arXiv:1109.4373v1 [cs.DC] 20 Sep 2011

Fault-Tolerant Aggregation:
Flow-Updating Meets Mass-Distribution*

Paulo Sérgio Almeida', Carlos Baquero!, Martin Farach-Colton?,
Paulo Jesus!, and Miguel A. Mosteiro®

! Depto. de Informética (CCTC-DI), Universidade do Minho, Braga, Portugal
{psa,cbm,pcoj}@di.uminho.pt
2 Dept. of Computer Science, Rutgers University, Piscataway, NJ, USA &
Tokutek, Inc.
farach@cs.rutgers.edu
3 Dept. of Computer Science, Rutgers University, Piscataway, NJ, USA &
LADyR, GSyC, Universidad Rey Juan Carlos, Madrid, Spain

mosteiro@cs.rutgers.edu

Abstract. Flow-Updating (FU) is a fault-tolerant technique that has
proved to be efficient in practice for the distributed computation of aggre-
gate functions in communication networks where individual processors
do not have access to global information. Previous distributed aggre-
gation protocols, based on repeated sharing of input values (or mass)
among processors, sometimes called Mass-Distribution (MD) protocols,
are not resilient to communication failures (or message loss) because
such failures yield a loss of mass.

In this paper, we present a protocol which we call Mass-Distribution
with Flow-Updating (MDFU). We obtain MDFU by applying FU
techniques to classic MD. We analyze the convergence time of MDFU
showing that stochastic message loss produces low overhead. This is the
first convergence proof of an FU-based algorithm. We evaluate MDFU ex-
perimentally, comparing it with previous MD and FU protocols, and ver-
ifying the behavior predicted by the analysis. Finally, given that MDFU
incurs a fixed deviation proportional to the message-loss rate, we adjust
the accuracy of MDFU heuristically in a new protocol called MDFU
with Linear Prediction (MDFU-LP). The evaluation shows that both
MDFU and MDFU-LP behave very well in practice, even under high
rates of message loss and even changing the input values dynamically.
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1 Introduction

The distributed computation of algebraic aggregate functions is particularly chal-
lenging in settings where the processing nodes do not have access to global in-
formation such as the input size. A good example of such scenario is Sensor
Networks [1},28] where unreliable sensor nodes are deployed at random and the
overall number of nodes that actually start up and sense input values may be
unknown. Under such conditions, well-known techniques for distributing infor-
mation throughout the network such as Broadcast [21] or Gossiping [11] cannot
be directly applied, and data collection is only practicable if aggregation is per-
formed. Even more challenging is that loss of messages between nodes or even
node crashes are likely in such harsh settings. It has been proved [2] that the
problem of aggregating values distributedly in networks where processing nodes
may join and leave arbitrarily is intractable. Hence, arbitrary adversarial mes-
sage loss also yields the problem intractable, but a weaker adversary, for instance
a stochastic one as in Dynamic Networks [7], is of interest. In this paper, under a
stochastic model of message loss, we study communication networks where each
node holds an input value and the average of those values E| must be obtained
by all nodes, none of whom have access to global information of the network,
not even the total number of nodes n.

A classic distributed technique for aggregation, sometimes called Mass-
Distribution (MD) [10], works in rounds. In each round, each node shares
a fraction of its current average estimation with other nodes, starting from the
input values [3}5,/6l19,27,/29,/32|33]. Details differ from paper to paper but a
common problem is that, in the face of message loss, those protocols either
do not converge to a correct output or they require some instantaneous failure
detector mechanism that updates the topology information at each node in each
round. Recently [17,/18], a heuristic termed Flow-Updating (FU) addressed
the problem assuming stochastic message loss [18], and even assuming that input
values change and nodes may fail [17]. The idea underlying FU is to keep track
of an aggregate function of all communication for each pair of communicating
nodes, since the beginning of the protocol, so that a current value at a node
can be re-computed from scratch in each round. Empirical evaluation has shown
that FU behaves very well in practice [17,[18], but such protocols have eluded
analysis until now.

