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Abstract

Consider a scenario where Alice wishes to send a message m to Bob in

a time-slotted wireless network. However, there exists an adversary, Carol,

who aims to prevent the transmission of m by jamming the communication

channel. There is a per-slot cost of 1 to send, receive or jam m on the channel,

and we are interested in how much Alice and Bob need to spend relative to

Carol in order to guarantee communication.

Our approach is to design an algorithm in the framework of resource-

competitive analysis where the cost to correct network devices (i.e., Alice

and Bob) is parameterized by the cost to faulty devices (i.e., Carol). We

present an algorithm that guarantees the successful transmission of m and

has the following property: if Carol incurs a cost of T to jam, then both

Alice and Bob have a cost of O(Tϕ−1 + 1) = O(T .62 + 1) in expectation,

where ϕ = (1 +
√
5)/2 is the golden ratio. In other words, it possible for

Alice and Bob to communicate while incurring asymptotically less cost than

Carol. We generalize to the case where Alice wishes to send m to n receivers,

and we achieve a similar result.

Our findings hold even if (1) T is unknown to either party; (2) Carol

knows the algorithms of both parties, but not their random bits; (3) Carol can

jam using knowledge of past actions of both parties; and (4) Carol can jam

reactively, so long as there is sufficient network traffic in addition to m.
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0313160, and CCF-1613772.

1

http://arxiv.org/abs/1202.6456v2


1 Introduction

The wireless communication medium is vulnerable to jamming whereby an at-

tacker causes interference on the communication channel. Such attacks are pro-

hibited by US federal law, however, they occur in practice (see [18, 20]) and will

likely increase in frequency with the popularity of wireless devices.

Defending against jamming is particularly important to the security of wire-

less low-power networks (LPNs) such as wireless sensor networks (WSNs) and

the Internet of Things (IoT), where these attacks are known to degrade perfor-

mance [51,81]. Such networks are especially vulnerable given that their constituent

devices are often battery-powered and, therefore, energy is a scarce resource that

must be conserved.

With this setting in mind, we consider the following problem: Alice wishes

to guarantee transmission of a message m to Bob over a wireless communication

channel. However, there exists an adversary, Carol, who aims to prevent commu-

nication by jamming transmissions over the channel. Our solution to this problem

makes use of a relatively new technique called resource competitiveness. Infor-

mally, the idea behind resource-competitive analysis is to include the cost of the

adversary, T , as another parameter by which to measure the algorithmic perfor-

mance (details are provided in Section 1.1).

We assume a time-slotted model where it costs 1 to send, listen, or jam per slot

on the communication channel; these operations typically dominate the operational

costs of wireless devices in terms of energy usage (see Section 6 for discussion of

this issue). Our results guarantee the successful transmission of m and has the

following costs: if Carol incurs a cost of T to jam, then both Alice and Bob have a

cost of O(Tϕ−1 + 1) = O(T .62 + 1) slots in expectation, where ϕ = (1 +
√
5)/2

is the golden ratio. We are able to generalize to the setting where Alice wishes to

send m to n receivers, and we obtain a similar result.

In both cases, the smaller asymptotic costs to the good devices implies that it

is possible to “bankrupt” a jamming adversary. That is, in attempting to prevent

communication through jamming, Carol will deplete her onboard power supply far

more rapidly than either Alice or Bob (or multiple receivers) and, when this occurs,

communication will succeed. Note that such a result is useful even in the face of

continuous jamming; this is in contrast to most prior work where typically there

are constraints on how the adversary is permitted to jam (Section 1.3 discusses

previous work on jamming mitigation).

Our results holds even if (1) T is unknown; (2) Carol knows the algorithms used

by the communicating parties, but not their random bits; and (3) Carol can attack

using total knowledge of past actions of the communicating parties (i.e. Carol is an

adaptive adversary). Under the assumption of sufficient network traffic (in addition
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to m), we also demonstrate that the result holds when Carol knows the channel is

in use and then decides to jam (i.e. Carol is a reactive adversary).

1.1 Resource Competitiveness

Resource competitiveness is a new approach to designing robust algorithms for dis-

tributed systems [10, 36]. We now define what it means for a distributed algorithm

A to be resource competitive.

Assume a system with a set G of n good nodes that obey actions prescribed by

A. There exists an adversary who incarnates a source of disruption in the system.

For example, the adversary may represent (1) any number of malicious nodes that

collude and deviate arbitrarily from A, or (2) the effects of more benign failures

due to software or hardware faults.

Let Cost(α, v) denote the resource expenditure (or cost) to a good node v over

an execution α. A resource might be bandwidth, CPU cycles, energy, actual money,

or another useful domain-specific measure. Cost(α, v) is the cost incurred by v for

executing the actions prescribed by A in an execution α.

Let T (α) be the adversary’s total cost; this is typically unknown to the good

nodes. We simply refer to T and Cost(v) as α is implicit. We define what it means

for A to be resource competitive:

Definition 1. Algorithm A is (ρ, τ )-resource competitive ifmaxv ∈ G {Cost(v)} ≤
ρ(T ) + τ for τ > 0 and any execution.

In other words, A is resource competitive if the maximum cost incurred by any

good node is less than some function of the adversary’s total cost, ρ(T ), plus some

additive term τ . The function ρ is called the robustness function and it is a function

of T and possibly other parameters such as n. In designing A, we desire ρ to be

a slow-growing function. This implies that, as the amount of disruption increases,

the cost incurred by A increases slowly. Indeed, in dealing with jamming attacks,

we show that it is possible to achieve ρ(T ) = o(T ).
Why do we require τ? Note that when T = 0 — that is, there is no disruption

— the good nodes clearly cannot incur less than zero cost; τ represents the un-

avoidable cost to attain a goal even in the absence of disruption. Efficiency when

the level of disruption is low, or non-existent, is critical to efficiency. It useful to

make this separation explicit via τ , which we call the efficiency function, and it can

be a function of parameters such as n, but it is not a function of T .

Functions other than the maximum cost over all nodes may be appropriate de-

pending on the context. For instance, we may consider the average or median

cost. However, Definition 1 has been applied in the existing literature. Finally, we

typically report results using big-O notation of the form O(ρ(T ) + τ).
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1.2 Resource Competitiveness in Context

It is helpful to contrast the notion of resource competitive algorithms with a number

of related concepts.

Notions of Competitiveness. Competitive analysis is a well-known technique that

evaluates the worst-case performance of an online algorithm relative to an optimal

offline algorithm OPT [72]. While the inputs to an online algorithm can be viewed

as adversarially selected, there is no notion of cost to the adversary for selecting

certain inputs over others. In contrast, resource competitiveness places the cost to

the adversary directly in the performance metric (see Definition 1). Unlike online

analysis where it is impossible for an online algorithm to outperform OPT , a

resource-competitive algorithm can actually outperform the adversary by achieving

ρ(T ) = o(T ).
Game theory provides another measure of competitiveness known as the “price

of anarchy” which is the ratio of the worst-case Nash equilibrium to the global

social optimum [62, 71]. In resource-competitive analysis, each node either obeys

the protocol or it does not; in game theory, nodes seek to maximize their respective

utility functions. It is possible to address malicious behavior in the context of game

theory (see [1,2,19,49,75]). The incorporation of game theoretic concepts may be

an interesting direction for future work on resource-competitive algorithms.

Notions of Inflicting Cost. The idea of inflicting cost on an opponent arises more

explicitly in the domain of cryptography. A major differentiating aspect of cryp-

tographic approaches is that the length of a private key is decided prior to encryp-

tion. This roughly determines (i) how much the adversary must spend in order to

compromise the cryptosystem, and (ii) how much the good nodes must spend to

achieve a particular level of security. In contrast, resource-competitive algorithms

are adaptive in the following sense. When T = 0, there is a small upfront cost

quantified by the efficiency function τ . Then, as T grows, the cost function ρ(T )
grows commensurately and will dominate the cost of the algorithm when T grows

large enough; in this sense, resource-competitive algorithms are adaptive. This is

very different from having a predetermined cost.

Additional Related Ideas. An early example of considering an attacker’s re-

sources is the cryptosystem by Merkle [58] where computational puzzles are used

to inflict cost on an eavesdropper. However, the hardness of the puzzles must be

set a priori and, therefore this scheme lacks the adaptivity of resource-competitive

algorithms described above. Inflicting computational cost has been used to deter

spam email [30]. Another example arises in settings where an attacker controls

multiple identities. In such a network, one may issue a cost for joining via com-

putational puzzles [48, 73] or monetary penalties [17]. Similar ideas arise in pro-
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posals to mitigate applicaton-level DDoS attacks. Typically, a client must spend

bandwidth or computational resources prior to receiving service (see [55, 64, 76]).

In contrast to these results, resource-competitive analysis goes beyond simply in-

flicting cost by quantifying a relationship between the cost to the adversary and the

cost to the good nodes.

1.3 Related Work on Tolerating Jamming Attacks

Several works address applied security considerations with respect to jamming [4,

8, 52, 82] where the adversary deliberately disrupts the communication medium.

Defenses include spread spectrum techniques (frequency or channel hopping), map-

ping with rerouting, and others (see [54, 60, 80, 81]).

