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Abstract

Given a distributed network represented by a weighted eotid graplz = (V, E)) onn vertices,
and a parametel, we devise a distributed algorithm that computes a routimgse inO(n!/2+1/* 4
D) - n°™ rounds, whereD is the hop-diameter of the network. Moreover, for dgdhe running time
of our algorithm isO(n!/2+1/(2k) 4 D) . n°(M_ Our running time nearly matches the lower bound of
Q(n'/? + D) rounds (which holds for any scheme with polynomial stretéH)e routing tables are of
sizeO(nl/k), the labels are of siz€(k log” n), and every packet is routed on a path suffering stretch at
most4k — 5 + o(1). Our construction nearly matches the state-of-the-antdoting schemes built in a
centralized sequential manner. The previous best algosifior building routing tables in a distributed
small messages model were hyP[L3a STOC 2013] andl{P15 PODC 2015]. The former has similar
properties but suffers from substantially larger routiaglés of sizeD(n'/2+1/¥), while the latter has
sub-optimal running time o (min{(nD)/2 - n1/k n2/3+2/Gk) 4 D},

1 Introduction

A routing scheme in a distributed network is a mechanismaheaivs packets to be delivered from any node
to any other node. The network is represented as a weightiickated graph, and each node should be able
to forward incoming data by using local information storéthe node, and the (short) packet's header. The
local routing information is often referred to as a routiagle. The routing scheme has two main phases:
in the preprocessing phase, each node is assigned a roaltilegaind a short label. In the routing phase,
each node receiving a packet should make a local decisisedban its own routing table and the packet’s
header (which contains the label of the destination), tactvhieighbor forward the packet to. Thietchof

a routing scheme is the worst ratio between the length offagaivhich a packet is routed, to the shortest
possible path.

Designing efficient routing schemes is a central problemha drea of distributed networking, and
was studied intensivelyPU89 ABLP90, Cow01, EGP03 GP03 AGM04, PU89 TZ01, Chel3. The first
general tradeoffs for this problem were given in pioneewmgks by [PU89 ABLP9(]. In a seminal paper
[TZ01], Thorup and Zwick presented the following compact routisheme: Given a weighted graghon
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n vertices and a parametkr> 1, the scheme has routing tables of si2e:'/%),* labels of sizeO(klogn)
and stretchtk — 5. (Assuming that port numbers may be assigned by the routiogeps, otherwise the
label size increases by a factorlof;n.)*> The state-of-the-art is a scheme 6hje13, which is based on
[TZ01], and improves the stretch 868%.

All the results above assume that the preprocessing phaseeceomputed in a sequential centralized
manner. However, as the problem of designing a compactngstheme is inherently concerned with a
distributed network, constructing the scheme efficienlaidistributed manner is a very natural direction.
We focus on the standard CONGEST mode¢l004. In this model, every vertex initially knows only the
edges touching it, and communication between verticesredousynchronousounds On every round,
each vertex may send a small message to each of its neiglihans, message takes a unit time to reach the
neighbor, regardless of the edge weight. The time compléxineasured by the number of rounds it takes
to complete a task (we assume local computation does noaoggting). Often the time depends anthe
number of vertices, anf), thehop-diameteiof the graph. The hop-diameter is the maximum hop-distance
between two vertices, where the hop-distance is the mimnalber of edges on a path between the vertices
(regardless of the weights). The hop-diameter is not to béused with theshortest path diamete#¥, which
is the maximal number of hops a shortest path uses (assummanggst paths are unique). We always have
D < S, and typically D is small whileS could be as large &3(n). We also assume, as common in the
literature LP133 Nanl14 KP98 GK13, HKN16], that edge weights are integers and at most polynomial in
n (so that they could be sent in a single messdge).

A rich research thread concerns with finding efficient distteéd (approximation) algorithms for classi-
cal graph problems (e.g., minimum spanning tree, minimuinstiortest paths), in sub-linear tinBKP98
PROQ EIk063 SHK*12, HKN16]. There are several results obtaining running times ofmhmfﬁ(\/ﬁ+D),

e.g. for MST, connectivity, minimum cut, approximate sksttpath tree, etc. These results are often ac-
companied by a (nearly) matching lower bounds. The lowentaf [SHKT12], based onPR0OQ EIk06H],
implies that devising a routing scheme with any polynomiedtsh, requires)(,/n + D) rounds.

The first result on computing a routing scheme in a distritutnner withiro(n) rounds (for general
graphs withD = o(n)), was shown by Lenzen and Patt-SharhiP134.# Their algorithm, given a graph
onn vertices and a parametkr provides routing tables of size(n!/2'/¥), labels of size)(logn - log k),
stretch at mos® (k log k), and has a nearly optimal running time®@fn'/2*/¥ + D) rounds. Note that the
routing tables are of siz&(,/n) for any value ofk, which could be prohibitively large (the routing scheme
of [TZ01] supports stretch 3 Witl@(\/ﬁ) table size). They also show implications for related protse
such as approximate diameter, generalized Steiner faadtdistance estimation. In a follow-up paper,
[LP15 showed how to improve the stretch of the above scheme tchipud: /2 (for any k divisible by 4).
They also exhibited a different tradeoff, that overcameisisee of large routing tables. They devised an
algorithm that produced routing tables of si2én'/*), labels of size)(k log? n) and stretchik —3+0(1),
but the number of rounds increases@min{(n.D)'/2 . n'/* n?/3+2/(k) 1 D}). Note that for moderately
large hop-diameteD ~ n!/3, the number of rounds is bounded by orlyn?/? for any value ofk. (They

The O hideslog®™ n factors.

They also presented stret2h — 1, assuming "handshaking”: allowing the source and destinab communicate before the
routing phase begins, but it is often desirable to avoid bhaking. Henceforth, we discuss only routing schemes thabtlallow
handshaking.

3We shall not considename-independenbuting, in which the label of a vertex is its ID, becaus®134 showed a strong
lower bound: any such scheme with stretcfeven average stretgh) must take{2(n/p?) rounds to compute in this model.

“We remark that for the class &fchordal graphs,NRS1J showed a construction of a routing scheme that could be ctedp
efficiently in a distributed manner.

The paperl[P15 claimed label size&)(k logn), but in [LP16] it was communicated to us that the actual siz@{& log® n).



also show a variant where the number of round9($ + n'/*), but as was mentioned above might be
much larger tharD.)

In thedistance estimatioproblem (also known as sketching, or distance labelingwisé to compute
a smallsketchfor each vertex, so that given any two sketches, one canesffigicompute the (approximate)
distance between the vertices. This problem was introdircéBel00R, who provided initial existential
results. In BDP13, a distributed (randomized) algorithm runningd](S . nl/’“) rounds was shown, that
computes sketches of sigk kn'/* log n) with stretch at mos2k— 1. While this essentially matches the best
sequential algorithm ofT[Z05], the number of rounds could I§&n), even whenD is small. In LP134, a
running time ofO(n!/2*1/% - D) rounds was presented, at the cost of significantly incrgabia stretch to
O(k?).% 1zumi and Wattenhoferl\V14] showed a lower bound of!'/2+2(/¥) rounds for this problem. In
the Conclusion part of their papdk§14], Izumi and Wattenhofer posed an open problem:

“An open problem related to our results is to find algorithmiBose running time gets close to our lower
bounds”

Our contribution.  We devise a randomized distributed algorithm running in

(n'/2+1/% 4 D) -min{(log n)?®) 20(V1eem)} rounds, that with high probability, computes a compact-rout
ing scheme with routing tables of sigén'/* log® n), labels of sizeD(k log® n), and stretch at modk — 5+
o(1). Moroever, for oddk, the running time of our algorithm {g/21/(2%) + D).min{ (log n)°®*), 20 (Viegn)}
Note that our result nearly matches the constructioT@D[], up to logarithmic terms in the size andl)
additive term in the stretch. This is even though the lagezomputed in a sequential centralized manner.
Observe that our running time nearly matches the lower baff@HK"12], and is substantially better
than that of [P15 wheneverD > n£() (which achieved similar size-stretch tradeoff). The poesiresult
obtaining near optimal running tim&P134, suffers from excessive routing table size.

As a corollary, we show a distance estimation scheme, thmbeacomputed in a distributed manner
in (n'/2t1/% 4+ D). min{(log n)°?®*), 20(VIeem)} rounds for everk, and for oddk in (n!/2t1/(2%) 1 D).
min{(logn)°?*), 20(vVIen) rounds, providing sketches of sig(n!/* log n) with stretch2k — 1 + o(1).
Each distance estimation takes onlyk) time. Our result combines the improved running timeld?13g
(up to lower order terms), with the near optimal size-strétadeoff of SDP15. Moreover, our bound for
the running time of distance estimation scheme nearly reatdte lower bouna!/2+2(1/%) of Izumi and
Wattenhofer [W14], addressing their open problem. See Tdbler a concise summary of previous and our
results.

We note that to the best of our knowledge, all existing rautiochemesfuU89 ABLP90, TZ05, AGMO04,
Chel3 LP14g, as well as the routing scheme that we present in this pamable distance estimation,
i.e., given routing tables and labels of a pajw of vertices, one can compute (without communication) a
distance estimaté(u, v), which approximates the actual distankgu, v) between: andv up to the stretch
factor of the routing scheme. All routing schemes of thisetyequire, by the lower bound of\j/14], at
leastn!/2+2(1/k) rounds to compute.

When preparing this submission, we learnt that concuyreantd independently of ud PP1§ came
up with a distributed algorithm running im'/?+1/k + D) . 20(Vloen) rounds, that with high probability,
computes a routing scheme with routing tables of gie!/*), labels of sizeO(klog®n), and stretch
at mostdk — 3 + o(1). Their result has slightly worse stretch, and a larger nunobeounds whenever

k < \/logn/loglogn, orif k is odd.

