers namely,
S =o01,09,...,0,.

e First step: each playew; flips a fair coin to form an initial opinion (i.e., a bit if0, 1}).

e Second stepindependently with probabilit, each playet; gets to see the correct opinighand
corrects its opinion if it was wrong initially (otherwiserggmains with its correct opinion).

Note that after this two-step process, the probability thptayer is correct is precisely — %(1 —2b) =
1/2 + b. Thus, the probability that the majority opinion among thplayers isB3 bounds from below the
probability that the majority of the original samples gathered by agents 5. To lower bound this latter
probability, in what follows, we focus on theplayers, in the two-step process. Lebe a positive integer.
Define the following events.
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e C = at the end of the first step, the majority of playersirs correct.
e U, = after the first step, the numberof wrong players inS satisfies: + 1 < w < r 4 z.
e F, =in the second step, the number of opinion flips is at least

e F =the majority opinion at the end of the two-steps is correct

Our goal is to lower bound the probability th&toccurs. Note first thafr(C') = 1/2. Assume now that’
did not occur, henc#, occurred for some, that is, in.S, the first step results in a sBt of wrong players
whose sizav satisfies + 1 < w < r 4+ z. In this case, foll to occur, it is sufficient that evedt, would
occur in the second step. That is, for every positive integere have:

Pr(F) > Pr(C) + Pr(F, | Uy) - Pr(U,). (7)
Stirling’s formula can be used to lower bound the probabthiat U, occurs, whern: is a small integer. The
bound is indicated by the following claim:
Claim 2.12. For 1 < x < /r, we havePr(U,) > z/104/r.

Proof. For eachy, let P(j) denote the probability that preciselylayers inS hold the wrong opinion after
the first step. We rely on the fact that the coins tossed in teediep are fair, and on Stirling’s formula to
show that forl < i < /r, we haveP(r + i) > 1/10,/r. This will establish the claim since far < /7,
the probability that Evert/, occurs isPr(U,) = >7 | P(r +14) > x/10y/r.

The bound orP(r + ¢) can be obtained as follows:
. _ 2r +1 _ (2r +1)!
_ (2r+1) _ (2r+1)
Plr+i) =2 <r+i> 2 it Dlr i)
S 9= (2r+1) (2r +1)!

- (r—r+ D+t

Applying Stirling’s formulay/27 < %— < e on the right side of the equation, we get as desired:

Plrti) > \/22_71 ‘ 2_(2’”:1)(27” + 1)27"+1.5
e (r—/r+1)r \/?+1.5(74+\/;)r+\/?+0.5
2ﬁ T—(2r+1.5)(1 + 0.5/7”)2T+1'5
T e (r — /1 + 1)1 =VrtL5(p 4\ fr)r+Vrt05
2\/E T—(2r+1.5)(1 + 0'5/7“)27"-1-1.5 1
= e2\/r ’ (r — /1) VL (1 4 \/fr)r V05 ' (1+ %)r—ﬁ+1
- 2/ ' 1-e . 1
e2\/; (1 _ %)r—ﬁ—i—l(l + %)r+ﬁ+o.5 el 01
B 2\/E‘ 1 ‘ 1
e\/T (1-— %)r—\/;—i-l(l + %)2\/7«—0.5 el.01
B 2/ 1 B 2y 1

= : = > .
e\/; e—0.99 . g2 . £1.01 63.02\/; 10\/;
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To successfully use Equatigh 7, we need to bound from belewd#fue ofPr(F, | U,), that is, the
probability that giverlU,, at leastr players (ini¥) flip their opinion in the second step.

Claim 2.13. (1) If r < 2/bthenPr(Fy | Uy) > rb/et. (2) If rb > 2, then forz < [rb], Pr(F, | Uy) > 1/3.

Proof. Recall that in the second step, each of the wrong playerstippinion with probability2b. Observe
that Pr(F; | Uy) is bounded from below by the probability that precisely ofi¢he » + 1 wrong players

in W flipped its opinion in the second step (nofd/| = r + 1 sinceU; occurred). This latter probability
is (r + 1) - 2b(1 — 2b)", which is at leastb/e?, if » < 2/b. This establishes the first part of the claim. Let
us now turn to prove the second part of the claim. Assumerthat 2. Note that the expected number of
flips in W is at leastrb > 4. Chernoff’s inequality therefore implies that the probi&pithat the number
of flips in W is at mostrb is bounded from above by/el/2, implying that for integerr < [rb], we have:
Pr(F, | Uy) > Pr(Fpy | Up) > 1—1/e'/2 > 1/3. O

Finally, to establish Lemmia 2111, we combine Equalibn 7 @ithims[2.12 and 2.13 for different values
of 4.