Recent applied work by Ashraf et al. [5] investigates a similar line of reason-

ing by examining ways in which multi-block payloads (each block in a packet has

its own cyclic redundancy code), so-called “look-alike packets”, and randomized

wakeup times for receivers can be used to force the adversary into expending more

energy in order to jam transmissions. The authors’ approach is interesting and the

use of look-alike packets to prevent an adversary from being able to differentiate

between different types of nework traffic is similar to our approach to foiling re-

active jammers (see Section 4). However, on the whole, their approach is quite

different from our own; moreover, analytical results are not provided in [5].

There are a number of theoretical results on jamming adversaries. Gilbert and

Young [38] give a Monte Carlo 1-to-n partial broadcast algorithm that is resource

competitive. However, the result critically depends on knowing n and still allows

the adversary to prevent a small, but constant, fraction of the nodes from receiving

the broadcast. Removing the reliance on n is challenging, but a Monte Carlo 1-to-n
broadcast algorithm is given by Gilbert et al. [35] for this case.

Similarly, the problem of interactive communication on noisy channels has

been examined from a resource-competitive perspective. Results in Dani [22] and

Dani et al. [23,24] address an adversary that can flip an unknown number of bits as

information is transmitted across a channel. However, this work differs critically

in that the goal is to minimize the latency of communication rather than energy

expenditure

Recently, Bender et al. [9] demonstrated that contention resolution – how to

coordinate access to a shared channel by multiple devices – can be accomplished

despite a powerful jamming adversary. Informally, the result guarantees expected

constant throughput in a setting where n requests are scheduled adversarially, and

each client is shown to require at most an expected polylogarithmic number of

channel-access attempts

Outside of resource-competitive results, there is large body of work on mitigat-
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ing jamming attacks in wireless sensor networks (see [84] for a survey). Gilbert et

al. [34] examines the duration for which communication between two parties can

be disrupted in a model with collision detection in a time-slotted network against

an adversary who interferes with an unknown number of transmissions. As we do

here, the authors assume channel traffic is always detectable at the receiving end

(i.e. silence cannot be “forged”). The authors employ the notion of jamming gain

which is, roughly speaking, the ratio of the duration of the disruption to the ad-

versary’s cost for causing such disruption. This is an interesting metric which can

gauge the efficiency of the adversary’s attack; however, it does not incorporate the

cost incurred by the correct parties in the system.

Pelc and Peleg [65] examine an adversary that randomly corrupts messages.

Results by Awerbuch et al. [6] and Richa et al. [68–70] consider an adversary

whose jamming is bounded within any sufficiently large time window. Under

this adversarial model, Ogierman et al. [63] study medium access in the signal-

to-interference-plus-noise ratio communication model. In the context of Sybil at-

tacks [29], Gilbert and Zheng [39] devise methods for tolerating a jamming adver-

sary using coordination amongst the communicating parties, and this is generalized

to a completely decentralized scenario by Gilbert, Newport and Zheng in [37].

In settings where devices have access to more than one channel, a number

of theoretical results have been proposed. Dolev et al. [27] address a variant of

the gossiping problem when multiple channels are jammed. Gilbert et al. [33]

derive bounds on the time required for information exchange when a reactive ad-

versary jams multiple channels. Meier et al. [57] examine the delay introduced by

a jamming adversary for the problem of node discovery, again in a multi-channel

setting. Dolev et al. [28] address secure communication using multiple channels

with a non-reactive adversary. Recently, Dolev et al. [26] consider wireless syn-

chronization in the presence of a jamming adversary. Emek and Wattenhofer [31]

examine the effectiveness of frequency hopping against an adversary who jams a

strict subset of the available channels.

There are also game-theoretic treatments for jamming attacks, and we refer

the interested reader to the survey by Manshaei et al. [56] for a comprehensive

treatment of this area.

The problem of robust communication has also been considered in the context

of reliable broadcast where devices are laid out on a grid model [11, 13–15, 43,

44, 46, 74]. Listening costs are accounted for by King et al. [43, 44], but jamming

adversaries are not considered. Alistarh et al. [3] assume collision detection and

achieve authenticated reliable broadcast with the use of cryptography. With a re-

active jamming adversary, Bhandhari et al. [16] give a reliable broadcast protocol

when the amount of jamming is bounded and known a priori; however, correct

nodes must expend considerably more energy than the adversary. Progress towards
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fewer broadcasts is made by Bertier et al. [12]; however, each node spends signifi-

cant time in the costly listening state.

Finally, a preliminary version of our results appeared in [45]; however, we fo-

cus strictly on the single-hop case as this provides the most compelling results. This

current version of our work contains additional exposition regarding the design

of algorithm design, revised (and, we believe, clearer) versions of certain proofs,

along with arguments and discussion that were previously omitted. Additionally,

we consider an overlooked attack that was not addressed in [45] (discussed in Sec-

tion 2.4). Finally, we note that the lower bound originally provided in [45] is not

provided here, since more recent work in [35] gives a stronger bound that is asymp-

totically tight.

1.4 Our Model

We describe our network model and define the communication problem addressed

in this work.

Las Vegas Property: Communication of m from Alice to Bob must be guaranteed

with probability 1; that is, we require a Las Vegas algorithm. An obvious motiva-

tion for this Las Vegas property is a critical application, such as the dissemination

of an important security update, where success is paramount.

The Las Vegas property has additional merit in multi-hop wireless networks

where Monte Carlo algorithms may not be adequate. In particular, the failure

probability in any single hop of a route may be small in the size of the broad-

cast neighborhood n. However, for large networks of total size N , it may be the

case that n ≪ N and so a union bound over the path length may fail to offer a

high-probability guarantee of correctness.

Channel Utilization: Sending or listening on the communication channel by Alice

and Bob occurs in discrete units called slots. For example, under the common

IEEE 802.11g, a slot may correspond to an actual time slot (9µs) in a time division

multiple access (TDMA) type access control protocol. For simplicity, we assume

that the message m fits within a single slot; otherwise, we can send m piecewise.

The cost for sending or listening is 1 per slot. This is a normalized cost meant

to reflect the fact that sending and listening on the channel typically dominates the

operational costs of LPN devices. For example, in the WSN setting, the send (at

a transmit power of 0 dBm) and listen costs for the popular Telos motes [66] are

38mW and 35mW, respectively, and these far exceed the other operations costs for

an active device. A similar relationship between the send and listen costs holds for

the older, well-known MICA family of devices [21].

When Carol jams a slot, she disrupts the channel such that no communication

is possible; jamming costs 1 per slot. T denotes the total amount Carol will spend
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over the course of the algorithm; this value is unknown to either Alice or Bob a

priori.

In practice, disrupting communication within a slot may be less costly than

sending a full message. However, so long as the relative costs for sending, re-

ceiving, and jamming are correct to within some (possibly large) constant factor,

our asymptotic results hold. Further discussion of this issue, and other practical

concerns, is provided in later in Section 6.

If two or more messages are sent within a single slot (a message collision),

or the slot is jammed, then the slot is said to be noisy. If a slot is noisy, this is

detectable by a party who is listening at the receiving end of the channel, but not

by the originator of the transmission. For example, a transmission (jammed or

otherwise) from Alice to Bob is detectable only by Bob; likewise, a transmission

(jammed or otherwise) from Bob to Alice is detectable only by Alice. A party does

not know why a slot is noisy; it may be due to a message collision or to jamming,

but the party only learns that the channel is in use. Finally, a slot which is not noisy

and does not contain a single message is said to be clear.

The Communicating Parties: If Alice is faulty, there is clearly no hope of com-

municating m; therefore, Alice is assumed to be correct. In other words, Alice can

never be spoofed by the adversary Carol.

Regarding Bob, we define two cases. In Case 1, communications from Bob are

always trustworthy. That is, Bob is never spoofed by Carol and we treat Carol as

a separate third party. This is a benign case, and it corresponds to situations where

communications sent by Bob can be trusted and jamming of m is the only obstacle.

In Case 2, Carol may spoof Bob.1. We emphasize that this can lead Alice to

be uncertain about whether to trust Bob. This uncertainty corresponds to scenarios

where a trusted dealer attempts to disseminate content to its neighbors, some of

whom may be spoofed or have suffered a Byzantine fault and are used in an attempt

attempt to consume resources by requesting numerous retransmissions.

The Adversary: Carol has full knowledge of past actions by Alice and Bob. This

allows for adaptive attacks whereby Carol may alter her behaviour based on ob-

servations she has collected over time. Furthermore, under conditions discussed in

Section 4, Carol can also be reactive: in any slot, she may detect activity on the

channel and then jam; however, we assume that she cannot detect when a party is

listening.

1Equivalently, we can consider that Carol is Bob, or controls Bob completely. Conceptually, the

only two parties are then Alice and Carol
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1.5 Design Goals for our Algorithm

In designing our resource-competitive algorithm, we have several goals. In terms

of correctness, to reiterate, we want to guarantee (with probability 1) that Bob

receives m.

It is also important that both Alice and Bob have termination conditions. For

example, when Bob receives m, he should soon terminate such that he can either

perform other network tasks, or power down to conserve energy. Similarly, when

Alice is certain that Bob has received m, she should terminate; from an energy-

aware perspective, it is no good to have Alice be unsure of Bob’s state and, as a

consequence, keep resending m in perpetuity.

We also desire the following three performance properties with regards to cost.

First, we would like ρ(T ) = o(T ) such that Alice and Bob both incur asymptoti-

cally less expected cost than Carol when T is large. Jamming attacks are effective

because a correct device is often forced to incur a higher cost relative to an attacker.