®In fact, they showed a scheme in which it suffices to have ablaftone vertex, and @(k log n) size label of the other vertex,
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Number of Rounds Table size| Label size Stretch
[TZ01, Chel3 O(m O(n*) | O(klogn) 3.68k
[LP15 O(S + n¥) O(n¥) | O(klogn) Ak — 3
[LP133 LP15 J(nztaE + D) O(n2tar) | O(logn) | 6k—1+o(1)
[LP15 )(min{(nD)? - n¥,n3 T3k + D) O(n¥) | O(klog?n) | 4k — 3 + o(1)
This paper, | (nzt% + D)-min{(log n)0® 20Wlem} [ O(nx) | O(klog®n) | 4k — 5+ o(1)
evenk
This paper, | (n272% + D)-min{(logn)O® 200Bem} | O(ni) | O(klog?n) | 4k — 5 + o(1)
oddk

Table 1: Comparison of compact routing schemes for graptisnwertices,m edges, hop-diametdp, and
shortest path diameté.

1.1 Overview of Techniques

Let us first briefly sketch the Thorup-Zwick construction abating scheme. First they designed a routing
scheme for trees, with routing tables of constant size agakithmic label size. (Throughout the paper, the
size is measured in RAM words, i.e., each word is of §i&g n).) For a general grapty = (V, E) onn
vertices, they randomly sample a collection of déts- A9 D A;--- O A, = (), where for eacl) < 7 < k,
each vertex ind;_; is chosen independently to be ity with probability n=*/*. The clusterof a vertex

u € A; \ A;y1 is defined as

Clu)={v eV : dg(u,v) < dg(v,Ais+1)} . 1)

They proved that each clustéf(z) can be viewed as a tree rootedratand showed an efficient procedure
that given a paiu, v € V, finds a vertex: so that routing in the tre€'(x) has small stretch. So each vertex
u maintains in its routing table the routing information fdirteeesC'(x) containing it, while the label of
consists of the tree-labels for a few special trees. Theysiisw that (with high probability) every vertex is
contained in at mosd(n!/¥) trees.

The first difficulty we must deal with is that the routing scleenf Thorup-Zwick for a (single) tree
could take a linear number of rounds to construct. We thugldpva variation on that scheme, that can
be implemented efficiently in a distributed network. Theibadea is inspired byKP9g (and also used
in [Nan14), which is to selects \/n vertices that partition the tree into bounded depth subtriéée then
apply the TZ-scheme locally in every subtree. The subtleripdo design a global routing scheme for the
virtual tre€ induced on the sampled vertices, which must incorporatéotta routing information.

Approximate Clusters. Once we have a distributed algorithm for routing in trees sefeoff to apply the
TZ-scheme for general graphs. Unfortunately, it is not kndwew to compute the exact clusters efficiently
in a distributed manner. In order to circumvent this baymer introduce the notion @pproximate clusters
An approximate cluster is a subset of a cluster, that mayudecivertices that are "near” the boundary.
(Slightly more formally, we may omit vertices for which theequality () becomes false if we multiply
the left hand side by & + ¢ factor, for a smalk > 0.) Our main technical contributions are: exhibiting

to derive the distance estimation. Our result has a similapegrty.
"By a virtual tree we mean a tree whose edges are not presém iretwork.



a procedure that computes these approximate clusters, hamdng that these approximate clusters are
sufficient for constructing a routing scheme, with nearlytechang size and stretch as ifiZ01].

The construction of clusterS(u) for u € A; \ A;+1, wherei < k/2, can be done in a straightforward
manner (within the allotted number of rounds), since thethlep the corresponding tree 8(,/n) with
high probability, and since theverlap (the number of clusters containing a fixed vertex) is c@[yzl/k).
The main challenge is computing the approximate clustethériarge scales, far > £/2. To this end,
we employ several tools. The firstagpproximate multi-source hop-bounded distance compmrtatvhich
appeared recently ilfNlan14 (a certain variant of it appeared also ItH13H). This enables us to compute
approximations fo3-hops shortest paths (paths that use at mbstiges), from a givem sources to every
vertex, inO(B +m + D) rounds. The second tool we uséhispsets The notion of hopsets was introduced
by [Coh0( in the context of parallel approximate shortest path atlgors, and it has found applications in
dynamic, streaming and distributed settings as WB#irp9 HKN14, HKN16]. A (3, ¢)-hopset is a (small)
set of edged’, so that every shortest path has a correspondihgps path, whose weight is at mdst- ¢
larger.

We compute the approximate clusters in the large scalesllasi$o First we samplex /n vertices
(those in4,,»), and compute approximatgn-hops shortest paths from all the sampled vertices. Next we

apply a(p, €)-hopset on the graph induced by these sampled verticesgwher20(V1osn) ande 1/k%

(A pair of sampled vertices is connected in this graph if anly @ one is reachable from the other via an
approximate/n-hop-bounded shortest path.) An efficient distributed @aflgo to construct such hopsets is
given by HKN16, EN16d. We shall use the construction dEN164d, since it facilitates much smallet,
wheneverk is small. (There are also some additional properties of étspgfsom EN164, that make them
more convenient in the context of routing. See Secf#gnThis enables us to compute the approximate
clusters on the sampled vertices, since we need @sigps of exploration from each sourceusing again
that the overlap is small. Finally, we extend each approtentduster to the other vertices, by initiating
an exploration from each sampled vertex to hop-distaacgn in the original graph (in fact, one can use
the multi-source hop-bounded distance computatiorNaifL4). The correctness follows since with high
probability, every vertex that should be included in somgrapimate clusteé(u), has either, or a sampled
vertex withinx /n hops on the shortest path to it. The thresholds for enterrgparoximate cluster must
be set carefully, so that every vertex on that shortest pétialso join C’(u), in order to guarantee that the
trees will indeed be connected (which is clearly crucialrfarting), and on the other hand, to make sure that
no vertex participates in too many trees. Unlike the exactllgters, approximate clusters generally do not
have to be connected.

The fact that our clusters are only approximate inducesas®d stretch. The analysis is similar to that
of [TZ05], which consists of: iterations of searching for the "right” tree. We must pay etda of 1 + O(e)
in every one of these iterations, but fortunately, the hbpsestruction allows us to take sufficiently small
¢, so that all the additional stretch accumulates to an agdifil ).

From a high level, our approach is similar to thoseld?]13g LP15. In [LP15, they also use a variant
of the TZ-routing scheme, which allows small errors in th&tatice estimations. The main difference is
in handling the large scales. 1134, the idea was to build a spanner on a sample-of/n vertices,
which reduces the number of edges. So a routing scheme cdfidiendy computed on the spanner, and
then extended to the entire graph. This approach inhersaoffers from large storage requirement, since
every vertex needs to know all the spanner edged.Pi§ the idea was to "delay” the start of large scales
from k /2 to roughlyly = (k/2) - (1 +log D/logn). Then they apply a distance estimation on the sampled
vertices at scalé, (those in4;,) to construct the routing tables for all higher scales, axtérel these to
the remainder of the graph. However, the exploration in tiaoly onA;, may need to be of n!~lo/k



hops, which induces a factor &f - n'~%/* = (n.D)'/? to the number of rounds. The use of hopsets allows
us to avoid the large memory requirement, since the rousraplivious to the hopset, while significantly
shortening the exploration range. Since the exploratiogeas proportional to the running time, the latter
also decreases.

1.2 Organization

After stating inSection 2some of the tools we shall apply, fBection 3we describe the notion of ap-
proximate clusters, and show how to compute these effigiemth distributed manner. Then Bection 4
we demonstrate how these approximate clusters could befoisadouting scheme in general graphs. In
Section 5we show the distance estimation scheme. Finall\geation 6iwe show our distributed tree rout-

ing.

2 Preliminaries

LetG = (V, E,w) be a weighted graph anvertices. We assume that: £ — {1,...,poly(n)} (without
this assumption, there will be a logarithmic dependenceheraspect ratio in the data structures’ size and
running times). LetD be thehop-diametenf G, that is, the diameter af if all weights were 1. Denote
by d the shortest path metric ad. Let dg) be thet-hopsshortest path distance (abusing notation, since
this is not a metric). That isdg) (u,v) is the shortest length of a path fromto v, that has at mostedges
(setdg) (u,v) = oo if every path fromu to v has more tham edges). For each,v € V, definehg(u, v)

as the number of hops on the shortest pattiibetweenu andv. We shall always use this notation with
respect to the input graghi, and thus will omit the subscript. A (dominating)tual graphon G is a graph

G' = (V' E',w") with V/ C V, and for everyu,v € V' we have thatig (u,v) > dg(u,v). Every vertex

in vV’ should know all the edges @’ touching it. The following lemma formalizes the broadcasitity of

a distributed network (see, e.g2dl003).

Lemma 1. Suppose every € V holdsm, messages, each 6f(1) words, for a total ofM = 3, m,.
Then all vertices can receive all the messages within/ + D) rounds.
2.1 Tools

We will make use of the following theorem due tdgn14 Theorem 3.6], which shows how to compute
hop-bounded distances from a given set of sources, effigiend distributed manner.

Theorem 1([Nan14). Given a weighted graplt: = (V, E, w) of hop-diameterD, a setV’ C V, and
parametersB > 1 and0 < e < 1, there is a (randomized) distributed algorithm that w.huyms in
O(|V'| + B + D) /e rounds, so that every € V will know values{d,, },cy satisfying

dP (1, 0) < duy < 1+ )dP (u,0) | 2)

Remark 1. While not explicitly stated inNlan14, the proof also provides that eaahe V knows, for every
v € V', avertexp = p,(u) which is a neighbor of: satisfying

dyy > w(u,p) + dpy . (3)

8The computed values are symmetric, thatlis, = d... whenever, v € V.



