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Abstract

Given a distributed network represented by a weighted undirected graphG = (V,E) onn vertices,
and a parameterk, we devise a distributed algorithm that computes a routing scheme inO(n1/2+1/k +
D) · no(1) rounds, whereD is the hop-diameter of the network. Moreover, for oddk, the running time
of our algorithm isO(n1/2+1/(2k) + D) · no(1). Our running time nearly matches the lower bound of
Ω̃(n1/2 + D) rounds (which holds for any scheme with polynomial stretch). The routing tables are of
sizeÕ(n1/k), the labels are of sizeO(k log2 n), and every packet is routed on a path suffering stretch at
most4k − 5 + o(1). Our construction nearly matches the state-of-the-art forrouting schemes built in a
centralized sequential manner. The previous best algorithms for building routing tables in a distributed
small messages model were by [LP13a, STOC 2013] and [LP15, PODC 2015]. The former has similar
properties but suffers from substantially larger routing tables of sizeO(n1/2+1/k), while the latter has
sub-optimal running time of̃O(min{(nD)1/2 · n1/k, n2/3+2/(3k) +D}).

1 Introduction

A routing scheme in a distributed network is a mechanism thatallows packets to be delivered from any node
to any other node. The network is represented as a weighted undirected graph, and each node should be able
to forward incoming data by using local information stored at the node, and the (short) packet’s header. The
local routing information is often referred to as a routing table. The routing scheme has two main phases:
in the preprocessing phase, each node is assigned a routing table and a short label. In the routing phase,
each node receiving a packet should make a local decision, based on its own routing table and the packet’s
header (which contains the label of the destination), to which neighbor forward the packet to. Thestretchof
a routing scheme is the worst ratio between the length of a path on which a packet is routed, to the shortest
possible path.

Designing efficient routing schemes is a central problem in the area of distributed networking, and
was studied intensively [PU89, ABLP90, Cow01, EGP03, GP03, AGM04, PU89, TZ01, Che13]. The first
general tradeoffs for this problem were given in pioneeringworks by [PU89, ABLP90]. In a seminal paper
[TZ01], Thorup and Zwick presented the following compact routingscheme: Given a weighted graphG on

∗A preliminary version [EN16b] of this paper was published in PODC’16.
†This research was supported by the ISF grant No. (724/15).
‡Supported in part by ISF grant No. (523/12) and by BSF grant No. 2015813.
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n vertices and a parameterk ≥ 1, the scheme has routing tables of sizeÕ(n1/k),1 labels of sizeO(k log n)
and stretch4k − 5. (Assuming that port numbers may be assigned by the routing process, otherwise the
label size increases by a factor oflog n.)2 The state-of-the-art is a scheme of [Che13], which is based on
[TZ01], and improves the stretch to3.68k.

All the results above assume that the preprocessing phase can be computed in a sequential centralized
manner. However, as the problem of designing a compact routing scheme is inherently concerned with a
distributed network, constructing the scheme efficiently in a distributed manner is a very natural direction.
We focus on the standard CONGEST model [Pel00a]. In this model, every vertex initially knows only the
edges touching it, and communication between vertices occurs in synchronousrounds. On every round,
each vertex may send a small message to each of its neighbors.Every message takes a unit time to reach the
neighbor, regardless of the edge weight. The time complexity is measured by the number of rounds it takes
to complete a task (we assume local computation does not costanything). Often the time depends onn, the
number of vertices, andD, thehop-diameterof the graph. The hop-diameter is the maximum hop-distance
between two vertices, where the hop-distance is the minimalnumber of edges on a path between the vertices
(regardless of the weights). The hop-diameter is not to be confused with theshortest path diameterS, which
is the maximal number of hops a shortest path uses (assuming shortest paths are unique). We always have
D ≤ S, and typicallyD is small whileS could be as large asΩ(n). We also assume, as common in the
literature [LP13a, Nan14, KP98, GK13, HKN16], that edge weights are integers and at most polynomial in
n (so that they could be sent in a single message).3

A rich research thread concerns with finding efficient distributed (approximation) algorithms for classi-
cal graph problems (e.g., minimum spanning tree, minimum cut, shortest paths), in sub-linear time [GKP98,
PR00, Elk06a, SHK+12, HKN16]. There are several results obtaining running times of the formÕ(

√
n+D),

e.g. for MST, connectivity, minimum cut, approximate shortest path tree, etc. These results are often ac-
companied by a (nearly) matching lower bounds. The lower bound of [SHK+12], based on [PR00, Elk06b],
implies that devising a routing scheme with any polynomial stretch, requires̃Ω(

√
n+D) rounds.

The first result on computing a routing scheme in a distributed manner withino(n) rounds (for general
graphs withD = o(n)), was shown by Lenzen and Patt-Shamir [LP13a].4 Their algorithm, given a graph
onn vertices and a parameterk, provides routing tables of sizẽO(n1/2+1/k), labels of sizeO(log n · log k),
stretch at mostO(k log k), and has a nearly optimal running time ofÕ(n1/2+1/k +D) rounds. Note that the
routing tables are of sizeΩ(

√
n) for any value ofk, which could be prohibitively large (the routing scheme

of [TZ01] supports stretch 3 with̃O(
√
n) table size). They also show implications for related problems,

such as approximate diameter, generalized Steiner forest,and distance estimation. In a follow-up paper,
[LP15] showed how to improve the stretch of the above scheme to roughly 3k/2 (for anyk divisible by 4).
They also exhibited a different tradeoff, that overcame theissue of large routing tables. They devised an
algorithm that produced routing tables of sizeÕ(n1/k), labels of sizeO(k log2 n) and stretch4k−3+o(1),5

but the number of rounds increases toÕ(min{(nD)1/2 · n1/k, n2/3+2/(3k) +D}). Note that for moderately
large hop-diameterD ≈ n1/3, the number of rounds is bounded by only≈ n2/3 for any value ofk. (They

1TheÕ hideslogO(1) n factors.
2They also presented stretch2k − 1, assuming ”handshaking”: allowing the source and destination to communicate before the

routing phase begins, but it is often desirable to avoid handshaking. Henceforth, we discuss only routing schemes that do not allow
handshaking.

3We shall not considername-independentrouting, in which the label of a vertex is its ID, because [LP13a] showed a strong
lower bound: any such scheme with stretchρ (even average stretchρ) must takeΩ̃(n/ρ2) rounds to compute in this model.

4We remark that for the class ofk-chordal graphs, [NRS12] showed a construction of a routing scheme that could be computed
efficiently in a distributed manner.

5The paper [LP15] claimed label sizeO(k log n), but in [LP16] it was communicated to us that the actual size isO(k log2 n).
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also show a variant where the number of rounds isÕ(S + n1/k), but as was mentioned above,S might be
much larger thanD.)

In thedistance estimationproblem (also known as sketching, or distance labeling), wewish to compute
a smallsketchfor each vertex, so that given any two sketches, one can efficiently compute the (approximate)
distance between the vertices. This problem was introducedin [Pel00b], who provided initial existential
results. In [SDP15], a distributed (randomized) algorithm running iñO(S · n1/k) rounds was shown, that
computes sketches of sizeO(kn1/k log n) with stretch at most2k−1. While this essentially matches the best
sequential algorithm of [TZ05], the number of rounds could beΩ(n), even whenD is small. In [LP13a], a
running time ofÕ(n1/2+1/k +D) rounds was presented, at the cost of significantly increasing the stretch to
O(k2).6 Izumi and Wattenhofer [IW14] showed a lower bound ofn1/2+Ω(1/k) rounds for this problem. In
the Conclusion part of their paper [IW14], Izumi and Wattenhofer posed an open problem:

“An open problem related to our results is to find algorithms whose running time gets close to our lower
bounds.”

Our contribution. We devise a randomized distributed algorithm running in
(n1/2+1/k +D) ·min{(log n)O(k), 2Õ(

√
logn)} rounds, that with high probability, computes a compact rout-

ing scheme with routing tables of sizeO(n1/k log2 n), labels of sizeO(k log2 n), and stretch at most4k−5+
o(1). Moroever, for oddk, the running time of our algorithm is(n1/2+1/(2k)+D)·min{(log n)O(k), 2Õ(

√
logn)}.

Note that our result nearly matches the construction of [TZ01], up to logarithmic terms in the size ando(1)
additive term in the stretch. This is even though the latter is computed in a sequential centralized manner.
Observe that our running time nearly matches the lower boundof [SHK+12], and is substantially better
than that of [LP15] wheneverD ≥ nΩ(1) (which achieved similar size-stretch tradeoff). The previous result
obtaining near optimal running time [LP13a], suffers from excessive routing table size.

As a corollary, we show a distance estimation scheme, that can be computed in a distributed manner
in (n1/2+1/k + D) · min{(log n)O(k), 2Õ(

√
logn)} rounds for evenk, and for oddk in (n1/2+1/(2k) +D) ·

min{(log n)O(k), 2Õ(
√
logn)} rounds, providing sketches of sizeO(n1/k log n) with stretch2k − 1 + o(1).

Each distance estimation takes onlyO(k) time. Our result combines the improved running time of [LP13a]
(up to lower order terms), with the near optimal size-stretch tradeoff of [SDP15]. Moreover, our bound for
the running time of distance estimation scheme nearly matches the lower boundn1/2+Ω(1/k) of Izumi and
Wattenhofer [IW14], addressing their open problem. See Table1 for a concise summary of previous and our
results.

We note that to the best of our knowledge, all existing routing schemes [PU89, ABLP90, TZ05, AGM04,
Che13, LP16], as well as the routing scheme that we present in this paper,enable distance estimation,
i.e., given routing tables and labels of a pairu, v of vertices, one can compute (without communication) a
distance estimatêd(u, v), which approximates the actual distancedG(u, v) betweenu andv up to the stretch
factor of the routing scheme. All routing schemes of this type require, by the lower bound of [IW14], at
leastn1/2+Ω(1/k) rounds to compute.

When preparing this submission, we learnt that concurrently and independently of us [LPP16] came
up with a distributed algorithm running in(n1/2+1/k + D) · 2Õ(

√
logn) rounds, that with high probability,

computes a routing scheme with routing tables of sizeÕ(n1/k), labels of sizeO(k log2 n), and stretch
at most4k − 3 + o(1). Their result has slightly worse stretch, and a larger number of rounds whenever
k <

√

log n/ log log n, or if k is odd.

6In fact, they showed a scheme in which it suffices to have a sketch of one vertex, and aO(k log n) size label of the other vertex,
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Number of Rounds Table size Label size Stretch

[TZ01, Che13] O(m) Õ(n
1
k ) O(k log n) 3.68k

[LP15] Õ(S + n
1
k ) Õ(n

1
k ) O(k log n) 4k − 3

[LP13a, LP15] Õ(n
1
2
+ 1

4k +D) Õ(n
1
2
+ 1

4k ) O(log n) 6k − 1 + o(1)

[LP15] Õ(min{(nD)
1
2 · n 1

k , n
2
3
+ 2

3k +D}) Õ(n
1
k ) O(k log2 n) 4k − 3 + o(1)

This paper, (n
1
2
+ 1

k +D)·min{(log n)O(k), 2Õ(
√
logn)} Õ(n

1
k ) O(k log2 n) 4k − 5 + o(1)

evenk

This paper, (n
1
2
+ 1

2k +D)·min{(log n)O(k), 2Õ(
√
logn)} Õ(n

1
k ) O(k log2 n) 4k − 5 + o(1)

oddk

Table 1: Comparison of compact routing schemes for graphs withn vertices,m edges, hop-diameterD, and
shortest path diameterS.