In this paper, we introduce the concept of FU to MD. First, we present a
protocol that we call Mass-Distribution with Flow-Updating (MDFU).
The main difference with MD is that, instead of computing incrementally, the
average is computed from scratch in each round using the initial input value and
the accumulated value shared with other nodes so far (which we refer to as either
mass shared, or flow passed). The main difference with FU is that if messages
are not lost the algorithm is exactly MD, which facilitates the theoretical analysis

4 Other algebraic aggregate functions can be computed in the same bounds using an
average protocol [61/19].



of the convergence time under failures parameterized by the failure probability
(or message-loss rate).

Our results.We first leverage previous work on bounding the mixing time of
Markov chains [30] to show that, for any 0 < £ < 1, the convergence time
of MDFU under reliable communication is 21In(n/¢)/®(G)?, where &(G) is the
conductance of the underlying graph characterizing the execution of MDFU on
the network. Then, we show that, with probability at least 1 —1/n, for a message-
loss rate f < 1/1In(2Ae)3, the multiplicative overhead on the convergence time
produced by message loss is less than 1/(1 — 1/ f1n(2Ae)3), and it is constant
for f < 1/(e(24e)¢), where A is the maximum number of neighbors of any
node. Also, we show that, with probability at least 1 — 1/n, for any 0 < £ < 1,
after convergence the expected average estimation at any node is in the interval
[(1=&)(1 = f)v,(1+ &)v]. This is the first convergence proof for an FU-based
algorithm.

In MDFU, if some flow is not received, a node computes the current esti-
mation using the last flow received. Thus, in presence of message loss, nodes do
not converge to the average and only some parametric bound can be guaran-
teed as shown. Aiming to improve the accuracy of MDFU, we present a new
heuristic protocol that we call MDFU with Linear Prediction (MDFU-LP).
The difference with MDFU is that if some flow is not received a node computes
the current estimation using an estimation of the flow that should have been
received.

We evaluate MDFU and MDFU-LP experimentally and find that the per-
formance of MDFU is comparable to FU and other competing algorithms under
reliable communication. In the presence of message loss, the empirical evaluation
shows that MDFU behaves as predicted in the analysis converging to the average
with a bias proportional to the message-loss rate. This bias is not present in the
original FU, which converges to the correct value even under message loss. In
a third set of evaluations, we observe that MDFU-LP converges to the correct
value even under high message loss rates, with the same speed as under reliable
communication. We also test MDFU under changing input values to verify that
it tolerates dynamic changes in practice, in contrast to classic MD algorithms,
which need to restart the computation each time values are changed.

Roadmap. In Section |2| we formally define the model and the problem, and we
give an overview of related work. Section [3|includes the details of MDFU and its
analysis, whereas its empirical evaluation is covered in Section [@ In Section
we present the details of MDFU-LP and its experimental evaluation. Section [f]
evaluates MDFU in a dynamic setting, where input values change over time.

2 Preliminaries

Model. We consider a static connected communication network formed by a
set V of n processing nodes. We assume that each node has an identifier (ID).
Any pair of nodes i,j € V such that ¢ may send messages to j without relying



on other nodes (one hop) are called neighbors. We assume that the IDs are
assigned so that each node is able to distinguish all its neighbors. The set of
ordered pairs of neighbors (or, edges) is called E. The network is symmetric,
meaning that, for any i,5 € V, (i,j) € E if and only if (j,7) € E. The set of
neighbors of a given node ¢ is denoted as N; and |N;| is called the degree of i.
For each pair of nodes i,5 € V, the maximum degree between 4, j is denoted as
D;; = max{|N;|,|N;|}. The maximum degree throughout the network is denoted
as A = max;ecy |N;|. Each node i knows N; and D;; for each j € N;, but does
not know the size of the whole network n. The time is slotted in rounds and
each round is divided in two phases. In each round, a node is able to send
(resp. receive) one message to (resp. from) all its neighbors (communication
phase) and to perform local computations (computation phase). However, for
each (i,7) € E and for each communication phase, a message from i to j is lost
independently with probability f. This is a crucial difference with previous work
where, although edge-failures are considered, messages are not lost thanks to the
availability of some failure detection mechanism. More details are given in the
previous work section. Nodes are assumed to be reliable, i.e. they do not fail.