The case of smalls: Consider the case that< ¢/22°. This restriction ons implies thatrb < 2. In this
case, the first part of Clailm 2113 tells us tia{ 7y | U;) > rb/e*. Hence, by Claini 212 and Equatibh 7,
we have:Pr(F) > Pr(C) + Pr(Uy) Pr(Fy | Uy) > 1/2 + (1/10/7)(rb/e*) > 1/2 + 40.

The case of mediums: Consider the case thaf2?’ < § < 1/2!2. In this case, we havé < 2rb
2(y/r —1). Let us setr := [rb]. Hence,l < z < 4/r, and we can employ Claim 2112, yieldiiy(U.,)
x/25y/r. By the second part of Clailn_ 2113, we obtaiRr(F) > Pr(C) + Pr(U,) - Pr(F, | Uy)
1/2 4 (2/10/7)/3 > 1/2 + by/7/30 > 1/2 + 46.

IV VvV IA

The case of larges: Consider the case that> 1/2'2. In this case, we set := [/r/3]. Since[/7/3] <
[rb], the second part of Claim 2113 implies that(F, | U,) > 1/3. Hence, we getPr(F) > Pr(C) +
Pr(U,) - Pr(F, | U,) > 1/2 + x/304/r > 1/2 + 1/100. This completes the proof of Lemrha?2l11. O

Lemmd 2.1l provides a lower bound on the probability thatceessful agent is correct at the end of a
phase. We are now ready to bound from below the increase srttiéé a phase guarantees.

Lemma 2.14. Consider phase < k, and assume that the number of correct agents in the begjrofithe
phase isl/2 + §;, whered; > ¢(1/logn/n), for sufficiently large constant Then, w.h.p., the fraction of
correct agents at the end of the phase is at least{1/2 + 1.74;, 1/2 + 1/800}.

Proof. Fix a phase, for 1 < ¢ < k, and assume that when phasstarts, the fraction of agents having
the correct opinion is at leasy2 + §,. Note that being successful in the phase is independentiemimg

the correct opinion in the beginning of the phase. Since ancoessful agent does not change its opinion
during the phase, its probability of being correct at the efthe phase is therefore at ledast2 + o;.
Moreover, these probabilities are negatively-correlatéuh the other hand Lemnia 2]11 shows that each
successful agent in the phase has a probability of at le@st- min{44;,1/100} to be correct at the end

of the phase. Moreover, the random variables indicatingtdrehe successful agents are correct are again
negatively-correlated. We can thus argue about lower ®idodexpectations first, then continue with
related dominating negatively-correlated variables fhiol we finally apply standard Chernoff’s bounds.

In particular, we first consider the case tldat> 1/400. In this case, for each agent (whether suc-
cessful or unsuccessful) the probability of being corredttileastl /2 + 1/400 and thus dominated by a
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Bernoulli random variable with this expectation. As argiedore these dominating variables are further-
more negatively-correlated. Létbe the number of correct agents. We havg) > n(1/2 + 1/400).
Takingd = 1/800, we get that(1 — §)E(I) > n(1/2 + 1/800). Applying Chernoff’s inequality to the
dominating negatively-correlated random variables waiobt

Pr(I < n(1/2+ 1/800)) < e=?(%),

Sinced; > c¢(y/logn/n) for sufficiently largec, it follows that, w.h.p., the fraction of correct agentsfa t
end of the phase is at least2 + 1/800, as required by the lemma.

Next, we consider the case thit < 1/400. Recall from ClaimZ9 that the number of successful
agents in the phase is, w.h.p, at leag. Condition on this event. Recall also that each unsuccessfu
agent is correct with probability, = 1/2 + §; and each successful agent is correct with probability=

Let » denote the number of unsuccessful agents. Recall that wditimmon the highly likely event
u < n/2. LetU be the set containing all unsuccessful agents and additiong — « other arbitrary
successful agents. Note tHatcontains precisely./2 agents. LetS be the set of the remaining agents (all
of which are successful).