However, if the correct parties incur asymptotically less cost than Carol, then Alice

and Bob enjoy the advantage, and Carol is faced with the problem of having her

energy resources consumed disproportionately by her attempt to prevent commu-

nication.

Second, we want τ to be small. This property guarantees that the cost of run-

ning our resource-competitive algorithm is low when there is little to no attack.

Third, we want our results to be fair: Alice and Bob should incur the same

worst case asymptotic cost relative to Carol.

1.6 Our Results

Let ϕ = (1 +
√
5)/2 denote the golden ratio. We also draw attention to the well-

known relationship that Φ = ϕ − 1 = 1/ϕ = 0.618... where Φ is known as the

golden ratio conjugate. Our main result is stated below.

Theorem 1. Let Carol be an adaptive adversary that jams for T slots. There exists

a resource-competitive algorithm that guarantees Bob receives m, both parties

terminate, and has the following properties:

• In Case 1, the expected cost to Alice and Bob is O(T 0.5 + 1). In Case 2, the

expected cost to Alice and Bob is O(TΦ + 1) = O(T 0.62 + 1).

• Both parties terminate in an expected O(T 2) and O(Tϕ) slots for Cases 1

and 2, respectively.

In other words, we have ρ(T ) = O(T 0.5) and ρ(T ) = O(T 0.62) for Case 1 and

Case 2, respectively, and τ = O(1) for both cases. Later, in Section 4, we demon-
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strate that Theorem 1 still holds when Carol is also reactive so long as there is

sufficient network traffic in addition to the sending of m.

When Alice wants to send m to n receivers, a similar result is achievable. We

consider the analogue to Case 2 where Carol can spoof any subset of the receivers

and/or jam the communications of any/all parties. In this setting, we have the

following theorem:

Theorem 2. Let Carol be an adaptive adversary that jams for T slots. There exists

a resource-competitive algorithm that guarantees all receivers obtain m, and all

parties terminate, and has the following properties that hold with high probability

in n:2

• The cost to Alice and Bob is O(TΦ+lnϕ n) and O(TΦ+lnn), respectively.

• All parties terminate within O(Tϕ + lnϕ n) slots.

Roadmap. The remainder of this paper is organized as follows. In Section 2, we

proceed through the design process of our algorithm in order to motivate each step.

In Section 3, we analyze our algorithm for Cases 1 and 2, and prove Theorem 1. In

Section 4, we define the conditions under which we can tolerate a reactive adver-

sary. We then demonstrate how our analysis can be amended to address a reactive

adversary. In Section 5, we generalize the Alice and Bob setting to a general broad-

cast problem where Alice needs to transmit m to multiple receivers. In Section 6,

we provide some additional motivation for our network model. Finally, we con-

clude with some open problems in Section 7.

2 Algorithm Design and Analysis

We incrementally build towards our resource-competitive algorithm. At each step,

our design decisions are explained.

2.1 A Naive Attempt

As a first attempt, Alice and Bob can try to outspend the adversary. For example,

let transmission of m be attempted over ℓ slots. In each even-indexed slot, Alice

sends m while Bob listens. In each odd-indexed slot, if Bob has not received m, he

sends a negative acknowledgement (nack) message; otherwise, Bob terminates.

Alice listens in each odd-indexed slot and, if Alice receives a nack, she continues

onto the next even-indexed slot and sends m. Similarly, if Alice detects a noisy

odd-indexed slot, she interprets this as the situation where Bob sent nack but the

2With probability at least 1− 1/n. We will sometimes use w.h.p. as an abbreviation.

10



ITERATION-1 for any round

Send Phase: For each of ℓ slots do

• Alice sends m with probability 2/
√
ℓ

• Bob listens with probability 2/
√
ℓ

If Bob received m, then he terminates

Nack Phase: For 1 slot do

• Bob sends a nack message

• Alice listens

If Alice listened to a clear slot, then she terminates

Figure 1: Pseudocode for ITERATION-1.

slot was jammed; therefore, she continues with the protocol. However, if Alice

detects a clear odd-indexed slot, she knows Bob received m and terminated since

the adversary cannot forge a clear slot; in this case, Alice safely terminates.

While Alice and Bob both finish correctly, note that if the adversary jams

T consecutive even-indexed slots, then Alice and Bob each send and listen for

2T + 2 slots. Therefore, Alice and Bob each spend more than twice what the ad-

versary spends; that is, ρ(T ) > 2T and the adversary rapidly disables each party

by depleting the respective energy supplies. This illustrates why jamming is often

an effective attack.

2.2 Towards a Resource-Competitive Guarantee

An initial attempt at a resource-competitive approach is ITERATION-1 in Figure 1.

In the Send Phase, Alice and Bob send and listen each with probability 2/
√
ℓ. If

Bob ever receives m, he terminates the protocol. In the Nack Phase, if Bob has not

terminated, he sends nack to Alice during the single slot asking her to enter into

a new round. If Alice hears nack, or if the slot is jammed, she proceeds into the

next round; otherwise, if the slot is clear, she terminates. Let a round refer to the

execution of a Send Phase and the corresponding Nack Phase.

Using a birthday-paradox-like argument, there is likely to be a non-jammed slot

where both Alice sends m and Bob listens; this is true even if a constant fraction,

say 1/2, of the slots are jammed. Therefore, communication likely succeeds unless

the adversary jams more than half of the slots. In a Send Phase where more than

half of the slots are jammed – referred to as a blocked Send Phase — then Bob

11



ITERATION-2 for round i ≥ 1

Send Phase: For each of the 2ci slots do

• Alice sends m with probability 2/2(c−a)i

• Bob listens with probability 2/2(c−b)i

If Bob received m, then he terminates

Nack Phase: For 1 slot do

• Bob sends a nack message

• Alice listens

If Alice listened to a clear slot, then she terminates.

Figure 2: Pseudocode for modified ITERATION-2.

may not receive m. But now T = Ω(ℓ) while both Alice and Bob spend only

O(
√
ℓ) = O(

√
T ) in expectation. Therefore, to prevent communication in the

round, the adversary must incur a cost that is roughly quadratically larger. This is

exactly the flavor of result that we seek.

Are we done? No, there are two shortcomings to ITERATION-1 and we de-

scribe the first here. Let us focus on the Send Phase and consider what happens if

the adversary forces k consecutive rounds with blocked Send Phases. The adver-

sary spends T = Ω(kℓ) while each party spends O(k
√
ℓ) = O(T/

√
ℓ) in expec-

tation. Therefore, for T > ℓ, we no longer have the quadratic advantage obtained

above for a single blocked Send Phase.

This problem arises because each blocked Send Phase imposes equal asymp-

totic cost on the adversary. In contrast, imagine if the cost of the final blocked

Send Phase equaled the total cost of all previous O(k) blocked Send Phases. Then,

the quadratic advantage would still hold by the same reasoning as above; simply

apply the same analysis to the final blocked phase. We can achieve this property by

increasing the length of the Send Phase as an exponential function of the number

of rounds completed so far.

Figure 2 provides the pseudocode with this modification implemented; we

name this intermediate algorithm ITERATION-2. The length of the Send Phase

is 2ci where the constant c > 0 is left unfixed (to be as general as possible) and will

be determined later.

The probabilities of Alice sending and Bob listening are also modified such

that the expected cost to Alice is O(2ai) and to Bob is O(2bi), where a > 0 and
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b > 0 are constants that we leave unspecified for now. However, given that a

birthday-paradox-like argument is used to show that Alice and Bob succeed in

communication, then we require a+ b = c to make our analysis work.3

To illustrate what is meant by such an argument, we sketch some analysis for

c = 2 and a = b = 1. For simplicity, assume a weaker adversary who jams each

slot with probability pj . Later, in Section 3, we provide a rigorous analysis that

holds against our more powerful adversary.

First, consider the case of “light jamming”, say pj ≤ 1/2. Since a = b = 1,

Alice sends and Bob listens with probability Θ(1/2i) per slot. The probability that

Bob receives m in slot j is:

= Pr(slot j not jammed)× Pr(Alice sends in slot j)

×Pr(Bob listens in slot j)

= (1− pj)

(

2

2i

)(

2

2i

)

The probability that Bob fails to receive m over all 2ci = 22i slots in the Send

Phase is at most:
(

1− 4(1 − pj)

22i

)22i

≤ e−2

Therefore, when (roughly) at most half the slots are jammed, there is a constant

probability of success, but this argument requires a+ b = c.
Conversely, consider pj > 1/2; for example, perhaps pj = 1 and all slots are

jammed in the Send Phase. Clearly, Alice will fail in sending m to Bob. However,

we do “succeed” in making Carol incur significantly more cost. The expected cost

to Carol is T = Ω(2ci) while Alice and Bob each spend O(2i) = O(
√
T ) in

expectation. Therefore, we recover the quadratic result above for a blocked Send

Phase.

Finally, we highlight the fact that c > 2 does not improve this advantage. For

example, if we set c = 4, then we require a + b = 4 and the maximum expected

cost to either party is minimized by setting a = b = 2 and this still yields an

expected cost to Alice and Bob of O(
√
T ).

2.3 Robustness to Attacks in the Nack Phase

The second shortcoming of ITERATION-1 (and also of ITERATION-2) involves the

Nack Phase under Case 2. Recall that Bob can be spoofed and his communications

can be jammed. Assume that Bob receives m and terminates. Then, in the very

3More generally, we need a+ b ≥ c, but we seek to minimize cost and so we opt for equality.
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ITERATION-3 for round i ≥ 1

Send Phase: For each of the 2ci slots do

• Alice sends m with probability 2/2(c−a)i

• Bob listens with probability 2/2(c−b)i

If Bob received m, then he terminates

Nack Phase: For each of the ℓ slots do

• Bob sends a nack message

• Alice listens with probability 4/ℓ

If Alice listened to a clear slot, then she terminates.

