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Abstract

We propose distributed algorithms for two well-established problems that operate effi-
ciently under extremely harsh conditions. Our algorithms achieve state-of-the-art perfor-
mance in a simple and novel way.

Our algorithm for maximal independent set selection operates on a network of identical
anonymous processors. The processor at each node has no prior information about the
network. At each time step, each node can only broadcast a single bit to all its neighbours,
or remain silent. Each node can detect whether one or more neighbours have broadcast, but
cannot tell how many of its neighbours have broadcast, or which ones.

We build on recent work of Afek et al. which was inspired by studying the development
of a network of cells in the fruit fly [2]. However we incorporate for the first time another
important feature of the biological system: varying the probability value used at each node
based on local feedback from neighbouring nodes. Given any n-node network, our algorithm
achieves the optimal expected time complexity of O(log n) rounds and the optimal expected
message complexity of O(1) single-bit messages broadcast by each node. We also show that
the previous approach, without feedback, cannot achieve better than Ω(log2 n) expected time
complexity, whatever global scheme is used to choose the probabilities.

Our algorithm for distributed greedy colouring works under similar harsh conditions:
each identical node has no prior information about the network, can only broadcast a single
message to all neighbours at each time step representing a desired colour, and can only detect
whether at least one neighbour has broadcast each colour value. We show that our algorithm
has an expected time complexity of O(∆ + logn), where ∆ is the maximum degree of the
network, and expected message complexity of O(1) messages broadcast by each node.
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1 Introduction

One of the most fundamental problems in distributed computing is to distributively choose a set
of local leaders in a network of connected processors so that every processor is either a leader or
connected to a leader, and no two leaders are connected to each other. This problem is known
as the distributed maximal independent set (MIS) selection problem and has been considered
as a challenging problem for three decades [2]. It has many applications, especially in wireless
networks [25, 46] and has been extensively studied [36, 35, 3, 27, 29, 41, 40].

Another fundamental problem in distributed computing that is closely related to the dis-
tributed MIS selection problem is the (∆ + 1)-colouring problem. In this problem the aim is to
colour the vertices of a graph which has maximum degree ∆ using no more than ∆ + 1 colours
so that adjacent vertices are assigned different colours. Like the distributed MIS selection prob-
lem, the distributed (∆ + 1)-colouring problem also serves as a basic building block in many
other distributed algorithms, and has many applications for resource assignment, in particular
for frequency assignment in radio-communication networks [38, 51, 42, 45]. Because of this, it
has also been extensively studied [4, 6, 26, 44, 49, 22, 43, 20, 19].

A more restricted variant of the colouring problem is called greedy colouring [17, 13], where
the aim is to obtain a colouring with the property that no individual vertex can be recoloured
with a smaller colour (in some fixed ordering of the colours). Computing a greedy colouring
distributively is believed to be more difficult than computing an arbitrary (∆ + 1)-colouring
distributively [13], but such colourings often use a much smaller number of colours.

1.1 Our Results

In this paper, we first propose a randomised distributed MIS selection algorithm that is able to
operate under very harsh conditions. Our model of distributed computing assumes an identical
anonymous processor at each node that has no information about the network. At each time
step, each node can only broadcast a single bit to all its neighbours, or remain silent. Each
node can detect whether one or more neighbours have broadcast, but cannot tell how many
neighbours have broadcast, or which ones.

We prove that our algorithm is optimal in both time and bit complexity for such a model,
by showing that it runs in expected O(log n) time, where n is the number of nodes, and the
expected number of messages sent by each node is bounded by a constant, regardless of the
network.

We then extend the approach to obtain an algorithm for the distributed greedy colouring
problem. This algorithm also runs under very harsh conditions where the processors are anony-
mous and have no information about the network. For this problem we allow each node to
broadcast only a single message to all neighbours at each time step representing a single desired
colour value. Once again nodes can only detect whether at least one neighbour has broadcast a
colour, and cannot tell how many neighbours have broadcast, or which ones.

The algorithm we obtain is remarkably simple and computes a greedy colouring in expected
O(∆+log n) time, where n is the number of nodes and ∆ is the maximum degree of the network.
Once again the expected total number of messages sent by each processor is bounded by a
constant. As well as matching the best known time complexity for obtaining a greedy colouring,
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our algorithm is the first proposed algorithm for this problem where the nodes require no prior
knowledge of the network and cannot distinguish between their neighbours.

To obtain our results we introduce a new form of analysis to determine the time complexity.
Nearly all previous analytical techniques in this area have relied on a general technique, originally
devised by Luby [36], which divides the computation into successive phases and shows that some
fixed fraction of the network is expected to be eliminated in each phase, so that there are at
most logarithmically many phases. Our algorithms do not have this property, and hence require
a more flexible form of analysis, which we describe in detail below.

2 Preliminaries

Given an undirected graph G = (V,E), the neighbourhood of each vertex v ∈ V is defined to
be the set Γ(v) = {u : {u, v} ∈ E} and the degree of each vertex v is defined to be the number
degG(v) = |Γ(v)|. We define the maximum degree of the graph G to be the maximum value of
the degree over all vertices of G, which is denoted by ∆ = maxv∈V {degG(v)}. The number of
vertices of G is |V | and will usually be denoted by n. We will say that an event on G occurs
with high probability if the probability of the event tends to 1 as n tends to infinity. We will
write log a for the natural logarithm of a, and logb a for the logarithm of a to the base b.

2.1 Maximal Independent Set Selection

Definition 2.1 (Maximal Independent Set) Given an undirected graph G = (V,E), an in-
dependent set in G is a subset of vertices U ⊆ V , such that no two vertices in U are adjacent.
An independent set U is called a maximal independent set (MIS) if no further vertex can be
added to U without violating independence.

Different maximal independent sets for the same network can vary greatly in size. In contrast
to the MIS selection problem, the related problem of finding a maximum size independent set
(MaxIS) is notoriously hard. It is equivalent to finding a maximum clique in the complementary
graph, and is therefore NP-hard [23]. However, computing an arbitrary MIS (which is not
necessarily of the maximum possible size) in linear time using a centralised sequential algorithm
is trivial: simply scan the nodes in arbitrary order. If a node u does not violate independence,
add u to the MIS. If u violates independence, discard it. Hence the challenge is to compute such
an MIS more efficiently in a distributed way with no centralised control.

2.2 Greedy Colouring

A proper colouring of a graph assigns a colour to each vertex such that no two adjacent vertices
are assigned the same colour. The colouring is called a k-colouring if at most k different colours
are used.

Definition 2.2 (Graph Colouring) For any undirected graph G = (V,E), a k-colouring of G
is a function f from the vertices V to a set of colours {c1, c2, . . . , ck} such that f(u) 6= f(v) for
every edge {u, v} ∈ E. G is called k-colourable if and only if there exists a k-colouring of G.
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For many practical applications it is desirable to minimize the number of colours used. The
smallest possible positive integer k for which there exists a k-colouring of G is defined to be the
chromatic number χ of G. It is known to be NP-hard to approximate the chromatic number
χ within a factor of |V |1−ε, for any ε > 0, even using a centralised algorithm with complete
knowledge of the graph [54].

However, a number of heuristic approaches can be used to rapidly obtain colourings with a
reasonably low number of colours on many graphs. For example, the following greedy approach
produces a colouring in linear time using a centralised control.

Definition 2.3 (Greedy Colouring) Given an arbitrary ordering, (v1, v2, . . . , vn), of the ver-
tices of G, and an arbitrary ordering on the colour values, a greedy colouring algorithm considers
each vertex from v1 to vn in turn, assigning each vertex the smallest possible colour value that
is not already assigned to any of its neighbours.