Hopsets. The following notion of hopsets was introduced B0h0Q.

Definition 1 (Hopsets) A set of (weighted) edgés is a (3, €)-hopset for a grapiG = (V, E), if in the
graphH = (V,EU F), for everyu,v € V,

de(u,v) < dpg(u,v) < ) (u,v) < (1+ €)dg(u,0) - (4)

We will need the followingpath-reportingproperty from our hopset. This property will be crucial for
the connectivity of the trees corresponding to the appratenclusters.

Property 1. A hopsett” for a graphG is calledpath-reportingif for every hopset edge:, v) € F' of weight
b, there exists a corresponding pathin G between: andv of lengthb. Furthermore, every vertex on P
knowsdp(x,u) anddp(x,v), and its neighbors o.

The following result is from EN164d, which provides a path-reporting hopset. We remark that th
original hopset construction o€joh0( could be made path-reporting. Also, iHKN16, Theorem 4.10],
a distributed algorithm constructing a hopset is providetich possibly could be made path-reporting,
however, it inherently cannot provide a better hopbound #4108 ™).

Theorem 2([EN164). LetG be a weighted graph omvertices with hop-diametdD, let0 < e < 1, and let
logm>0(1/p).

€p

Then there is a randomized distributed algorithm that wépmputes inO(m!'*? + D) - 42 rounds, a

path-reporting(3, €)-hopsetF for G'.

G’ be avirtual graph orG with m vertices. Leb < p < 1/2 be a parameter, and writg = (

We remark that in many applications (see, e.g., applicatiofCoh0Q EN164) the size of the hopset
is important. However, here we only care about the size te#tent that it affects the number of rounds
required to compute the hopset.

Approximate Shortest Path Tree (SPT). Recently, HKN16] obtained an efficient distributed algorithm
for computing an approximate SPT, which we shall use. Letnss fiefine the problem formally. Let
G = (V, E,w) be a weighted graph. Given a set of vertices. V', computing ar(1 + ¢)-approximate SPT

rooted at4, means that every vertexc 1 will know a vaIuecZ(u) satisfying

dg(u, A) < d(u) < (14 €)dg(u, A) , (5)

and thatu will know a vertex2(u) € A so thatdg(u, 2(u)) < d(u). The following theorem is a slight
variation on a theorem shown iRHKN16]. Here we use the hopsets &N 164 for an improved running
time.

Theorem 3. LetG = (V, E,w) be a weighted graph on vertices with hop-diameteD. Given a set

A C V of size|A| < 2y/nlnn, andW{ygn < € < 1, there is a distributed algorithm that computes an

(1 + ¢)-approximate SPT rooted at in (n!/2+1/(2%) 4 D) . min{(log n)0®, 20(VIeg ™)} rounds.

We defer the proof té\ppendix A



3 Distributed Routing Scheme

In this section we define the notions of approximate pivotsapproximate clusters, and describe an efficient
distributed algorithm that computes these. Let us firstlréoa basic definitions fromTZ05].
Let G = (V, E,w) be a weighted graph, fik > 1. Sample a collection of sel§ = Ay O A;--- D
A = 0, where for eacld < i < k, each vertex iM;_; is chosen independently to be.ih with probability
n~Yk. A point z € A; is called ani-pivot of v, if dg(v,2) = dg(v, A;). The cluster of a vertex. €
A; \ A;41 is defined as
Clu)={v eV : dg(u,v) < dg(v,Ais+1)} . (6)

We quote a claim fromTZ05], which provides a bound on the overlap of clusters.
Claim 2. With high probability, each vertex is contained in at mast/* log n clusters.
The following claim shows that (with high probability) thets A; have favorable properties.

Claim 3. With high probability the following holds for evefy < i < k — 1: (1) |4;] < 4n'~/*1nn,
and (2) For everyu,v € V such thath(u,v) > 4n'/¥ Inn, there exists a vertex of; on the shortest path
between; andwv.

Proof. Fix i. The first assertion holds by a simple Chernoff bound, sineeyevertex is chosen to be i;
independently with probability,~*/*, and the expected size df; is n'~*/*. For the second assertion, let
u, v be such thab(u, v) > 4n*/* Inn (recall thath(u, v) is the number of hops on the shortest path from
tov in G). The probability that none of the vertices on théo v shortest path is included i4; is at most

<n?t.

(1 _i/k)4ni/klnn
—n

Taking a union bound on thepossible values afand (g‘) pairs completes the proof. O
From now on assume that all the events in the claims above Wbidh yields the following corollary.

Corollary 4. Forany0 <i <k —1,u € A; \ A;+1 andv € C(u), it holds thath(u, v) < 4n*tD/*1nn,

Proof. If it were the case tha(u, v) > 4n(*1/¥ In n, thenClaim 3would imply that there exists a vertex

of A;+1 on the shortest path fromto «. In particular,dg (v, u) > dg(v, Ai+1), which contradicts). O

3.1 Approximate Clusters and Pivots

Since we do not know how to compute efficiently in a distrilduteanner the pivots and clusters, we settle

for an approximate version, which is formally defined in théstion. Fix the parameter= ﬁ For each
veVandl <i<k-—1,apointz € A; is called arapproximatei-pivot of v if
dg(v,2) < (14 €)dg(v, A;) . (7)

Now we define for each < i < k — 1 and each vertex € A; \ A;;1, a set of vertices which we call an
approximate cluster The approximate cluster is a subset of the clutér), and it is allowed to exclude
vertices ofC'(u) which are "close” to the boundary. First define the vertites aire far from the boundary
(with respect tc), as

da (v, Ait1)

Ce(u) ={v eV : dg(u,v) < [T e

}- (8)



The approximate clusta{?(u) will be a set that satisfies the following:
Cee(u) € C(u) C C(u) . 9)

Each approximate cIustefE(u) we compute, will be stored as a tree rooted:athat is, each vertex
v € C(u) will store a pointer to its parent in the tree. This tree (@mimotation, we call this tre€'(u) as
well) has the property that distances to the roare approximately preserved, that is, for ang C’(u) we
have that
da(u,v) < déy) (u,v) < (1 + e)*dg(u,v) . (10)

Remark 2. SinceC(u) C C(u), Claim 2implies that with high probability, each vertex is contairie at
mostdn'/* log n approximate clusters.

In the remainder of this section we devise an efficient distad algorithm for computing the approxi-
mate pivots and the trees built from approximate clusterd,show the following.

Theorem 4. LetG = (V, E') be a weighted graph with vertices and hop-diametep, and letk > 1 be an
integer. Set = 1/(48k*). Then there is a randomized distributed algorithm that pudmmputes all approxi-
mate pivots and approximate clusters (with respee} teithin (n'/2+1/%+ D).min{(log n)°9®*), 20(VIlogn)}
rounds?

Computing Pivots. We first compute the pivots fdr < i < [k/2]. For these values afwe can compute
the exact pivots. We condu¢h/* - In n iterations of Bellman-Ford rooted in the vertex et As a result,
everyv € V learns the exact valué (v) = dg(v, 4;) and a pivotz;(v) € A;. Indeed, for anw € V, if
u € A; is a vertex such thalg(v,u) = dg(v, 4;), thenClaim 3implies thath(v,u) < 4n*/* - Inn, so
the exploration will detect this shortest path. As every sage consists @D (1) words (every vertex sends
to its neighbors the name of the vertex4p and the current distance to it), the total number of rounds is
Z@[Z)ﬂ O(ni/% - Inn) < O(n!/2+1/(2k),

For [k/2] < i < k — 1 we can only computapproximatepivots z;(v) for eachv € V. For each such
i, apply Theorem 3with root set4; and the parameter(indeed byClaim 3 |4;| < 4n!~(k/21+1D)/k 1np, <
2/mInn, ande = Q(1/k%) > Q(1/log* n)). This will take (n'/2+1/ (%) 4 D).min{ (log n)O*), 20(VIogm)}
rounds. Atthe end, every vertexc V' will know its approximate pivog; (v), and the (approximate) distance

d;(v), as returned by the algorithm. B$)( z;(v) satisfies the requirement from an approximate pivot (see

(7))

3.2 Building the Small Trees

For0 < i < [k/2], we can compute the tre€¥u) corresponding to the actual clusters. We need to find
such a tree for every € A; \ A;+1, and it is done in the following manner. For each sucim parallel,

we initiate a bounded-depth Bellman-Ford explorationfeft1)/% In  iterations. By bounded-depth we
mean the following: each € V that receives a message originated:aand computes that its (current)
distance tau is b, (u), will join C(u) and broadcast the message to its neighbofs iiffi

by(u) < dg(v, Ait1) - (11)

9For oddk the number of rounds becomés'/>t/ (%) D) . min{(log n)°*), 20(VIeE™)1,



(Recall that fori < [k/2], each vertex stores the distance to the exdltpivot d;(v) = dg(v, 4;).) The
vertexv will also store the name of its parent @(«), the neighbop € V that sentv the message which
last updated, (u).

We now argue that it € C(u), thenv will surely receive a message fromand will haveb, (u) =
da(u,v). Let P be the shortest path i@ betweenu andv. Note that every vertey on P hasy € C(u),
because

(6)
dG(y,U) = dG(U7u) - dG(U7y) < dG(’U, Ai+1) - dG(U,y) < dG(y7Ai+1) .

It follows by a simple induction that every sughwill receive a message with the exact distang@.) =
da(y,w) and thus will send it onwards, after at mast, y) steps of the algorithm. In particular, distances
to the rootu in C'(u) are preserved exactlZorollary 4asserts that for alt € C'(u) we have that(u,v) <
4n+1/k Inn. So there are enough Bellman-Ford iterations to reach eites of C'(u).