Next, let us consider the numbéy of incorrect agents i/. Whether or not a given agent i is
successful, the probability that this agent is incorrealdminated by a Bernoulli random variable with
probability of 1/2 — ¢;. Hence, the expectation of this numbefisl, ) < §(1/2 — §;). Takingé = 6;/10,
we getthat1+0)E(I,) < §(1/2—0.94;). With these dominating random variables again being neggti
correlated we apply Chernoff's inequality and obtain:

Pr(I, > 2(1/2 —0.95,)) < e B3 _ o~ 0nd?),

Therefore, w.h.p., the numbeéy of incorrect unsuccessful players is at mggt /2 — 0.95;). We similarly
bound the number, of incorrect agents irb. In particular, we have(I;) < %(1/2 — 46;). Taking
6 = 6;, we have(1+0)E(1,) > 5(1/2—2.56;). Apply Chernoff's inequality to the dominating negatively
correlated variables gives:

Pr(l, > =(1/2 — 2.56;)) < e 0 PU)/3 — o=0nd}),

n
-2

Hence, w.h.p., the numbéy of incorrect successful agents $his at mosts (1/2 — 2.55;). It follows that
the total number of incorrect agents (including both susftesnd unsuccessful ones) is w.h.p, at most

2(1/2 —0.95)) + g(l/z —258) = n(1/2 — 1.75;).

In other words, the fraction of correct agents at the end efphase is, w.h.p., at leasf2 + 1.74;, as
desired. O

Sinced; = Q(y/logn/n), where the constant factor hiding in tienotation is as large as we want,
Lemmd 2.1# implies the following corollary.

Corollary 2.15. After the firstt = ©(log(y/n/logn)) phases, w.h.p., the fraction of correct agents is at
least1/2 + 1/800.

In the final phase, namely phase¢ 1, each agent coIIec@(el2 log n) independent samples, uniformly at
random, from a population whose bias towards the correcti@pis at least /400. Assuming the constant
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hiding behind the)-notation is sufficiently large, Chernoff’s inequality gaatees that, w.h.p., the majority
opinion of such samples is correct. Hence, a union boundraggti guarantees that w.h.p, all agents are
correct at the end of Stage Il. Let us now analyze the running of Stage Il. Each of the firgt phases
takesy = O(1/¢?) rounds. Sincé = O(logn), the number of rounds required to perform the firphases

is O(Ei2 logn). The running time of phase+ 1 is O(Ei2 log n). Altogether, we obtain the following.

Lemma 2.16. Stage |l takes?(el2 log n) rounds and at the end of the stage all agents are correct, lih
probability.

Lemma$ 2.B and 2.16 yield that our algorithm solves the nmisgdcast problem iﬁ?(el2 log n) rounds.
Since each message is composed of a single bit, and sincehirr@aand, each agent can send at most one
message, we get the bouﬁdeiznlog n) on the total number of messages and bits sent. Altogether, we
obtain our main result.

Theorem 2.17. Consider the fully-synchronous setting and debe such thatl/nl/2‘77 < ¢, for some
arbitrarily small constant; > 0. The noisy broadcast problem can be solved UQI(IQZ logn) rounds, and
a total ofO(E%n log n) messages (or bits).

Corollary 2.18. Consider the fully-synchronous setting and debe such thatl /n'/>~" < ¢, for some
arbitrarily small constant; > 0. Consider the noisy majority-consensus problem with araeilrset A of at
least)(< logn) agents and majority-bias d&(+/logn/|A[). This problem can be solved ®(; log n)

rounds, and using a total cﬁ)(e%nlog n) messages (or bits).

Proof. Recall that Claini_2]2 implies that after phase 0 is completesl are left with solving the noisy
majority-consensus problem with an initial s&f of agents of size¢A,| = @(Ei2 log n) whose majority-bias
is Q(y/logn/|Ag|). As we saw, this problem is solved by applying the remainihgses = 1,...7 + 1

of Stage |, and then applying Stage Il. Specifically, as gheiClaimg 2.8 and 214, phasef Stage |, for
eachi € {1,...T + 1}, reduced the problem to the noisy majority-consensus enohtith an initial set
A; of size A; = © (i logn) and majority-bias of2(,/logn/[A,[). Hence, after applying Stage I, we
were left with dealing with the noisy majority-consensuslem with an initial setX of agents composed
of all n agents and majority-bias 6f(\/logn/n). Solving this latter problem is precisely the objective of
Stage Il.