Note that a colouring obtained in this way has the property that no individual vertex can
be recoloured using a smaller colour. A colouring with this property is sometimes called a
Grundy colouring [13, 17]. Since every greedy colouring algorithm produces a Grundy colouring,
and every Grundy colouring can be obtained using a greedy colouring algorithm (by choosing
a suitable ordering on the vertices) [13], we will refer to any Grundy colouring as a greedy
colouring, even if it is computed in some other way.

It is easy to see that a greedy colouring uses no more than ∆ + 1 colours, so we have that
χ ≤ ∆ + 1 for any graph G. Brooks Theorem strengthens this observation by stating that ∆
colours suffice for all graphs except odd cycles and complete graphs, which require ∆+1 colours.

2.3 Distributed Computation Model

In the widely-used Linial model [9, 33, 35, 13], a distributed network is composed of a set
V of processors and a set E of bidirectional communication links (channels) between pairs of
processors. If there is a link (channel) between two processors, these two processors are said to
be neighbours. A distributed network with n processors where each processor has no more than
∆ neighbours corresponds to an undirected graph G = (V,E) with n vertices and maximum
degree ∆. A network is called anonymous if the processors cannot distinguish each other by
unique identifiers. Linial’s distributed computation model is a synchronous system and all
processors operate in a lockstep fashion. We will assume that all processors wake up and start
their computation at the same time step. During each time step, all processors act in parallel
and carry out the following operations sequentially [37]:

1. Optionally send a message to each neighbouring node;

2. Receive any messages sent by neighbours;

3. Perform arbitrary local computation.

The computation is said to be complete only when the local computations at every vertex have
terminated.

The distributed computation model we use is based on this model, but we impose the fol-
lowing severe additional conditions:
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1. Each processor is anonymous and has no local or global information about the network;

2. At each time step, each processor either keeps silent or broadcasts one message to all its
neighbours;

3. Each processor can tell whether at least one neighbour has broadcast a message, but cannot
tell how many of them have done so, or which ones.

In our MIS algorithm we restrict the communication even further, so that each message contains
only a single bit. In our greedy colouring algorithm we allow longer messages representing
different colours.

Information about a network may be difficult to obtain, or subject to uncertainty and change,
so it is desirable for some applications to find algorithms that can complete their task without
using such information [18, 47]. Moreover, using a small number of messages, each containing
a single bit (or a small number of bits), allows an implementation to use less communication
resources and less energy, and this may be crucial in some applications [32]. Because of the
restrictions we impose, our algorithms can be implemented using very simple communication
mechanisms such as radio waves, optical signals, or even chemical signals, as in biological inter-
cellular signalling [8, 10].

3 Related Results

3.1 Distributed MIS selection

The study of distributed MIS selection can be traced back to the 1980s. It was shown early on
that the MIS selection problem is in the complexity class NC [24], and hence likely to be a good
candidate for a parallel or distributed approach.

We review the current state-of-the-art here, focusing on the size of the messages (in bits)
and the information about the network that is used at each node (see Table 1). In many cases
it is possible to use estimates for the required graph parameters, and to iteratively refine these,
at the cost of a more sophisticated algorithm and additional communication rounds, but we
describe only the simplest versions of the algorithms, as originally presented.

A lower bound of Ω(log∗ n) time for distributed MIS selection on graphs with ∆ ≥ 2 is given
in [34]. The most well-known lower bound for distributed MIS selection on general graphs,
Ω(

√

log n/(log log n)), is given in [28]. This was improved to Ω(min{log ∆,
√

log n}) in [30]
(see also [7]). All of these lower bounds have been shown to apply to both deterministic and
randomised algorithms. It was observed in [40] that if only one-bit messages are allowed to be
sent along each edge in any time step, then every distributed algorithm to select an MIS in a
ring of size n requires at least Ω(log n) time steps with high probability.

For deterministic distributed MIS selection on general graphs, the fastest known algorithms
run in O(∆ + log∗ n) time [26, 4] or O(2O(

√
logn)) time [44]. These deterministic MIS algorithms

rely on very sophisticated multi-phase techniques, use a considerable amount of global informa-
tion about the graph at each node, including unique node IDs, and allow complex messages to
be sent on specific channels between nodes. Note that any deterministic algorithm requires some
information at each node (such as a unique node ID) in order to break the symmetry [21, 46].
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Table 1: Distributed MIS selection algorithms on graphs with n nodes and maximal degree ∆

Type Time Steps Message size (bits)
Information about the graph and
neighbourhood used at each node

Reference

Det.
O(∆ + log∗ n)

Ω(log n)
Unique IDs, size and maximum
degree of the graph, and distin-
guishable channels

[4]

[26]

O(2O(
√
logn)) [44]

Rand.

O(log2 n)

Ω(log ∆) Maximum degree in 2-neighbourhood [46]

3 None [12]

1 Size of the graph [2]

1 None [1]

O(log ∆
√

log n) Ω(log n)
Size, maximum degree of the graph,
and distinguishable channels

[7]

O(log n)

Ω(log n) Size of the graph [37]

Ω(log ∆) Degrees of neighbours [52]

1 Distinguishable channels [40]

1 None This paper

Using randomisation to break symmetry between nodes allows for simpler algorithms, often
requiring a smaller number of time steps. A simple parallel randomised algorithm for distributed
MIS selection in the PRAM model of computation was presented in 1986 by Luby [36] and
independently by Alon et al. [3].

This algorithm has been adapted to the message-passing model of distributed computation in
several slightly different ways. In the version presented by Lynch [37] each processor is assumed
to know the total size, n, of the graph, and chooses a random integer in the range 1 to n4 at
each time step. These integers are then broadcast as messages to all neighbouring nodes, so
the messages sent between processors contain Ω(log n) bits. Using these messages the nodes are
able to compute an MIS by selecting the nodes that choose the largest random values in their
neighbourhood, removing those nodes and their neighbours, and iterating this process. Using
the analysis from [36], this process is shown to terminate in O(log n) time on average and with
high probability.

In the version presented by Wattenhofer [52] the nodes choose a probability value based on
their degree in the graph, and use this value, together with the degree values of their neighbours
to decide whether to join the MIS at each time step. In this variant the nodes exchange messages
to determine the current degrees of their neighbours at each time step, and hence the messages
sent between processors contain Ω(log ∆) bits. Once again, using the analysis from [36], this
process is shown to terminate in O(log n) time on average and with high probability.

In the version presented by Peleg [46] the probability value at each node is chosen based on
the maximum degree of the nodes at distance 1 or 2 away from it in the graph, and this value
is then used to decide whether to join the MIS at each time step. Peleg shows with a simpler
analysis that this algorithm halts in O(log2 n) time on average and with high probability. Once
again the nodes exchange messages to determine the current degrees of their neighbours at each
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time step, and hence the messages sent between processors contain Ω(log ∆) bits.
These distributed randomised algorithms, all based on a similar approach and generally

known as Luby’s algorithm, remained the state-of-the-art for many years, but there have recently
been some new developments.

A new randomised MIS algorithm with time complexity O(log ∆
√

log n) was proposed in [7].
This algorithm improves on the O(log n) algorithms when log ∆ <

√
log n. On the other hand,

this algorithm assumes that each processor knows the size and maximal degree of the graph
and can distinguish between channels so that it can send different messages along different
edges. Since it relies on exchanging information about specific nodes, using node identities, the
messages exchanged in this algorithm contain Ω(log n) bits.

Algorithms for MIS selection on special graphs such as sparse graphs and growth-bounded
graphs have also been studied [15, 5, 48].

