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Abstract Given any multiset F of points in the Euclidean
plane and a set R of robots such that |R|= |F |, the Arbitrary
Pattern Formation (APF) problem asks for a distributed al-
gorithm that moves robots so as to reach a configuration sim-
ilar to F . Similarity means that robots must be disposed as
F regardless of translations, rotations, reflections, uniform
scalings. Initially, each robot occupies a distinct position.
When active, a robot operates in standard Look-Compute-
Move cycles. Robots are asynchronous, oblivious, anony-
mous, silent and execute the same distributed algorithm. So
far, the problem has been mainly addressed by assuming chi-
rality, that is robots share a common left-right orientation.
We are interested in removing such a restriction.

While working on the subject, we faced several issues
that required close attention. We deeply investigated how
such difficulties were overcome in the literature, revealing
that crucial arguments for the correctness proof of the ex-
isting algorithms have been neglected. The systematic lack
of rigorous arguments with respect to necessary conditions
required for providing correctness proofs deeply affects the
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validity as well as the relevance of strategies proposed in the
literature.

Here we design a new deterministic distributed algo-
rithm that fully characterizes APF showing its equivalence
with the well-known Leader Election problem in the asyn-
chronous model without chirality. Our approach is charac-
terized by the use of logical predicates in order to formally
describe our algorithm as well as its correctness. In addi-
tion to the relevance of our achievements, our techniques
might help in revising previous results. In fact, it comes out
that well-established results like [Fujinaga et al., SIAM J.
Comp. 44(3) 2015], more recent approaches like [Bramas
et al., PODC and SSS 2016] and ‘unofficial’ results like
[Dieudonné et al., arXiv:0902.2851] revealed to be not cor-
rect.

Keywords Distributed Algorithms · Mobile Robots ·
Asynchrony · Pattern Formation

1 Introduction

In distributed computing, one of the most studied problem
is certainly the Pattern Formation (PF) which is strictly re-
lated to Consensus and Leader Election. Given a team of
robots (agents or entities) and a geometric pattern in terms
of points in the plain with respect to an ideal coordinate sys-
tem, the goal is to design a distributed algorithm that works
for each robot to guide it so that eventually all robots to-
gether form the pattern if possible. As the global coordinate
system might be unknown to the robots, a pattern is declared
formed as soon as robots are disposed similarly to the input
pattern, that is regardless of translations, rotations, reflec-
tions, uniform scalings.

The PF problem has been largely investigated in the last
years under different assumptions. Here we refer to the stan-
dard Look-Compute-Move model. When active, a robot op-
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erates in Look-Compute-Move (LCM) cycles. In one cycle
a robot takes a snapshot of the current global configuration
(Look) in terms of robots’ positions according to its own co-
ordinate system. Successively, in the Compute phase it de-
cides whether to move toward a specific target or not, and in
the positive case it moves (Move).

Different characterizations of the environment consider
whether robots are fully-synchronous, semi-synchronous
(cf. [28,30,31]) or asynchronous (cf. [2,14,22,21,24]):

– Fully-synchronous (FSYNC): The activation phase (i.e.
the execution of a Look-Compute-Move cycle) of all
robots can be logically divided into global rounds. In
each round all the robots are activated, obtain the same
snapshot of the environment, compute and perform their
move.

– Semi-synchronous (SSYNC): It coincides with the
FSYNC model, with the only difference that not all
robots are necessarily activated in each round.

– Asynchronous (ASYNC): The robots are activated inde-
pendently, and the duration of each phase is finite but
unpredictable. As a result, robots do not have a common
notion of time. Moreover, they can be seen while mov-
ing, and computations can be made based on obsolete
information about positions.

One of the latest and most important results for PF ,
see [22], solves the problem for robots endowed with few
capabilities. Initially, no robots occupy the same location,
and they are assumed to be:

– Dimensionless: modeled as geometric points in the
plane;

– Anonymous: no unique identifiers;
– Autonomous: no centralized control;
– Oblivious: no memory of past events;
– Homogeneous: they all execute the same deterministic

algorithm;
– Silent: no means of direct communication;
– Asynchronous: there is no global clock that synchro-

nizes their actions;
– Non-rigid: robots are not guaranteed to reach a destina-

tion within one move;
– Chiral: they share a common left-right orientation.

Since ASYNC robots are considered, it is worth to re-
mark they are activated independently, and the duration of
each phase is finite but unpredictable, i.e., the time between
Look, Compute, and Move phases is finite but unbounded.
This is decided by an adversary for each robot and for each
phase. As a result, robots do not have a common notion of
time. Moreover, they can be seen while moving even though
a robot does not perceive whether other robots are mov-
ing or not. It follows that the computations and hence the
moves performed by robots can be made on the base of ob-
solete information about robots’ positions as these can refer

to outdated perceptions. In fact, due to asynchrony, by the
time a robot takes a snapshot of the configuration, this might
have drastically changed when it starts moving. The adver-
sary determining the Look-Compute-Move cycles timing is
assumed to be fair, that is, each robot becomes active and
performs its cycle within finite time and infinitely often.

During the Look phase, robots can perceive multiplici-
ties, that is whether a same point is occupied by more than
one robot, and how many robots compose a multiplicity.