1.1 Overview of Techniques

Let us first briefly sketch the Thorup-Zwick construction of arouting scheme. First they designed a routing
scheme for trees, with routing tables of constant size and logarithmic label size. (Throughout the paper, the
size is measured in RAM words, i.e., each word is of sizeO(log n).) For a general graphG = (V,E) onn
vertices, they randomly sample a collection of setsV = A0 ⊇ A1 · · · ⊇ Ak = ∅, where for each0 < i < k,
each vertex inAi−1 is chosen independently to be inAi with probability n−1/k. Theclusterof a vertex
u ∈ Ai \Ai+1 is defined as

C(u) = {v ∈ V : dG(u, v) < dG(v,Ai+1)} . (1)

They proved that each clusterC(x) can be viewed as a tree rooted atx, and showed an efficient procedure
that given a pairu, v ∈ V , finds a vertexx so that routing in the treeC(x) has small stretch. So each vertex
u maintains in its routing table the routing information for all treesC(x) containing it, while the label ofu
consists of the tree-labels for a few special trees. They also show that (with high probability) every vertex is
contained in at most̃O(n1/k) trees.

The first difficulty we must deal with is that the routing scheme of Thorup-Zwick for a (single) tree
could take a linear number of rounds to construct. We thus develop a variation on that scheme, that can
be implemented efficiently in a distributed network. The basic idea is inspired by [KP98] (and also used
in [Nan14]), which is to select≈ √n vertices that partition the tree into bounded depth subtrees. We then
apply the TZ-scheme locally in every subtree. The subtler part is to design a global routing scheme for the
virtual tree7 induced on the sampled vertices, which must incorporate thelocal routing information.

Approximate Clusters. Once we have a distributed algorithm for routing in trees, weset off to apply the
TZ-scheme for general graphs. Unfortunately, it is not known how to compute the exact clusters efficiently
in a distributed manner. In order to circumvent this barrier, we introduce the notion ofapproximate clusters.
An approximate cluster is a subset of a cluster, that may exclude vertices that are ”near” the boundary.
(Slightly more formally, we may omit vertices for which the inequality (1) becomes false if we multiply
the left hand side by a1 + ǫ factor, for a smallǫ > 0.) Our main technical contributions are: exhibiting

to derive the distance estimation. Our result has a similar property.
7By a virtual tree we mean a tree whose edges are not present in the network.
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a procedure that computes these approximate clusters, and showing that these approximate clusters are
sufficient for constructing a routing scheme, with nearly matching size and stretch as in [TZ01].

The construction of clustersC(u) for u ∈ Ai \ Ai+1, wherei < k/2, can be done in a straightforward
manner (within the allotted number of rounds), since the depth of the corresponding tree is̃O(

√
n) with

high probability, and since theoverlap (the number of clusters containing a fixed vertex) is onlyÕ(n1/k).
The main challenge is computing the approximate clusters inthe large scales, fori ≥ k/2. To this end,
we employ several tools. The first isapproximate multi-source hop-bounded distance computation, which
appeared recently in [Nan14] (a certain variant of it appeared also in [LP13b]). This enables us to compute
approximations forB-hops shortest paths (paths that use at mostB edges), from a givenm sources to every
vertex, inÕ(B +m+D) rounds. The second tool we use ishopsets. The notion of hopsets was introduced
by [Coh00] in the context of parallel approximate shortest path algorithms, and it has found applications in
dynamic, streaming and distributed settings as well [Ber09, HKN14, HKN16]. A (β, ǫ)-hopset is a (small)
set of edgesF , so that every shortest path has a correspondingβ-hops path, whose weight is at most1 + ǫ
larger.

We compute the approximate clusters in the large scales as follows. First we sample≈ √n vertices
(those inAk/2), and compute approximate

√
n-hops shortest paths from all the sampled vertices. Next we

apply a(β, ǫ)-hopset on the graph induced by these sampled vertices, whereβ ≤ 2Õ(
√
logn) andǫ ≈ 1/k4.

(A pair of sampled vertices is connected in this graph if and only if one is reachable from the other via an
approximate

√
n-hop-bounded shortest path.) An efficient distributed algorithm to construct such hopsets is

given by [HKN16, EN16a]. We shall use the construction of [EN16a], since it facilitates much smallerβ,
wheneverk is small. (There are also some additional properties of hopsets from [EN16a], that make them
more convenient in the context of routing. See Section2.) This enables us to compute the approximate
clusters on the sampled vertices, since we need onlyβ steps of exploration from each sourceu, using again
that the overlap is small. Finally, we extend each approximate cluster to the other vertices, by initiating
an exploration from each sampled vertex to hop-distance≈ √n in the original graph (in fact, one can use
the multi-source hop-bounded distance computation of [Nan14]). The correctness follows since with high
probability, every vertex that should be included in some approximate cluster̃C(u), has eitheru or a sampled
vertex within≈ √n hops on the shortest path to it. The thresholds for entering an approximate cluster must
be set carefully, so that every vertex on that shortest path will also join C̃(u), in order to guarantee that the
trees will indeed be connected (which is clearly crucial forrouting), and on the other hand, to make sure that
no vertex participates in too many trees. Unlike the exact TZclusters, approximate clusters generally do not
have to be connected.

The fact that our clusters are only approximate induces increased stretch. The analysis is similar to that
of [TZ05], which consists ofk iterations of searching for the ”right” tree. We must pay a factor of1 +O(ǫ)
in every one of these iterations, but fortunately, the hopset construction allows us to take sufficiently small
ǫ, so that all the additional stretch accumulates to an additive o(1).

From a high level, our approach is similar to those of [LP13a, LP15]. In [LP15], they also use a variant
of the TZ-routing scheme, which allows small errors in the distance estimations. The main difference is
in handling the large scales. In [LP13a], the idea was to build a spanner on a sample of≈ √n vertices,
which reduces the number of edges. So a routing scheme can be efficiently computed on the spanner, and
then extended to the entire graph. This approach inherentlysuffers from large storage requirement, since
every vertex needs to know all the spanner edges. In [LP15] the idea was to ”delay” the start of large scales
from k/2 to roughlyl0 = (k/2) · (1 + logD/ log n). Then they apply a distance estimation on the sampled
vertices at scalel0 (those inAl0) to construct the routing tables for all higher scales, and extend these to
the remainder of the graph. However, the exploration in the graph onAl0 may need to be of≈ n1−l0/k
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hops, which induces a factor ofD · n1−l0/k = (nD)1/2 to the number of rounds. The use of hopsets allows
us to avoid the large memory requirement, since the routing is oblivious to the hopset, while significantly
shortening the exploration range. Since the exploration range is proportional to the running time, the latter
also decreases.

1.2 Organization

After stating inSection 2some of the tools we shall apply, inSection 3we describe the notion of ap-
proximate clusters, and show how to compute these efficiently in a distributed manner. Then inSection 4,
we demonstrate how these approximate clusters could be usedfor a routing scheme in general graphs. In
Section 5we show the distance estimation scheme. Finally, inSection 6we show our distributed tree rout-
ing.

2 Preliminaries

LetG = (V,E,w) be a weighted graph onn vertices. We assume thatw : E → {1, . . . ,poly(n)} (without
this assumption, there will be a logarithmic dependence on the aspect ratio in the data structures’ size and
running times). LetD be thehop-diameterof G, that is, the diameter ofG if all weights were 1. Denote
by dG the shortest path metric onG. Let d(t)G be thet-hopsshortest path distance (abusing notation, since

this is not a metric). That is,d(t)G (u, v) is the shortest length of a path fromu to v, that has at mostt edges

(setd(t)G (u, v) = ∞ if every path fromu to v has more thant edges). For eachu, v ∈ V , definehG(u, v)
as the number of hops on the shortest path inG betweenu andv. We shall always use this notation with
respect to the input graphG, and thus will omit the subscript. A (dominating)virtual graphonG is a graph
G′ = (V ′, E′, w′) with V ′ ⊆ V , and for everyu, v ∈ V ′ we have thatdG′(u, v) ≥ dG(u, v). Every vertex
in V ′ should know all the edges ofE′ touching it. The following lemma formalizes the broadcast ability of
a distributed network (see, e.g., [Pel00a]).

Lemma 1. Suppose everyv ∈ V holdsmv messages, each ofO(1) words, for a total ofM =
∑

v∈V mv.
Then all vertices can receive all the messages withinO(M +D) rounds.

2.1 Tools

We will make use of the following theorem due to [Nan14, Theorem 3.6], which shows how to compute
hop-bounded distances from a given set of sources, efficiently in a distributed manner.

Theorem 1 ([Nan14]). Given a weighted graphG = (V,E,w) of hop-diameterD, a setV ′ ⊆ V , and
parametersB ≥ 1 and 0 < ǫ < 1, there is a (randomized) distributed algorithm that w.h.p runs in
Õ(|V ′|+B +D)/ǫ rounds, so that everyu ∈ V will know values{duv}v∈V ′ satisfying8

d
(B)
G (u, v) ≤ duv ≤ (1 + ǫ)d

(B)
G (u, v) , (2)

Remark 1. While not explicitly stated in [Nan14], the proof also provides that eachu ∈ V knows, for every
v ∈ V ′, a vertexp = pv(u) which is a neighbor ofu satisfying

duv ≥ w(u, p) + dpv . (3)

8The computed values are symmetric, that is,duv = dvu wheneveru, v ∈ V ′.
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Hopsets. The following notion of hopsets was introduced by [Coh00].

Definition 1 (Hopsets). A set of (weighted) edgesF is a (β, ǫ)-hopset for a graphG = (V,E), if in the
graphH = (V,E ∪ F ), for everyu, v ∈ V ,

dG(u, v) ≤ dH(u, v) ≤ d
(β)
H (u, v) ≤ (1 + ǫ)dG(u, v) . (4)

We will need the followingpath-reportingproperty from our hopset. This property will be crucial for
the connectivity of the trees corresponding to the approximate clusters.

Property 1. A hopsetF for a graphG is calledpath-reporting, if for every hopset edge(u, v) ∈ F of weight
b, there exists a corresponding pathP in G betweenu andv of lengthb. Furthermore, every vertexx onP
knowsdP (x, u) anddP (x, v), and its neighbors onP .

The following result is from [EN16a], which provides a path-reporting hopset. We remark that the
original hopset construction of [Coh00] could be made path-reporting. Also, in [HKN16, Theorem 4.10],
a distributed algorithm constructing a hopset is provided,which possibly could be made path-reporting,
however, it inherently cannot provide a better hopbound than 2Õ(

√
logn).