3.2 MIS Selection with Limited Communication

There has recently been considerable interest in finding efficient distributed MIS selection al-
gorithms that can work in more restricted computational models, such as wireless network
models [41, 12, 11, 2, 1, 40, 53].

For example, the approach proposed in [40] splits the randomly generated values at each
node into single bits, and communicates them one by one. When these bits are broadcast
to all neighbours, this approach achieves a time complexity of O(log2 n). By distinguishing
between different neighbours, and having separate, overlapping, exchanges of messages with
each neighbour, the overall time complexity is brought down to O(log n) time on average and
with high probability. This is shown to be the optimal time complexity that can be achieved
with one-bit messages [40]. However, to achieve this optimal performance requires that each
vertex can distinguish between its neighbours by locally known channel names, so that different
messages can be sent along different edges at the same time step.

A more radical approach is the novel distributed MIS selection algorithm inspired by the
neurological development of the fruit fly which is given in [2, 1].

During development, certain cells in the pre-neural clusters of the fruit fly specialise to
become sensory organ precursor (SOP) cells, which later develop into cells attached to small
bristles (microchaetes) on the fly that are used to sense the environment. During the first stage
of this developmental process each cell either becomes an SOP or a neighbour of an SOP, and no
two SOPs are neighbours. These observed conditions are identical to the formal requirements
in the maximal independent set selection problem.

However, Afek et al. pointed out that the method used by the fly to select the SOPs appears
to be rather different from the standard algorithms for choosing an MIS described above. The
cells of the fly appear to solve the problem using only simple local interactions between certain
membrane-bound proteins, notably the proteins Notch and Delta [8, 10]. Moreover, they require
very little knowledge about connectivity. Based on their study of this developmental process,
Afek et al. proposed an algorithm that works in a distributed model where each node can only
broadcast to all its neighbours or remain silent. Moreover, each node can only detect whether at
least one neighbour has broadcast a signal. This model of communication is sometimes referred
to as a “beeping” model with collision detection [1].
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In their proposed algorithm, each node broadcasts at each time step with a certain proba-
bility, which changes over time, and then checks whether any of its neighbours has broadcast
at the same time. As originally presented [2], the algorithm uses a sequence of gradually in-
creasing global probability values calculated from the total number of nodes of the graph n and
its maximum degree ∆. The algorithm was further refined by Afek et al. in a later paper [1].
In the later version the probability values are chosen according to a fixed pattern, so that the
individual nodes require no information at all about the graph. However, in both versions the
expected number of time steps required was shown to be O(log2 n) (see Table 1).

Another approach to distributed computing with very restricted communication and process-
ing capabilities is the networked finite state machine model introduced in [12]. This only allows
a fixed finite number of distinct messages, and very limited computation at each node, based on
the notion of a randomised finite state machine, with no information about the network. It is
shown in [12] that a MIS can be computed in this very restricted model in O(log2 n) time, using
only 7 states and 7 corresponding messages.

3.3 Distributed Colouring

The problem of (∆ + 1)-colouring is closely related to MIS selection [31]. Hence it can be shown
that the lower bounds for distributed MIS selection mentioned above also apply for distributed
(∆ + 1)-colouring. Similarly, some state-of-the-art distributed (∆ + 1)-colouring algorithms are
closely related to the algorithms for distributed MIS selection described earlier (see Table 2).

A randomised distributed (∆ + 1)-colouring algorithm requiring O(log ∆ +
√

log n) time is
proposed in [49]. In this algorithm the messages represent randomised preference levels for each
of the possible colours. This algorithm needs to know an upper bound of the size of the graph
and requires each processor to be able to send different messages along different channels. Since
the messages exchanged represent colours, the message size is at least Ω(log ∆).

A randomised algorithm with expected time complexity of O(log ∆ + 2O(
√
log logn)) is given

in [7]. However, this algorithm relies on a deterministic algorithm to complete a partial colouring,
and hence requires unique node IDs, and messages with Ω(log n) bits.

Johansson proposed and analysed a simple randomised distributed (∆ + 1)-colouring algo-
rithm requiring O(log n) time [22]. The algorithm of Johansson requires that each vertex knows
the maximum degree of the graph. Each message corresponds to a potential colour choice, so
the messages in this algorithm contain Ω(log ∆) bits.

These algorithms do not attempt to obtain greedy colourings, and hence tend to use the
maximum number, ∆ + 1, of colours. For many classes of graphs, a greedy colouring will often
use considerably fewer colours, but computing a greedy colouring with a distributed algorithm
is a more challenging problem. In fact, the problem of computing a greedy colouring for a given
ordering of the vertices is known to be P-complete [16, 14].

Panconesi and Rizzi proposed a deterministic algorithm for graph colouring that attempts
to use a small number of colours [43]. This algorithm was not originally designed to construct a
greedy colouring. However, it can be easily modified to become a distributed greedy colouring
algorithm by always choosing the first available colour when assigning a colour. In view of this
it is described in [13] as the first distributed approach to greedy colouring. The number of time
steps taken by this algorithm is O(∆2 + log∗ n) [43]. It is quite a sophisticated algorithm which
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Table 2: Distributed (∆ + 1)-colouring algorithms on general graphs with n nodes and maximal
degree ∆

Greediness Type Time Steps
Message
size
(bits)

Information used at each node Reference

Non-greedy

Det.
O(∆ + log∗ n)

Ω(logn)
Unique IDs, size and maximum degree
of the graph, and distinguishable chan-
nels

[4]

[26]

O(2O(
√
log n)) [44]

Rand.

O(log ∆ +
√

logn) Ω(log ∆) Upper bound on the size of the graph
and distinguishable channels

[49]

O(log ∆ + 2O(
√
log log n)) Ω(logn)

Unique IDs, size and maximum degree
of the graph, and distinguishable chan-
nels

[7]

O(log n)

Ω(logn) Size of the graph [37]

Ω(log ∆)
Degrees of neighbours [52]

Maximum degree of the graph [22]

Greedy

Det. O(∆2 + log∗ n) Ω(logn)
Unique IDs, maximum degree of the
graph, own degree and distinguishable
channels

[43]

Rand.

O(∆2 log n) Ω(log ∆) Own degree and degrees of neighbours [19]

O(∆ + logn)

Ω(log ∆) Maximum degree of the graph [13]

O(log µ)
(where µ =
max colour
used)

Distinguishable channels [39]

None This paper

relies on a preprocessing phase to produce a forest decomposition of the graph. It assumes that
each vertex has a unique identifier, and it also requires that each vertex knows its own degree
and the maximum degree of the whole graph. This algorithm also requires the ability to send
different messages to different neighbours simultaneously. Because identifiers are exchanged the
message size of the algorithm is Ω(log n).

Hansen et al. proposed a randomised distributed algorithm for graph colouring in [19]. Even
though the algorithm is not explicitly described in the original paper as a greedy colouring
algorithm, it is pointed out in [13] that the colourings it produces are actually greedy colour-
ings. The expected number of time steps taken by this algorithm to produce a colouring is
O(∆2 log n) [19]. However, this algorithm assumes that each vertex knows its degree in the
graph, and the messages exchanged include these numerical degree values as well as the colour
values. Hence the size of each message sent is at least Ω(log ∆) bits.

Gavoille et al. give a detailed theoretical study of distributed greedy colouring [13]. They
establish a lower bound for this problem of Ω(log n/ log log n) time steps. Moreover, they note
that an arbitrary k-colouring can be converted to a greedy colouring by a simple distributed
algorithm in O(k) time steps. However, the conversion algorithm in [13] requires each node
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to know the value of k. Combining this approach with the most efficient (∆ + 1)-colouring
algorithms described earlier gives a two-stage algorithm with an overall expected time complexity
of O(∆ + log n).