Figure 3: Pseudocode for ITERATION-3.

next Nack Phase, the adversary may spoof a nack message and force Alice to ex-

ecute another round. In each subsequent Send Phase, the adversary will do nothing

(in order to avoid any cost) and then send another nack in the next Nack Phase.

Therefore, in each round i, Alice incurs a cost of roughly 2ai in expectation while

the adversary has a cost of 1. Through this attack, the adversary can force Alice to

quickly deplete her energy supply.

Note that even if messages from Bob could be authenticated, the adversary may

simply generate noise which will yield the same result. This is unavoidable since

collision detection is used as a reliable negative acknowledgement.

This problem arises because it is “too cheap” for Bob to force Alice to proceed

into the next round. Intuitively, a remedy is to increase the cost required for Bob to

prevent Alice’s termination. As with the Send Phase of ITERATION-1, this could

be accomplished by setting the length of the Nack Phase to be, say, ℓ and requiring

Bob to send a nack in each slot. Therefore, Bob is making a “down payment” and

this should be large enough to deter the adversary from spoofing Bob in the Nack

Phase.

Should Alice verify the down payment by listening to all ℓ ≥ 4 slots? She is

already incurring an expected cost of 2ai from the preceding Send Phase, so she

could afford to spend the same in the Nack Phase without changing her asymptotic

cost. But what happens if the algorithm runs sufficiently long such that 2ai exceeds

ℓ? Instead, as we show in Section 3, Alice can sample each slot with probability

4/ℓ in the Nack Phase; this only contributes additional expected cost of 4. The

adversary may attempt to spend less than ℓ whilst spoofing Bob, but Alice’s random

14



ITERATION-4 for round i ≥ 2/b

Send Phase: For each of the 2ci slots do

• Alice sends m with probability 2/2(c−a)i

• Bob listens with probability 2/2(c−b)i

If Bob received m, then he terminates

Nack Phase: For each of the 2bi slots do

• Bob sends a nack message

• Alice listens with probability 4/2bi

If Alice listened to a clear slot, then she terminates.

Figure 4: Pseudocode for ITERATION-4.

strategy is adequate to thwart such behavior. The pseudocode for this modification

is given in Figure 3.

Finally, we note that fixing the length of the Nack Phase to be ℓ in each round

runs into a problem similar to that faced in the Send Phase of ITERATION-1: multi-

ple consecutive blocked Nack Phases – where more than half the slots are jammed

– will degrade the resource-competitive ratio. Therefore, we adopt the same so-

lution by increasing the length of the Nack Phase as a function of the number of

rounds completed so far. Since Bob spends an expected 2bi in the Send Phase, the

length of the Nack Phase can also be 2bi without increasing his asymptotic cost.

The pseudocode for these modifications is presented as ITERATION-4 in Fig-

ure 4.

2.4 Handling Variance of Cost

Consider the following strategy by the adversary. All slots in each consecutive

Send Phase are jammed until a round r is encountered where Alice sends 2cr in

the corresponding Send Phase. Note that Alice sends probabilistically, so there

is a small, but non-zero, probability of this event occurring in each round, and

the adversary’s strategy means it will eventually occur with probability 1. At that

point, T = Θ(2cr) and Alice’s cost is Θ(T ) which is clearly poor.

Why not modify the algorithm such that Alice randomly selects exactly 2ai+1

slots in which to send prior to executing the next Send Phase? This prevents any

variance in cost and, therefore, prevents the above attack.
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To see why this is a bad idea, note an advantage of having Alice decide ran-

domly whether to send on a per-slot basis: an adaptive adversary has no more

power than a non-adaptive one. This is because the action Alice takes in the cur-

rent slot is independent of what she has done in the previous slots. In other words,

knowledge of the players’ past actions does not help Carol plan her jamming in the

next slot. Therefore, this design choice provides a useful property for tolerating an

adaptive adversary.

Selecting a fixed number of slots to send in a priori deprives us of this property.

For example, if Alice does not send m in slot 1 of the Send Phase, an adaptive

adversary learns of this prior to its decision on whether to jam in slot 2. The

absence of sending in slot 1 implies that the probability that Alice sends in slot 2

has increased given that she must send in exactly 2ai+1 slots; that is, these events

are dependent. For the same reason, the probability of a slot in which Alice sends

and Bob listens changes as we proceed through the Send Phase. The adversary

may use this information to improve its jamming and, at the very least, analyzing

such an algorithm seems difficult.

Instead, we make the following modification. In the Send Phase, if Alice has

sent in 2ai+2 slots, she remains silent for the remainder of the phase. Similarly, if

Bob has listened in 2bi+2 slots, he performs no more listening for the remainder of

the phase. This cutoff for either party bounds the cost to be at most a constant fac-

tor more than the expectation. In other words, the cost to Alice and Bob is O(2ai)
and O(2bi), respectively (the additional constant factors are useful in applying a

Chernoff bound later on in the analysis). The same modification is made to the

Nack Phase: if Alice has listened in 2ai+2 slots, she performs no more listening

for the remainder of the phase. The pseudocode for this final design decision is

presented in Figure 5 as ROBUSTTALK.

This design maintains independence between events in each slot up until the

cutoff point. Also, in each slot up until this cutoff point, the probability of a slot

where Alice sends and Bob listens is always the same at 4/2(c−a)i+(c−b)i . Of

course, once the cutoff point is reached, the adversary learns this and does not need

to perform any more jamming; however, up to this point, we preserve the robust-

ness to an adaptive adversary. In analyzing the impact of either party reaching

the cutoff in a round, we will pessimistically assume failure and incorporate the

cost of this round for each party. However, in Section 3, we will show that this a

low-probability event and does not impact the expected cost.

2.5 Description of ROBUSTTALK

We summarize a round i of ROBUSTTALK:

• Send Phase: This phase consists of 2ci slots. If Alice has sent in less than 2ai+2

16



ROBUSTTALK for round i ≥ 2/b

Send Phase: For each of the 2ci slots do

• If Alice has sent in less than 2ai+2 slots in this

phase, she sends m with probability 2/2(c−a)i

• If Bob has listened in less than 2bi+2 slots in this

phase, he listens with probability 2/2(c−b)i

If Bob received m, then he terminates

Nack Phase: For each of the 2bi slots do

• Bob sends a nack message

• If Alice has listened in less than 2ai+2 slots in this

phase, she listens with probability 4/2bi

If Alice listened to a clear slot, then she terminates.

Figure 5: Pseudocode for ROBUSTTALK.

slots, then she will send m in the current slot with probability 2
2(c−a)i . This yields

an expected cost of 2(c−a)i+1 over the entire phase. If Bob has listened in less than

2bi+2 slots, he will listen in the current slot with probability 2
2(c−b)i . This yields an

expected total cost of 2bi+1 over the entire phase.

• Nack Phase: This phase consists of 2bi slots. If Bob has not received m, then he

sends a nack in all 2bi slots. If Alice has listened in less than 2ai+2 slots, then she

will listen in the current with probability 4/2bi (note that i ≥ 2/b is required) for

an expected total cost of 4 over the phase.

Termination Conditions: As discussed in Section 1.5, termination conditions are

important and we highlight these here. Bob terminates the protocol upon receiving

m. Since Alice cannot be spoofed, as discussed in Section 1.4, this termination

condition suffices.

Alice terminates if she listens to a clear slot (neither noisy nor containing a

nack message) in the Nack Phase; since jammed slots are detectable by Alice

while listening (Section 1.4), this condition suffices. That is, Alice continues into

the next round if and only if (i) Alice listens to zero slots or (ii) all slots listened

to by Alice in the Nack Phase contain a blocked slot or nack message. There are

two situations where this occurs:

• Send Failure: Bob has not received m.
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• Nack Failure: Bob has terminated and Carol either spoofs nack messages or

jams slots in order to trick Alice into thinking a valid nack was sent but jammed.

Nack Failures and Cases 1 & 2: Note that an “acknowledgement” is indicated

by having at least one clear slot in the Nack Phase. A Nack Failure refers to the

situation in which, by the end of the Nack Phase, Alice believes Bob is alive and

has failed to receive m.

In Case 2, as discussed in Section 2.3, a Nack Failure may occur via an attack in

the Nack Phase after Bob has received m and terminated. Carol may spoof Bob in

the Nack Phase by making it appear as if Bob did not receive m and is requesting

that both he and Alice proceed into the next round. This behavior keeps Alice

active and incurring a cost. Critically, this attack affects Alice only; if Bob has not

terminated, a nack message will be issued anyway and the attack accomplishes

nothing. Therefore, we need only consider this attack in the situation where Bob

has terminated.

In Case 1, no jamming occurs in the Nack Phase and, therefore, no Nack Failure

can occur. We note that, in Case 1, the Nack Phase can be shortened to a single slot

– the algorithm ITERATION-2 will suffice – where Bob sends his nack message

and Alice listens; however, this does not change our asymptotic cost for Case 1.

Since our current presentation applies to both cases, we proceed with analyzing

ROBUSTTALK.