Problem. Each node i holds an input value v;, for 1 < ¢ < n. The aim is for each
node to compute the average 7 = >, v;/n without any global knowledge of the
network. We focus on the algorithmic cost of such computation, counting only
the number of rounds that the computation takes after simultaneous startup of
all nodes, leaving aside medium access issues to other layers. This assumption
could be removed as in |10].

Previous Work. Previous work on aggregate computations has been partic-
ularly prolific for the area of Radio Networks, including both theoretical and
experimental work [8,[12H1619}20,22H24.26,/35]. Many of those and other ag-
gregation techniques exploit global information of the network [10}/12}22}[23], or
are not resilient to message loss [3}/5,/19].

FU is a recent fault-tolerant approach |17}/18] inspired on the concept of flows
(from graph theory). Like common MD techniques, it is based on the execution
of an iterative averaging process at all nodes, and all estimates eventually con-
verge to the system-wide average. MD protocols exchange “mass”, which lead
them to converge to a wrong result in the case of message loss. In contrast,
FU does not exchange “mass”. Instead it performs idempotent flow exchanges
which provide resilience against message loss. In particular, FU keeps the initial
input value at each node unchanged (in a sense, always conserving the global
mass), exchanging and updating flows between neighbors for them to produce a
new estimate. The estimate is computed at each node from the input values and
the contribution of the flows. No theoretical bounds on the performance of the
algorithm were provided. Empirical evaluation shows that FU performs better
than classic MD algorithms, especially in low-degree networks, and it supports
high levels of message loss [18]. Moreover, it self-adapts to dynamic changes (i.e.
nodes leaving/arriving and input value change) without any restart mechanism
(like other approaches), and tolerates node crashes [17].



MD protocols for average computations in arbitrary networks based on gos-
siping (exchange values in pairs) were studied in [3,[19]. Results in [3] are pre-
sented for all gossip-based algorithms by characterizing them by a matrix that
models how the algorithm evolves while sharing values in pairs iteratively. As
in our results, the time bounds shown are given as a function of the spectral
decomposition of the graph underlying the computation. The work is focused
on optimizing distributedly the spectral gap, in order to minimize convergence
time. The dynamics of the model are motivated by changes in topology induced
by nodes leaving and joining the network. Those changes may be introduced in
the probability of establishing communication between any two nodes. However,
the delivery of messages has to be reliable to ensure mass conservation. An al-
gorithm called Push-Sum that takes advantage of the broadcast nature of Radio
Networks (i.e., it is not restricted to gossip) is included in [19], yielding similar
bounds. Chen, Pandurangan, and Hu [5] present an MD algorithm that first
builds a forest over the network, where each root collects the information, and
then a gossiping algorithm among the roots is used. The authors show a reduc-
tion on the energy consumption with respect to the uniform gossip algorithm. On
the other hand, the MD algorithm presented in [6] relies on a different randomly
chosen local leader in each round to distribute values. The bounds given are also
parameterized by the eigen-structure of the underlying graph. This result was
extended more recently [4] to networks with a time-varying connection graph,
but the protocol requires to update the matrix underlying such graph in each
round.

MD protocols have been used also for Distributed Average Consensus [27],29,
31H34] within Control Theory, but they do not apply to our model. For example,
in [33}[34] the model includes unreliable communication links, but the algorithm
requires instantaneous update of the topology information held at each node at
the beginning of each round. Others, either rely on similar features [27}29}|31]
or do not consider changes in topology at all [32].

The common problem in all the MD protocols is that they are not resilient
to message loss, because it implies a loss of mass. Hence, if messages are lost,
they need to restart the computation from scratch. In MDFU, message loss has
an impact on convergence time, which we show to be small, but the compu-
tation recovers from those losses, yielding the correct value. In fact, it is this
characteristic of MDFU and FU in general what makes the technique suitable
for dynamic settings in which the input values change with time.