Métivier et al. proposed a simple randomised distributed (∆ + 1)-colouring algorithm re-
quiring O(∆ + log n) time [39]. The algorithm proposed by Métivier et al., does not assume
any global knowledge of the network, but requires each processor to know from which channel
it receives each message. The algorithm consists of two stages: it first uses randomisation to
break the symmetry and obtains a colouring in O(log n) time with an unbounded number of
colours; it then reduces the number of colours used to at most ∆ + 1 in O(∆ + log n) time. The
colours in this second stage are chosen to be the smallest available, so the resulting colouring
is a greedy colouring (although this is not made explicit). Each message exchanged in the first
stage contains only one bit, but each message in the second stage represents a final colour choice.
Since the total number of colours used may be much lower than ∆ in some classes of graphs,
we give an upper bound on the message size of (log µ) bits for this algorithm, where µ is the
maximum colour number used.

4 Algorithm for MIS Selection

The distributed algorithm for MIS selection proposed by Afek et al. is remarkably simple [2].
At each step, each node may choose, with a certain probability p (that varies over time), to signal
to all its neighbours that it wishes to join the independent set. If a node chooses to issue this
signal, and none of its neighbours choose to do so in the same time step, then it successfully joins
the independent set, and becomes inactive, along with all its immediate neighbours. However
if any of these neighbouring nodes issue the same signal at the same time step, then the node
does not succeed in joining the independent set at that step. This process is repeated until all
nodes become inactive.

Our new algorithm uses a similar basic scheme, but with a different approach to the way
that the probability value p varies over time (see Table 3). Inspired by the positive feedback
mechanisms that control cellular processes [8, 10], we give each node an independently updated
probability value. These probabilities are initialised to arbitrary values (above some fixed thresh-
old value, p0 > 0). They are decreased whenever one or more neighbouring nodes signal that
they wish to join the independent set, and are increased whenever no neighbouring node issues
such a signal. We allow each increase or decrease to be by some arbitrary factor f , which may
vary at each step, but is bounded by the global parameters f1 and f2 (with 1 < f1 ≤ f2).

Our main result below shows that varying the probabilities in this way, using a simple local
feedback mechanism, gives an algorithm whose expected time to compute a maximal independent
set is O(log n) (see Corollary 4.5, below). We also show that the expected number of signals
sent by each node is bounded by a constant (see Theorem 4.6, below).

Note that the algorithm in Table 3 consists of two successive message exchanges. We shall
refer to each such pair of message exchanges as a round of the algorithm. Hence each round
occupies two consecutive time steps.

To investigate the performance of our new algorithm in practice we constructed an imple-
mentation with the probability p at each node varying as follows: p is initially set to 1/2. In
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Table 3: The algorithm for distributed MIS selection at each node

Global constants: p0 : lower bound on initial probability value;
f1, f2 : lower and upper bounds on change factor for probability value.

Local variables: p : local probability value, initialised to some value in [p0, 1];
f : change factor for probability value, chosen arbitrarily in [f1, f2];
Trying : Boolean flag, initialised to False.

1. while active, in each round do

2. *FIRST EXCHANGE*
3. With probability p, set Trying← True and send signal to all neigh-

bours;
4. Receive any signals sent by neighbours;
5. Set f to some value in the interval [f1, f2];
6. if any signal was received then
7. Trying ← False and p← p/f (decrease p)
8. else
9. p← min{fp, 1} (increase p)

10. *SECOND EXCHANGE*
11. if Trying then
12. Send signal to all neighbours;
13. Join the MIS and terminate (become inactive).
14. Receive any signals sent by neighbours;
15. if any signal was received then
16. Terminate (become inactive)

any round where a signal is received from at least one neighbouring cell the value of p is halved.
In all other rounds it is doubled (up to a maximum of 1). We then compared this algorithm
with the algorithm in [1] by running both of them on random networks with different numbers
of nodes, where each edge is present with probability 1/2 [50].

We found that the mean number of rounds required in our experiments to complete our
algorithm and choose a maximal independent set in these networks was approximately 2.5 log2 n,
for all values of n between 20 and 200. However, the mean number of rounds required by the
algorithm in [1] to select a maximal independent set was close to the exact value of log2

2 n. Afek
et al. do not discuss the expected number of signals broadcast at each node in their algorithm.
We found that the mean number of signals sent by each node in our algorithm was less than 2,
regardless of the size of the network. However, our experiments indicated that the mean number
of signals sent by each node when running the algorithm described in [1] increased with the size
of the network.

Before we analyse the performance of this algorithm we first demonstrate in Section 4.1 that
the use of a feedback mechanism to adjust the probability values, as described in lines 5-9 of
Table 3, is crucial to achieving the efficiency.
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4.1 Lower Bound for Globally Chosen Probability Values

In this section we consider a class of algorithms similar to the one described in [2] where each
node runs through the same fixed preset sequence of probability values, and does not adjust
these to take into account the behaviour of other nodes. In other words, we consider a simplified
version of the algorithm described in Table 3, where the probability values at all nodes are
initialised to the same value p0, and the probability updates described in lines 5-9 are replaced
by a simple update rule that changes p to the next value in some fixed sequence p1, p2, . . . . We
refer to this modified algorithm as MIS selection with global probability values.

Our first result constructs an explicit family of graphs with O(n) vertices, for which any
such algorithm takes at least Ω(log2 n) rounds, no matter what sequence of probability values is
used. (Note that we generally omit floors and ceilings for clarity, and the graphs we construct
in this result have O(n) vertices rather than exactly n vertices, to simplify their description.)

Theorem 4.1 There is a constant κ > 0 such that the following holds. Let G be the graph
consisting of n1/3 disjoint copies of the complete graph Kd, for each d = 1, . . . , n1/3. Then with
high probability, any MIS selection algorithm with global probability values running on G does
not terminate within κ log2 n rounds.

Proof: Let p0, p1, p2, . . . , be the sequence of probability values used by the algorithm. Fix d,
and consider a copy K of Kd. The probability that some vertex of K is added to the independent
set at the ith round is the probability that exactly one vertex of K beeps, and so equals

dpi(1− pi)
d−1 ≤ dpi exp(−(d− 1)pi). (1)

Note that the function xe−x is bounded on [0,∞), and has maximum 1/e (at x = 1). So for
d > 2,

dpi exp(−(d− 1)pi) =
d

d− 1
· (d− 1)pi exp(−(d− 1)pi) ≤

3

2e
.

Also, for x ∈ [0, 3/2e], we have 1− x ≥ exp(−2x). So, by inequality (1), the probability that all
the vertices of K are still active after T rounds is at least

T
∏

i=1

(

1− dpie
−(d−1)pi

)

≥
T
∏

i=1

exp(−2dpie
−(d−1)pi)

= exp(−
T
∑

i=1

2dpie
−(d−1)pi)

≥ exp(−
T
∑

i=1

6dpie
−dpi).

The last inequality follows from the fact that epi ≤ e ≤ 3.
Hence if

∑T
i=1 6dpie

−dpi < 1
4 log n then the nodes of K remain active with probability at

least n−1/4. In that case the probability that the nodes in all the copies of Kd become inactive
in T rounds is at most

(1− n−1/4)n
1/3 ≤ exp(−n1/12),
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and so with high probability the algorithm fails to terminate in T rounds.
It follows that we need only consider the case when

T
∑

i=1

6dpie
−dpi >

1

4
log n

for every choice of d ≥ 3. We will show that this implies T = Ω(log2 n).
Let us choose d at random. We define a probability distribution for d by

P[d = j] =
c

j log n
,

for j = 3, . . . , n1/3 (where c is a normalizing constant: note that c = Θ(1), as
∑n1/3

i=1 1/j =
Θ(log n)). Then, for any p ∈ [0, 1],

E[dpe−dp] =

n1/3
∑

j=3

c

j log n
jpe−jp ≤ c

log n

∞
∑

j=0

pe−jp.