The middle level. Whenk is odd, the leveli = (k — 1)/2 induces a relatively large running time
O(n!/2+3/(2k)) (see the upcoming paragraph on running-time analysiséfuses the algorithm that was
described above. To overcome this, we use a different mdtndtis level. We applyTheorem 1on the set
of sourcesS = A; \ A;;1, with B = 4n(+1/% .1nn ande, each vertex € V will get a distance estimate
b,(u) for eachu € S. Indeed, ifv € C'(u) then byCorollary 4 h(u,v) < B, so that the distance estimate
returned by the theorem isla+ e approximation talg (u,v) = d(GB ) (u,v).

We say thaw joins the (approximate) clustér(u) of u € S if the following holds

bv(u) < dG(Uv Ai+1)>

(recall thatv knows the exact distance to its- 1 = (k + 1)/2-pivot). The parenp of v in the tree induced
by C(u) will be the parent given bRemark 1 We show that thip will join C(u) as well. This holds
because

(3)
bp(u) < by(u) —w(v,p) < dg(v, Ait1) —dg(v,p) < da(p, Ait1) -

Finally, we note that this is an approximate cluster; sitgéu, v) < b,(u) it follows thatC'(u) C C(u),
while if v € C¢(u) then

2 (8)
by(u) < (1 +€)dg(u,v) < dg(v, Ait1) ,

SO é(u) D C.(u), satisfying 8). (We remark that the middle level is the only one in which onay
use Theorem 1 In all other levels, either the number of sourdels| ~ n'~*/* or the required depth
B ~ n+1/k will be larger tham/2+1/k )

Running time. By Claim 2, every vertex can belong to at mc@(nl/’f) clusters. Hence, the congestion
at every Bellman-Ford iteration is at mo@l(nl/’f). Thus the number of rounds required to implement
each of thein"+1)/% In n iterations of Bellman-Ford i®(n!/*). Whenk is even, the total running time is
SR O(n+2/k) = O(n1/2+1/k). Whenk is odd, the middle levelk — 1)/2 will take time O(|S| +
B+ D) = O(n!/2+1/(2k) 4 D), while the lower levels will také /% O (n(i+2)/k) = O (n1/2+1/(2k),

So for oddk, the total running time i§)(n!/2+1/(2k) 4 D) |

10



3.3 Building the Large Trees

Building the tree<” (u) for u € A4; \ A;4+1 wheni > [k/2] is more involved, since the number of iterations
for the simple Bellman-Ford style approach grows like:(t2)/5 \We will use the fact that there are only
few vertices inA4;, and divide the computation into two phases. In the first plves compute virtual trees
only on~ /n vertices, and in the second phase we extend the trees totitegnaph. Before we turn to
the two-phase construction, we describe the preprocessigg, in which we build structures that are later
used in both phases.

3.3.1 Preprocessing

Let V' = Apy, o1, and setB = 4n/E[|V’|] - Inn. That s, for everk we setB = 4n'/? - Inn, while for odd

k, B = 4n'/2+1/(2k) .1nn. Apply Theorem 1to G with the setl’” and parameter® ande/2. By Claim 3
we may assuméy’| < 4n'/?Inn, and sincel /e < 48log*n, the number of rounds required is w.h.p
O(n'/2+1/(k) 1 D). From now on assume tha2)(indeed holds (with: replaced by /2). This happens
w.h.p. LetG’ = (V' E',w') be a (virtual) graph ort7, and for eachs,v € V' with d,, < oo, set the
weight of the edge connecting them tob&u, v) = d,, (whered,, is the value computed ifiheorem }
Following [Nan14, it can be shown that for any, v € V’,

da(u,v) < dg(u,v) < (1+€/2)dg(u,v) . (12)

Apply Theorem 2on G’ with parameters /3 and p = max{1/k,loglogn/\/logn}. We obtain a
(8, ¢/3)-hopsetF with § = min{2°V1°e™) (log n)°*)}, The number of rounds requiredd(|V’|'+* +
D) - 82 = (n1/20+1/k) 4 D). min{gé(\/W)y (logn)O®1.

LetG” = (V',E' U F,w") be the graph obtained fro@’ by adding all the hopset edges. (Note that
some edges may have their weight replaced. In the case ofatptife weightsw” agree with the weights
of the hopsef'.) By (4) and (2) we have thatz” is indeed a virtual graph sineg; (u,v) > dg(u,v) >
dc(u,v). On the other hand,

o)

o (u,v) (1+¢€/3)dgr (u,v) < (14¢€¢/2)(1 4+ €¢/3)dg(u,v)

<
< (1 + E)dG(u>U) :
We conclude that the graght’ satisfies the following property: for everyv € V/,
de(u,v) < d) (u,0) < (1+ e)da(u,v) . (13)
3.3.2 Construction
Fix [k/2] <i < k — 1. We build the tree€'(u) for all u € A; \ A, in parallel, in two main phases.
Phase 1. For each such, conduct3 iterations of depth-bounded Bellman-Ford in the gréffht© (Since

this is a virtual graph, all the messages will be collectethatroot of some BFS tree @f via pipelined
convergecast, and then broadcasted to the entire graph pipelined broadcast. Seemma 1) If v € V'

105ee (14) below for the required condition on depth.
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receives a message originatechawith (current) distance ta which isb,(u), it will join the approximate
cluster ofu and forward the message to its neighborsihiff

Czi+1(v)
(1+¢)3 "

by(u) < (14)
(Recall thaﬂHl(v) is the approximate distance frasto the its (approximate) levek- 1 pivot.) The vertex

v will also store itsvirtual parent, the neighbgr € V' that sent the message which last updatedu). For
eachu € A; \ A; 11, we have a (virtual) tre€”(u) on the vertices of/’ that received a message originated
atw and satisfy 14).

Phase 1.5. The purpose of this step is to guarantee that every verteghwiids added to the (virtual) tree
being built for some: € A; \ A;+1, will have an appropriate parent @ (through which it will route later
on). The issue is that hopset edges are not equipped withtpare, unlike the edges of’, for which
Remark 1provides parents. We deal with this by using the path-r@ppgroperty of hopset edges — each
such edge is realized by a pathd@, so we ensure the vertices of this path join the tree as wedl,s&t
parents accordingly. We now describe this formally.

When the first phase ends afteiterations, for every hopset edge, y) € F' such thate is the virtual
parent ofy we do the following. LetP be the path in& realizing this edge. Each € V'(P) \ {x} that
hasb,(u) value (for somes € A; \ A1) at leastb,(u) + dp(z,v), updates its distance estimate to be
by(u) = by(u) + dp(z,v), joins C'(u) (if it hasn't already), and sets its virtual parentdswherev’ is the
neighbor ofv on P closer tox (recall Property 1 which guarantees thatknows the relevant information).

Finally, set thereal parents: for each vertex € C’(u) with a virtual parent/, setp(v) = p,(v) (see
Remark 1for the definition and computation @f, (v)). Recall that(v,v’) is a virtual edge (of the graph
G"), while (v, p(v)) is a “real” edge fronty.

Phase 2. Here we extend each virtual tréé(u) to the vertices of/. For allu € A4; \ A, 1, every vertex
v eNC’(u) broadcasts to the entire graph its valyéu) (and the name af). A vertexy € V' will add itself
to C'(u) if

di+1(y) , (15)
1+4+€
whered,, is the value computed ifiheorem 1 Also, y will set p(y) = p,(y) as its (real) parent iﬁ?(u) for
the v minimizing b, (v) = dy, + b,(u) (breaking ties arbitrarily). We remark that the conditidn(15) is
less stringent than that of4). Thus vertices of’” who did not joinC’ (), may now be included i (u).
First we argue that for any € A; \ 4;,1, the verticesy € V' added toC’(u) in phase 1.5 with distance
estimateb, (u) satisfy the following:

dyv + by (U) <

A~

o) < ¢ 1++1 (5)2 . (16)

To see this, letz, y) € F be the hop-set edge which triggered the addition tf C’(u) at phase 1.5, and
let P be the path irG’ realizing this edge, then

by(u) = dp(z,v) + be(u) = dp(z,y) — dp(v,y) + be(u) = by(u) — dp(v,y) .

It follows that

) = ))& S22

©) de(y, Air1) — da(v,y) _ da(v, Ait1) © dipa(v)
— < < <
dG(’Uyy) = (1 +€)2 = (1+€)2 > (1 +€)2 5

12



which proves 16). The next lemma asserts that the valbigg:) approximate well the distances to the root
u of the virtual tree.