3 MDFU

As in previous work [31|6}10,/19], MDFU is based on repeatedly sharing among
neighbors a fraction of the average estimated so far. Unlike in those papers, in
MDFU the estimation is computed from scratch in each round, as in FU [17]
18]. For that purpose, each node keeps track of the cumulative value passed to
each neighbor (or, cumulative flow) since the protocol started. Together with
the original input value, those flows allow each node to recompute the average



Algorithm 1: MDFU. Pseudocode for node i. e; is the estimate of node
i. Fy,(4) is the cumulative inflow from node j. Fo:(j) is the cumulative
outflow to node j.

// initialization
1 e; < v;
2 foreach j € N; do
3 Fin(3) <0
4 Fou(j) + ei/ (2Dy;)

5 foreach round do
// communication phase
foreach j € N; do

Send j message (i, Fout(j))
foreach (j, F) received do

Fun(j) < F
// computation phase
10 €i < VU +Z]€N1(FL7L(]) _Fout(j))
11 foreach j € N; do
12 Fout(j) = Fout(j) + €:/ (2Di;)

© 0N o

estimation in each round. Should some flow from node ¢ to node j be lost, j
temporarily computes the estimation using the last flow received from 4. Further
details can be found in Algorithm [I]

Recall that the aim is to compute the average v = Z?zl v;/n of all input
values. Let e;(r) be the average estimate of node ¢ in round r, and e(r) =
max;{|e;(r) — |/T} be the maximum relative error of the average estimates in
round r. We want to bound the number of rounds after which the maximum
relative error is below some parametric value €.

In each round, a node shares a fraction of its current estimate with each
neighbor. Therefore, the execution of each round can be characterized by a tran-
sition matriz, denoted as P = (p;;), Vi, j € V, such that for any round r where
messages are not lost

1/(2D;;) if i # j and (i, j) € E,
pij = 41— Len, 1/(@Dix) if i = j,
0 (i,j) ¢ E

and e(r + 1) = e(r)P, where e(-) is the row vector (e1(-)ea(:)...en(")).

3.1 Convergence Time for f =0

Consider first the case when the communication is reliable, that is f = 0. Then,
the above characterization is round independent and, given that P is stochastic,
it can be seen as the transition matrix of a time-homogeneous Markov chain
(X,)22, with finite state space V. Furthermore, (X,)22, is irreducible, and ape-
riodic, then it is ergodic and it has a unique stationary distribution. Given that



P is doubly stochastic such stationary distribution is m; = 1/n for all i € V.
Thus, bounding the convergence time of (X,)22; we have a bound for the con-
vergence time of MDFU without message loss. The following notation will be
useful. Let G be a weighted undirected graph with set of nodes V' and where,
for each pair ¢,j € V, the edge (7, j) has weight m;p;;. G is called the underlying
graph of the Markov chain (X,)2,. The following quantity characterizes the
likelihood that the chain does not stay in a subset of the state space with small
stationary probability. Let the conductance of graph G be

o
#(C) = min desp” 3
Vv ; i
Siesmejp  ies T

The following theorem shows the convergence time of MDFU with reliable com-
munication parameterized in the conductance of G.

Theorem 1. For any communication network of n nodes running MDFU, for
any 0 < & < 1, and for r. = 2In(n/€)/P(G)?, if f = 0, it holds that e(r) < &
for any round r > r., where ®(G) is the conductance of the underlying graph
characterizing the execution of MDFU on the network.

Proof. We want to find a value of r. such that for all » > r. it holds that
max;{|e;(r) — |/v} < & Then, we want max;{[e;(r)/>_,cy v; — 1/n[} < /n.
Given that e;(r) = > ;. v;(P")j;, it is enough to have max;;ev{|(P");; —
1/n|} < &/n. On the other hand, given that p;jm; = pj;m; for all 4,5 € V, the
Markov chain is time-reversible. Then, as proved in [30], it is max; jev |(P"):; —
mi|/m; < A}/ minjey mj, where A is the second largest eigenvalue of P (all
the eigenvalues of P are positive because p; > 1/2 for all ¢ € V). Given that
m; = 1/n for all i € V, we have max; jev [(P");; — 1/n| < A]. Thus, from the
inequality above, it is enough to have AT < £/n. As proved also in [30], given
that (X,)%2, is ergodic and time-reversible, it is A\; < 1 — &(G)?/2. Then, it is
enough (1 — ®(G)?/2)" < ¢/n. Given that ¢(G) < 1, using that 1 —z < e~* for
x < 1, the claim follows.