But
∑∞

j=0 pe
−jp = p/(1 − e−p) < 2, as p ∈ [0, 1]; so we have E[dpe−dp] < 2c/ log n. By linearity

of expectation, choosing a random d, we have

E

[

T
∑

i=1

6dpie
−dpi

]

< 12cT/ log n.

Hence there is some value of d for which

T
∑

i=1

6dpie
−dpi < 12cT/ log n.

By the argument above, this quantity must be at least 1
4 log n, and so we must have T =

Ω(log2 n).

4.2 Time Complexity with Locally Chosen Probability Values and Feedback

In this section we analyse the running time of our new algorithm for distributed MIS selection
described in Table 3, where the probability values at each node are locally varied in each round
based on feedback from neighbouring nodes.

It follows from the analysis of [2] that if this algorithm terminates (i.e., all nodes become
inactive) then it correctly identifies an MIS. The only question is the number of rounds required.

Note that, unlike Luby’s algorithm [3, 36], it is not true that in every round we can expect
at least some constant fraction of the edges to be incident to nodes that become inactive in
that round. For example, in a complete graph nodes will only become inactive when exactly
one node signals. If all nodes are initialised with the same probability value and with the same
(fixed) increase and decrease factor f , then all nodes will always possess the same probability
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value pt. Whenever more than one node signals, all nodes will decrease their probabilities by f ;
if no node signals, all nodes will increase their probabilities by f . The probability of exactly one
node signalling is thus npt(1 − pt)

n−1 at each round t. Hence, for complete graphs, with high
probability all nodes will remain active for any fixed constant number of rounds. It follows that
we must carry out a more detailed analysis over a sequence of rounds whose length increases
with n.

Theorem 4.2 For any fixed values of p0 > 0, and 1 < f1 ≤ f2, there is a constant K0 such
that the following holds: For any graph G with n vertices, and any k ≥ 1, the algorithm defined
in Table 3 terminates in at most K0(k + 1) log n rounds, with probability at least 1−O(1/nk).

Before beginning the proof of Theorem 4.2, it will be useful to define some notation and
record a few simple facts. We will frequently use the well-known inequality

(1− δ) ≤ exp(−δ). (2)

We will also use the following inequality, which holds for any λ > 0 and any δ ∈ [0, 1− e−λ]
(it holds with equality at the ends of this interval, and so holds at all points in between, by
convexity).

(1− δ) ≥ exp(−δλ/(1 − e−λ)). (3)

Finally, we will also need the following Chernoff-type inequality: if X is a sum of Bernoulli
random variables, with expected value EX = m, then for every δ > 0,

P[X > m + δ] ≤ exp(−δ2/(2m + 2δ/3)).

In particular,
P[X > 2m] ≤ exp(−m/3). (4)

We refer to sending a signal in the first exchange of the algorithm in Table 3 as “beeping”,
and receiving such a signal from a neighbour as “hearing a beep”.

For any vertex v, we define µt(v), which we call the “weight” of v, to be the probability that
v beeps in round t. (By convention, we set µt(v) = 0 if v is inactive at time t; this simplifies
notation, while allowing us to ignore the contribution of inactive vertices.) For any W ⊆ V we
write µt(W ) for

∑

v∈W µt(v). Note that µt is a random measure on V , as it depends on the
beeps of other vertices during the first t− 1 rounds.

Recall that the set of vertices adjacent to a given vertex v is called the set of neighbours of
v, and denoted by Γ(v).

Definition 4.3 For any λ > 0, a vertex v will be called λ-light in round t if µt(Γ(v)) ≤ λ and
every neighbour of v has weight at most 1− exp(−λ); otherwise, vertex v is called λ-heavy.

For any vertex that is λ-light, the weight of each of its neighbours individually is bounded
by 1 − exp(−λ) and the sum of all its neighbours’ weights is not too large (and so the vertex
is not too likely to hear a beep at time t). Note that a fixed vertex may move back and forth
between being λ-heavy and λ-light over time.

Our first result establishes a lower bound on the probability that at least one vertex in a set
of λ-light vertices will be added to the independent set in the current round.
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Lemma 4.4 Let W be a set of vertices that are λ-light at round t. The probability that at least
one vertex in W is added to the independent set in round t is at least e−φλ(1− e−µt(W )) where
φ = λ/(1− exp(−λ)).

Proof: Let us order the vertices of W as w1, . . . , wm, where m = |W |. The probability that
some vertex of W is added to the independent set in round t is at least the probability that the
smallest vertex of W that beeps in round t is added to the independent set. For i = 1, . . . ,m,
define events Ei and Fi by

Ei = (wi beeps; w1, . . . , wi−1 do not beep)

Fi = (no neighbour of wi beeps).

The events Ei ∩ Fi are pairwise disjoint, so using the definition of conditional probability, we
have that the probability that the smallest of W that beeps is added to the independent set is

P

[

m
⋃

i=1

(Ei ∩ Fi)

]

=
m
∑

i=1

P[Ei ∩ Fi] =
m
∑

i=1

P[Ei]P[Fi|Ei].

It is easily seen that P[Fi|Ei] ≥ P[Fi] since P[Fi|Ei] is conditioned on the event that wi beeps
and w1, . . . , wi−1 do not. Hence we have

P[Fi|Ei] ≥ P[Fi] =
∏

v∈Γ(wi)

(1− µt(v))

Since wi is λ-light, we may apply Inequality (3), to conclude that

∏

v∈Γ(wi)

(1− µt(v)) ≥
∏

v∈Γ(wi)

exp(−φµt(v))

= exp(−φµt(Γ(wi)))

≥ exp(−φλ)

where φ = λ/(1− exp(−λ)). Hence we have

m
∑

i=1

P[Ei]P[Fi|Ei] ≥ exp(−φλ)

m
∑

i=1

P[Ei].

But
∑m

i=1 P[Ei] is simply the probability that some vertex in W beeps, which is given by 1 −
∏

v∈W (1− µt(v)). Using Inequality (2) this value is at least 1− exp(−µt(W )).
Thus the probability that some vertex of W is added to the independent set in round t is at

least

exp(−φλ)
m
∑

i=1

P[Ei] ≥ e−φλ(1− e−µt(W )).

Proof: [of Theorem 4.2] Fix an arbitrary vertex v. We shall show that, with failure probability
O(1/nk+1), v becomes inactive within K0(k + 1) log n rounds, for a suitable choice of constant
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K0. Taking a union bound over all n choices of v, it follows that with failure probability O(1/nk)
every vertex becomes inactive and the algorithm terminates within K0(k+1) log n rounds, which
proves the theorem.

At each time step t ≥ 1, we partition the neighbourhood of v into λ-light and λ-heavy
vertices, for a suitable fixed choice of λ

Lt = Lt(v) ={x ∈ Γ(v) | x is λ-light at step t}
Ht = Ht(v) ={x ∈ Γ(v) | x is λ-heavy at step t}.