3 Analysis of ROBUSTTALK

Throughout, assume ceilings on the number of slots indicated for use by Alice or

Bob if it is not an integer. For any given round, we say it is a blocked Send Phase if

Carol jams at least half of the slots in the Send Phase; otherwise, it is a non-blocked

Send Phase. Similarly, a blocked Nack Phase occurs if Carol jams or spoofs nack

messages from Bob in at least half the slots in the Nack Phase; otherwise, it is a

non-blocked Nack Phase.

Bounds on constants a, b, c: We make a few important remarks about these con-

stants. Note that if a ≥ b, then the expected cost to Alice is at least as much as

the expected cost to Bob. But recall that, in Case 2, the adversary can spoof Bob.

Therefore, this allows Carol to cause a Nack Failure with at most the same cost as

what Alice incurs in the preceding Send Phase (note that Carol will avoid listening

in the Send Phase and incur zero cost there). As discussed in Section 2.3, we must

avoid this since it admits an energy-draining attack against Alice. Therefore, in

Case 2, we require a < b.
Additionally, our analysis will depend on a birthday-paradox-like argument (in

Lemmas 2 and 4) to show that m or a nack message is successfully transmitted
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across the channel. As sketched in Section 2.2, we will need that a+ b = c for the

analysis to work.

Finally, as discussed in Section 2.2, we assume that c ≤ 2. Consequently,

a < 2 and b < 2.

Our analysis is composed of two pieces. First, we consider “light jamming” where

we have no blocked phases. We show that Alice succeeds in communicating m
to Bob with probability at least 1 − e−2 in each non-blocked Send Phase. Given

that Bob has terminated, a similar result is shown for the probability that Alice

(correctly) terminates in a non-blocked Nack Phase.

Second, we consider “heavy jamming” where we address blocked phases. Given

the exponentially increasing length of the phases, intuitively the expected cost is

dominated by the cost to the parties in the last blocked round. We can then use this

cost to compare against Carol’s cost T .

In both situations, the issue of variance described in Section 2.4 adds a subtlety

to our calculations. For light jamming, we only show constant probability of suc-

cess in non-blocked phases so long as neither Alice nor Bob reach their respective

cutoffs.

For heavy jamming, note that the adversary decides when the last blocked

round occurs. For example, what if the adversary jams all slots until the (low-

probability) event that Alice reaches her cutoff point in the Send Phase? This

highlights the problem of conditioning on the adversary’s final blocked round in

order to calculate the expected cost.

Our modifications in Section 2.4 permit a clean analysis. We bound the number

of rounds in which either party reaches its respective cutoff. We can show that this

occurs with probability exponentially small in the round index i, and therefore

the impact on the expected cost to each party is negligible. We make use of the

following Chernoff bound:

Theorem 3. ( [59]) LetX1, . . . ,Xn be binary random variables such that Pr(Xi) =
p and let X =

∑n
i=1 Xi. For any δ, where 0 < δ < 1:

Pr(X > (1 + δ)E[X]) ≤ e−δ2 E[X]/3

Define a failed round to be a round in which either Alice or Bob reaches a

cutoff in either the Send or Nack Phase; otherwise, it is non-failed round. We now

bound the probability of a failed round as a function of the round index i:

Lemma 1. For any round i ≥ 1 the probability of a failed round is at most

exp(−2ai/3) + exp(−2bi/3).
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Proof. In the Send Phase of round i, let the binary random variable Xj = 1 if

Alice sends m in slot j; otherwise, Xj = 0. Letting X =
∑2ci

j=1Xj , then:

E[X] =

2ci
∑

j=1

E[Xj ] =

2ci
∑

j=1

(2/2(c−a)i) = 2ai+1

by linearity of expectation. A similar calculation for the Nack Phase yields an

expected cost of 4. Therefore, over epoch i, Alice’s expected cost is 2ai+1 + 4 for

i ≥ 1. By Theorem 3, using δ = 1 yields that the probability of exceeding this

expected cost by a factor of at least 2 is less than e−2ai/3.

In the Send Phase of round i, let the binary random variable Yj = if Bob listens

in slot j; otherwise, Yj = 0. Letting Y =
∑2ci

j=1 Yj , then:

E[Y ] =

2ci
∑

j=1

E[Yj ] =

2ci
∑

j=1

(2/2(c−b)i) = 2bi+1

by linearity of expectation. There is an additional 2bi cost associated with the Nack

Phase. By Theorem 3, the probability of exceeding the expected cost by a factor of

at least 2 is less than e−2bi/3.

By Lemma 1, the probability of a failed round is very small as a function of the

round index i. We will show that the contribution of failed rounds does not impact

our asymptotic analysis.

We now present the light jamming portion of our analysis.

Lemma 2. Consider a blocked Send Phase in a non-failed round. The probability

that Bob does not receive the message from Alice is at most e−2.

Proof. Let s = 2ci be the number of slots in the Send Phase. Let pA be the

probability that Alice sends in a particular slot. Let pB be the probability that Bob

listens in a particular slot. Let Xj = 1 if the message is not delivered from Alice

to Bob in the jth slot. Then:

Pr[m is not delivered in the Send Phase]

= Pr[X1X2 · · ·Xs = 1]

= Pr[Xs = 1 | X1 X2 · · ·Xs−1 = 1] ·
s−1
∏

i=1

Pr[Xi = 1]
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Let qj = 1 if Carol does not jam in slot j; otherwise, let qj = 0. The value of qj
can be selected arbitrarily by Carol. Then:

Pr[Xi = 1 | X1X2 · · ·Xi−1 = 1] = 1− pApBqj

Substituting for each conditional probability, we have:

Pr[X1X2 · · ·Xs = 1] = (1− pApBq1) · · · (1− pApBqs)

=

s
∏

j=1

(1− pApBqj)

≤ e−pApB
∑s

j=1 qj

≤ e−2

where the last inequality follows from:

pApB

s
∑

j=1

qj ≥ (2/2(c−a)i)(2/2(c−b)i)(s/2)

= (2/2(c−a)i)(2/2(c−b)i)(2ci/2)

= 2

since a + b = c and there is no blocked send phase which means Carol jams at

most s/2 slots.

Note that Lemma 2 handles adaptive (but not reactive) adversaries. A simple

but critical feature of tolerating adaptive adversaries is that the probability that a

party is active in one slot is independent from the probability that the party is active

in another slot. Therefore, knowing that a party was active for k slots in the past

conveys no information about future activity. For reactive adversaries, we need

only modify Lemma 2 and we address this later (see Section 4).

Lemma 3. Assume there are no blocked Send Phases and no blocked Nack Phases.

The expected cost of each party is O(1).

Proof. We compute the expected cost over both non-failed and failed rounds for

i ≥ 1; note that this can only overestimate the expected cost since ROBUSTTALK spec-

ifies i ≥ 2/b and b < 2.

Using Lemmas 1 and 2, the expected cost to Alice is at most:
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∞
∑

i=1

e−2(i−1) O(2ai) +

∞
∑

i=1

exp
(

−2Θ(i−1)
)

O(2ai)

= O(1)
∞
∑

i=1

(

2a

e2

)i

= O(1)

where the last line follows from the fact that a < 2 and the sum of a geometric

series. Similarly, the expected cost to Bob is at most:

∞
∑

i=1

e−2(i−1)O(2bi) +

∞
∑

i=1

exp
(

−2Θ(i−1)
)

O(2bi)

≤ O(1)
∞
∑

i=1

(

2b

e2

)i

= O(1)

where the last line follows from the fact that b < 2 and the sum of a geometric

series.

Lemma 4. Assume that Bob has received m by non-failed round i, and that round

i has a non-blocked Nack Phase. Then, the probability of a Nack Failure is at most

e−2.

Proof. Let s = 2bi denote the number of slots in the Nack Phase and let p = 4/2bi

denote the probability that Alice listens in a slot. For slot j, define Xj such that

Xj = 1 if Alice does not terminate. Then, Pr[ Alice retransmits m in round

i + 1] = Pr[X1X2 · · ·Xs = 1]. Let qj = 1 if Carol does not jam in slot j;

otherwise, let qj = 0. The qj values are determined arbitrarily by Carol. Since

Alice terminates when she listens and hears a clear slot, then Pr[Xj = 1] =

(1− pqj). Therefore, Pr[X1X2 · · ·Xs = 1] ≤ e−p
∑s

j=1 qj ≤ e−2.

We now consider the heavy jamming portion of our analysis.

Lemma 5. Assume there is at least one blocked Send Phase. In Case 1, the ex-

pected cost to Alice and Bob is O(T a/c) and O(T b/c), respectively. In Case 2, the

expected cost to Alice and Bob is O(T a/c + T a/b) and O(T b/c), respectively.
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Proof. Let i ≥ 2/b be the last blocked Send Phase. Let j ≥ i be the last blocked

Nack Phase; if no such blocked Nack Phase exists, then assume j = 0.

Carol may choose i and j depending on the history of the execution. With this

notation in place, we can bound the cost to Carol, Alice, and Bob.

Carol: In Case 1, only blocked Send Phases occur and so T = Ω(2ci). In Case 2,

since there can be a blocked Nack Phase, the total cost to Carol is T = Ω(2ci+2bj).