Theorem 2([EN16a]). LetG be a weighted graph onn vertices with hop-diameterD, let0 < ǫ < 1, and let

G′ be a virtual graph onG withm vertices. Let0 < ρ < 1/2 be a parameter, and writeβ =
(

logm
ǫ·ρ

)O(1/ρ)
.

Then there is a randomized distributed algorithm that w.h.pcomputes inÕ(m1+ρ + D) · β2 rounds, a
path-reporting(β, ǫ)-hopsetF for G′.

We remark that in many applications (see, e.g., applications in [Coh00, EN16a]) the size of the hopset
is important. However, here we only care about the size to theextent that it affects the number of rounds
required to compute the hopset.

Approximate Shortest Path Tree (SPT). Recently, [HKN16] obtained an efficient distributed algorithm
for computing an approximate SPT, which we shall use. Let us first define the problem formally. Let
G = (V,E,w) be a weighted graph. Given a set of verticesA ⊆ V , computing an(1+ ǫ)-approximate SPT
rooted atA, means that every vertexu ∈ V will know a valued̂(u) satisfying

dG(u,A) ≤ d̂(u) ≤ (1 + ǫ)dG(u,A) , (5)

and thatu will know a vertexẑ(u) ∈ A so thatdG(u, ẑ(u)) ≤ d̂(u). The following theorem is a slight
variation on a theorem shown in [HKN16]. Here we use the hopsets of [EN16a] for an improved running
time.

Theorem 3. Let G = (V,E,w) be a weighted graph onn vertices with hop-diameterD. Given a set
A ⊆ V of size|A| ≤ 2

√
n lnn, and 1

polylog n < ǫ < 1, there is a distributed algorithm that computes an

(1 + ǫ)-approximate SPT rooted atA in (n1/2+1/(2k) +D) ·min{(log n)O(k), 2Õ(
√
logn)} rounds.

We defer the proof toAppendix A.
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3 Distributed Routing Scheme

In this section we define the notions of approximate pivots and approximate clusters, and describe an efficient
distributed algorithm that computes these. Let us first recall the basic definitions from [TZ05].

Let G = (V,E,w) be a weighted graph, fixk ≥ 1. Sample a collection of setsV = A0 ⊇ A1 · · · ⊇
Ak = ∅, where for each0 < i < k, each vertex inAi−1 is chosen independently to be inAi with probability
n−1/k. A point z ∈ Ai is called ani-pivot of v, if dG(v, z) = dG(v,Ai). The cluster of a vertexu ∈
Ai \Ai+1 is defined as

C(u) = {v ∈ V : dG(u, v) < dG(v,Ai+1)} . (6)

We quote a claim from [TZ05], which provides a bound on the overlap of clusters.

Claim 2. With high probability, each vertex is contained in at most4n1/k log n clusters.

The following claim shows that (with high probability) the setsAi have favorable properties.

Claim 3. With high probability the following holds for every0 ≤ i ≤ k − 1: (1) |Ai| ≤ 4n1−i/k lnn,
and (2) For everyu, v ∈ V such thath(u, v) > 4ni/k lnn, there exists a vertex ofAi on the shortest path
betweenu andv.

Proof. Fix i. The first assertion holds by a simple Chernoff bound, since every vertex is chosen to be inAi

independently with probabilityn−i/k, and the expected size ofAi is n1−i/k. For the second assertion, let
u, v be such thath(u, v) > 4ni/k lnn (recall thath(u, v) is the number of hops on the shortest path fromu
to v in G). The probability that none of the vertices on theu to v shortest path is included inAi is at most

(

1− n−i/k
)4ni/k lnn

≤ n−4 .

Taking a union bound on thek possible values ofi and
(n
2

)

pairs completes the proof.

From now on assume that all the events in the claims above hold, which yields the following corollary.

Corollary 4. For any0 ≤ i < k − 1, u ∈ Ai \ Ai+1 andv ∈ C(u), it holds thath(u, v) ≤ 4n(i+1)/k lnn.

Proof. If it were the case thath(u, v) > 4n(i+1)/k lnn, thenClaim 3would imply that there exists a vertex
of Ai+1 on the shortest path fromv to u. In particular,dG(v, u) > dG(v,Ai+1), which contradicts (6).

3.1 Approximate Clusters and Pivots

Since we do not know how to compute efficiently in a distributed manner the pivots and clusters, we settle
for an approximate version, which is formally defined in thissection. Fix the parameterǫ = 1

48k4
. For each

v ∈ V and0 ≤ i ≤ k − 1, a pointẑ ∈ Ai is called anapproximatei-pivot of v if

dG(v, ẑ) ≤ (1 + ǫ)dG(v,Ai) . (7)

Now we define for each0 ≤ i ≤ k − 1 and each vertexu ∈ Ai \ Ai+1, a set of vertices which we call an
approximate cluster. The approximate cluster is a subset of the clusterC(u), and it is allowed to exclude
vertices ofC(u) which are ”close” to the boundary. First define the vertices that are far from the boundary
(with respect toǫ), as

Cǫ(u) = {v ∈ V : dG(u, v) <
dG(v,Ai+1)

1 + ǫ
}. (8)
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The approximate cluster̃C(u) will be a set that satisfies the following:

C6ǫ(u) ⊆ C̃(u) ⊆ C(u) . (9)

Each approximate cluster̃C(u) we compute, will be stored as a tree rooted atu, that is, each vertex
v ∈ C̃(u) will store a pointer to its parent in the tree. This tree (abusing notation, we call this treẽC(u) as
well) has the property that distances to the rootu are approximately preserved, that is, for anyv ∈ C̃(u) we
have that

dG(u, v) ≤ dC̃(u)(u, v) ≤ (1 + ǫ)4dG(u, v) . (10)

Remark 2. SinceC̃(u) ⊆ C(u), Claim 2implies that with high probability, each vertex is contained in at
most4n1/k log n approximate clusters.

In the remainder of this section we devise an efficient distributed algorithm for computing the approxi-
mate pivots and the trees built from approximate clusters, and show the following.

Theorem 4. LetG = (V,E) be a weighted graph withn vertices and hop-diameterD, and letk ≥ 1 be an
integer. Setǫ = 1/(48k4). Then there is a randomized distributed algorithm that w.h.p computes all approxi-
mate pivots and approximate clusters (with respect toǫ) within (n1/2+1/k+D)·min{(log n)O(k), 2Õ(

√
logn)}

rounds.9

Computing Pivots. We first compute the pivots for0 ≤ i ≤ ⌈k/2⌉. For these values ofi we can compute
the exact pivots. We conduct4ni/k · lnn iterations of Bellman-Ford rooted in the vertex setAi. As a result,
everyv ∈ V learns the exact valuêdi(v) = dG(v,Ai) and a pivotẑi(v) ∈ Ai. Indeed, for anyv ∈ V , if
u ∈ Ai is a vertex such thatdG(v, u) = dG(v,Ai), thenClaim 3 implies thath(v, u) ≤ 4ni/k · lnn, so
the exploration will detect this shortest path. As every message consists ofO(1) words (every vertex sends
to its neighbors the name of the vertex inAi and the current distance to it), the total number of rounds is
∑⌈k/2⌉

i=0 O(ni/k · lnn) ≤ Õ(n1/2+1/(2k)).
For ⌈k/2⌉ < i ≤ k − 1 we can only computeapproximatepivots ẑi(v) for eachv ∈ V . For each such

i, applyTheorem 3with root setAi and the parameterǫ (indeed byClaim 3, |Ai| ≤ 4n1−(⌈k/2⌉+1)/k lnn ≤
2
√
n lnn, andǫ = Ω(1/k4) ≥ Ω(1/ log4 n)). This will take(n1/2+1/(2k)+D)·min{(log n)O(k), 2Õ(

√
logn)}

rounds. At the end, every vertexv ∈ V will know its approximate pivot̂zi(v), and the (approximate) distance
d̂i(v), as returned by the algorithm. By (5), ẑi(v) satisfies the requirement from an approximate pivot (see
(7)).

3.2 Building the Small Trees

For 0 ≤ i < ⌈k/2⌉, we can compute the treesC(u) corresponding to the actual clusters. We need to find
such a tree for everyu ∈ Ai \ Ai+1, and it is done in the following manner. For each suchu in parallel,
we initiate a bounded-depth Bellman-Ford exploration for4n(i+1)/k lnn iterations. By bounded-depth we
mean the following: eachv ∈ V that receives a message originated atu, and computes that its (current)
distance tou is bv(u), will join C(u) and broadcast the message to its neighbors inG iff

bv(u) < dG(v,Ai+1) . (11)

9For oddk the number of rounds becomes(n1/2+1/(2k) +D) ·min{(log n)O(k), 2Õ(
√

logn)}.
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(Recall that fori ≤ ⌈k/2⌉, each vertex stores the distance to the exacti-th pivot d̂i(v) = dG(v,Ai).) The
vertexv will also store the name of its parent inC(u), the neighborp ∈ V that sentv the message which
last updatedbv(u).

We now argue that ifv ∈ C(u), thenv will surely receive a message fromu and will havebv(u) =
dG(u, v). Let P be the shortest path inG betweenu andv. Note that every vertexy onP hasy ∈ C(u),
because

dG(y, u) = dG(v, u) − dG(v, y)
(6)
< dG(v,Ai+1)− dG(v, y) ≤ dG(y,Ai+1) .

It follows by a simple induction that every suchy will receive a message with the exact distanceby(u) =
dG(y, u) and thus will send it onwards, after at mosth(u, y) steps of the algorithm. In particular, distances
to the rootu in C(u) are preserved exactly.Corollary 4asserts that for allv ∈ C(u) we have thath(u, v) ≤
4n(i+1)/k lnn. So there are enough Bellman-Ford iterations to reach all vertices ofC(u).

The middle level. When k is odd, the leveli = (k − 1)/2 induces a relatively large running time
Õ(n1/2+3/(2k)) (see the upcoming paragraph on running-time analysis), if one uses the algorithm that was
described above. To overcome this, we use a different methodfor this level. We applyTheorem 1on the set
of sourcesS = Ai \ Ai+1, with B = 4n(i+1)/k · lnn andǫ, each vertexv ∈ V will get a distance estimate
bv(u) for eachu ∈ S. Indeed, ifv ∈ C(u) then byCorollary 4, h(u, v) ≤ B, so that the distance estimate

returned by the theorem is a1 + ǫ approximation todG(u, v) = d
(B)
G (u, v).

We say thatv joins the (approximate) cluster̃C(u) of u ∈ S if the following holds

bv(u) < dG(v,Ai+1),

(recall thatv knows the exact distance to itsi+ 1 = (k + 1)/2-pivot). The parentp of v in the tree induced
by C̃(u) will be the parent given byRemark 1. We show that thisp will join C̃(u) as well. This holds
because

bp(u)
(3)
≤ bv(u)− w(v, p) < dG(v,Ai+1)− dG(v, p) ≤ dG(p,Ai+1) .