In light of this, the general case of the noisy majority-camsus problem can be solved as follows.
Recall, in this problem we consider an initial subdenf agents of siz¢A| = Q(Ei2 log n) and majority-bias

of Q(y/logn/|A|). To solve this problem, we first set:

. log(]A[/log n)
' 2log(1/e)

and then execute phasegs i1 ...7T + 1 of Stage |, and subsequently execute Stage II. O

3 Removing the global clock assumption

In the previous section we considered the fully-synchrenseiting where all clocks are set to zero at the
beginning of the execution. In this section we show how toaesthis global-clock assumption, considering
the more standard synchronous setting in which the clocknofgent is set to zero when it receives a
message for the first time (the clock of the initiator is setdoo when the execution starts). The removal
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of this assumption will yield an additive increase @flog® n) in the running time, while preserving the
optimal O(4nlog n) message complexity.

Before completely removing the assumption of a global cldekus first consider a relaxed version
of it where it is guaranteed that at the beginning of the ettecueach clock is initialized to some integer
in the rangel0, D), for a givenD. (In particular, any two clocks are at moBt apart.) Recall that the
algorithm mentioned in Sectidn 2 for the fully-synchronaesting consider® (log n) consecutive phases,
where phase takes place during the time peridd, r; + z;), for some integers; andx; (herez; is the
length of phasé, and we have;,; = r; + ;). In Sectio 2, assuming the global clock assumption, it is
guaranteed that all agents execute the same phase at théirs@m@/e now modify that algorithm to fit to
the relax setting where all clocks are initialized to a vafuthe rang€g0, D).

3.1 A modified algorithm assuming all clocks differ by at mostD

In the modified algorithm, each agent will execute phass described in Sectidd 2, except that instead
of starting it at timer; it will start it when its own clock shows; + ¢D. That is, Agenta will execute
phase during the time interval when its own clock shofws+ iD, r; +iD + x;). Let s (respectivelyf) be

the smallest (and respectively, the largest) valu@ji) such that an agent (active in pha3etarted the
execution with this time on its clock. For the sake of the gsial assume we start the execution atglubal
time O (in this time, all local clocks are in the ranfile D)). Each agent will start phase at some global
time, not before the time+r;+:¢D > r;+iD, and will end it before timé+r; +iD+x; < r;y1+(i+1)D.
Hence, all agents will execute phasauring the global time intervdl; +iD,r; 11 + (i + 1)D). Note that
these intervals are disjoint for different valuesi of

Correctness. To show that the modified algorithm is correct we compare a&cw@ion of this algorithm to

an execution of the fully-synchronized algorithm opemtimder the global clock assumption (as described
and analyzed in Sectidd 2). We assume that the same randdoestame made by the message scheduler
in both executions. That is, if under the fully-synchronizdgorithm, thek’th message that an agensent
was to agenb, then also in the modified algorithm, tihé&h message sent by agemtwvas to agend (note
that the timing of this message delivery and its content nwagrmially differ between executions).

Consider an agent and a phase of its algorithm. Recall that in both executions, all megsagent by
agenta during phase are the same, essentially containing its opinion in therbegg of the phase (if it
had any, otherwise, it does not sent any messages anyways)efdre if the opinions of all agents in the
beginning of their phaseéare the same, respectively, in both executions, then theeictsnof the messages
sent by an agent in that phase are also the same, respeatiMedgh executions. Hence, the set of messages
(and their contents) received by any ageirt phasei is the same in both executions. Note, however, that the
order in which these messages are received by the agent ffenybditween the executions. These messages
will be used by the agent to determine its opinion at the enth@fphase. We next argue that the fact that
these messages may arrive at a different order does not irtigadecision made by the agent at the end
of that phase. This will imply, by induction on the phase nensb that the two executions are essentially
the same.