Alice: We begin by calculating the expected cost to Alice prior to successfully

transmitting m. Using Lemmas 1 and 2, the expected cost to Alice prior to m
being delivered is at most:

O(2ai) +
∞
∑

k=1

e−2(k−1)O(2a(i+k))

+
∞
∑

k=1

exp
(

−2Θ(k−1)
)

O(2a(i+k))

= O(2ai) +O(2ai)
∞
∑

k=1

(

2a

e2

)k

+O(2ai)

= O(2ai)

where the last line follows a < 2 and the sum of a geometric series.

Next, using Lemmas 1 and 4, we calculate the expected cost to Alice after

delivery of m; this addresses blocked Nack Phases possible only in Case 2. By

assumption, the last blocked Nack Phase occurs in round j and therefore Alice’s

expected cost is at most:

O(2aj) +

∞
∑

k=1

e−2(k−1)O(2a(j+k))

+

∞
∑

k=1

exp
(

−2Θ(k−1)
)

O(2a(j+k))

= O(2aj) +O(2aj)

∞
∑

k=1

(

2a

e2

)k

+O(2aj)

= O(2aj)

where the last line follows a < 2 and the sum of a geometric series.

Therefore, in Case 2, the total expected cost to Alice is O(2ai + 2aj). Since

T = Ω(2ci+2bj), this cost as a function of T is O(T a/c+T a/b). For Case 1, there

are no blocked Nack Phases and so Alice’s cost is simply O(T a/c).
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Bob: We analyze the expected cost to Bob up until m is received. Note that we

assume Carol does not have any cost for blocked Nack Phases up until this point

since, as discussed in Section 2.5, there is no benefit to causing a Nack Failure via

jamming.

Using Lemma 2, Bob’s expected cost prior to receiving m is at most:

O(2bi) +

∞
∑

k=1

e−2(k−1)O(2b(i+k))

+

∞
∑

k=1

exp
(

−2Θ(k−1)
)

O(2b(i+k))

≤ O(2bi) +O(2bi)

∞
∑

k=1

(

2b

e2

)k

+O(2bi)

= O(2bi)

where the last line follows b < 2 and the sum of a geometric series. Therefore, the

expected cost for Bob as a function of T = Ω(2ci) is O(T b/c).

We now prove Theorem 1 stated in Section 1.6:

Proof of Theorem 1: For both Case 1 and 2, when there are no blocked Send Phases

and no blocked Nack Phases, the expected cost to each party is O(1) by Lemma 3.

Therefore, we have τ = O(1).
For both Case 1 and Case 2, if there is at least one blocked Send Phase,

Lemma 5 gives the expected cost for Alice and Bob as O(T a/c) and O(T b/c),
respectively. Recall from Section 1.5 that we desire the worst-case relative costs

for Alice and Bob be equal. Therefore, setting a/c = b/c implies that a = b = 1
and c = 2. This yields ρ(T ) = O(T 0.5) and therefore the expected cost to each

party is O(T 0.5 + 1).
In Case 2, if there is at least one blocked Send Phase or Nack Phase, the ex-

pected cost to Alice and Bob is O(T a/c + T a/b) and O(T b/c), respectively, by

Lemma 5. The exponents of interest are now a/c, a/b, and b/c. Notice that a/c
and a/b both correspond to Alice’s expected cost, but that a/c < a/b. Therefore,

we need consider only a/b and b/c and we wish a/b = b/c to obtain fairness. Also

recall that we insisted on a+ b = c.
We now have three parameters and two constraints. However, this is sufficient

for us to derive useful values for a, b, and c. By dividing the second constraint by
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the first, we have:

(a+ b)b

a
=

c2

b

⇒
(

1 +
b

a

)

=
(c

b

)2

⇒
(

1 +
c

b

)

=
(c

b

)2
since

a

b
=

b

c

⇒
(c

b

)2
−
(c

b

)

− 1 = 0

Solving for the roots of this quadratic polynomial yields c/b = (1 +
√
5)/2 = ϕ

which is the golden ratio. Therefore, so long as the constants a, b, c are set such

that c/b = b/a = ϕ, ROBUSTTALK has ρ(T ) = O(TΦ) = O(Tϕ−1) = O(T 0.62)
where Φ = 1/ϕ = ϕ− 1.

How many slots in expectation occur prior to termination by both Alice and

Bob? We focus on Alice since she terminates after Bob. Assume pessimistically

that a blocked Send or Nack Phase prevents her from terminating. Carol can stretch

her budget the farthest by blocking the Nack Phase only as this incurs a cost of

2bi/2 rather than a cost of 2ci/2 for blocking the Send Phase.

For how many rounds can Carol do this? Solving for s in
∑s

i=2/b 2
bi/2 ≥ T

implies that s ≤ lg(T )/b + O(1). To this, we add the number of non-blocked

phases Alice endures before terminating; let X denote the random variable for this

number of rounds. Then, E[X] ≤ (1− e−2)+ 2 e−2(1− e−2)+ 3 e−4(1− e−2)+
... =

∑

∞

i=1 i e
2(1−i)(1 − e−2) = (1 − e−2)e2

∑

∞

i=1 i(e
−2)i by Lemmas 2 and

4. Therefore, E[X] ≤ 1/(1 − e−2) = O(1) which means Carol can delay the

termination by an additional O(1) rounds.

For each of the lg(T )/b+O(1) rounds, Alice experiences a delay of 2ci+2bi =
O(2ci) slots. This means that Alice terminates within an expected O(2(c/b) lg(T )+O(c)) =
O(T c/b) slots. This translates to O(T 2) and O(Tϕ) for Cases 1 and 2, respectively.

Figure 6 provides an updated ROBUSTTALK with a setting of the constants a =
ϕ− 1, b = 1, and c = ϕ such that we obtain the guarantees of Theorem 1 for Case

2.

4 Tolerating a Reactive Adversary

Consider a reactive adversary Carol who can detect channel activity for free — that

is, distinguish between when the channel is clear and when it is busy — and then

jam. This ability to reactively jam is possible in WSNs [79].
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ROBUSTTALK for round i ≥ 2

Send Phase: For each of the 2ϕi slots do

• If Alice has sent in less than 2(ϕ−1)i+2 slots in this

phase, she sends m with probability 2/2i

• If Bob has listened in less than 2i+2 slots in this

phase, he listens with probability 2/2(ϕ−1)i

If Bob received m, then he terminates

Nack Phase: For each of the 2i slots do

• Bob sends a nack message

• If Alice has listened in less than 2ϕi+2 slots in this

phase, she listens with probability 4/2i

If Alice listened to a clear slot, then she terminates.

Figure 6: Pseudocode for ROBUSTTALK with the constants a = ϕ − 1, b = 1,

c = ϕ.

Carol can now detect that m is being sent in the Send Phase and jam it without

fail. To address this powerful adversary, we consider the case where non-critical

data, m′, is sent over the channel by other participants in addition to Alice and

Bob. Carol can detect the traffic; however, she cannot discern whether it is m or

m′ without listening to a portion of the communication. For example, in practice,

she may need to listen to a part of the packet header in order to make such a

determination.

In a slot where channel activity is detected, if Carol listens for a portion of the

message, we assume she incurs a cost. Therefore, the cost to Carol is proportional

to (1) the number of messages to which she listens, and (2) the number of slots

in which she jams. Importantly, in the presence of m′, Carol’s ability to detect is

unhelpful since m′ provides “camouflage” for m.

As an example, assume that all slots in the Send Phase are used either by Alice

to send m (as per our algorithm) or another party, Dave, whose transmissions of

m′ do not interest Carol. Assume that Dave’s transmissions are in the majority.

In this situation, detecting channel activity does not help Carol decide on whether

to jam; all slots are used. Regardless of how she decides to act, Carol can do no

better than picking slots independent of whether she detects channel activity. In

other words, channel activity is no longer useful in informing Carol’s decisions
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about whether to jam.

But assuming all slots are active is problematic. How is this guaranteed or

coordinated? We relax our assumption that all slots are used. Instead, we assume

that other network traffic occurs such that Carol will always detect traffic on at least

a small constant fraction of slots in the Send Phase. This traffic is assumed to be

random and independent of Alice sending m.

Upon detecting traffic, Carol may listen to a portion of the message to discover

if it is m or m′ and then decide on whether to jam, all at a cost of 1. However, this

is roughly as expensive — it is the same order of magnitude — as simply jamming

outright (also a cost of 1 in our model).

In practice, such situations can arise where communication occurs between

many participants, or via several distributed applications, or internally between

respective co-located networks. An attacker may wish to selectively target only

one component of the system in order to conserve energy and reduce the chances

of its malicious activity being detected.

As with any two messages, if m and m′ are sent over the channel in the same

slot, the two messages collide and Bob receives neither. Define a slot as active if

either m or m′ is sent in that slot. For this result only, redefine a blocked Send

Phase as one where Carol listens to or jams more than a 1/3-fraction of the active

slots in the Send Phase; otherwise, it is non-blocked. We provide a result analogous

to Lemma 2.

Lemma 6. Let Carol be an adaptive and reactive adversary. Then, in a non-

blocked Send Phase, the probability that Bob does not receive m from Alice is at

most e−2.

Proof. Let x = 2ϕi be the number of slots in the Send Phase. Consider the set

of slots used by all participants (such as Dave) other than Alice. We assume these

participants pick their slots at random to send, so that for any slot the probability is

2/3 that the slot is chosen by at least one of them. Let pA and pB be the probabilities

of sending and listening by Alice and Bob in the Send Phase, respectively.