Lemma 5. For anyu € A; \ A;,; andv € C(u) with the corresponding valug, (u), we have that
de(u,v) < by(u) < (1+ )'dg(u,v) . (17)

Proof. First we prove fon € C’(u) added at phase 1. Note that the left hand sidel@¥ ¢an be verified
by induction on the iteration in which, (u) was last updated. The base case v clearly holds, assume it
holds forv’ (the virtual parent of). Recall thatw” is the weight function irG”. We have

13
by(u) = w” (v,0") + by (u) > dgr(v,0") + dg(u,v") > dg(u,v) .
We now turn to the right hand side dfY). Seeking contradiction, assume
by(u) > (14 €)*dg(u,v) . (18)

Let P be the shortes-hops path inG” from w to v, and we will show (by induction) that every vertex
z on P, which liesh hops fromu, must joinC’(u) with valueb, (u) < dp(u, z) by the iterationk of the
Bellman-Ford exploration of phase 1. The base case feru clearly holds. Fix any othet € P with h
hops tou on P, and assume it holds fagr, the neighbor ot on P (the one closer ta), so we have that
by(u) < dp(u,p) by iterationh — 1. At iterationh, p will broadcast its valué,(«), and thus: could have
updated its value to big,(u) + w”(p, z). In particular,

b2 (u) < bp(u) +w"(p, 2) < dp(u,p) +w"(p, 2) = dp(u, 2). (19)
We now argué. (u) satisfies {4), which would cause to join ¢’ (u),
19
bz(u) < dP(U, Z)
= dp(’LL,'U) - dp(’U,Z)
< dgi(u,0) = da(v, 2) (20)
13
< (1+e)dg(u,v) —dg(v, 2)
A8) b, (u)
< _
S Ttep da(v, 2) (21)
19 dip(v)
- 22
< (1+6)4 dg(U,Z) ( )
©) dg(’l), Ai+1) — dg(v, Z)
<
- (14¢€)3
o do(z A1)
- (14¢€)3
(i) dit1(2) 7
- (1+e)3

where @Q0) uses thatP is the shortesB-hops path inG”, and @1) uses the contradiction assumptidr8Y
(note that it was used with the ter(d + ¢)? rather than(1 + €)*). Hencez joins C’(u), and sob,(u) <
dp(u,v). Hence

B) (. ) D
by(u) < dp(u,v) = dG" (u7 v) < (1 + €)dg (u,v),
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which contradicts our assumption tha¥) does not hold.

We now turn to vertices € C’(u) who joined in phase 1.5. The left hand side holds sin¢e.if)) € F
is the hop-set edge that triggered the additiom,and P’ is the path inG’ realizing this edge, we have that
by(u) = dpr(v,x) + by(u) > dg(v,x) + dg(x,u) > dg(v,u). For the right hand side, note that we only
used the fact that joined in phase 1 a2@), so we can repeat the argument, replacing the us&®fiy
(16). We indeed lose a factor af+ ¢, but the inequality is still valid, yielding the same coudiction.

Finally, we turn tov € C‘(u) joining at phase 2. Note that for each sugtihere exists some € V' for
which v sets its value to b&,(u) = dyy + by (u) > dg(v,x) + dg(z,u) > de(v, w), which proves the left
hand side of 17). For the right hand side, consider first the case tfatu) < B. Sincewv could update
b,(u) directly from the broadcast of itself, we have

@ (B)
by(u) <0+ dpy < (14 €)dg” (v,u) = (1 +€)da(v,u) .

The other case is whei(v, u) > B, but thenClaim 3(with i = [k/2]) suggests that there existss V' on
the shortest path it¥ from v to u, with h(v,z) < B. In particular,d(GB) (x,v) = dg(z,v). Again seeking
contradiction, assuméY) does not hold for. Let P be the shortest (at mostyhops path fromu to z in G”.
We claim that every € P must have joined” () at phase 1. To see this by induction, fix P with i hops
fromu on P, and assumg (the neighbor ot closer tou) did join by theh—1 iteration of Bellman-Ford, with
by(u) < dp(u,p). Whenp broadcast$,(u) at steph, then indeed, (u) < by(u) + w”(p, 2) = dp(u, 2).
Now,

(lSS) (1+e€)dg(u,z) —dg(z,x) (23)
= (1+¢)ldg(u,v) —dg(z,v)] —dg(z, )
by (u
< ﬁ —dg(z,v) —dg(z,x)
19 dipq(v
1<5 (1-:(6)21 —dg(z,v) —dg(z,x)
@ da(v, Aip1) — dg(@,v) — de(z,7)
- (1+¢€)3
da(z, Ait1)
S T1tep
dit1(2)
< Orep

((23) is because: lies on the shortest — v path inG.) .
This impliesb, (u) satisfies 14) and thus: indeed joingC’(u) by iterationk of phase 1. In particular;
joins by the end of phase 1, and broadcagts) at phase 2. Then we have that

by(u) < by(u) + dyy (1§7) (1+ e)*dg(u, ) + (1 + €)dB(z,v) < (1 + €)*dg(u,v) ,

(Recall thatd,,, is the value computed by the algorithm of Theor&m This yields a contradiction tdl.8)
and concludes the proof. O
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The following lemma shows that the S(ei‘$u) satisfy the requirement from approximate clusters. The
proof is similar to that oLemma 5 though it uses the definition @f,(u), rather than the (contradiction)
assumption that, (u) is large.

Lemma 6. For anyu € A4; \ A;,1, the setC(u) satisfieg9).

Proof. For the right hand side o8, note that ifv € C’(u), then

a7 1HA(16) d: ©)
dg(u,v) < by(u < (fi(ggl <

de (v, Ait1)

sov € C(u) as well. For the left hand side o®) (at this point we only show that’(u) 2 Ce(u) N V'),
considerv € Cg.(u) N V', and letP be the (at mostp-hops shortest path fromto « in G”. It suffices to
show that every vertex along this path which i hops fromu, will join C’(u) and have,(u) < dp(y,u)
by the iterationh of Bellman-Ford in phase 1. Assume (by induction) thathe predecessor af on P,
joins C’(u) and satisfies, (u) < dp(p,u) by iterationh — 1. Thus,p sends at iteration the valueb, (u).
Sinceby, (u) < w”(y,p) + bp(u) < w”(y,p) + dp(u,p) = dp(u,y), it remains to show that this value of
b, (u) satisfies 14), and thugy joins C’(u). To this end,

by(u) < dp(u,y)

dg}ﬁ’z (u7 ’U) —dp (y7 U)

IN

13
< (14 e)dg(u,v) — daly,v)
(1+€)dg(v, Ajs1)

< _

< T4 6e da(y,v)

- da(v, Aip1) — da(y,v)
(14¢€)3

- da(y, Aiv1)

- (14¢€)3

® dis1(y) .

- (1+¢€)3

where the fourth inequality uses that Ce.(u) (recall @)). This impliesv will joinN(:"(u) in phase 1.
We now prove that9) holds forC(u). For the right hand side, let € C'(u) \ C’(u), then there exists
v € V' for which y satisfies {5). So we obtain

(@) 15 d; ©)
daly ) < doly,0) +da(en) S () D B D gy a0).
This implies thaty € C(u). For the left hand side o8], assumey € Cs.(u). Consider first the case that
h(u,y) < B. Then whenu broadcast$,,(u) = 0 at phase 2y will add itself toC'(u) because

) ® 1+ (
Ay +0 < (L dg (y.0) = (1L 9do(y,u) < 77

The other case is thafy,u) > B. Then byClaim 3there is a vertex € V' on the shortest path fromto
u so thath(y,v) < B. We now argue that € C’(u), by a similar (though slightly more involved) argument

5) Czi+1(y)
-d A; .
a(y, Aip1) < T+e

(24)
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as above. To see this, consider the shortest pathith (at most)3-hops inG” from u to v, and we claim
that each vertex on this path withh, hops fromu, will join C’(u) with b, (u) < dp(u, z) by iterationh of
the Bellman-Ford of phase 1. Again by induction, at stefe vertexz heardb,(u) < dp(u,p) from its
predecessgp on P. Then indeed, (u) < b,(u) + w”(p, 2) < dp(u,z). Now we show that joins C’(u).

b.(u) < dp(u,z)
= d%)(u,v) — dp(z,v)
(13
< (1+e)dg(u,v) —dg(z,v)
= (1 + 6)[dG(u7 y) - dG(y7 v)] - dG(Z7 v) (25)
< QHIW L) oy, 0) — doz,v) (29)
< ey, Aiv1) —de(y, v) — dg(z,v)
- (1+e)?
da(z, Aig1)
= (1+¢€)3
©®  dig1(2)
— (1+¢€3"

where @5) uses thab is on the shortest path 1& from u to y, and @6) uses thay € Cg.(u). In particular,
we have shown € C(u) by the end of phase 1. It follows thawill broadcast the valug, (v) < d'-) (u, v)

in the second phase. Sinkéy,v) < B,
by (u)

GH

dyy + by (u)
(1+e)dB(y,v) + dg) (u,v)

(1 + 6)[dG(y> U) + dG(”» U)]
(1+e)da(y,u)

11:—r6€e ~da(y, Aiy1)
dz‘+1(y)

1+e

Soy will be added toC'(u). This concludes the proof of the lemma.

O

Our next goal to to argue that the parent setting ensuresdbawertex distances in each cluster tree
satisfy (L0), i.e., are approximated up to a factdr+ ¢)*. It suffices to prove the following claim.

Claim 7. Foranyu € A;\ A;41,and any € C(u), if p = p(v) is the (real) parent of with corresponding

valueb,(u), thenp € C(u) and

by(u) = w(v, p) + by(u) -

(27)

Once this claim is established, we get by induction on théfdepthe tree thatl:,, (u,v) < by(u).
The base case when= v clearly holds, assume far= p(v) thatds,, (u,p) < by(u), and now

@7

dé(u) (U,U) = W(U,p) + dé(u) (u>p) < ’(U(’U,p) + b;l)(u) < bv(u) .
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Combining this withLemma 5establishes1(0).

Proof of Claim 7. Consider first the case thatc C’(u), and there are two sub-cases to consider. In the first
sub-casey updated, (u) in phase 1 from some € C’(u), who sent,(u) over the (virtual) edgéz, v) €

E’ (which is not a hop-set edge). Then by the definitior6fb, (u) = w'(x,v) + by (u) = dgy + bz (u),

the virtual parent of is set tox, and the real parent is thus= p.(v). Sincep receives a message fram

in the second phase, it sétgu) to at mostd,, + b,(u). It follows that

bp(u) < dpg + by (u) (§3) Ay — w(v,p) + by (u) = by(u) —w(v,p), (28)

which satisfies 7). But we must also argue thatindeed joins the treé(u). Here we use the relaxed
condition of (L5) (compared to14)), and obtain that

(29)
bp(u) < by(u) —w(v,p) (29)
W dig1(v)
_ 30
@ da(v, Aiy1) — da(v,p) (31)
- 1+e
< L Adin)
- 1+e
< di+1(p) 7
- 1+e

which satisfies15).