Finally, we note that this is an approximate cluster; sincedG(u, v) ≤ bv(u) it follows that C̃(u) ⊆ C(u),
while if v ∈ Cǫ(u) then

bv(u)
(2)
≤ (1 + ǫ)dG(u, v)

(8)
< dG(v,Ai+1) ,

so C̃(u) ⊇ Cǫ(u), satisfying (9). (We remark that the middle level is the only one in which onemay
useTheorem 1. In all other levels, either the number of sources|Ai| ≈ n1−i/k or the required depth
B ≈ n(i+1)/k will be larger thann1/2+1/k.)

Running time. By Claim 2, every vertex can belong to at mostÕ(n1/k) clusters. Hence, the congestion
at every Bellman-Ford iteration is at mostÕ(n1/k). Thus the number of rounds required to implement
each of the4n(i+1)/k lnn iterations of Bellman-Ford is̃O(n1/k). Whenk is even, the total running time is
∑k/2−1

i=0 Õ(n(i+2)/k) = Õ(n1/2+1/k). Whenk is odd, the middle level(k − 1)/2 will take time Õ(|S| +
B +D) = Õ(n1/2+1/(2k) +D), while the lower levels will take

∑(k−3)/2
i=0 Õ(n(i+2)/k) = Õ(n1/2+1/(2k)).

So for oddk, the total running time is̃O(n1/2+1/(2k) +D) .
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3.3 Building the Large Trees

Building the treesC̃(u) for u ∈ Ai \Ai+1 wheni ≥ ⌈k/2⌉ is more involved, since the number of iterations
for the simple Bellman-Ford style approach grows like≈ n(i+2)/k. We will use the fact that there are only
few vertices inAi, and divide the computation into two phases. In the first phase we compute virtual trees
only on≈ √n vertices, and in the second phase we extend the trees to the entire graph. Before we turn to
the two-phase construction, we describe the preprocessingstage, in which we build structures that are later
used in both phases.

3.3.1 Preprocessing

Let V ′ = A⌈k/2⌉, and setB = 4n/E[|V ′|] · lnn. That is, for evenk we setB = 4n1/2 · lnn, while for odd
k, B = 4n1/2+1/(2k) · lnn. Apply Theorem 1to G with the setV ′ and parametersB andǫ/2. By Claim 3
we may assume|V ′| ≤ 4n1/2 lnn, and since1/ǫ ≤ 48 log4 n, the number of rounds required is w.h.p
Õ(n1/2+1/(2k) + D). From now on assume that (2) indeed holds (withǫ replaced byǫ/2). This happens
w.h.p. LetG′ = (V ′, E′, w′) be a (virtual) graph onG, and for eachu, v ∈ V ′ with duv < ∞, set the
weight of the edge connecting them to bew′(u, v) = duv (whereduv is the value computed inTheorem 1).
Following [Nan14], it can be shown that for anyu, v ∈ V ′,

dG(u, v) ≤ dG′(u, v) ≤ (1 + ǫ/2)dG(u, v) . (12)

Apply Theorem 2on G′ with parametersǫ/3 and ρ = max{1/k, log log n/√log n}. We obtain a
(β, ǫ/3)-hopsetF with β = min{2Õ(

√
logn), (log n)O(k)}. The number of rounds required is̃O(|V ′|1+ρ +

D) · β2 = (n1/2(1+1/k) +D) ·min{2Õ(
√
logn), (log n)O(k)}.

Let G′′ = (V ′, E′ ∪ F,w′′) be the graph obtained fromG′ by adding all the hopset edges. (Note that
some edges may have their weight replaced. In the case of conflict, the weightsw′′ agree with the weights
of the hopsetF .) By (4) and (12) we have thatG′′ is indeed a virtual graph sincedG′′(u, v) ≥ dG′(u, v) ≥
dG(u, v). On the other hand,

d
(β)
G′′ (u, v) ≤ (1 + ǫ/3)dG′(u, v) ≤ (1 + ǫ/2)(1 + ǫ/3)dG(u, v)

≤ (1 + ǫ)dG(u, v) .

We conclude that the graphG′′ satisfies the following property: for everyu, v ∈ V ′,

dG(u, v) ≤ d
(β)
G′′ (u, v) ≤ (1 + ǫ)dG(u, v) . (13)

3.3.2 Construction

Fix ⌈k/2⌉ ≤ i ≤ k − 1. We build the trees̃C(u) for all u ∈ Ai \ Ai+1 in parallel, in two main phases.

Phase 1. For each suchu, conductβ iterations of depth-bounded Bellman-Ford in the graphG′′.10 (Since
this is a virtual graph, all the messages will be collected atthe root of some BFS tree ofG via pipelined
convergecast, and then broadcasted to the entire graphG via pipelined broadcast. SeeLemma 1.) If v ∈ V ′

10See (14) below for the required condition on depth.
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receives a message originated atu with (current) distance tou which isbv(u), it will join the approximate
cluster ofu and forward the message to its neighbors inG′′ iff

bv(u) <
d̂i+1(v)

(1 + ǫ)3
. (14)

(Recall thatd̂i+1(v) is the approximate distance fromv to the its (approximate) leveli+1 pivot.) The vertex
v will also store itsvirtual parent, the neighborp ∈ V ′ that sentv the message which last updatedbv(u). For
eachu ∈ Ai \ Ai+1, we have a (virtual) treẽC ′(u) on the vertices ofV ′ that received a message originated
atu and satisfy (14).

Phase 1.5. The purpose of this step is to guarantee that every vertex which was added to the (virtual) tree
being built for someu ∈ Ai \ Ai+1, will have an appropriate parent inG (through which it will route later
on). The issue is that hopset edges are not equipped with parents inG, unlike the edges ofG′, for which
Remark 1provides parents. We deal with this by using the path-reporting property of hopset edges – each
such edge is realized by a path inG′, so we ensure the vertices of this path join the tree as well, and set
parents accordingly. We now describe this formally.

When the first phase ends afterβ iterations, for every hopset edge(x, y) ∈ F such thatx is the virtual
parent ofy we do the following. LetP be the path inG′ realizing this edge. Eachv ∈ V ′(P ) \ {x} that
hasbv(u) value (for someu ∈ Ai \ Ai+1) at leastbx(u) + dP (x, v), updates its distance estimate to be
bv(u) = bx(u) + dP (x, v), joins C̃ ′(u) (if it hasn’t already), and sets its virtual parent asv′, wherev′ is the
neighbor ofv onP closer tox (recallProperty 1, which guarantees thatv knows the relevant information).

Finally, set thereal parents: for each vertexv ∈ C̃ ′(u) with a virtual parentv′, setp(v) = pv′(v) (see
Remark 1for the definition and computation ofpv′(v)). Recall that(v, v′) is a virtual edge (of the graph
G′), while (v, p(v)) is a “real” edge fromG.

Phase 2. Here we extend each virtual treẽC ′(u) to the vertices ofV . For allu ∈ Ai \ Ai+1, every vertex
v ∈ C̃ ′(u) broadcasts to the entire graph its valuebv(u) (and the name ofu). A vertexy ∈ V will add itself
to C̃(u) if

dyv + bv(u) <
d̂i+1(y)

1 + ǫ
, (15)

wheredyv is the value computed inTheorem 1. Also,y will set p(y) = pv(y) as its (real) parent iñC(u) for
thev minimizing by(u) = dyv + bv(u) (breaking ties arbitrarily). We remark that the condition of (15) is
less stringent than that of (14). Thus vertices ofV ′ who did not joinC̃ ′(u), may now be included iñC(u).

First we argue that for anyu ∈ Ai \Ai+1, the verticesv ∈ V ′ added toC̃ ′(u) in phase 1.5 with distance
estimatebv(u) satisfy the following:

bv(u) <
d̂i+1(v)

(1 + ǫ)2
. (16)

To see this, let(x, y) ∈ F be the hop-set edge which triggered the addition ofv to C̃ ′(u) at phase 1.5, and
let P be the path inG′ realizing this edge, then

bv(u) = dP (x, v) + bx(u) = dP (x, y)− dP (v, y) + bx(u) = by(u)− dP (v, y) .

It follows that

bv(u) = by(u)−dP (v, y)
(14)
<

d̂i+1(y)

(1 + ǫ)3
−dG(v, y)

(5)
≤ dG(y,Ai+1)− dG(v, y)

(1 + ǫ)2
≤ dG(v,Ai+1)

(1 + ǫ)2

(5)
≤ d̂i+1(v)

(1 + ǫ)2
,
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which proves (16). The next lemma asserts that the valuesbv(u) approximate well the distances to the root
u of the virtual tree.

Lemma 5. For anyu ∈ Ai \Ai+1 andv ∈ C̃(u) with the corresponding valuebv(u), we have that

dG(u, v) ≤ bv(u) ≤ (1 + ǫ)4dG(u, v) . (17)

Proof. First we prove forv ∈ C̃ ′(u) added at phase 1. Note that the left hand side of (17) can be verified
by induction on the iteration in whichbv(u) was last updated. The base caseu = v clearly holds, assume it
holds forv′ (the virtual parent ofv). Recall thatw′′ is the weight function inG′′. We have

bv(u) = w′′(v, v′) + bv′(u) ≥ dG′′(v, v′) + dG(u, v
′)

(13)
≥ dG(u, v) .

We now turn to the right hand side of (17). Seeking contradiction, assume

bv(u) > (1 + ǫ)4dG(u, v) . (18)

Let P be the shortestβ-hops path inG′′ from u to v, and we will show (by induction) that every vertex
z onP , which liesh hops fromu, must joinC̃ ′(u) with valuebz(u) ≤ dP (u, z) by the iterationh of the
Bellman-Ford exploration of phase 1. The base case forz = u clearly holds. Fix any otherz ∈ P with h
hops tou on P , and assume it holds forp, the neighbor ofz on P (the one closer tou), so we have that
bp(u) ≤ dP (u, p) by iterationh − 1. At iterationh, p will broadcast its valuebp(u), and thusz could have
updated its value to bebp(u) + w′′(p, z). In particular,

bz(u) ≤ bp(u) + w′′(p, z) ≤ dP (u, p) + w′′(p, z) = dP (u, z). (19)

We now arguebz(u) satisfies (14), which would causez to join C̃ ′(u),

bz(u)
(19)
≤ dP (u, z)

= dP (u, v) − dP (v, z)

≤ d
(β)
G′′ (u, v) − dG(v, z) (20)

(13)
≤ (1 + ǫ)dG(u, v)− dG(v, z)

(18)
≤ bv(u)

(1 + ǫ)2
− dG(v, z) (21)

(14)
<

d̂i+1(v)

(1 + ǫ)4
− dG(v, z) (22)

(5)
≤ dG(v,Ai+1)− dG(v, z)

(1 + ǫ)3

≤ dG(z,Ai+1)

(1 + ǫ)3

(5)
≤ d̂i+1(z)

(1 + ǫ)3
,

where (20) uses thatP is the shortestβ-hops path inG′′, and (21) uses the contradiction assumption (18)
(note that it was used with the term(1 + ǫ)3 rather than(1 + ǫ)4). Hencez joins C̃ ′(u), and sobv(u) ≤
dP (u, v). Hence

bv(u) ≤ dP (u, v) = d
(β)
G′′ (u, v)

(13)
≤ (1 + ǫ)dG(u, v),
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which contradicts our assumption that (17) does not hold.
We now turn to verticesv ∈ C̃ ′(u) who joined in phase 1.5. The left hand side holds since if(x, y) ∈ F

is the hop-set edge that triggered the addition ofv, andP ′ is the path inG′ realizing this edge, we have that
bv(u) = dP ′(v, x) + bx(u) ≥ dG(v, x) + dG(x, u) ≥ dG(v, u). For the right hand side, note that we only
used the fact thatv joined in phase 1 at (22), so we can repeat the argument, replacing the use of (14) by
(16). We indeed lose a factor of1 + ǫ, but the inequality is still valid, yielding the same contradiction.