Since we assume these messages m′ are sent independently at random, then

Chernoff bounds imply that, with high probability (i.e., 1−1/xc
′

for constants c′, ǫ
and sufficiently large x) the number of slots y during which m′ is sent is greater

than (2x/3)(1 − ǫ) where x is the total number of slots in a phase.

In the same way, assume the number of slots in which Alice sends is at least

a′ = (1 − δ)xpA = (1 − δ)2(ϕ−1)i+1 with probability 1 − 1/xc
′′

for a constant

δ, c′′ and sufficiently large x. The number of active slots is clearly at least y.

By definition of a non-blocked Send Phase, Carol listens to or blocks at most

x/3 active slots in the Send Phase. As Carol has no information about the source
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of a message sent in an active slot until she listens to it, her choice is independent

of the source of the message.

Given a slot in which Alice sends, there is at least a 1− (x/3)/y chance it will

not be listened to or jammed by Carol. The probability that this slot will not be

used by another participant is 1/3 and the probability that Bob will listen to the

slot is pB. Hence the probability of a successful transmission from Alice to Bob in

a slot for which Alice sends is at least:
(

1− x

3y

)(

1

3

)

pB =

(

1− 1

2(1 − ǫ)

)(

1

3

)

pB

≥
(

1

3
− (1 + δ)

6

)

pB

≥
(

1

12

)

pB

for sufficiently large x (that reduces the size of δ) when y > (1− ǫ)(2x/3).
The probability that all messages that Alice sends fail to be delivered is at most

(1 − pB/12)
a′ + 2/xc

′′

where the last term is the probability of the bad event that

y or a′ is small and c′′ > 0 is a constant. Redefine pB = 24/((1 − δ)2(ϕ−1)i)
where the value 24 is set to off-set the additive 2/xc

′′

term. Note that this constant

factor increase in the listening probability does not change our asymptotic results

and our analysis in Section 3 proceeds almost identically. Therefore, we then have

(1− pB/12)
a′ + 2/xc

′′ ≤ e−2.

The ROBUSTTALK can be modified so that the initial value of i is large enough

to render the error arising from the use of Chernoff bounds sufficiently small; we

omit these details.

The required level of channel traffic detected by Carol is flexible. Different

values can be accommodated if the parties’ probabilities for sending and listening

are modified appropriately in ROBUSTTALK; our results hold asymptotically. We

emphasize that further revision of the arguments presented in Section 3 are minor.

Lemmas 3,4, and 5 do not require modification. Carol cannot decide to block only

when Alice is listening since detecting when a node is listening is assumed to be

impossible under our model. Alternately, Carol cannot silence a nack through

(reactive) jamming since this is still interpreted as a retransmission request. Using

Lemma 6, Theorem 1 follows as before with the same asymptotic guarantees.

Finally, we note that the conclusion of our argument aligns with claims put

forth in empirical results on reactive jamming; that is, such behavior does not nec-

essarily result in a more energy-efficient attack because the adversary must still be

listening to the channel for broadcasts prior to committing itself to their disrup-

tion [82].
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5 Resource-Competitive Local Broadcast

We present a resource-competitive algorithm, ROBUSTBROADCAST, that allows

Alice to send a message m to n neighboring receivers within her transmission

range; that is, our algorithm allows Alice to perform a local broadcast. We assume

that the quantity lnn is known to Alice; however, our results likely still hold if a

constant-factor approximation is known.

Throughout this section, we only consider the equivalent of Case 2 in this sec-

tion; that is, where Carol may spoof any receiver(s) and can jam their transmis-

sions. However, equivalent results trivially hold for the simpler Case 1. ROBUST-

BROADCAST preserves much of the same guarantees as ROBUSTTALK, and is fair

to all parties up to a polylogarithmic factor.

Our pseudocode is given in Figure 7. The probabilities for sending and lis-

tening are modified from ROBUSTTALK. Note that nack messages from multiple

receivers can (and likely will) collide in the Nack Phase. This is fine since such a

collision is due to either jamming or multiple receivers requesting a retransmission;

in either case, Alice will correctly resend.

If Carol jams, then we assume she chooses the subset of the receivers (which

can be the entire set of receivers) whose members do not receive m. In the liter-

ature, such an adversary is referred to as n-uniform [68]. The cost for jamming

is still 1 per slot regardless of how many receivers are jammed. We maintain the

definition in Section 2.2 of a blocked Send Phase (or Nack Phase): more than half

the slots are jammed.

In this n-party setting, the arguments regarding the Send Phase are in need

of minor revision, and we repeat these for completeness. We use nearly-identical

definition of a failed round: any round in which either Alice or any receiver exceeds

her/his respective expected cost by a factor of 2 or more in either the Send or Nack

phase; otherwise, it is non-failed round. In the multi-receiver case, we can bound

the probability of a failed round as a function of n.

Lemma 7. For any round i ≥ lg(4 ln n) the probability of a failed round is at most

1/n.

Proof. In the Send Phase of round i, let the binary random variable Xj = 1 if

Alice sends m in slot j; otherwise, Xj = 0. Letting X =
∑2ϕi

j=1Xj , then:

E[X] =

2ϕi
∑

j=1

E[Xj ] =

2ϕi
∑

j=1

(2 lnn/2i) = 2(ϕ−1)i+1 lnn

by linearity of expectation. A similar, calculation for the Nack Phase yields an

expected cost of 4 ln n. Therefore, over epoch i, Alice’s expected cost is 2(ϕ−1)i +
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4 ln n. By Theorem 3, the probability that she reaches her cutoff is at most:

exp (−2(ϕ−1)i+1 lnn/3) ≤ exp (−Θ(lnϕ n))

since i ≥ lg(4 ln n). In the Send Phase of round i, let the binary random variable

Yj = if receiver R listens in slot j; otherwise, Yj = 0. Letting Y =
∑2ϕi

j=1 Yj ,

then:

E[Y ] =

2ϕi
∑

j=1

E[Yj] =

2ϕi
∑

j=1

(2/2(ϕ−1)i) = 2i

by linearity of expectation. There is an additional 2i cost associated with the Nack

Phase. By Theorem 3, the probability that R reaches its cutoff is at most:

exp (−2i+1/3) ≤ exp (−8/3) ln n ≤ n−8/3

Taking a union bound implies that the probability that any receiver reaches its

respective cutoff is at most n−5/3. Finally, adding Alice’s error from the above

calculations yields the result.

Next, we prove the analogue to Lemmas 2 and 3 in the multi-receiver case.

Lemma 8. Consider a blocked Send Phase in a non-failed round. The probability

that any receiver does not receive the message from Alice is at most 1/n.

Proof. Let s = 2ϕi be the number of slots in the Send Phase. Let pA be the

probability that Alice sends in a particular slot. Let pR be the probability that a

fixed receiver listens in a particular slot. Let Xj = 1 if the message is not delivered

from Alice to the receiver in the jth slot. Then:

Pr[m is not delivered in the Send Phase]

= Pr[X1X2 · · ·Xs = 1]

= Pr[Xs = 1 | X1 X2 · · ·Xs−1 = 1] ·
s−1
∏

i=1

Pr[Xi = 1]

Let qj = 1 if Carol does not jam in slot j; otherwise, let qj = 0. The value of qj
can be selected arbitrarily by Carol. Then:

Pr[Xi = 1 | X1X2 · · ·Xi−1 = 1] = 1− pApRpRqj
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Substituting for each conditional probability, we have:

Pr[X1X2 · · ·Xs = 1] = (1− pApRq1) · · · (1− pApRqs)

=
s
∏

j=1

(1− pApRqj)

≤ e−pApR
∑s

j=1 qj

≤ e−(4 lnn/2ϕi)(s/2)

= e−2 lnn

= n−2

Taking a union bound over all n receivers yields the result.

Lemma 9. Assume there are no blocked Send Phases and no blocked Nack Phases.

With high probability, the cost to Alice and each receiver is O(lnϕ n) and O(lnn),
respectively.

Proof. For ease of exposition, let σ = lg(4 ln n). We compute the expected cost for

both non-failed and failed rounds for i ≥ σ. Using Lemmas 7 and 8, the expected

cost to Alice is at most:

∞
∑

i=σ

(1/n)(i−σ) O(2(ϕ−1)i lnn) = O(lnϕ n)

Similarly, the expected cost to each receiver R is at most:

∞
∑

i=σ

(1/n)(i−σ)O(2i) = O(lnn)

which completes the proof. Using a Chernoff bound (Theorem 5) provides the

guarantee with high probability.

Lemma 10. Assume that all receivers have received m by non-failed round i and

that round i is a non-blocked Nack Phase. Then the probability of a Nack Failure

is less than 1/n2.

Proof. Let s = 2i be the number of slots in the Nack Phase and let p = 4 lnn/2i be

the probability that Alice listens in a slot. For slot j, define Xj such that Xj = 1
if Alice does not terminate. Then, Pr[ Alice retransmits m in round i + 1] =
Pr[X1X2 · · ·Xs = 1]. Let qj = 1 if Carol does not jam in slot j; otherwise, let
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qj = 0. The qj values are determined arbitrarily by Carol. Since Alice terminates

when she listens and hears a clear slot, then Pr[Xj = 1] = (1− pqj). Therefore:

Pr[X1X2 · · ·Xs = 1] ≤ e−p
∑s

j=1 qj

≤ e−2 lnn

≤ n−2

which completes the proof.

The analogue to Lemma 5 is mostly unchanged, although we first establish the

following result:

Lemma 11. With high probability, the cost of a round i is O(2(ϕ−1)i lnn) and

O(2i) for Alice and each receiver, respectively.