3.2 Convergence Time for f > 0

Mixing time of a multiple random walk. Recall that we carry out an average
computation of n input values where each node 4 shares a 1/(2D;;) fraction of
its estimate in each round of the computation with each neighboring node j. We
have characterized each round of the computation with a transition matrix P so
that in each round r the vector of estimates e(r) is multiplied by P.

The Markov chain defined in Section[3:I]that models the average computation
is also a characterization of a random walk, that is, a stochastic process on the
set of nodes V where a particle moves around the network randomly. In our
case, for each round, instead of choosing the next node where the particle will
be located uniformly among neighbors, the matrix of transition probabilities is
P. A state of this process (which of course is also Markovian) is a distribution of



the location of the particle over the nodes. The measure of this random walk that
becomes relevant in our application is the mixing time, that is, the number of
rounds before such distribution will be close to uniform. The mixing time of this
random walk is the same as the convergence time of the Markov chain (X,.)22,
setting appropriately for each case the desired maximum deviation with respect
to the stationary distribution as follows.

A useful representation of this process in our application is to assume a set S
of particles, all of the same value v, so that at the beginning each node 7 holds a
subset S; of particles such that |S;|v = v;. In order to analyze the computation
along many rounds, we assume that v is small enough so that particles are not
divided. We define the mixzing time of this multiple random walk as the number
of rounds before the distribution of all particles is within &/n of the uniform,
for 0 < £ < 1. Without message loss, it can be seen that the mixing time of the
above defined multiple random walk is the same as the convergence time of the
Markov chain (X,.)$2, defined in Section We consider now the case where
messages may be lost.

The following lemma shows that, for f < 1/In(24e¢)%, the multiplica-
tive overhead on the mixing time produced by message loss is less than
1/(1 — \/fIn(24€)3), and it is constant for f < 1/(e(2A4e)°). The proof uses
concentration bounds on the delay that any particle may suffer due to message
loss.

Lemma 1. Consider any communication network of n nodes running MDFU,
any 0 < f <1/In(24e)3, any 0 < £ < 1, let r. = 2In(n/€)/P(G)?, and let

1/e if £ <1/(e(24e))
17 (VIRERAFTF=3-1) /2 otheruise.

Consider a multiple random walk modeling MDFU as described. With probability
at least 1 — 1/n, after r = r./(1 — q) rounds it holds that max,csicv |ps(4) —
1/n| < &/n, where p,(i) is the probability that particle x is located at node i.

Proof. For clarity, we model the network with a directed graph {V, E}, with V
and F as defined in the model. A message loss in the edge (¢, ) € E is modeled
with a buffer on the edge (7, j) where a particle is “delayed”. For a computation
of r rounds, it is enough to consider at most n(2A)" particles, because initially
there are n input values and each value is divided r times by at most 2A. Consider
the random walk of a given particle x € S. For each round, x is delayed with
probability f. We bound the mixing time by bounding the number of rounds
that any particle is delayed as follows.

Assume first that 1/(e(24¢e)¢) < f < 1/In(24¢)?. For r rounds, the ex-
pected number of rounds when a given particle is delayed is fr. Using Chernoft-
Hoeffding bounds [25], the probability that a given particle x is delayed more
than gr rounds, f < ¢ <1, is at most exp(—fr(q/f — 1)?/3). Then, the proba-
bility that some particle is delayed more than ¢r rounds is

2A )T
exp((¢ — £)?/B31) )

Pr(3z : z delayed > gr) <n <



Assuming that 2Aexp(1 — q) < exp((q — f)?/(3f)), we get that
21n(n/8)

1 (-0 #(6)?
Pr(3z : x delayed > gr) <n ()
exp(l — q)

= nexp (—%) ,given that £ <1 and &(G) < 1,

<nexp(—2lnn)
=1/n.
Then, it remains to prove
2Aexp(1 —q) < exp((q — £)?/(31))
¢* + fq+ f> — fIn(24¢)* > 0.