Observe that the decisions made by an agent at the end of @ ffbasetting or modifying its opinion)
are based on the messages it has received in that phasee bvaiant of the order in which they were
received (see also Remafks]2.1 Aand.10). Indeed, et the set of messages that ageneceived during
phasei. At the end of the phase, agenfirst selects a subset 6f of a certain size (this size could be 0,1,
or larger), chosen uniformly at random among the subsegsdaifthis given size, and then sets its opinion
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to be the majority opinion in that sub@ehis implies that there exists a bijective mappindetween the
sequences of random choices made by the agents in the maalfi@ithm in phaseé and the sequences
of random choices made by the agents in the fully-syncheshalgorithm in phase such that the same
subsets of messages are being chosen by all agents at thé @rake:, respectively. (Thus;, takes into
account the different orders in which messages arrive tagantafor every agent, in the two executions.)
This implies that if the opinions of all agents are the samledth executions in the beginning of phase
then undew;, the opinions of all agents are the same at the end of the pinasath executions. It follows
by induction on the phase numbers that there exists a Wgegtappings := ogooi0--- ,0;0--- between
the sequences of random choices made by the agents in thfiedagorithm throughout the execution
and the sequences of random choices made by the agents iall{hsyhchronous algorithm throughout
the execution, such that the final opinion of each agent issémee in both executions. The correctness
guarantee of the fully-synchronous algorithm thereforplies that for the modified algorithm, w.h.p., all
agents output the correct opinion at the end of the execution

Complexities. Since the number of phases(glog n), we immediately have that the increase in number
of rounds is an additive term @ (D log n) rounds. On the other hand, the message complexity remans th
same as in the fully-synchronous case, since we only adithgadunds over the original fully-synchronous
algorithm.

3.2 Removing the assumption that clocks aré® apart

We now claim that if D is initially unbounded, we can easily (and quickly) redut¢éoiD = 2logn,

by first performing aractivation phase, in which each informed agent broadcasts an arbitnagsage

for 2logn rounds, and resetting the clock of an agent to be 0O dfteg » rounds passed since it heard a
message for the first time. W.h.p., aftelog n rounds all agents have been activated, ensuring that when
the clocks are initialized again, all clocks are at nidkig n apart. Furthermore, note that the messages
used in this activation phase all reach their destinatiaiiwi log » rounds (at mos? log n rounds until

the agent sending the last message was activated and plus&tlop; n rounds until this agent sent its last
activation message). Hence, by the time the earliest agsats its clock to 0, all messages corresponding
to the activation phase have reached there destinatios.eflables us to safely proceed with the simulation
above, assumin@® = 2log n. Hence, we obtain the following.

Theorem 3.1. Consider the synchronous setting. There exists algorittwhsng the noisy broadcast prob-
lem and the noisy majority-consensus problem (with araihset of agents! of size| A| = Q(el2 logn) and
majority-bias of€2(1/log n/| A|)). Both these algorithms terminate@n(ei2 logn + log? n) rounds, and use
O(4nlogn) messages.

The termO(log® n) added to the running time in both algorithms in Theofem 31 k& reduced if
agents could quickly synchronize their clocks by a sma#letdr thanO(logn). Optimizing this clock-gap
between agents remains an intriguing question of indepernderest.

3Specifically, in Stage 1, an agent activated in phasthooses a single message uniformly at random among thexgessit
has received in phageand sets its initial opinion to the content of that messag&tage 2, at the end of each phasa successful
agent selects a subset of samples of sizg2 uniformly at random among the set of samples it has receivéthit phase, and then
update its opinion to be the majority opinion in that subset.
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4 Discussion

This paper is a first attempt to study the impact of commuitinatoise on information dissemination prob-
lems, using a computational approach. We have presentdditheodel, a basic model of communication
wherein interactions are conveyed across noisy channdismibéd capacity. We have then presented ro-
bust and simple algorithms that efficiently solve two basfoimation dissemination problems within the
model’s constraints. Our algorithms suggest balancing/den silence and transmission, synchronization,
and majority-based decisions as important ingredientartgsvunderstanding collective behavior in anony-
mous and noisy populations.

Our algorithms rely on synchronization. Although it is nealistic to assume that biological ensembles
are highly synchronous, some degree of synchronicity mbesist [13,/40]. (For example, agents could
potentially differentiate large enough windows of time sioiering each such window as a round.) An
intriguing question left for future work can be to quantifyetminimal degree of synchronisation required
for solving the information dissemination problems effintig

As this is a first attempt at analyzing randomly distorted sages with distributed computing tools, we
did not attempt to describe a specific biological system entifly naturally occurring algorithms. Rather,
our results indicate that to understand natural systemsrargt simultaneously consider communication
noise, limited messaging alphabet, and algorithm. Tylyicalorks in different fields take only subset of
these three components into account.

Acknowledgments: The authors would like to thank Oded Goldreich, Kunal Tajwames Aspnes, and
George Giakkoupis for helpful discussions.
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