The second sub-case is thatipdated, (u) in phase 1 or 1.5 due to some hop-set efge)) € F, so
thatv lies on the pathP in G’ realizing this edge (it could be that= v, if it happened in phase 1). We set
by(u) = by(u) + dp(x,v), and the virtual parent of is v* € V’, its neighbor onP which is closer tar.
Recall that inG’, the weightw’ (v, v") = d,,., S0 that

dp(l’, U) = dp(l’, U/) + dyyr - (32)
The real parent of is set ap = p,/(v). Sincev’ broadcasts in phase 2 its estimate(u) < b,(u) +
dp(z,v"), it follows that
by(u) < dyu + b ()

® ,
< (dvv’ - w(v,p)) + (bx(u) + dp(l‘,U ))

G bo(w) + dpv, ) — w(v,p)
— bv(u) — w(vap) )

as required inZ7). Again, to see that € C'(u), we repeat the calculation a29) with one change: In30),
replace the use ofL@) by (16), which will have the factor of1 + ¢)? replaced by(1 + €)?, but this suffices
to satisfy @1).

We turn to the case thate C'(u) \ C'(u). Letz € C’(u) be the vertex which broadcasts in phase 2 a
valueb,. (u) minimizing b, (u) = dy; + b, (u). The parent ob is thus set to be = p,.(v), and now

)
bp(’LL) < dpm + bzv(u) < dv:v - W(U,p) + b:v(u) = bv(u) - w(v,p) 5
The proof thap € C(u) is again similar t029).
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Running Time. We noted that the number of rounds required for the prepsingss O (n!/21/(2k) 4
D)-min{20V1e™ (1o 1)O*)}. Since by 9) we haveC”(u) C C(u), thenRemark 2suggests that € V'
sends at mosD (n'/*) distance estimatds,(-). As|V’| < O(n'/?), by Lemma 1 implementing a single
Bellman-Ford iteration will tak&(n'/2+1/% - D) rounds. As there arg iterations in phase 1 (and a single
one in phases 1.5 and 2), the total number of roundig/2+1/% 1 D). min{20(V1e ™) (1og n)O"W}. (For
oddk, both|[V'| - n/*, B < O(n!/2+1/(2h)) so we geO (n!/2+1/(2k) 1 D). min{200VIe™) (log n)Oh)}
rounds.)

4 Routing Based on Approximate Clusters

In this section we show that approximate pivots and appratentlusters suffice for a compact routing
scheme, and prove our main result.

Theorem 5. LetG = (V, E') be a weighted graph with vertices and hop-diametdp, and letk > 1 be a
parameter. Then there exists a routing scheme with stretofoatdk — 5 + o(1), labels of size) (k log? n)
and routing tables of siz@ (n'/* log? n), that can be computed in a distributed manner withify/>*+1/%
D)-min{(logn)°®), 20(vVIoen)} rounds, and for odd only (n'/2+1/(2%)  D).min{(log n)°*), 20(VIogn)}
rounds.

Construction. Apply Theorem 4on GG to obtain approximate pivots and approximate clusters lforea-
tices. Foreacl) < ¢ < k — 1 and eachu € A; \ A;41, construct the routing scheme for trees given
by Theorem 7on C'(u). (We postpone the proof of Theoremi.e., the description of the algorithm that
constructs routing tables and labels for each tree, to@e8lj Specifically, in each tree, every vertex stores
a table of sizeD(log n) and has a label of siz8(log® n). The routing table of each € V consists of all the
tree-routing tables, for every € V' such thaw ¢ é(u). The label ofv consists of the tree-labels for the (at
most) k treesC(2p(v)), ..., C(2x—1(v)), wherez;(v) is the approximaté-pivot of v (note that it could be
thatv does not belong to some of these trees, the labelafl mark these as missing). Bemark 2there
are at mosO(n'/* log n) trees containing, and as each tree-table is of si2€log n), the routing table size
is as promised. Since each tree-label is of §izlvg® n), the label size also obeys the given bound.

Finding a Tree. Assume we would like to route from vertexto vertexv. The routing protocol will find
a vertexw = zi(v) for some0 < i < k — 1, such that the stretch of the (unique) path frefo v in the tree
C(w) is at mos#dk — 5 + o(1). The algorithm to find such a vertex appeard\lgorithm 1.

Algorithm 1 Find-tree(u,v)
14+ 0;

while |{u,v} N C(%(v))| < 2do
141+ 1;

end while

return Z;(v);

We note that our algorithm differs slightly from that Gi401], since it could be the case thatloes not
belong to the cluster centered at the pivowdidt leveli. For this reason we keep searching until we find a
cluster containing both, v.
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First we claim that the algorithm is correct. Note that théniigon of approximate cluster9j implies
thatC'(z) = V for everyz € A;_, (this holds since the distance #, is defined asc). Therefore when
i = k — 1 it must be that bottu, v € C(2;_,(v)), and the algorithm indeed halts. The t€éw) contains
bothu, v (wherew = %;(v) is the vertex returned by the algorithm), by definition. Hipahe information
from the label ofv indicates which of these trees contain it, and the routibtetaf « also lists the names of
all trees containing it. So we can run the algorithm fraknowing the label ofb.

Onceu computes the roaw, it appendsw to the message header along with the label.oFrom this
point on the header does not change, and we route in thé(r@&. Since this routing is exact, it remains
to bound the stretch incurred by using the tree.

Bounding Stretch. We distinguish between two types of iteratiarthat the algorithm did not stop at. Let
I,={0<i<k—1: u¢C(%(v))} be the iterations in whicku, v} N C(2;(v)) is empty or contains

justv, and letl, = {0 < i < k—1 : {u,v} N C(%(v)) = {u}} be the remaining iterations in which
the algorithm did not halt. For anyc I,, by (9) it holds thatCs.(%;(v)) € C(%:(v)). Hence, we have

u ¢ Cge(2i(v)), which suggests that

—
INS

(1 + G)dG(U, Ai+1)

(I+¢e)(1+ 6e)dg(u, 2;(v))
(1 +8¢)dg(u, 2;(v)) . (33)

da(u, Zig1(u))

IN ING

Similarly fori € I,
(1 + 6)dG('U7 Ai+1)

(14 €)(1 + 6e)dg(v, 2(v))
(1 4+ 8€)dg (v, 2;(v)) . (34)

da(v, Ziy1(v))

IA A IA

Define the following valuegy = dg(u,v), 9 = 0, and for0 < i < k — 1 define recursively; =
(14 10€)[yo + zi—1], andz; = (1 + €)[yo + y;]. Assume that the algorithm halted at iteratibnThen for
each0 < i <4’ we claim that

dg(v,2;(v)) < x; . (35)

We verify the validity of 85) by induction. The base case trivially holds sirig¢v) = v andzy = 0. Fix
0 < i <. The algorithm did not halt at iteration— 1. If it is the case that — 1 € I,,, then we have that

da(u, Z;(u)) (3§3) (14 8€)dg(u, zi—1(v)) (36)
< (14 8¢)[dg(u,v) + dg(v, Zi—1(v))]
(39
< (1+8¢€)[yo + wi-1]
<

Yi -
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The other case is that- 1 € I,,. Sincez;(u) € A; we obtain

—
S
-

da(u, 2 (u)) u, A;) (37)

IAN AL IA IA TA

=

1+ e)[dg(u,v) + (1 4 8€¢)dg (v, Zi—1(v))]
1+ 10€)[yo + xi—1]
Yi

We conclude that in both cases,

da (v, Z;(v)) 1+ €)dg(v, A;) (38)
(

IAIA A

(36)A(37)
<

I
&8

We now have a recurrenag = (1 + €)(2 + 10¢)yo + (1 + €)(1 + 10€)x;—1. Solving it, yields

i—1
zi= (14 €)(2+10e)yo Y [(1+€)(1+10e)] .
j=0

We use the fact that for any real > 0 and positive integer such thater < 1/2, the following holds
(I1+2)" <1+ 2zr. Now we may bound:; by
i—1 '
ri < (2+413e)yo y (1 + 12€) (39)
j=0
i—1
(2+13e)yo Y (1 + 24ej)
j=0
< (24 13€)yoli + 12€i%)
< (24 136)yol(i + 1/(4K))

IN

where in the last inequality we use that -1 <

TRt Finally, using that’ < k—1 and thatw = 2, (v),
the stretch is given by

1
48k2:2 "

(10)

< (14 6)4[dg(u, w) + dg (v, w)]

(3§5) (1 + 5€)[dg (u,v) + 2x;]

D 15O+ (44 266)(k — 1+ 1/(4k2)] - dex(u, v)
< (4k-3+0(1)) dg(u,v) .
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In order to improve the stretch to the promisgd— 5 + o(1), we use same trick as iTZ01]. Each
vertexu € Ap \ A will store in its routing table all the labels for verticesGtu), which enables to save an
additive term ofdg(u, v) in bothz; andy;. We refer the reader ta'z01] for the details.

Runningtime. By Theorem 4the time required to compute the approximate pivots anttéesC (u) for
everyu € A;\ Ai 1 is (n'/2+1/% 4 D).min{(log n)°®, 20Ve™1 whenk is even, andn!/2+1/(2k) 4 D).
min{(log n)O®*), 20(VIogm)} whenk is odd. ByClaim 2, each vertex participates in at matn'/*) trees.
Hence, byRemark 3 which will be stated and proven in Secti6nit will take only O(n!/2+1/(2k) 4 D)
rounds to compute the routing tables for all trees in pdralle conclude that the total number of rounds is
(n}/2t1/k L D).min{ (log n)O®), 20(VIogn)\ for evenk, and(n'/21/(2%) + D).min{(log n)°®*) 20(Iegn) 1
for odd.