Which is true for ¢ = f <\/4 In(24e)3/f — 3 — 1) /2, which is feasible because,

for f < 1/In(24¢)3, such value of ¢ implies f < ¢ <1.

Consider now the case 0 < f < 1/(e(24e)°). Again, using Chernoff-Hoeffding
bounds, the probability that a given particle x is delayed more than gr rounds,
f <q<1,is at most ((fe/q)q/ef)T Then, the probability that some particle is
delayed more than ¢r rounds is

q\ T
Pr(3z : x delayed > gr) <n <2? <fe> ) .
el \ q

Assuming that 2A(fe/q)?/ef < 1/exp(1 — q) we get as before,
Pr(3z : z delayed > gr) < 1/n.

2A ([ fe\* 1
ef<q) =

<(q/f
24e < (q/f)*.

Which is true for f <1/(e(24¢€)¢) and ¢ = 1/e.

Then, it remains to prove
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The expected number of particles at each node as a function of f.
Analyzing a multiple random walk of a set of particles, in Lemma[I] we obtained
a bound on the time that any particle takes to converge to a stationary uniform
distribution. However, for any probability of message loss f > 0 and for any
round, there is a positive probability that some particles are located in the edge
buffers defined in the proof of such lemma. Hence, the fact that each particle
is uniformly distributed over nodes does not imply that the expected average
held at the nodes has converged, because only particles located at nodes are
uniformly distributed. We bound the expected error in this section. The proof of
the following lemma is based on computing the overall expected ratio of particles
in nodes with respect to delayed particles.



Lemma 2. Consider a multiple random walk modeling MDFU under the con-
ditions of Lemma . Then, with probability at least 1 — 1/n, for any round

r > r./(1 — q), the expected number of particles E(\Si(T)|) in each node i is
(1= &)1 = N)IS|/n <B(57]) < (1+8)IS]/n.

Proof. We consider a multiple random walk of a set of particles S over a directed
graph V, E, with V and E as defined in the model. A message loss in the edge
(i,7) € E is modeled with a buffer on the edge (4, j) where a particle is “delayed”.
The following notation will be useful. For any round r, Sg) is the set of particles

held at the set X (node set or edge-buffer set), and Si(r) is the set of particles
held at the node i. Let p; = >, y, 1/(2D;;) for any node i. By linearity of
expectation, at the end of round 7, the expected number of particles in all buffer-
edges and the expected number of particles in all nodes are

E(SE) =Y EUST V) i + SE(ISE V) (1)
eV

E(SY) =S EBIST TN~ fpi) + (1 - HE(SE ). (2)
eV

Using that p; < 1/2 in [If and [2| we have

E(ISY]) < (f/2E(ST V) + FE(SE V)
E(S{]) > (1 - f/2E(SI V) + (1 - HE(SE V).

Then,
BISE) _ (/B¢ V) + FE(SE V)
E(ISY)) ~ (1 f/2B(sy V) + (1 - NE(SE )
< T because 11_fj/c2 > %

Then, given that BE(|S{)+E(|SY]) = ||, we have E(|S{]) > (1—£)|S]. As
proved in Lemmal[l] with probability at least 1—1/n, for any round r > r./(1—q),
maxgzegicv [Pe(i) —1/n| < &/n, where p, () is the probability that particle z is
located at node i and ¢ as defined in such lemma. Then, for any node i € V, it
is (1-8@1—f)S|/n< E(|Si(r)\) < (14 &)|S|/n and the claim follows.

Based on the previous lemmata, the following theorem shows the convergence
time of MDFU.

Theorem 2. Consider any communication network of n nodes running MDFU.
For any 0 < f < 1/In(24¢)3, let ¢ = 1/e if f < 1/(e(24¢)°), or ¢ =
f <\/4 In(2Ae)3/f —3 — 1) /2 otherwise, and let r. = 2In(n/€)/P(G)?. Then,
with probability at least 1 —1/n, for any 0 < £ < 1 and any round r > r./(1—q),




the expected average estimation at any nodei € V is (1-&)(1— f)v < E(egr)) <
(1 + &), where &(G) is the conductance of the underlying graph characterizing
the execution of MDFU on the network.