Finally, we turn tov ∈ C̃(u) joining at phase 2. Note that for each suchv, there exists somex ∈ V ′ for
which v sets its value to bebv(u) = dvx + bx(u) ≥ dG(v, x) + dG(x, u) ≥ dG(v, u), which proves the left
hand side of (17). For the right hand side, consider first the case thath(v, u) ≤ B. Sincev could update
bv(u) directly from the broadcast ofu itself, we have

bv(u) ≤ 0 + dvu
(2)
≤ (1 + ǫ)d

(B)
G (v, u) = (1 + ǫ)dG(v, u) .

The other case is whenh(v, u) > B, but thenClaim 3(with i = ⌈k/2⌉) suggests that there existsx ∈ V ′ on

the shortest path inG from v to u, with h(v, x) ≤ B. In particular,d(B)
G (x, v) = dG(x, v). Again seeking

contradiction, assume (17) does not hold forv. LetP be the shortest (at most)β-hops path fromu tox in G′′.
We claim that everyz ∈ P must have joined̃C ′(u) at phase 1. To see this by induction, fixz ∈ P with h hops
fromu onP , and assumep (the neighbor ofz closer tou) did join by theh−1 iteration of Bellman-Ford, with
bp(u) ≤ dP (u, p). Whenp broadcastsbp(u) at steph, then indeedbz(u) ≤ bp(u) + w′′(p, z) = dP (u, z).
Now,

bz(u) ≤ dP (u, z)

≤ d
(β)
G′′ (u, x) − dP (z, x)

(13)
≤ (1 + ǫ)dG(u, x)− dG(z, x) (23)

= (1 + ǫ)[dG(u, v)− dG(x, v)] − dG(z, x)

≤ bv(u)

(1 + ǫ)3
− dG(x, v) − dG(z, x)

(15)
<

d̂i+1(v)

(1 + ǫ)4
− dG(x, v) − dG(z, x)

(7)
≤ dG(v,Ai+1)− dG(x, v)− dG(z, x)

(1 + ǫ)3

≤ dG(z,Ai+1)

(1 + ǫ)3

≤ d̂i+1(z)

(1 + ǫ)3
.

((23) is becausex lies on the shortestu− v path inG.)
This impliesbz(u) satisfies (14) and thusz indeed joinsC̃ ′(u) by iterationh of phase 1. In particular,x

joins by the end of phase 1, and broadcastsbx(u) at phase 2. Then we have that

bv(u) ≤ bx(u) + dxv
(17)
≤ (1 + ǫ)4dG(u, x) + (1 + ǫ)dBG(x, v) ≤ (1 + ǫ)4dG(u, v) ,

(Recall thatdxv is the value computed by the algorithm of Theorem1.) This yields a contradiction to (18)
and concludes the proof.
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The following lemma shows that the setsC̃(u) satisfy the requirement from approximate clusters. The
proof is similar to that ofLemma 5, though it uses the definition ofCǫ(u), rather than the (contradiction)
assumption thatbv(u) is large.

Lemma 6. For anyu ∈ Ai \Ai+1, the setC̃(u) satisfies(9).

Proof. For the right hand side of (9), note that ifv ∈ C̃ ′(u), then

dG(u, v)
(17)
≤ bv(u)

(14)∧(16)
<

d̂i+1(v)

(1 + ǫ)2

(5)
≤ dG(v,Ai+1) ,

sov ∈ C(u) as well. For the left hand side of (9) (at this point we only show that̃C ′(u) ⊇ C6ǫ(u) ∩ V ′),
considerv ∈ C6ǫ(u) ∩ V ′, and letP be the (at most)β-hops shortest path fromv to u in G′′. It suffices to
show that every vertexy along this path which ish hops fromu, will join C̃ ′(u) and haveby(u) ≤ dP (y, u)
by the iterationh of Bellman-Ford in phase 1. Assume (by induction) thatp, the predecessor ofy on P ,
joins C̃ ′(u) and satisfiesbp(u) ≤ dP (p, u) by iterationh − 1. Thus,p sends at iterationh the valuebp(u).
Sinceby(u) ≤ w′′(y, p) + bp(u) ≤ w′′(y, p) + dP (u, p) = dP (u, y), it remains to show that this value of
by(u) satisfies (14), and thusy joins C̃ ′(u). To this end,

by(u) ≤ dP (u, y)

≤ d
(β)
G′′ (u, v)− dP (y, v)

(13)
≤ (1 + ǫ)dG(u, v) − dG(y, v)

≤ (1 + ǫ)dG(v,Ai+1)

1 + 6ǫ
− dG(y, v)

<
dG(v,Ai+1)− dG(y, v)

(1 + ǫ)3

≤ dG(y,Ai+1)

(1 + ǫ)3

(5)
≤ d̂i+1(y)

(1 + ǫ)3
.

where the fourth inequality uses thatv ∈ C6ǫ(u) (recall (8)). This impliesv will join C̃ ′(u) in phase 1.
We now prove that (9) holds forC̃(u). For the right hand side, lety ∈ C̃(u) \ C̃ ′(u), then there exists

v ∈ V ′ for whichy satisfies (15). So we obtain

dG(y, u) ≤ dG(y, v) + dG(v, u)
(2)∧(17)
≤ dyv + bv(u)

(15)
<

d̂i+1(y)

1 + ǫ

(5)
≤ dG(y,Ai+1) .

This implies thaty ∈ C(u). For the left hand side of (9), assumey ∈ C6ǫ(u). Consider first the case that
h(u, y) ≤ B. Then whenu broadcastsbu(u) = 0 at phase 2,y will add itself toC̃(u) because

dyu + 0
(2)
≤ (1 + ǫ)d

(B)
G (y, u) = (1 + ǫ)dG(y, u)

(8)
≤ 1 + ǫ

1 + 6ǫ
· dG(y,Ai+1)

(5)
<

d̂i+1(y)

1 + ǫ
. (24)

The other case is thath(y, u) > B. Then byClaim 3there is a vertexv ∈ V ′ on the shortest path fromy to
u so thath(y, v) ≤ B. We now argue thatv ∈ C̃ ′(u), by a similar (though slightly more involved) argument
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as above. To see this, consider the shortest pathP with (at most)β-hops inG′′ from u to v, and we claim
that each vertexz on this path withh hops fromu, will join C̃ ′(u) with bz(u) ≤ dP (u, z) by iterationh of
the Bellman-Ford of phase 1. Again by induction, at steph the vertexz heardbp(u) ≤ dP (u, p) from its
predecessorp onP . Then indeedbz(u) ≤ bp(u) + w′′(p, z) ≤ dP (u, z). Now we show thatz joins C̃ ′(u).

bz(u) ≤ dP (u, z)

= d
(β)
G′′ (u, v) − dP (z, v)

(13)
≤ (1 + ǫ)dG(u, v)− dG(z, v)

= (1 + ǫ)[dG(u, y)− dG(y, v)] − dG(z, v) (25)

≤ (1 + ǫ)dG(y,Ai+1)

1 + 6ǫ
− dG(y, v)− dG(z, v) (26)

≤ dG(y,Ai+1)− dG(y, v)− dG(z, v)

(1 + ǫ)3

≤ dG(z,Ai+1)

(1 + ǫ)3

(5)
≤ d̂i+1(z)

(1 + ǫ)3
,

where (25) uses thatv is on the shortest path inG from u to y, and (26) uses thaty ∈ C6ǫ(u). In particular,

we have shownv ∈ C̃ ′(u) by the end of phase 1. It follows thatv will broadcast the valuebv(u) ≤ d
(β)
G′′ (u, v)

in the second phase. Sinceh(y, v) ≤ B,

by(u) ≤ dyv + bv(u)

(2)
≤ (1 + ǫ)dBG(y, v) + d

(β)
G′′ (u, v)

(13)
≤ (1 + ǫ)[dG(y, v) + dG(u, v)]

= (1 + ǫ)dG(y, u)
(8)
≤ 1 + ǫ

1 + 6ǫ
· dG(y,Ai+1)

<
d̂i+1(y)

1 + ǫ
.

Soy will be added toC̃(u). This concludes the proof of the lemma.

Our next goal to to argue that the parent setting ensures thatroot-vertex distances in each cluster tree
satisfy (10), i.e., are approximated up to a factor(1 + ǫ)4. It suffices to prove the following claim.

Claim 7. For anyu ∈ Ai \Ai+1, and anyv ∈ C̃(u), if p = p(v) is the (real) parent ofv with corresponding
valuebp(u), thenp ∈ C̃(u) and

bv(u) ≥ w(v, p) + bp(u) . (27)

Once this claim is established, we get by induction on the depth of the tree thatdC̃(u)(u, v) ≤ bv(u).
The base case whenu = v clearly holds, assume forp = p(v) thatdC̃(u)(u, p) ≤ bp(u), and now

dC̃(u)(u, v) = w(v, p) + dC̃(u)(u, p) ≤ w(v, p) + bp(u)
(27)
≤ bv(u) .
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Combining this withLemma 5establishes (10).