5 Distance Estimation

In this section we sketch how the routing tables can be ugatidtance estimation, and prove the following.

Theorem 6. LetG = (V, E') be a weighted graph with vertices and hop-diametdp, and letk > 1 be a
parameter. Then there exists a distance estimation schinateassigns a sketch of siz&(n'/* log n) for
each node, and has streteh —1+o0(1), that can be computed by a randomized distributed algorithtinin
(n'/2+1/% & D) . min{(log n)°*), 20(vVIem)} rounds (whp). In the case of odd the running time can be
decreased t¢n'/2t1/(2%) 1 D). min{(log n)°*) 20(vem) Furthermore, the distance computation can
be done in time) (k).

Apply Theorem 4 which computes all the approximate pivots and approxinchisters. Each vertex
v € V include in its sketch for every € V so thatv € C(u), the pair(u,b,(u)), whereb,(u) is the
approximate distance t computed irSection 3 Also for every0 < i < k — 1, add(2;(v), d;(v)), which
is the approximate-pivot and distance to it. ByRemark 2 every sketch is of SiZ@(nl/ ¥logn). The
algorithm that computes a distance estimate given two B&etis similar to that ofTZ05. We state it
formally in Algorithm 2.

Algorithm 2 Dist(u,v)
114 0;

W — U,

- while v ¢ C(w) do
141+ 1;
(u,v) < (v,u);
w < Z;i(u);

end while

return d; (u) + by (w);

© NGO RAE®WwDN

Observe that the sketch contains all the relevant infolondtr executingAlgorithm 2. When the while
loop terminatesy € C(w), so it has the estimati,(w), while u stores the approximate distandg)
to every one of its approximate pivots. The stretch analgsevariant of the analysis o059, similar
in spirit to that of Section 4 Roughly speaking, on the stret@ — 1 achieved by TZ05], we pay a
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multiplicative factor of(1 + O(e))* due to the fact that distances are approximated. Howevierptils

down to arp(1) additive term, since = ﬁ We leave the details to the reader.

6 Distributed Tree Routing

In this section we present a modification of the (exact) rmuscheme of Thorup-Zwick for rooted trees,
that can be implemented efficiently in a distributed manmie price is that the size of the labels and tables
increases by a factor dfg n, compared to whafl[Z01] achieved.

Theorem 7. Fix a graphG = (V, E) on n vertices with hop-diameteD. For any treeT" which is a
subgraph ofGz, there is a routing scheme with stretch 1, routing tablesizé & (log ) and labels of size
O(log?n), that can be computed in a distributed manner withify/n + D) rounds.

Remark 3. If we are givem: trees, each a sub-graph 6f = (V, ), so that each vertex € V' participates
in at mosts trees, then routing schemes for all the trees can be compuait@d,/» - s + D) rounds.

Let us first recall briefly how (a simplified version of) the Tegheme works. For every non-leaf vertex,
define aheavy childas the child with the largest subtree. Run a Depth First B§&ES) on the tree, each
vertexwu receives an entry time, and exit timeb,,. The routing table stored at each vertegonsists of the
name and port number of its parerit.) in the tree, the name (and port) of its heavy chiild:), and the
numbersa,, b,. The label of a vertex. contains the number, and additionalllog n| words: consider the
path P from the root tou, for every vertexw on this path such that its heavy child is not Bhwe append
to the label ofu the name ofw and the port number leading from to its child onP. The observation is
that whenever the path does not use the heavy child, the sike subtree shrinks by a factor of at least 2,
so this can happen onlylog n] times. In order to route from to v, every intermediate vertex does as
follows: if a, = a, we are done, ifi, ¢ (a.,b,), we know the DFS did not find in the subtree rooted at
x, Sox sends the message to its parent, ang i€ (a,, b,) thenwo lies in the subtree of. In the latter case,

x examines the label af for an entry of the form(x, 2'), if it exists it sends to its child’, if not, z sends
the message to its heavy child.

In order to obtain a scheme that runs efficiently in a distedumanner, we cannot compute heavy
children and run DFS on the entire tree. Instead, we shallyaggstain variants of the TZ-scheme in two
levels. LetT" be a tree on the verticdg(7") C V, rooted atz. Foru € V(T'), denote byp(u) the parent
of w in T. We assume that every vertex knows the names of its parentsatiildren. The basic idea is to
randomly sampley > ¢ - In n, for a sufficiently large constarmt verticesU C V. (v here is a parameter.)
Each vertex inl” chooses itself td/ independently with probability:. Partition the tre€l” into subtrees
according to the vertices &f(7") = (U N V(T)) U {z}, by removing each edge from a vertex®fT') to
its parent. Note that this partitiorfs into a forestF' of |U(T")| subtrees, each of these subtrees is rooted at
avertex ofU (T"). Forw € U(T'), denote byl’, the subtree irf’ rooted inw. Let7” denote the virtual tree
on the vertices ot/ (T"), wherew is a parent of. in 7", if p(u) lies inT,,. We shall devise a routing scheme
for eachT,,, and a global scheme that routesZih We begin by bounding the depth of each subtree; let

B=22.1nn.
Y

Claim 8. With high probability,|U| = O(~), and for eachw € U(T'), the treeT,, has depth at mosB.

Proof. The first event holds with high probability by a simple Chdfiomund. For the second: by indepen-
dence, the probability that a pathin T of lengthB hasP N U = (), is

dn/yInn 1
T
n n
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Taking a union bound on th@(n?) possible paths (in a tree, choosing the path’s endpoinesmetes it)
completes the proof. O

Remark: Observe that we still have high probability that the everit€laim 8hold overn different trees
of the Thorup-Zwick cover.
From now on assume the events@iaim 8hold. The assignment has two phases.

Phase 1. In the first phase we compute a routing scheme for ¢ the forestr, in parallel. In each
round, every vertex; that received messages from all its children, sends to i@npan F' the size of its
subtree (by summing up the sizes of the subtrees of the ehildru). By Claim 8 the depth of each tree in
F'is at mostB, and in each round we send one word per vertex. Hence Afteunds every vertex knows
the size of its subtree (if’), and in particular, can infer who is its heavy child. Nowleace U(T") can
start a parallel DFS df’,, — that is, every vertex assigns entry and exit times to alsi€hildren in parallel
(it is possible since it knows the sizes of every child’s set. Each vertex iff’,, adds to its routing table
(p(z), h(x),as, by, w), which are the name of the parentxgfthe heavy child of:, the entry and exit times,
and the name. This computation (parallel DFS) will also requit& B) rounds, since all subtrees work in
parallel.

The (local) label assignment for verticesiip is done in the following manner. Starting from(which
has empty label), every vertexthat receives a labélfrom its parent, and has children, ..., z;, send¥
to its heavy child, and o (z, z;) to z; for each non-heavy child;. The label/(x) will consist ofa, and the
list ¢ of edges that was given ta

Phase 2. In the second phase we compute a routing schem&’orEveryu € U(T) sends a message
to its parentz in 7', and receives from: the following messagef(z), the namew such thatz € T, (so
that the edgéw, u) should be in”), and also the port numbefz, u) of = leading tou. Then every such
u broadcastg(w, u), z, ¢(x),e(z,u)) to the entire graph. Once the root vertexas full information on
T, it may locally compute the TZ routing scheme fBf. The routing table given ta € U(T) is slightly
different than in the usual scheme, as it will contain localting information for the vertex leading to the
heavy child. More formally, the table will b@'(u), £(y), e(y, W' (u)),al,,bl,). Hereh/(u) is the name of
heavy child ofu in 7", y € T, is the portal vertex which is the parent@f«) in T, ande(y, h'(u)) is the
port of y leading toh'(u). Note thatz has the name, label and the appropriate pogtwhenh’(u) reported
the edg€(u, h'(u)). Finally a.,, b!, are the entry and exit times of the DFS runbgn 7”. Observe that(y)
has sizeD(log n), and this term dominates the size of a routing table. ThexeamosiO() such tables.
HenceLemma limplies that we can broadcast to the entire graph all thessages withi© (v log n + D)
rounds. In addition, every vertexc U (T') sends the routing table given to it to all the vertice§’jn Since
we can send the information inside each subtree in paralieill take only O(B logn) rounds.

The label assignment to the verticesTdfis also modified, since for every possible edge takef’in
which is not leading to a heavy child, we must add the localingunformation. Fixu € U(T'). Assume
((v1,w1),. .., (v, w;)) is the list of all edges in the path @f from 2 to u, so that eachw; is a non-heavy
child of v;. Ordinarily, this list would have been the labelwofalong witha,,). However, in order to be able
to route in7”, we replace each such edge with, w;, (z;), e(z;, w;)), wherex; is the parent ofv; in T,
¢(x;) is the labelz; received in the first phase (for local routing witlih, ), ande(x;, w; ) is the port leading
from x; to w;. Recall that: knows the label and appropriate port of every sughSince eacli(z;) has size
at mostO(log n) words, and < log n, we have that the label size@log? n). As before, each € U(T)
propagates this labél(u) to every vertex irf;,. The number of rounds is therefof¥~ log® n + D).
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Protocol. The routing fromu to v will be done as follows. Assume we have arrived to an inteiated
vertexz that lies inT,,. Firstz: checks if routing in” is required, by comparing, with o/, b, (recall that

al, is part of the label ofy, and the routing table of containsa!, = a!, andb!, = b])). If a} = a/, then

v € T,,, and we proceed to route insidg,. If a/ ¢ (a,b.,), we need to route to the subtree rooted at the

T T
parent ofw in 7", and ifa), € (a’,, b)) then we need to route to the appropriate childwdh 7",

Routing inside T,,: This is done exactly as in the TZ scheme, while considerieddbal routing tables
of vertices inT,, and/(v). If a, = a, we are done. If, ¢ (a,,b,) we route to the parent of (stored
in the local routing table of:), and wher,, € (a,,b,), we inspect(v): if it contains an edge of the form
(z,2"), for somex’, we route tar’. Otherwise to the heavy child af (the heavy child’s name is also in the
local routing table ofr).