We will follow the behaviour of µt(Lt) and µt(Ht) over time.
The idea of the argument is roughly as follows: if µt(Lt) is large at many rounds, then by

Lemma 4.4 it is very likely that some neighbour of v will be added to the independent set on one
of these occasions, leading to v becoming inactive. If this does not happen, then µt(Lt) must be
small most of the time. Now consider Ht. Vertices that are λ-heavy at time t are likely to hear
beeps and so drop in weight (as their signalling probability is reduced); it will follow that with
high probability µt+1(Ht) is a constant factor smaller than µt(Ht) most of the time. Now we
look at the evolution of µt(Γ(v)), the weight of the whole neighbourhood of v. It may be large
and increasing for some small fraction of the time, but mostly it is either shrinking or else it is
already small. It will follow that, for at least some fixed fraction of the time, µt(Γ(v)) is small.
But this implies that, for at least some fixed fraction of the time, v will not hear any beeps, and
hence µt(v) will be large for some fixed fraction of the time. This implies that it is very likely
that at some point in the sequence of rounds we are considering v will beep and not hear any
beeps, and so get added to the independent set.

To make this argument precise, we now define the following constants:

r = 1 + (log f2/ log f1);

λ = log(32r(r + 2)(f2 − f−1
1 )/(f

−1/r
2 − f−1

1 ));

φ = λ/(1− exp(−λ));

β = 1/(4(r + 2)φf2);

α = (β/2)(f
−1/r
2 − f−1

1 )/(f2 − f−1
1 );

K0 = (8r(r + 2)) max{6, 1/p0, 1/ log f2, 1/(e−φλ(1− e−α))};

The values of these constants depend only on the fixed parameters f1 and f2 which bound
the probability update factor f used in the algorithm, and on the initial minimum probability
threshold p0 (see Table 3). Note that 1 < f1 ≤ f2, so r ≥ 2 and λ > log 256 > 5.

To simplify the presentation, we also define

K = K0(k + 1).

At each round t, we consider the following four possible events:

(E1) µt(Lt) ≥ α

[‘Γ(v) has a significant weight of light neighbours’]
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(E2) µt(Lt) < α and µt(Γ(v)) ≤ β

[‘v is very light’]

(E3) µt(Lt) < α, µt(Γ(v)) > β and µt+1(Γ(v)) ≤ f
−1/r
2 µt(Γ(v))

[‘the neighbourhood of v shrinks significantly in weight during round t’]

(E4) µt(Lt) < α, µt(Γ(v)) > β and µt+1(Γ(v)) > f
−1/r
2 µt(Γ(v))

[‘the neighbourhood of v does not shrink significantly in weight during round t (and may
grow)’]

Exactly one of these events must occur in each round.
We organize the rest of the proof as a series of claims.

Claim 1 With failure probability O(1/nk+1), (E1) occurs at most (K log n)/(8r(r + 2)) times
in the first K log n rounds.

Each time that (E1) occurs, it follows from Lemma 4.4 that with probability at least
e−φλ(1 − e−µt(Lt)) ≥ e−φλ(1 − e−α) some vertex of Lt is added to the independent set (and
so v becomes inactive and the process at v terminates). Let φ1 = e−φλ(1−e−α): the probability
that (E1) occurs at least (K log n)/(8r(r + 2)) times without v becoming inactive is at most
(1− φ1)(K logn)/(8r(r+2)) which is at most

exp(−(φ1K0/(8r(r + 2)))(k + 1) log n).

By our choice of K0, we have K0 ≥ (8r(r + 2))/φ1, so this probability is at most exp(−(k +
1) log n) = n−(k+1). This proves Claim 1.

The bad event for us will be (E4), so let us bound the probability that (E4) occurs.

Claim 2 At each round t, the probability that (E4) occurs is at most 1/(16r(r + 2)).

If (E4) can occur, then we must have that µt(Lt) < α and µt(Γ(v)) > β. For any x ∈ Ht,
there are two cases to consider - the first is that the total weight of all its neighbouring vertices
is greater than λ; the second is that at least one of its neighbouring vertices individually has
weight more than 1− exp(−λ).

In the first case, using Inequality (2), the probability that no neighbour of x beeps in round
t is at most exp(−µt(Γ(x))) which is bounded by exp(−λ). In the second case, the probability
that no neighbour of x beeps in round t is still at most exp(−λ). Thus, for any x ∈ Ht we have
shown that the probability that no neighbour of x beeps in round t is at most exp(−λ).

Let H0
t be the set of vertices in Ht that do not hear a beep in round t, and let H1

t = Ht \H0
t

be the remaining vertices in Ht that do hear a beep. Then E[µt(H
0
t )] ≤ exp(−λ)µt(Ht), and so

by Markov’s inequality

P
[

µt(H
0
t ) ≥ 16r(r + 2) exp(−λ)µt(Ht)

]

≤ 1/(16r(r + 2)). (5)
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Now all vertices in H1
t decrease their weight by a factor of at least f1, while vertices in Lt and

H0
t may either decrease or increase their weight (additionally, some weights may get set to 0 if

vertices become inactive). So

µt+1(Γ(v)) ≤ 1

f1
µt(H

1
t ) + f2µt(H

0
t ) + f2µt(Lt)

=
1

f1
µt(Γ(v))

+ (f2 −
1

f1
)µt(H

0
t ) + (f2 −

1

f1
)µt(Lt)

It follows from Inequality (5) that, with probability at least 1− 1/(16r(r + 2)),

µt+1(Γ(v)) ≤ 1

f1
µt(Γ(v)) + (f2 −

1

f1
)16r(r + 2)e−λµt(Ht)

+ (f2 −
1

f1
)µt(Lt)

≤ f
−1/r
2 µt(Γ(v)),

where the final inequality follows from our choice of λ, which gives

(f2 − f−1
1 )16r(r + 2)e−λµt(Ht)

≤ (f2 − f−1
1 )16r(r + 2)e−λµt(Γ(v))

≤ 1/2(f
−1/r
2 − f−1

1 )µt(Γ(v)),

and our choice of α and β, because we are assuming that µt(Lt) < α and µt(Γ(v)) > β, so we
have

(f2 − f−1
1 )µt(Lt) < (f2 − f−1

1 )α

= 1/2(f
−1/r
2 − f−1

1 )β

< 1/2(f
−1/r
2 − f−1

1 )µt(Γ(v)).

Thus the probability that (E4) does occur is bounded above by 1/(16r(r + 2)). This proves
Claim 2.

Claim 3 With failure probability O(1/nk+1), (E4) occurs at most (K log n)/(8r(r + 2)) times
in the first K log n rounds.

At each round, the probability of (E4) depends on the past history of the process. However, by
Claim 2, it is always at most 1/(16r(r + 2)), and so we can couple occurrences of (E4) with a
sequence of independent events each occurring with probability 1/(16r(r + 2)). It follows that
the number of occurrences of (E4) in the first K log n rounds is stochastically dominated by a
binomial random variable X with parameters K log n and 1/(16r(r + 2)). The probability that
(E4) occurs more than (K log n)/(8r(r + 2)) times is therefore, by (4), at most

P[X > 2EX] ≤ exp(−EX/3) ≤ exp(−(K log n)/(48r(r + 2))).
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By our choice of K0, we have K0 ≥ 48r(r + 2), so this probability is O(n−(k+1)), which proves
Claim 3.

From Claim 1 and Claim 3, we conclude that with failure probability O(n−(k+1)), (E1) and
(E4) altogether occur at most K(log n)/(4r(r + 2)) times in the first K log n rounds. We next
show that, with small failure probability, µt(Γ(v)) is small most of the time.

Claim 4 With failure probability O(1/nk+1), µt(Γ(v)) > f2β at most (K log n)/(2(r+ 2)) times
in the first K log n rounds.