Proof ofClaim 7. Consider first the case thatv ∈ C̃ ′(u), and there are two sub-cases to consider. In the first
sub-case,v updatedbv(u) in phase 1 from somex ∈ C̃ ′(u), who sentbx(u) over the (virtual) edge(x, v) ∈
E′ (which is not a hop-set edge). Then by the definition ofG′, bv(u) = w′(x, v) + bx(u) = dxv + bx(u),
the virtual parent ofv is set tox, and the real parent is thusp = px(v). Sincep receives a message fromx
in the second phase, it setsbp(u) to at mostdpx + bx(u). It follows that

bp(u) ≤ dpx + bx(u)
(3)
≤ dvx − w(v, p) + bx(u) = bv(u)−w(v, p) , (28)

which satisfies (27). But we must also argue thatp indeed joins the treẽC(u). Here we use the relaxed
condition of (15) (compared to (14)), and obtain that

bp(u)
(28)
≤ bv(u)− w(v, p) (29)

(14)
<

d̂i+1(v)

(1 + ǫ)3
− dG(v, p) (30)

(7)
≤ dG(v,Ai+1)− dG(v, p)

1 + ǫ
(31)

≤ dG(p,Ai+1)

1 + ǫ

≤ d̂i+1(p)

1 + ǫ
,

which satisfies (15).
The second sub-case is thatv updatedbv(u) in phase 1 or 1.5 due to some hop-set edge(x, y) ∈ F , so

thatv lies on the pathP in G′ realizing this edge (it could be thaty = v, if it happened in phase 1). We set
bv(u) = bx(u) + dP (x, v), and the virtual parent ofv is v′ ∈ V ′, its neighbor onP which is closer tox.
Recall that inG′, the weightw′(v, v′) = dvv′ , so that

dP (x, v) = dP (x, v
′) + dvv′ . (32)

The real parent ofv is set asp = pv′(v). Sincev′ broadcasts in phase 2 its estimatebv′(u) ≤ bx(u) +
dP (x, v

′), it follows that

bp(u) ≤ dpv′ + bv′(u)

(3)
≤ (dvv′ − w(v, p)) + (bx(u) + dP (x, v

′))
(32)
= bx(u) + dP (v, x) − w(v, p)

= bv(u)− w(v, p) ,

as required in (27). Again, to see thatp ∈ C̃(u), we repeat the calculation of (29) with one change: In (30),
replace the use of (14) by (16), which will have the factor of(1 + ǫ)3 replaced by(1 + ǫ)2, but this suffices
to satisfy (31).

We turn to the case thatv ∈ C̃(u) \ C̃ ′(u). Let x ∈ C̃ ′(u) be the vertex which broadcasts in phase 2 a
valuebx(u) minimizing bv(u) = dvx + bx(u). The parent ofv is thus set to bep = px(v), and now

bp(u) ≤ dpx + bx(u)
(3)
≤ dvx − w(v, p) + bx(u) = bv(u)−w(v, p) ,

The proof thatp ∈ C̃(u) is again similar to (29).
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Running Time. We noted that the number of rounds required for the preprocessing isÕ(n1/2+1/(2k) +

D) ·min{2Õ(
√
logn), (log n)O(k)}. Since by (9) we haveC̃ ′(u) ⊆ C(u), thenRemark 2suggests thatv ∈ V ′

sends at most̃O(n1/k) distance estimatesbv(·). As |V ′| ≤ Õ(n1/2), by Lemma 1, implementing a single
Bellman-Ford iteration will takẽO(n1/2+1/k +D) rounds. As there areβ iterations in phase 1 (and a single
one in phases 1.5 and 2), the total number of rounds isÕ(n1/2+1/k+D) ·min{2Õ(

√
logn), (log n)O(k)}. (For

oddk, both|V ′| · n1/k, B ≤ Õ(n1/2+1/(2k)), so we getÕ(n1/2+1/(2k) +D) ·min{2Õ(
√
logn), (log n)O(k)}

rounds.)

4 Routing Based on Approximate Clusters

In this section we show that approximate pivots and approximate clusters suffice for a compact routing
scheme, and prove our main result.

Theorem 5. LetG = (V,E) be a weighted graph withn vertices and hop-diameterD, and letk ≥ 1 be a
parameter. Then there exists a routing scheme with stretch at most4k− 5 + o(1), labels of sizeO(k log2 n)
and routing tables of sizeO(n1/k log2 n), that can be computed in a distributed manner within(n1/2+1/k +

D)·min{(log n)O(k), 2Õ(
√
logn)} rounds, and for oddk only(n1/2+1/(2k)+D)·min{(log n)O(k), 2Õ(

√
logn)}

rounds.

Construction. Apply Theorem 4onG to obtain approximate pivots and approximate clusters for all ver-
tices. For each0 ≤ i ≤ k − 1 and eachu ∈ Ai \ Ai+1, construct the routing scheme for trees given
by Theorem 7on C̃(u). (We postpone the proof of Theorem7, i.e., the description of the algorithm that
constructs routing tables and labels for each tree, to Section6.) Specifically, in each tree, every vertex stores
a table of sizeO(log n) and has a label of sizeO(log2 n). The routing table of eachv ∈ V consists of all the
tree-routing tables, for everyu ∈ V such thatv ∈ C̃(u). The label ofv consists of the tree-labels for the (at
most)k treesC̃(ẑ0(v)), . . . , C̃(ẑk−1(v)), whereẑi(v) is the approximatei-pivot of v (note that it could be
thatv does not belong to some of these trees, the label ofv will mark these as missing). ByRemark 2there
are at mostO(n1/k log n) trees containingv, and as each tree-table is of sizeO(log n), the routing table size
is as promised. Since each tree-label is of sizeO(log2 n), the label size also obeys the given bound.

Finding a Tree. Assume we would like to route from vertexu to vertexv. The routing protocol will find
a vertexw = ẑi(v) for some0 ≤ i ≤ k− 1, such that the stretch of the (unique) path fromu to v in the tree
C̃(w) is at most4k − 5 + o(1). The algorithm to find such a vertex appears inAlgorithm 1.

Algorithm 1 Find-tree(u, v)

1: i← 0;
2: while |{u, v} ∩ C̃(ẑi(v))| < 2 do
3: i← i+ 1;
4: end while
5: return ẑi(v);

We note that our algorithm differs slightly from that of [TZ01], since it could be the case thatv does not
belong to the cluster centered at the pivot ofv at leveli. For this reason we keep searching until we find a
cluster containing bothu, v.
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First we claim that the algorithm is correct. Note that the definition of approximate cluster (9) implies
that C̃(x) = V for everyx ∈ Ak−1 (this holds since the distance toAk is defined as∞). Therefore when
i = k − 1 it must be that bothu, v ∈ C̃(ẑk−1(v)), and the algorithm indeed halts. The treeC̃(w) contains
bothu, v (wherew = ẑi(v) is the vertex returned by the algorithm), by definition. Finally, the information
from the label ofv indicates which of these trees contain it, and the routing table ofu also lists the names of
all trees containing it. So we can run the algorithm fromu knowing the label ofv.

Onceu computes the rootw, it appendsw to the message header along with the label ofv. From this
point on the header does not change, and we route in the treeC̃(w). Since this routing is exact, it remains
to bound the stretch incurred by using the tree.

Bounding Stretch. We distinguish between two types of iterationsi that the algorithm did not stop at. Let
Iu = {0 ≤ i ≤ k − 1 : u /∈ C̃(ẑi(v))} be the iterations in which{u, v} ∩ C̃(ẑi(v)) is empty or contains
just v, and letIv = {0 ≤ i ≤ k − 1 : {u, v} ∩ C̃(ẑi(v)) = {u}} be the remaining iterations in which
the algorithm did not halt. For anyi ∈ Iu, by (9) it holds thatC6ǫ(ẑi(v)) ⊆ C̃(ẑi(v)). Hence, we have
u /∈ C6ǫ(ẑi(v)), which suggests that

dG(u, ẑi+1(u))
(7)
≤ (1 + ǫ)dG(u,Ai+1)
(8)
≤ (1 + ǫ)(1 + 6ǫ)dG(u, ẑi(v))

≤ (1 + 8ǫ)dG(u, ẑi(v)) . (33)

Similarly for i ∈ Iv,

dG(v, ẑi+1(v)) ≤ (1 + ǫ)dG(v,Ai+1)

≤ (1 + ǫ)(1 + 6ǫ)dG(v, ẑi(v))

≤ (1 + 8ǫ)dG(v, ẑi(v)) . (34)

Define the following valuesy0 = dG(u, v), x0 = 0, and for0 < i ≤ k − 1 define recursivelyyi =
(1 + 10ǫ)[y0 + xi−1], andxi = (1 + ǫ)[y0 + yi]. Assume that the algorithm halted at iterationi′. Then for
each0 ≤ i ≤ i′ we claim that

dG(v, ẑi(v)) ≤ xi . (35)

We verify the validity of (35) by induction. The base case trivially holds sinceẑ0(v) = v andx0 = 0. Fix
0 < i ≤ i′. The algorithm did not halt at iterationi− 1. If it is the case thati− 1 ∈ Iu, then we have that

dG(u, ẑi(u))
(33)
≤ (1 + 8ǫ)dG(u, ẑi−1(v)) (36)

≤ (1 + 8ǫ)[dG(u, v) + dG(v, ẑi−1(v))]
(35)
≤ (1 + 8ǫ)[y0 + xi−1]

≤ yi .
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The other case is thati− 1 ∈ Iv. Sinceẑi(u) ∈ Ai we obtain

dG(u, ẑi(u))
(7)
≤ (1 + ǫ)dG(u,Ai) (37)

≤ (1 + ǫ)dG(u, ẑi(v))

≤ (1 + ǫ)[dG(u, v) + dG(v, ẑi(v))]
(34)
≤ (1 + ǫ)[dG(u, v) + (1 + 8ǫ)dG(v, ẑi−1(v))]

≤ (1 + 10ǫ)[y0 + xi−1]

= yi

We conclude that in both cases,

dG(v, ẑi(v)) ≤ (1 + ǫ)dG(v,Ai) (38)

≤ (1 + ǫ)dG(v, ẑi(u))

≤ (1 + ǫ)[dG(u, v) + dG(u, ẑi(u))]
(36)∧(37)
≤ (1 + ǫ)[y0 + yi]

= xi .

We now have a recurrencexi = (1 + ǫ)(2 + 10ǫ)y0 + (1 + ǫ)(1 + 10ǫ)xi−1. Solving it, yields

xi = (1 + ǫ)(2 + 10ǫ)y0

i−1
∑

j=0

[(1 + ǫ)(1 + 10ǫ)]j .

We use the fact that for any realx ≥ 0 and positive integerr such thatxr ≤ 1/2, the following holds
(1 + x)r ≤ 1 + 2xr. Now we may boundxi by

xi ≤ (2 + 13ǫ)y0

i−1
∑

j=0

(1 + 12ǫ)j (39)

≤ (2 + 13ǫ)y0

i−1
∑

j=0

(1 + 24ǫj)

≤ (2 + 13ǫ)y0(i+ 12ǫi2)

≤ (2 + 13ǫ)y0(i+ 1/(4k2)) ,

where in the last inequality we use thatǫ = 1
48k4
≤ 1

48k2i2
. Finally, using thati′ ≤ k−1 and thatw = ẑi′(v),

the stretch is given by

dC̃(w)(u,w) + dC̃(w)(w, v)

(10)
≤ (1 + ǫ)4[dG(u,w) + dG(v,w)]

(35)
≤ (1 + 5ǫ)[dG(u, v) + 2xi′ ]

(39)
≤ (1 + 5ǫ)[1 + (4 + 26ǫ)(k − 1 + 1/(4k2))] · dG(u, v)
≤ (4k − 3 + o(1)) · dG(u, v) .
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In order to improve the stretch to the promised4k − 5 + o(1), we use same trick as in [TZ01]. Each
vertexu ∈ A0 \A1 will store in its routing table all the labels for vertices inC(u), which enables to save an
additive term ofdG(u, v) in bothxi andyi. We refer the reader to [TZ01] for the details.