Proof. From Lemmas [I| and [2| we know that, under the conditions of this theo-
rem, for any round r > r./(1 — ¢) and any node i € V, with probability at least
1—1/n the expected number of particles (of the multiple random walk modeling
MDFU) is (1 — &)(1 = f)|S|/n < E(S"]) < (1 + €)|S|/n. Then, multiplying by
the value of each particle the claim follows.

4 Empirical Evaluation of MDFU

We evalutated MDFU in a synchronous network simulator, using an Erdés—Rényi
|9] network with 1000 nodes and 5000 links (giving an average degree of 10). The
input values were chosen as when performing node counting |16[; i.e., all values
being 0 except a random node with value 1; this scenario is more demanding,
leading to slower convergence, than uniformly random input values. The evalua-
tion aimed at: 1) comparing its convergence speed under no loss with competing
algorithms; 2) evaluating its behavior under message loss; 3) checking its ability
to perform continuous estimation over time-varying input values.

4.1 Convergence Speed Against Related Algorithms Under no
Faults

To evaluate wether MDFU is a practical algorithm in terms of convergence speed,
we compared it against three other algorithms: the original Flow-Updating |17,
18| (FU), Distributed Random Grouping [6] (DRG), and Push-Synopses [19].
Figure [If shows the coefficient of variation of the root mean square error as
a function of the number of rounds (averaging 30 runs), with CV(RMSE) =
VS ev (e — 0P /3.

It can be seen that MDFU is competitive, providing approximate estimates
slightly faster than FU and DRG and giving reasonably accurate results roughly
in line with them. It loses to them for very high precision estimation and to
Push-Synopses for all precisions (but both DRG and Push-Synopses are not
fault-tolerant).

4.2 Fault Tolerance: Resilience to Message Loss

To evaluate the resilience of MDFU to message loss, we performed simulations
using different rates of message loss (0, 1%, 5%, 10%), where each individual
message may fail to reach the destination with these given probabilities. We
measured the effect of message loss on both the CV(RMSE) and also on the
maximum relative error. As can be seen in Figure [2| as long as there is some
message loss, they do not tend to zero anymore, but converge to a value that is
a function of the message loss rate.
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Fig. 2. Coefficient of variation of the RMSE and maximum relative error for MDFU
in a 1000 node 5000 link Erdos-Renyi network.

We also measured the behavior of the average of the estimates over the whole
network, and observed that there is a deviation from the correct value (T, the
average of the input values) towards lower values. Figure [3| shows the relative
deviation from the correct value over time, for different message loss rates. It
can be seen that this bias is roughly proportional to the message loss rate (for
these small message loss rates).

Relating these results with the theoretical analysis of MDFU, we can see
that this bias should not come as a surprise. From Theorem [2 the expected
value of the estimation converges to a band between (1 — f)v and T. The relative
deviation of the lower boundary is thus proportinal to the message loss rate.
Figure [3] also shows this boundary for the different message loss rates.

This kind of bias was not present in the original FU, in which the average
of the estimates tends to the correct value. In MDFU the message loss rate
limits the precision that can be achieved, but it does not impact convergence,
contrary to classic mass distribution algorithms where, given message loss, the
more rounds pass, the more mass is lost and the more the estimates deviate from
the correct value, failing to converge.
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Fig. 3. Bias on the average estimation over rounds in a 1000 node 5000 link Erdos-
Renyi network.

5 MDFU with Linear Prediction

The explanation for the behavior of MDFU under message loss lies in that only
the estimate converges, but flows keep steadily increasing over time. This can be
seen in the formula: Fou:(j) < Fout(j) + €i/ (2D;;) where the flow sent to some
neighbor increases at each round by a value depending on the estimate and their
mutual degrees. What happens is that during convergence, the extra flow that
each of two nodes send over a link tend to the same value, and the extra outgoing
flow cancels out the extra incoming flow. We can say that it is the velocity (rate
of increase) of flows over a link that converge (to some different value for each
link).

This means that, even if the estimate had already converged to the correct
value, given a message loss, the extra flow that should have been received is
not added to the estimate, implying a discrete deviation from the correct value.
This discrete deviation does not converge to zero; thus, we have a bias towards
lower values and the relative estimation error is prevented from converging to
zero given some message loss rate.