Routing to the parent of w in T": This is simple,r just routes to its parent, its name is stored in the
local routing table ofz. Eventually we will reachw (since all vertices i}, have the samé label), and
route from it to vertex in the tree af’s parent in7”.

Routing to a child of win 7": Here we inspedt'(v), if it contains an entry of the forrtw, w’, £(y), e(y, w'))
then we know we have to route #f from w to its childw’ in T". Fortunately, the labél(y) provides us the
required routing information to route ifi, to the portal vertex (that hasw’ as a child inT"). Fromy we
go to its childw’ using the pore(y, w’). If the label?’(v) contains no such entry, then we know we need
to route to the heavy child af) in 7. Here the label of; is useless, but we stored the labelofe T,
the portal vertex which is the parent of this heavy child fie touting table of each vertex ©f,. Using the
label of y’ we can route locally if7},, and fromy’ route toh’(w) (using the port number for heavy child
stored in the routing table).

When constructing routing tables and labels for one singke the overall running time &(v-log? n -+

D)+ O(B -logn) = O(y -log?n + z- log?n + D), i.e.,0(D + /n - log? n), by settingy = /n.

Proof ofRemark 3 To avoid high running time, we shall perform the routing &sdind labels computations
in parallel in all cluster trees, while appending to eachsags the name of the relevant tree. In the first
phase, which can be implementedﬁm\/ﬁ) rounds for each tree, we send information on the graph edges
(every vertex notifies all its neighbors in each round), sodbherhead due to participation in up4drees
is only a factor ofs. In the second phase, however, we broadcast messages ttitbegeaph. So we need
a bound on the number of these messages. For each’t(@éich consists of the vertices 6f alone) we
broadcast 2 messages per vertex: the first informing theofdtst existence, its parent, and the local routing
information. In the second message, the root broadcadtisganformation and a label for the vertex. Each
message is of siz@ (log? n). By charging these messages to the verticds,afach such vertex pays for 2
messages per tree containing it. But the number of these ised¢ most, so we need to broadcast at most
O(y/n - s) words. ByLemma 1 these can be broadcast to the entire grapB(ig/n - s + D) rounds.

We next argue that this bound can be further improve@(ton - s + D).

Every rootw of a treeT,, in one of the forest$” (each cluster tree gives rise to one such a forest) tosses
a starting timestart(w) uniformly at random from the intervdl, ¢ - Inn - v/ns|, for a sufficiently large
constant. It then starts broadcasting to verticesIgf at time20 - start(w). (It broadcasts to them the value
start(w).) Each round of this broadcast is replaced by stages cmusist 20 rounds each. Specifically,
a vertexx in T, that already received the message from its parent triesliwedd to its children for 20
consecutive rounds. We will show that, whp, for every edgeome of these rounds no congestion will be
experienced. Only when these 20 rounds are over, the chitfre will start broadcasting.

Consider a specific edge = (z,y) in a treeT,,. Letw;,ws,...,w, be the roots of tree¥,,, that
contain this edge. (Recall that, by Clainwhp, s = O(nl/k -logn).) Letty, ta,...,ts be the respective
hop-distances between; and the closer endpoint @f to w;. In other words, for every € [s], if w;
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broadcasted a message o¥&r, and no other messages would have interfered with its besadthen the
broadcast ofv; would traverses; on stept;. (For convenience, we number the steps starting from 0.)
For any indexR, the probability that the broadcastof will want to traverse: on stageRz, conditioned
on the assumption that it experienced no congestion whagsbefore that, is the probability that; starts
broadcasting at stage — ¢;, i.e., this is equal to Btart(w;) = R — t;). The latter probability is at most
C\/n_ﬁ. For a positive integety < s, the probability thaty cluster trees wish to employon stagerR,
conditioned on the assumption that no congestion was expexil by any of them so far, is at most

__ . < - < — .
<clnn-\/ns> <a> - <clnn-\/ns> - <n1/2—1/(2’f)>

For o = 20, this probability is at mOSInm}W < L. By union-bound over all stage indicés < n, and
all the|E| < n? edges, we still have an only negligible probability that agestion was ever experienced
throughout the algorithm. (Here we say that a congestiorpsrenced if a vertex wishes to broadcast a
messagen on a stageR of the algorithm through an edde, «) incident onv, andv cannot do it for the
entirea = 20 rounds of this stage, because of other transmissions thalbgrine same edge.)

Hence, whp, irO(B - a) 4+ O(y/ns Inn) = O(B +n'/?t1/(2%) In n) rounds, all broadcasts of the values
of starting times will be completed. (Recall thBtis an upper bound on the depth of treégs.) This
completes Phase 0 of the algorithm.

Now the algorithm proceeds to Phase 1, on which convergeaastconducted in all these trees. As a
result of these convergecasts, every vertex 7;,, knows the size of its subtree ifi,,. These converge-
casts are conducted by a similar procedure to the one thatleggsibed above, i.e., all leavestj, start
broadcasting at stage€art(w;), and each stage lasts far= 20 rounds. Hence these convergecasts are
also completed iO(B + y/ns - Inn) rounds. Then the “parallel DFSs” are conducted in all thegtiia
parallel by the same procedure of tree broadcast. As a redulterticesz in these treed,, learn their
routing tables withiril},,. They also learn their routing labels within additio@(B log n + /ns log® n)
time. (Note that for labels one may need to send messageseaP fiog n) words, and so stages of length
O(a -logn) = O(log n) are needed.)

Phase 2 is performed in the same way as was already descfipedtifically, the algorithm conducts
convergecasts of messagése), w, e(z,u)), whereu € U(T) andx is its parent inZ’, for some cluster
treeT’, over the BFS tree of the entire grapliz. Since every selected vertexmay participate in up te
trees, and there a@() selected vertices, this convergecast requi?és - s + D) time. Analogously, the
broadcast of the computed routing tables requi?és - slogn + D) time.

Then eachu € U(T) sends its routing table to all vertices Bf. This is done using the tossed starting
times and with stages ef rounds each, as in Phase 1. Hence this step reqQifBdog n + /nslog? n)
time. Finally, the labels of selected nodesTih are broadcasted over the BFS treavithin additional
O(y - s -log?n + D) time.

To summarize, the overall running time of the algorithnOiB + D + y/ns + v - 5) = O(% +D +
nt/241/Ck) 1~ 5). By settingy = /n/s = "1/%\/%%), we get the running time a(,/ns + D) =
O(n1/2+1/(2k) —I—D).

O
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A Proof of Theorem 3

Let X C V be a set of vertices so that eacte V' is sampled taX independently with probability //n.
DefineV' = A U X, and note that with high probability = 4,/nlnn > |V’| (since it is given that
|A| < 2y/nlnn). Apply the same preprocessing steps aSewtion 3.3.with 1V’ as defined here, to obtain
a graphG” onV’ satisfying (L3).

Computing Approximate SPT for V/. The first step is to compute the valu@%{v), Z(v)) for vertices
v € V'. Every vertex irv € A initializes its values a$0,v), while v ¢ A sets(oo, L). Conducts =
min{20(VIen) (1og n)O(*)} iterations of Bellman-Ford rooted 4t at every iteration, every vertaxe V'
broadcasts its paiii(v), 2(v)) to the entire graph, andif € V' hasw” (u, v)+d(v) < d(u), thenu updates
its pair to be(w” (u, v) 4 d(v), 2(v)). (Recall thatw” is the edge weight function @, where the latter is
the virtual graph given bfheorem laugmented with the hopset edgesToorem 2

The number of rounds required to constrGétis (n'/2+1/(%) 4 D). min{20(V1e™) (logn)°*)}, and
by Lemma 1this term also bounds the number of rounds it takes to bresadeceO(|V’| - 5) messages for
the Bellman-Ford iterations.

Egtending the SPT toV. At the end of thes iterations of Bellman-Ford, every vertex € V' knows
(d(v), 2(v)) for everyv € V'. Every vertexu € V computes

d(u) = min {d, + d(v)}, (40)

and setss(u) = zZ(v), wherev € V' is the minimizer of 40). (Recall thatd,,, is the value computed in
Theorem 1)

Analysis. We assume all the events Gfaim 3 hold (which happens with high probability). Fare V
let z, € A be a vertex satisfyindg(u, z,,) = dg(u, A). Since we performed iterations of Bellman-Ford,
using @3) withv € V' andz, € A C V' we have that’ satisfies §).
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Consider now some € V, and letv € V' be the minimizer in40). The left hand side off) holds, as
the fact that € V' satisfies §) implies

~ 2
duy +d(v) > A (u,v) + dg (v, A) > da(u,v) + da(v, A) > d(u, A) .

For the right hand side obj: In the case that(u, z,,) < B, by (2) we get that

d(u) < duzy + d(za) < 1+ )dP (u, 2,) +0 = (1 + €)dg (u, 2,) -

Otherwiseh(u, z,) > B, and byClaim 3there existas € X C V' on the shortest path i@ from v to z,
with h(u,v) < B. Since ) holds forv,

d(u)

IN

dyy + d(v)

—~
N
-

(1+ e)d(GB) (u,v) + (1 + €)dg (v, A)
(1+e)dg(u,v) + (1 + €)dg(v, z)
(1+e)dg(u, zy) -

IN A
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