Running time. By Theorem 4, the time required to compute the approximate pivots and thetreesC̃(u) for
everyu ∈ Ai\Ai+1 is (n1/2+1/k+D)·min{(log n)O(k), 2Õ(

√
logn)}, whenk is even, and(n1/2+1/(2k)+D)·

min{(log n)O(k), 2Õ(
√
logn)}, whenk is odd. ByClaim 2, each vertex participates in at mostÕ(n1/k) trees.

Hence, byRemark 3, which will be stated and proven in Section6, it will take only Õ(n1/2+1/(2k) + D)
rounds to compute the routing tables for all trees in parallel. We conclude that the total number of rounds is
(n1/2+1/k+D)·min{(log n)O(k), 2Õ(

√
logn)}, for evenk, and(n1/2+1/(2k)+D)·min{(log n)O(k), 2Õ(

√
logn)},

for odd.

5 Distance Estimation

In this section we sketch how the routing tables can be used for distance estimation, and prove the following.

Theorem 6. LetG = (V,E) be a weighted graph withn vertices and hop-diameterD, and letk ≥ 1 be a
parameter. Then there exists a distance estimation scheme,that assigns a sketch of sizeO(n1/k log n) for
each node, and has stretch2k−1+o(1), that can be computed by a randomized distributed algorithmwithin
(n1/2+1/k +D) ·min{(log n)O(k), 2Õ(

√
logn)} rounds (whp). In the case of oddk, the running time can be

decreased to(n1/2+1/(2k) +D) ·min{(log n)O(k), 2Õ(
√
logn)}. Furthermore, the distance computation can

be done in timeO(k).

Apply Theorem 4, which computes all the approximate pivots and approximateclusters. Each vertex
v ∈ V include in its sketch for everyu ∈ V so thatv ∈ C̃(u), the pair(u, bv(u)), wherebv(u) is the
approximate distance tou computed inSection 3. Also for every0 ≤ i ≤ k − 1, add(ẑi(v), d̂i(v)), which
is the approximatei-pivot and distance to it. ByRemark 2, every sketch is of sizeO(n1/k log n). The
algorithm that computes a distance estimate given two sketches is similar to that of [TZ05]. We state it
formally in Algorithm 2.

Algorithm 2 Dist(u, v)

1: i← 0;
2: w← u;
3: while v /∈ C̃(w) do
4: i← i+ 1;
5: (u, v)← (v, u);
6: w ← ẑi(u);
7: end while
8: return d̂i(u) + bv(w);

Observe that the sketch contains all the relevant information for executingAlgorithm 2. When the while
loop terminatesv ∈ C̃(w), so it has the estimatebv(w), while u stores the approximate distancêdi(u)
to every one of its approximate pivots. The stretch analysisis a variant of the analysis of [TZ05], similar
in spirit to that ofSection 4. Roughly speaking, on the stretch2k − 1 achieved by [TZ05], we pay a
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multiplicative factor of(1 + O(ǫ))k due to the fact that distances are approximated. However, this boils
down to ano(1) additive term, sinceǫ = 1

48k4
. We leave the details to the reader.

6 Distributed Tree Routing

In this section we present a modification of the (exact) routing scheme of Thorup-Zwick for rooted trees,
that can be implemented efficiently in a distributed manner.The price is that the size of the labels and tables
increases by a factor oflog n, compared to what [TZ01] achieved.

Theorem 7. Fix a graphG = (V,E) on n vertices with hop-diameterD. For any treeT which is a
subgraph ofG, there is a routing scheme with stretch 1, routing tables of sizeO(log n) and labels of size
O(log2 n), that can be computed in a distributed manner withinÕ(

√
n+D) rounds.

Remark 3. If we are givenn trees, each a sub-graph ofG = (V,E), so that each vertexv ∈ V participates
in at mosts trees, then routing schemes for all the trees can be computedin Õ(

√
n · s+D) rounds.

Let us first recall briefly how (a simplified version of) the TZ scheme works. For every non-leaf vertex,
define aheavy childas the child with the largest subtree. Run a Depth First Search (DFS) on the tree, each
vertexu receives an entry timeau and exit timebu. The routing table stored at each vertexu consists of the
name and port number of its parentp(u) in the tree, the name (and port) of its heavy childh(u), and the
numbersau, bu. The label of a vertexu contains the numberau and additional⌈log n⌉ words: consider the
pathP from the root tou, for every vertexw on this path such that its heavy child is not onP , we append
to the label ofu the name ofw and the port number leading fromw to its child onP . The observation is
that whenever the path does not use the heavy child, the size of the subtree shrinks by a factor of at least 2,
so this can happen only⌈log n⌉ times. In order to route fromu to v, every intermediate vertexx does as
follows: if ax = av we are done, ifav /∈ (ax, bx), we know the DFS did not findv in the subtree rooted at
x, sox sends the message to its parent, and ifav ∈ (ax, bx) thenv lies in the subtree ofx. In the latter case,
x examines the label ofv for an entry of the form(x, x′), if it exists it sends to its childx′, if not, x sends
the message to its heavy child.

In order to obtain a scheme that runs efficiently in a distributed manner, we cannot compute heavy
children and run DFS on the entire tree. Instead, we shall apply certain variants of the TZ-scheme in two
levels. LetT be a tree on the verticesV (T ) ⊆ V , rooted atz. Foru ∈ V (T ), denote byp(u) the parent
of u in T . We assume that every vertex knows the names of its parent andits children. The basic idea is to
randomly sampleγ ≥ c · lnn, for a sufficiently large constantc, verticesU ⊆ V . (γ here is a parameter.)
Each vertex inV chooses itself toU independently with probabilityγn . Partition the treeT into subtrees
according to the vertices ofU(T ) = (U ∩ V (T )) ∪ {z}, by removing each edge from a vertex ofU(T ) to
its parent. Note that this partitionsT into a forestF of |U(T )| subtrees, each of these subtrees is rooted at
a vertex ofU(T ). Forw ∈ U(T ), denote byTw the subtree inF rooted inw. Let T ′ denote the virtual tree
on the vertices ofU(T ), wherew is a parent ofu in T ′, if p(u) lies inTw. We shall devise a routing scheme
for eachTw, and a global scheme that routes inT ′. We begin by bounding the depth of each subtree; let
B = 4n

γ · lnn.

Claim 8. With high probability,|U | = O(γ), and for eachw ∈ U(T ), the treeTw has depth at mostB.

Proof. The first event holds with high probability by a simple Chernoff bound. For the second: by indepen-
dence, the probability that a pathP in T of lengthB hasP ∩ U = ∅, is

(

1− γ

n

)4n/γ lnn
≤ 1

n4
.
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Taking a union bound on theO(n2) possible paths (in a tree, choosing the path’s endpoints determines it)
completes the proof.

Remark: Observe that we still have high probability that the events of Claim 8hold overn different trees
of the Thorup-Zwick cover.

From now on assume the events ofClaim 8hold. The assignment has two phases.

Phase 1. In the first phase we compute a routing scheme for eachTw in the forestF , in parallel. In each
round, every vertexu that received messages from all its children, sends to its parent inF the size of its
subtree (by summing up the sizes of the subtrees of the children ofu). By Claim 8, the depth of each tree in
F is at mostB, and in each round we send one word per vertex. Hence afterB rounds every vertex knows
the size of its subtree (inF ), and in particular, can infer who is its heavy child. Now each w ∈ U(T ) can
start a parallel DFS ofTw – that is, every vertex assigns entry and exit times to all if its children in parallel
(it is possible since it knows the sizes of every child’s subtree). Each vertex inTw adds to its routing table
(p(x), h(x), ax, bx, w), which are the name of the parent ofx, the heavy child ofx, the entry and exit times,
and the namew. This computation (parallel DFS) will also requireO(B) rounds, since all subtrees work in
parallel.

The (local) label assignment for vertices inTw is done in the following manner. Starting fromw (which
has empty label), every vertexx that receives a labelℓ from its parent, and has childrenx1, . . . , xl, sendsℓ
to its heavy child, andℓ ◦ (x, xi) to xi for each non-heavy childxi. The labelℓ(x) will consist ofax and the
list ℓ of edges that was given tox.

Phase 2. In the second phase we compute a routing scheme onT ′. Everyu ∈ U(T ) sends a message
to its parentx in T , and receives fromx the following message:ℓ(x), the namew such thatx ∈ Tw (so
that the edge(w, u) should be inT ′), and also the port numbere(x, u) of x leading tou. Then every such
u broadcasts((w, u), x, ℓ(x), e(x, u)) to the entire graph. Once the root vertexz has full information on
T ′, it may locally compute the TZ routing scheme forT ′. The routing table given tou ∈ U(T ) is slightly
different than in the usual scheme, as it will contain local routing information for the vertex leading to the
heavy child. More formally, the table will be(h′(u), ℓ(y), e(y, h′(u)), a′u, b

′
u). Hereh′(u) is the name of

heavy child ofu in T ′, y ∈ Tu is the portal vertex which is the parent ofh′(u) in T , ande(y, h′(u)) is the
port ofy leading toh′(u). Note thatz has the name, label and the appropriate port ofy whenh′(u) reported
the edge(u, h′(u)). Finally a′u, b

′
u are the entry and exit times of the DFS run byz onT ′. Observe thatℓ(y)

has sizeO(log n), and this term dominates the size of a routing table. There are at mostO(γ) such tables.
HenceLemma 1implies that we can broadcast to the entire graph all these messages withinO(γ log n+D)
rounds. In addition, every vertexu ∈ U(T ) sends the routing table given to it to all the vertices inTu. Since
we can send the information inside each subtree in parallel,it will take only O(B log n) rounds.

The label assignment to the vertices ofT ′ is also modified, since for every possible edge taken inT ′

which is not leading to a heavy child, we must add the local routing information. Fixu ∈ U(T ). Assume
((v1, w1), . . . , (vl, wl)) is the list of all edges in the path ofT ′ from z to u, so that eachwi is a non-heavy
child of vi. Ordinarily, this list would have been the label ofu (along witha′u). However, in order to be able
to route inT ′, we replace each such edge with(vi, wi, ℓ(xi), e(xi, wi)), wherexi is the parent ofwi in T ,
ℓ(xi) is the labelxi received in the first phase (for local routing withinTvi), ande(xi, wi) is the port leading
from xi towi. Recall thatz knows the label and appropriate port of every suchxi. Since eachℓ(xi) has size
at mostO(log n) words, andl ≤ log n, we have that the label size isO(log2 n). As before, eachu ∈ U(T )
propagates this labelℓ′(u) to every vertex inTu. The number of rounds is thereforeO(γ log2 n+D).
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Protocol. The routing fromu to v will be done as follows. Assume we have arrived to an intermediate
vertexx that lies inTw. Firstx checks if routing inT ′ is required, by comparinga′v with a′x, b

′
x (recall that

a′v is part of the label ofv, and the routing table ofx containsa′x = a′w andb′x = b′w). If a′v = a′x then
v ∈ Tw, and we proceed to route insideTw. If a′v /∈ (a′x, b

′
x), we need to route to the subtree rooted at the

parent ofw in T ′, and ifa′v ∈ (a′x, b
′
x) then we need to route to the appropriate child ofw in T ′,

Routing insideTw: This is done exactly as in the TZ scheme, while considering the local routing tables
of vertices inTw andℓ(v). If ax = av we are done. Ifav /∈ (ax, bx) we route to the parent ofx (stored
in the local routing table ofx), and whenav ∈ (ax, bx), we inspectℓ(v): if it contains an edge of the form
(x, x′), for somex′, we route tox′. Otherwise to the heavy child ofx (the heavy child’s name is also in the
local routing table ofx).