Let T be the set of rounds t ≥ 1 at which µt(Γ(v)) > f2β. We decompose T into (maximal)
intervals of integers, say as T1∪· · ·∪Tm. Let Ti = [si, ti] be one of these intervals. We colour each
integer t ∈ Ti red if (E1) or (E4) occurred at the previous round, and blue if (E3) occurred (note
that (E2) cannot occur, as µt−1(Γ(v)) ≥ µt(Γ(v))/f2 > β). By the definition of (E3), we have

µt(Γ(v)) ≤ f
−1/r
2 µt−1(Γ(v)) at blue rounds, and we have µt(Γ(v)) ≤ f2µt−1(Γ(v)) otherwise.

Let ri be the number of red elements in Ti and bi the number of blue elements. It follows that

µti(Γ(v)) ≤ µsi−1(Γ(v)) · f2ri−bi/r.

Since µti(Γ(v)) > f2β it follows that

ri >
1

r
bi + logf2 f2β − logf2(µsi−1(Γ(v))).

However, µsi−1(Γ(v)) ≤ f2β in all cases where si > 1, and µ0(Γ(v)) < n. Summing over i, we
see that

m
∑

i=1

ri >
1

r

m
∑

i=1

bi + logf2 f2β − logf2 n

But red rounds correspond to events (E1) and (E4), and we have already shown in Claims 1
and 3 that these occur at most (K log n)/(4r(r+2)) times altogether in the first K log n rounds.
Hence the total number of rounds in T , both red and blue, is less than (K log n)/(4r(r + 2)) +
(K log n)/(4(r + 2)) + r log n/ log f2. By our choice of K0, this is less than (K log n)/(2(r + 2)).
This proves Claim 4.

Claim 5 With failure probability O(1/nk+1), v hears a beep at most (K log n)/(r + 2) times in
the first K log n rounds.

By our choice of β, we have that f2β = (1 − e−λ)/(4(r + 2)λ) < (1 − e−λ). Hence we may
apply Inequality (3), to show that when µt(Γ(v)) ≤ f2β the probability that v hears no beep is

∏

x∈Γ(v)

(1− µt(x)) ≥
∏

x∈Γ(v)

exp(−φµt(x))

≥ exp(−φµt(Γ(v)))

≥ exp(−φf2β) ≥ 1− φf2β,

and so v hears a beep with probability at most φf2β which equals 1/(4(r + 2)). Using (4),
this implies that with failure probability O(n−(k+1)) there are at most (K log n)/(2(r + 2))
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rounds among the first K log n at which µt(Γ(v)) ≤ f2β and v hears a beep. By Claim 4,
with the same failure probability, there are also at most (K log n)/(2(r + 2)) rounds at which
µt(Γ(v)) > f2β (and v might hear a beep at any of these steps). It follows that, with failure
probability O(n−(k+1)), v hears a beep at most (K log n)/(r+2) times in the first K log n rounds.
This proves Claim 5.

Claim 6 With failure probability O(1/nk+1), v becomes inactive during the first K log n rounds.

From the previous claim, we may assume that v hears a beep on at most K log n/(r + 2)
occasions during the first K log n rounds. On these occasions it decreases its local probability
value p by a factor of at most f2. We shall refer to these as red steps.

Hence there are at least (r+1)
(r+2)K log n rounds during the first K log n rounds where v does

not hear a beep, so it either terminates, or increases its local probability value p by a factor of
at least f1, or else increases p to 1. We shall refer to these as blue rounds. Note that if v beeps
in a blue round then it will terminate in that round. Hence a blue round where the value of p
increases to 1 must be immediately followed by a red round, or a blue round where v terminates.

Now, by our choice of r, f r
1 > f2. This means that there must be at least 1

(r+2)K log n blue
rounds during the first K log n rounds where either v has terminated, or else the local probability
value p at v is at least as high as the initial value, p0.

The probability that v will terminate at each of these blue rounds is at least p0, so the
probability that v remains active throughout all these blue rounds is at most (1−p0)K logn/(r+2).
Using Inequality (2), this means that the probability that v remains active throughout these
rounds is at most

exp(−p0K log n/(r + 2)).

By our choice of K0, we have K0 > (r + 2)/p0, so this is O(n−(k+1)). Hence v terminates with
a failure probability that is O(n−(k+1)).

This proves Claim 6, and completes the proof of Theorem 4.2.

Corollary 4.5 The expected number of rounds taken by the algorithm in Table 3 on any graph
with n nodes is O(log n).

Proof: Let T be the total number of rounds taken by the algorithm and let T ′ = ⌈T/(K0 log n)⌉,
where K0 is the constant identified in Theorem 4.2.

By Theorem 4.2, we have that, for any k ≥ 1,

P[T ′ > k + 1] ≤ c′/nk

for some constant c′. Hence E[T ′] =
∑

k≥1 P[T ′ ≥ k] = O(1).

4.3 Expected Number of Signals

In this section we will show that the expected number of times that each node signals is bounded
by a constant. Hence the expected bit complexity per node for this algorithm does not increase
at all with the number of nodes.
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Theorem 4.6 The expected total number of signals broadcast by any node executing the algo-
rithm in Table 3 is O(1).

Proof: Let v be a node executing the algorithm in Table 3, and consider the whole sequence
of rounds until v becomes inactive.

Once again we will refer to sending a signal in the first exchange of the algorithm in Table 3
as “beeping”, and receiving such a signal from a neighbour as “hearing a beep”.

During each round, one of the following 3 things happens in the first exchange:

Case 1 v hears a beep from its neighbours, and so decreases its probability of beeping by a
factor of f (from pt to 1

f pt). We will call these red rounds.

Case 2 v hears no beep from its neighbours, and so increases its probability of beeping by a
factor of f (from pt to fpt). We will call these blue rounds.

Case 3 v hears no beep from its neighbours, and so increases its probability of beeping to 1.
We will call these dark blue rounds.

If v beeps in any blue or dark blue round then it joins the MIS and becomes inactive, so the
total number of beeps at such rounds is at most one, at the final round in the sequence. Hence
we only need to consider the expected number of beeps at red rounds.

Consider first those red rounds (if any) where the value of pt is at its lowest point in the
sequence so far. The expected number of times that v beeps during this subsequence of rounds
is bounded by p1 + p1

f1
+ p1

f2

1

+ p1
f3

1

· · · ≤ f1
f1−1p1 ≤

f1
f1−1 .

At all of the remaining red rounds the value of pt is not at its lowest point so far, so it was
lower at some previous blue round. Hence each of these red rounds can be associated with a
corresponding earlier blue round: the most recent blue round where the value of pt was lower.
We now define the constant r = ⌈log f2/ log f1⌉, where f1 and f2 denote respectively the lower
bound and upper bound of f as given in Table 3. Note that f r

1 ≥ f2. Since blue rounds increase
the value of pt by at most a factor of f2, and red rounds decrease the value of pt by at least a
factor of f1, it follows that each blue round will be associated with at most r red rounds.

Hence we have partitioned the remaining red rounds into groups of at most r red rounds,
each associated with a single (earlier) blue round. We now consider these groups of at most r+1
rounds, ordered by the position of the initial blue round. For any such group, if the probability
of beeping at the blue round is p, then the probability of beeping at any of the associated red
rounds is at most f2p. Hence the conditional probability of beeping at the initial blue round,
given that a beep occurs somewhere in this group of rounds, is at least 1/(1 + rf2). Hence if we
consider the subsequence of groups where at least one beep occurs, the expected number of such
groups before a beep occurs at a blue round is at most rf2 (expected number of failures before
the first success in a geometric distribution). Since each group can contribute at most r beeps,
the expected number of beeps added in these groups before terminating is at most r(rf2).