Proof. For the Send Phase, define a binary random variable Xj = 1 if Alice sends

in slot j; otherwise, Xj = 0. Setting X =
∑2ϕi

j=1Xj , we have:

E[X] =
2ϕi
∑

j=1

E[Xj ] =
2ϕi
∑

j=1

2 ln n/2i = O(2(ϕ−1)i lnn).

By Theorem 3, the cost is within a small constant factor with high probability.

Similarly, in the Nack Phase, let the indicator random variable Yj = 1 if Alice

listens in slot j. Setting Y =
∑2ϕi

j=1 Yj , we have:

E[Y ] =
2i
∑

j=1

E[Yj ] =
2i
∑

j=1

4 ln n/2i = 4 lnn.

By Theorem 3, we can bound this to within a small constant factor with high proba-

bility. Therefore, with high probability, Alice’s cost is O(2(ϕ−1)i lnn)+O(lnn) =
O(2(ϕ−1)i lnn).

Consider a receiver R. Let X ′

j = 1 if R listens in slot j of the Send Phase;

otherwise, X ′

j = 0. Setting X ′ =
∑2ϕi

j=1X
′

j , we have:

E[X ′] =
2ϕi
∑

j=1

E[X ′

j ] =
2ϕi
∑

j=1

2/2(ϕ−1)i = O(2i) = O(lnn)

where the last equality follows from i ≥ lg(4 ln n). By Theorem 3, we can bound

this to within a small constant factor with high probability. Taking a union bound

over all n receivers establishes the result.
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Lemma 12. Assume there is at least one blocked Send Phase. With high probabil-

ity, the cost to Alice and each receiver is O(Tϕ−1).

Proof. Let i ≥ lg(4 ln n) be the last blocked Send Phase. Let j ≥ i be the last

blocked Nack Phase; if no such blocked Nack Phase exists, then assume j = 0.

Carol may choose i and j depending on the history of the execution. With this

notation in place, we can bound the cost to Carol, Alice, and the receivers.

Carol: The total cost to Carol is T = Ω(2ϕi + 2j).

Alice: Using Lemmas 7, 8, and 11, with high probability the cost to Alice prior to

m being delivered is at most:

O(2(ϕ−1)i lnn) +
∞
∑

k=1

(2/n)k−1 O(2(ϕ−1)(i+k) lnn)

= O(2(ϕ−1)i lnn).

Next, using Lemmas 7, 10, and 11, we calculate the cost to Alice after delivery

of m; this addresses blocked Nack Phases. By assumption, the last blocked Nack

Phase occurs in round j and, therefore, with high probability Alice’s expected cost

is at most:

O(2(ϕ−1)j lnn) +
∞
∑

k=1

(2/n)k−1O(2(ϕ−1)(j+k) lnn)

= O(2(ϕ−1)j lnn).

Therefore, with high probability, the cost to Alice is O(Tϕ−1).

Receivers: We analyze the cost to each receiver up until m is received. Note that

we assume Carol does not have any cost for blocked Nack Phases up until this point

since, as discussed in Section 2.5, there is no benefit to causing a Nack Failure via

jamming.

Using Lemmas 7, 8, and 11, prior to receiving m, with high probability each

receiver has cost at most:

O(2i) +
∞
∑

k=1

(2/n)k−1O(2i+k)

= O(2i + lnn)

= O(2i).

Thus, with high probability, the cost to each receiver is O(T 1/ϕ) = O(Tϕ−1).
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Lemma 13. With high probability, Alice and all correct receivers terminate RO-

BUSTBROADCAST in O(Tϕ + lnϕ n) slots.

Proof. We analyze the time it takes for Alice to terminate since she does so only

after all receivers terminate. As with the analysis of ROBUSTTALK, we pessimisti-

cally assume a blocked phase prevents Alice from terminating in the current round.

Furthermore, Carol will only perform her jamming to block Nack Phases since this

maximizes the rounds that she keeps Alice alive.

Solving
∑s

i=lg(4 lnn) 2
i/2 ≥ T yields that the number of rounds that Carol can

block is at most s ≤ lg(T )+O(1). By the end of the very next round, all receivers

are guaranteed with high probability to receive the message by Lemma 8, and Alice

is guaranteed with high probability to terminate by Lemma 10. Therefore, with

high probability, Alice terminates after O(2ϕ(lg T+O(1)) + 2ϕ lg(4 lnn)) = O(Tϕ +
lnϕ n).

The following theorem on the resource-competitive properties of ROBUSTBROAD-

CAST follows directly from Lemmas 9, 12, and 13

Theorem 4. Let Carol be an adaptive adversary that jams for T slots. ROBUST-

BROADCAST guarantees m is received by all receivers and all parties terminate.

With high probability, Alice has a cost of O(Tϕ−1 + lnϕ n), each receiver has a

cost of O(Tϕ−1 + lnn), and all parties terminate within O(Tϕ + lnϕ n) slots.

6 Discussion

In this section, we provide some follow-up discussion regarding the practical as-

pects of wireless LPNs and how our abstract network model is motivated.

Sending and Listening Costs in Practice: Wireless network cards typically offer

states such as sleep, receive (or listen) and transmit (or send). While the sleep

state requires negligible power, the cost of the send and listen states are roughly

equivalent and dominate the operating cost of a device. For example, the send and

listen costs for the popular Telos motes are 38mW and 35mW, respectively and the

sleep state cost is 15µW [66]; therefore, the cost of the send/listen state is more

than a factor of 2000 greater and the sleep state cost is negligible. In the context

of our work, when a party is not active, we can assume it is in the energy-efficient

sleep state.

Disruption may not require jamming an entire slot, and so jamming a slot can

be less costly than sending/listening. However, we can assume a small m (or m
is broken into small packets) such that jamming and sending costs are within a

constant factor of each other.
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ROBUSTBROADCAST for i ≥ lg(4 ln n)

Send Phase: For each of the 2ϕi slots do

• If Alice has sent in less than 2ϕi+2 lnn slots in this

phase, she sends m with probability 2 lnn
2i

.

• If this receiver has listened in less than 2i+2 slots

in this phase, it listens with probability 2
2(ϕ−1)i .

Any receiver that obtains m terminates.

Nack Phase: For each of the 2i slots do

• Each receiver that has not terminated sends nack.

• If Alice has listened in less than 2ϕi+2 lnn slots in

this phase, she listens with probability 4 lnn
2i

.

If Alice listened to a clear slot, then she terminates.

Figure 7: Pseudocode for ROBUSTBROADCAST.

Slots: A time-slotted network corresponds to a time division multiple access (TDMA)-

like medium access control (MAC) protocol; that is, a time-slotted network. Two

examples are the popular IEEE 802.11 family of specifications, and the well-known

LEACH [40]. For simplicity, a global broadcast schedule is assumed; however, this

is likely avoidable if nodes maintain multiple schedules as with S-MAC [83]. Even

then, global scheduling has been demonstrated by experimental work in [50] and

secure synchronization has been shown [32].

Clear channel assessment (CCA), which subsumes carrier sensing, is a com-

mon feature on devices for detecting activity on the channel [67]; this is considered

practical under IEEE 802.11 [25]. Collisions are usually only detectable by the re-

ceiver [80]. When a collision occurs, a correct node discards any received data. We

assume that the absence of channel activity cannot be forged by the adversary; this

aligns with the empirical work by Niculescu [61] who shows that channel inter-

ference increases linearly with the combined rate of the sources. Finally, we also

note that several theoretical models feature collision detection (see [3,6,16,34,68]).

On Reactive Adversaries: CCA is performed via the radio chip using the received

signal strength indicator (RSSI) [41]. If the RSSI value is below a clear channel

threshold, then the channel is assumed to be clear [7]. Such detection consumes on

the order of 10−6 W which is three orders of magnitude smaller than the send/listen

costs; therefore, a reactive Carol can detect activity (but not message content) at
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essentially zero cost. However, listening to even a small portion of a message costs

on the order of milliwatts and our argument from Section 4 now applies.

Cryptographic Authentication: We assume that the message m from Alice can

be authenticated. Therefore, Carol cannot spoof Alice. Several results show how

light-weight cryptographic authentication can be implemented in sensor networks [42,

47, 53, 77, 78].

What about having a shared secret for Alice and Bob that helps coordinate

their communication? This is outside the scope of this work, but we remark that

the adversary may capture a limited number of parties (such as Bob). These parties

are said to suffer a Byzantine fault and are controlled by the adversary [77, 80].

Given this attack, we emphasize that, while we assume authentication on Alice’s

side, attempts to share a secret send/listen schedule between Alice and Bob allows

Carol to manipulate parties in ways that appear difficult to overcome.

7 Conclusion and Future Work

In this paper, we provided resource-competitive algorithms for mitigating jamming

attacks in wireless LPNs. We see that the golden ratio arises naturally from our

analysis, and its appearance in this adversarial setting is interesting. Notably, a

later result in [35] demonstrates that our result for Alice and Bob is asymptotically

tight in that Ω(Tϕ−1) expected cost is necessary.

Future work includes pursuing resource-competitive algorithms to mitigate jam-

ming in multihop networks. Additionally, the application of these results to prob-

lems of consensus and leader election may prove fruitful. Finally, investigations

into more sophisticated communication models, such as the signal-to-interference-

plus-noise (SINR) model, may be of interest.
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