Here we improve MDFU by exploring velocity convergence. We keep, for
each link, the velocity (rate of increase) of the flow received. If a message is lost,
we predict what would have been the flow received, given the stored flow, the
velocity and the rounds passed since the last message received over that link,
i.e., we perform a linear prediction of incoming flow. When a message is received
we update the flow and recalculate the velocity. This algorithm is presented in
Algorithm

Under no message loss MDFU-LP is the same as MDFU and the theoreti-
cal results on convergence speed also apply to MDFU-LP. Under message loss
the velocities converge over time and the prediction will be increasingly more
accurate. Therefore, message loss should not cause discrete deviations in the
estimate, allowing the estimation error to converge to zero.

We have evaluated MDFU-LP for the same network as before, but now with
a wide range of message loss rates. We have observed that the behavior under



Algorithm 2: MDFU-LP. Pseudocode for node i. e; is the estimate of node
i. Fy,(4) is the cumulative inflow from node j. Fo:(j) is the cumulative
outflow to node j. V(j) is the velocity of incoming flow from node j. R(j)
is the number of rounds since the last message received from node j.

// initialization
1 e; < v;
2 foreach j € N, do
3 Fin(4) <0
4 Fout(j) + ei/ (2Di;)
5 V(j)« 0
6 R(j) + 1
7 foreach round do

// communication phase
8 foreach j € N; do

9 Send j message (i, Fout(j))
// computation phase
10 foreach (j, F) received do
1 V() & (F — FunlG))/RG)
12 R(j)« 0
13 Fin(j) < F

14 e < v+ oy, (Fin(d) + V() X R(j) — Four(4))
15 foreach j € N; do

16 Fout(§) < Fout(j) + ei/ (2Dij5)

17 R(j)«+ R(j)+1

message loss rates below 50% is almost indistinguishable from the behavior under
no message loss. Figure [4 shows the CVRMSE and maximum relative error for
0%, 60%, 70%, and 80% message loss rates. It can be seen that even for 60%
loss rate, after 60 rounds we have basically the same estimation errors as under
no message loss.

6 Continuous Estimation Over Time-Varying Input
Values

Up to thus point we have considered that the input values v; are fixed through-
out the computation. In most practical situations this will not be the case and
input values will change along time. The common approach in MD algorithms
is to periodically reset the algorithm and start a new run that freezes the new
input values and aggregates the new average. Naturally, resets are inefficient
and mechanisms that can adapt the ongoing computation have the potential to
adjust the estimates in a much shorter number of rounds.

Without any further modifications, MDFU (and MDFU-LP) share with FU
the capability of adapting to input value changes, since v; is considered in the
computation of the local estimate e;, and this regulates how much the outgoing
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Fig. 4. Coefficient of variation of the RMSE and maximum relative error for MDFU-LP
in a 1000 node 5000 link Erdos-Renyi network.
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Fig. 5. Estimated value over rounds in a 1000 node 5000 link Erdos-Renyi network,
with changes of the initial input value at 50% of the nodes.

flows are to be incremented. If v; decreases, e; decreases in the same proportion
and node ¢ will share less through its flows to the neighbours. The converse
occurring when v; increases. The overall effect is convergence to the new average,
even if multiple nodes are having changes in their input values.

In Figure [5| we show an example of how MDFU handles input value changes.
In this setting, starting at round 50 and during 50 rounds, we increase by 5% in
each round the input value in 500 nodes (a random half of the 1000 nodes). In
the following 50 rounds, the same 500 nodes will have its value decreased by 5%
per round. Initial input values are chosen uniformly at random (from 25 to 35)
and the run is made with message loss at 10%. In Figure [5|one can observe that
individual estimatesﬂ closely follow the global average, with only a slight lag of
some rounds.

Notice that the lag could never be zero, since we are updating the new global
average (black line) instantaneously and even the fastest theoretical algorithm
would need information that takes diameter rounds to acquire.

5 To avoid clutering the graph only shows individual estimate evolution for a random
sample of 100 of the 1000 nodes.
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