We have shown that the expected number of times that v beeps is at most 1 + f1
f1−1 +

(⌈log f2/ log f1⌉)2f2, which proves the result.
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5 Algorithm for Distributed Greedy Colouring

Our new algorithm for distributed greedy colouring (see Table 4) is similar to our new distributed
MIS selection algorithm. At each round, each node may choose, with a certain probability p,
to broadcast its first available colour to all its neighbours, indicating that it wishes to use that
colour. If two neighbouring nodes broadcast the same colour in the same round, then they will
both abandon choosing that colour in that round. On the other hand, if a node broadcasts a
colour and none of its neighbouring nodes broadcast the same colour in that round, then it is
successfully coloured, and will notify all its neighbouring nodes that they are forbidden to use
that colour.

As in our MIS selection algorithm, the way that the probability values p are chosen is inspired
by the positive feedback mechanisms that control cellular processes. The value of p is initialised
to some arbitrary value at each node (above some strictly positive fixed threshold value, p0).
These values are then independently updated at each node in each round using feedback from
neighbouring nodes. The value of p is decreased at a node whenever one or more neighbouring
nodes broadcast the same colour, and is increased whenever no neighbouring node broadcasts
the same colour. As in our MIS selection algorithm, we allow each increase or decrease to be
by some arbitrary factor f , which may vary at each round, but is always bounded by the global
parameters f1 and f2 (with 1 < f1 ≤ f2).

The correctness of the algorithm in Table 4 follows easily from the two facts below:

Fact 1 No two nodes that are assigned the same colour in the same round are adjacent.

Fact 2 The colour assigned to any node is the smallest colour that is different from all colours
previously assigned to neighbouring nodes.

Thus, if the algorithm in Table 4 is run on the nodes of any graph G, and all nodes become
inactive, then the colour assigned to each of the nodes defines a greedy colouring of G.

Our analysis of the distributed greedy colouring algorithm shown in Table 4 is very similar
to the analysis for the MIS selection algorithm given in Section 4.2.

Theorem 5.1 For any fixed values of p0 > 0, and 1 < f1 ≤ f2, there is a constant K0 and a
constant r such that the following holds: For any graph G with n vertices and maximum degree ∆,
and any k ≥ 1, the algorithm defined in Table 4 terminates in at most 8r(r+2)∆+K0(k+1) log n
rounds, with probability at least 1−O(1/nk).

As in Section 4.2, we refer to broadcasting any colour c in the first exchange as “beeping”,
and receiving the same colour c from a neighbour in that exchange as “hearing a beep”. As
before, for any vertex v, at any time step t, we define the measure µt(v), called the “weight” of
v, to be the probability that v beeps in round t.

The set of neighbours of a vertex v which are competing for the same colour as v in any
round will be called the homogeneous neighbours of v, and will be denoted by Γ(h)(v). We adapt
Definition 4.3 to refer to homogeneous neighbours only, as follows.

Definition 5.2 For any λ > 0, a vertex v will be called λ-light(h) at round t if µt(Γ
(h)(v)) ≤ λ

and every homogeneous neighbour of v has weight at most 1 − exp(−λ); otherwise, vertex v is
called λ-heavy(h).
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Table 4: The algorithm for distributed greedy colouring at each node

Global constants: p0 : lower bound on initial probability value;
f1, f2 : lower and upper bounds on change factor for probability value.

Local variables: p : local probability value, initialised to some value in [p0, 1];
f : change factor for probability value, chosen arbitrarily in [f1, f2];
Trying : Boolean flag, initialised to False;
S : Set of forbidden colours, i.e., those taken by neighbours, initialised to ∅.

1. while active, at each time step do

2. *FIRST EXCHANGE*
3. Choose the smallest available colour c that is not in S;
4. With probability p, set Trying← True and send c to all neighbours;

5. Receive any colour signals sent by neighbours;
6. Set f to some value in the interval [f1, f2];
7. if any neighbour sent colour c then
8. Trying ← False and p← p/f (decrease p)
9. else

10. p← min{fp, 1} (increase p)

11. *SECOND EXCHANGE*
12. if Trying then
13. Send c to all neighbours;
14. Assign colour c to this node and terminate (become inactive).
15. Receive any colour signals sent by neighbours and add all distinct

colours received to S.

As in Section 4.2, we first establish a lower bound on the probability that at least one vertex in
a set of λ-light(h) vertices will be coloured at each round.

Lemma 5.3 Let W be a set of vertices that are λ-light(h) at round t. The probability that at least
one vertex in W gets coloured in round t is at least e−φλ(1−e−µt(W )) where φ = λ/(1−exp(−λ)).

Proof: Identical to the proof of Lemma 4.4.

Proof: [of Theorem 5.1] Fix an arbitrary vertex v. We use essentially the same argument as
in the proof of Theorem 4.2, partitioning the neighbourhood of v into λ-light(h) and λ-heavy(h)

vertices, and following the progress of these sets over time. Note that we consider the entire
neighbourhood of v, not just the homogeneous neighbours. We show that the weight of this
entire neighbourhood is small for at least a fixed fraction of the time, and hence v fails to receive
any colour signals for at least a fixed fraction of the time.

We define the same constants, and the same events (E1) to (E4) (see page 14). However, in
this proof we will need to allow for the possibility that one or more neighbours of v are successfully
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coloured at any time step, which can happen up to ∆ times, and does not immediately force v
to become inactive.

Each time that (E1) occurs, it follows from Lemma 5.3 that with probability at least e−φλ(1−
e−α) some λ-light(h) neighbour of v will be coloured. Let φ1 = e−φλ(1 − e−α). As in the proof
of Claim 1, the probability that there are (K log n)/(8r(r + 2)) occurrences of (E1) where no
neighbour of v is coloured is at most (1 − φ1)

(K logn)/(8r(r+2)) ≤ exp(−(φ1K0/(8r(r + 2)))(k +
1) log n). By our choice of K0, we have K0 ≥ (8r(r + 2))/φ1, so this probability is at most
exp(−(k + 1) log n) = n−(k+1).

Hence with failure probability O(1/nk+1), the total number of occurrences of (E1) is at most
∆ + (K log n)/(8r(r + 2)).

Since we have a weaker upper bound on the number of occurrences of (E1), we will need to
consider a longer sequence of rounds overall. In fact, we will consider the first 8r(r+2)∆+K log n
rounds.

Following exactly the same arguments as in the proof of Claims 2 and 3, we obtain that with
failure probability O(1/nk+1), (E4) occurs at most ∆ + (K log n)/(8r(r + 2)) times in the first
8r(r + 2)∆ + K log n rounds.

Next, following the argument used to prove Claim 4, but using the weaker bound of 2∆ +
(K log n)/(4r(r + 2)) for the total number of red rounds, we obtain that with failure probability
O(1/nk+1), µt(Γ(v)) > f2β at most 4r∆ + (K log n)/(2(r + 2)) times in the first 8r(r + 2)∆ +
K log n rounds.

Now, using the same argument as in Claim 5 we can show that with failure probability
O(1/nk+1), the fraction of rounds where v hears a beep (or in fact receives any colour signal in
the first exchange) during the first 8r(r + 2)∆ + K log n rounds is at most 1/(r + 2).

Finally, using the same argument as in Claim 6, this implies that with failure probability
O(1/nk+1), v becomes inactive during the first 8r(r + 2)∆ + K log n rounds.

Taking a union bound over all possible choices of v, as before, gives the result.

Corollary 5.4 The expected number of rounds taken by the algorithm in Table 4 on any graph
with n nodes is O(∆ + log n).

Finally, the proof of Theorem 4.6 considers only an individual node and does not take into
account whether the neighbours of a node become inactive or not, so this proof applies equally
well to our distributed colouring algorithm, giving the following result.

Theorem 5.5 The expected total number of beeps broadcast by any node executing the algorithm
in Table 4 is O(1).
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