Routing to the parent of w in T ′: This is simple,x just routes to its parent, its name is stored in the
local routing table ofx. Eventually we will reachw (since all vertices inTw have the sameℓ′ label), and
route from it to vertex in the tree ofw’s parent inT ′.

Routing to a child ofw in T ′: Here we inspectℓ′(v), if it contains an entry of the form(w,w′, ℓ(y), e(y,w′))
then we know we have to route inT ′ from w to its childw′ in T ′. Fortunately, the labelℓ(y) provides us the
required routing information to route inTw to the portal vertexy (that hasw′ as a child inT ). Fromy we
go to its childw′ using the porte(y,w′). If the labelℓ′(v) contains no such entry, then we know we need
to route to the heavy child ofw in T ′. Here the label ofv is useless, but we stored the label ofy′ ∈ Tw,
the portal vertex which is the parent of this heavy child, in the routing table of each vertex ofTw. Using the
label ofy′ we can route locally inTw, and fromy′ route toh′(w) (using the port number for heavy child
stored in the routing table).

When constructing routing tables and labels for one single tree, the overall running time isO(γ · log2 n+
D) +O(B · log n) = O(γ · log2 n+ n

γ · log2 n+D), i.e.,O(D +
√
n · log2 n), by settingγ =

√
n.

Proof ofRemark 3. To avoid high running time, we shall perform the routing tables and labels computations
in parallel in all cluster trees, while appending to each message the name of the relevant tree. In the first
phase, which can be implemented inÕ(

√
n) rounds for each tree, we send information on the graph edges

(every vertex notifies all its neighbors in each round), so the overhead due to participation in up tos trees
is only a factor ofs. In the second phase, however, we broadcast messages to the entire graph. So we need
a bound on the number of these messages. For each treeT ′ (which consists of the vertices ofU alone) we
broadcast 2 messages per vertex: the first informing the rootof its existence, its parent, and the local routing
information. In the second message, the root broadcasts routing information and a label for the vertex. Each
message is of sizeO(log2 n). By charging these messages to the vertices ofU , each such vertex pays for 2
messages per tree containing it. But the number of these trees is at mosts, so we need to broadcast at most
Õ(
√
n · s) words. ByLemma 1, these can be broadcast to the entire graph inÕ(

√
n · s+D) rounds.

We next argue that this bound can be further improved toÕ(
√
n · s+D).

Every rootw of a treeTw in one of the forestsF (each cluster tree gives rise to one such a forest) tosses
a starting timestart(w) uniformly at random from the interval[1, c · lnn · √ns], for a sufficiently large
constantc. It then starts broadcasting to vertices ofTw at time20 ·start(w). (It broadcasts to them the value
start(w).) Each round of this broadcast is replaced by stages consisting of 20 rounds each. Specifically,
a vertexx in Tw that already received the message from its parent tries to deliver it to its children for 20
consecutive rounds. We will show that, whp, for every edge, on one of these rounds no congestion will be
experienced. Only when these 20 rounds are over, the children of x will start broadcasting.

Consider a specific edgee = (x, y) in a treeTw. Let w1, w2, . . . , ws be the roots of treesTwi that
contain this edge. (Recall that, by Claim2, whp,s = O(n1/k · log n).) Let t1, t2, . . . , ts be the respective
hop-distances betweenwi and the closer endpoint ofei to wi. In other words, for everyi ∈ [s], if wi
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broadcasted a message overTwi , and no other messages would have interfered with its broadcast, then the
broadcast ofwi would traverseei on stepti. (For convenience, we number the steps starting from 0.)

For any indexR, the probability that the broadcast ofwi will want to traversee on stageR, conditioned
on the assumption that it experienced no congestion whatsoever before that, is the probability thatwi starts
broadcasting at stageR − ti, i.e., this is equal to IP(start(wi) = R − ti). The latter probability is at most

1
c
√
ns lnn

. For a positive integerα ≤ s, the probability thatα cluster trees wish to employe on stageR,
conditioned on the assumption that no congestion was experienced by any of them so far, is at most

(

1

c ln n · √ns

)α

·
(

s

α

)

≤
(

s

c lnn · √ns

)α

≤
(

1

n1/2−1/(2k)

)α

.

Forα = 20, this probability is at most 1
n10−10/k ≤ 1

n5 . By union-bound over all stage indicesR ≤ n, and
all the |E| ≤ n2 edges, we still have an only negligible probability that a congestion was ever experienced
throughout the algorithm. (Here we say that a congestion is experienced if a vertexv wishes to broadcast a
messagem on a stageR of the algorithm through an edge(v, u) incident onv, andv cannot do it for the
entireα = 20 rounds of this stage, because of other transmissions that employ the same edge.)

Hence, whp, inO(B ·α)+O(
√
ns lnn) = Õ(B+n1/2+1/(2k) lnn) rounds, all broadcasts of the values

of starting times will be completed. (Recall thatB is an upper bound on the depth of treesTwi .) This
completes Phase 0 of the algorithm.

Now the algorithm proceeds to Phase 1, on which convergecasts are conducted in all these trees. As a
result of these convergecasts, every vertexx ∈ Twi knows the size of its subtree inTwi . These converge-
casts are conducted by a similar procedure to the one that wasdescribed above, i.e., all leaves ofTwi start
broadcasting at stagestart(wi), and each stage lasts forα = 20 rounds. Hence these convergecasts are
also completed inO(B +

√
ns · lnn) rounds. Then the “parallel DFSs” are conducted in all the trees in

parallel by the same procedure of tree broadcast. As a result, all verticesx in these treesTwi learn their
routing tables withinTwi . They also learn their routing labels within additionalO(B log n +

√
ns log2 n)

time. (Note that for labels one may need to send messages of sizeO(log n) words, and so stages of length
O(α · log n) = O(log n) are needed.)

Phase 2 is performed in the same way as was already described.Specifically, the algorithm conducts
convergecasts of messages(ℓ(x), w, e(x, u)), whereu ∈ U(T ) andx is its parent inT , for some cluster
treeT , over the BFS treeτ of the entire graphG. Since every selected vertexu may participate in up tos
trees, and there areO(γ) selected vertices, this convergecast requiresO(γ · s +D) time. Analogously, the
broadcast of the computed routing tables requiresO(γ · s log n+D) time.

Then eachu ∈ U(T ) sends its routing table to all vertices ofTu. This is done using the tossed starting
times and with stages ofα rounds each, as in Phase 1. Hence this step requiresO(B log n +

√
ns log2 n)

time. Finally, the labels of selected nodes inT ′ are broadcasted over the BFS treeτ within additional
O(γ · s · log2 n+D) time.

To summarize, the overall running time of the algorithm isÕ(B + D +
√
ns + γ · s) = Õ(nγ + D +

n1/2+1/(2k) + γ · s). By settingγ =
√

n/s = n1/2−1/(2k)√
logn

, we get the running time of̃O(
√
ns + D) =

Õ(n1/2+1/(2k) +D).
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A Proof of Theorem 3

Let X ⊆ V be a set of vertices so that eachv ∈ V is sampled toX independently with probability1/
√
n.

DefineV ′ = A ∪ X, and note that with high probabilityB = 4
√
n lnn ≥ |V ′| (since it is given that

|A| ≤ 2
√
n lnn). Apply the same preprocessing steps as inSection 3.3.1with V ′ as defined here, to obtain

a graphG′′ onV ′ satisfying (13).

Computing Approximate SPT for V ′. The first step is to compute the values(d̂(v), ẑ(v)) for vertices
v ∈ V ′. Every vertex inv ∈ A initializes its values as(0, v), while v /∈ A sets(∞,⊥). Conductβ =

min{2Õ(
√
logn), (log n)O(k)} iterations of Bellman-Ford rooted atA: at every iteration, every vertexv ∈ V ′

broadcasts its pair(d̂(v), ẑ(v)) to the entire graph, and ifu ∈ V ′ hasw′′(u, v)+ d̂(v) < d̂(u), thenu updates
its pair to be(w′′(u, v) + d̂(v), ẑ(v)). (Recall thatw′′ is the edge weight function ofG′′, where the latter is
the virtual graph given byTheorem 1augmented with the hopset edges ofTheorem 2.)

The number of rounds required to constructG′′ is (n1/2+1/(2k)+D) ·min{2Õ(
√
logn), (log n)O(k)}, and

by Lemma 1this term also bounds the number of rounds it takes to broadcast theO(|V ′| · β) messages for
the Bellman-Ford iterations.

Extending the SPT toV . At the end of theβ iterations of Bellman-Ford, every vertexu ∈ V knows
(d̂(v), ẑ(v)) for everyv ∈ V ′. Every vertexu ∈ V computes

d̂(u) = min
v∈V ′
{duv + d̂(v)} , (40)

and setŝz(u) = ẑ(v), wherev ∈ V ′ is the minimizer of (40). (Recall thatduv is the value computed in
Theorem 1.)

Analysis. We assume all the events ofClaim 3 hold (which happens with high probability). Foru ∈ V
let zu ∈ A be a vertex satisfyingdG(u, zu) = dG(u,A). Since we performedβ iterations of Bellman-Ford,
using (13) with v ∈ V ′ andzv ∈ A ⊆ V ′ we have thatv′ satisfies (5).
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Consider now someu ∈ V , and letv ∈ V ′ be the minimizer in (40). The left hand side of (5) holds, as
the fact thatv ∈ V ′ satisfies (5) implies

duv + d̂(v)
(2)
≥ d

(B)
G (u, v) + dG(v,A) ≥ dG(u, v) + dG(v,A) ≥ d(u,A) .

For the right hand side of (5): In the case thath(u, zu) ≤ B, by (2) we get that

d̂(u) ≤ duzu + d̂(zu) ≤ (1 + ǫ)d
(B)
G (u, zu) + 0 = (1 + ǫ)dG(u, zu) .

Otherwiseh(u, zu) > B, and byClaim 3there existsv ∈ X ⊆ V ′ on the shortest path inG from u to zu
with h(u, v) ≤ B. Since (5) holds forv,

d̂(u) ≤ duv + d̂(v)
(2)
≤ (1 + ǫ)d

(B)
G (u, v) + (1 + ǫ)dG(v,A)

≤ (1 + ǫ)dG(u, v) + (1 + ǫ)dG(v, zu)

= (1 + ǫ)dG(u, zu) .
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