The distance traveled within a move is neither infinite
nor infinitesimally small. More precisely, the adversary has
also the power to stop a moving robot before it reaches its
destination, but there exists an unknown constant ν > 0 such
that if the destination point is closer than ν , the robot will
reach it, otherwise the robot will be closer to it of at least
ν . Note that, without this assumption, an adversary would
make impossible for any robot to ever reach its destination.

The main open question left in [22] within ASYNC con-
cerns the resolution of the more general PF problem in the
described setting but without chirality. So far, the only sub-
problems solved within the weakest setting are the gather-
ing problem [9], where all robots must move toward a com-
mon point, and the circle-formation problem [20,25], where
n robots must form a regular n-gon.

Another interesting question represents the so-called Ar-
bitrary Pattern Formation (APF), that is, from which initial
configurations it is possible to form any pattern? In [18],
APF has been solved for a number n ≥ 4 of asynchronous
robots with chirality but excluding patterns with multiplici-
ties. The answer to this restricted setting for APF provided
a nice characterization of the problem that was shown to
be equivalent to Leader Election within the same set of as-
sumptions. In particular, the configurations from which the
proposed algorithm could output any pattern (without mul-
tiplicities) are the so-called leader configurations. These are
configurations of robots from which it is possible to elect a
leader. Clearly, if one provides an algorithm to solve APF
for some input configurations, then also PF can be solved
for all such configurations.

The contribution of this work is threefold: (1) to provide
counter-examples to the correctness of algorithms for the
PF and APF problems proposed in well-established and in
recent papers; (2) to solve APF (and consequently PF) with
any number of asynchronous robots without chirality when
the initial configurations are leader configurations, hence
generalizing the equivalence of APF and Leader Election
also within our setting for any number of robots without chi-
rality, including patterns with multiplicities; (3) to use a rig-
orous approach for handling problems in the asynchronous
environment able to provide accurate arguments to state the
correctness of the designed algorithms.
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1.1 Motivation and related work

Starting with [8], we kept on studying PF without chiral-
ity but we faced several issues mainly related to asynchrony
that required close attention. Since the main difficulties were
not depending on the lack of chirality, we deeply investi-
gated how such problems were overcome in the literature.
In particular, we closely explored [22] – that can be consid-
ered as a milestone in the advancement of PF study within
ASYNC – and we found that surprisingly our difficulties
with PF have not been addressed at all. Actually, we are
able to devise fundamental counter-examples to the correct-
ness of [22]. We contacted the authors of [22] and they con-
firmed us that the provided counter-example and most im-
portantly the rationale behind it represents a main issue that
requires deep investigation.

In order to catch a first idea of our findings, it is neces-
sary to understand what should be carefully analyzed when
dealing with asynchrony and robots that do not share a com-
mon coordinate system. The first problem arising when ap-
proaching PF is where robots should form the pattern F , that
is how to embed F on the area occupied by robots so as each
point of F can be seen as a ‘landmark’. Both in [22] and in
our strategy, the algorithms are logically divided into phases.
Usually the first phase is devoted to move a few of robots
in such a way the embedding becomes easy. Then, there is
an intermediate phase where all robots but those placed in
the first phase are moved in order to form F . Finally there
is a third phase where the ‘special’ robots are moved to fi-
nalize F . While in the second phase it is relatively easy to
move robots to partially form F because the embedding is
well defined, this is not the case for the other two phases.
For instance, if not carefully managed, it may happen that
during a move the configuration changes its membership to
a different phase, especially from the first phase. In order
to provide the correctness proof of an algorithm under the
sketched scheme, it is not sufficient to define some invari-
ants that exclusively define the membership of a configura-
tion to a phase (as sometimes has been done in the litera-
ture), but it is mandatory to prove that the defined moves
cannot change the membership of the current configuration
while robots are moving. In the ASYNC model a change
of membership is possible, if not carefully considered, as
robots can be seen while moving. If such a situation hap-
pens, other robots ‘believing to be in a different phase’ may
start moving and then the situation becomes sometimes in-
tractable or even they prevent the algorithm to accomplish
the PF . Unfortunately this is the case for [22], where the au-
thors neglected such situations, and we can provide counter-
examples where their algorithm fails. It is worth to remark,
that the systematic lack of arguments with respect to such
events completely invalidates the correctness and the rele-
vance of the strategy proposed in [22]. Moreover, it is not

possible to recover the algorithm with some easy patches as
it requires structural intervention.

On this base, and in order to better understand the prob-
lem, we started restricting our attention to the case where
initial configurations are asymmetric. An asymmetric con-
figurations of robots is meant as a disposal on the Euclidean
plane not admitting axis of symmetries nor rotations. Even
if solving this ‘restricted’ version of the PF problem may
be perceived to be an easy task, the analysis of the literature
revealed the following state of the art:

– A first study can be found in [24]. The authors provide a
distributed algorithm that can form many patterns, sub-
ject to significant restrictions in the input configurations.
One of such constraints almost coincides with asymme-
try, but it is not the only one. Unfortunately, the way it is
presented does not allow to exactly specify from which
kind of configurations robots can start and which pat-
terns are formable.

– A formal characterization that includes asymmetric con-
figurations has been conducted in [17,18]. Actually the
problem considered is APF and the authors show the
equivalence of APF and the Leader Election problems
under some circumstances. Still the results are based on
chirality for a number of robots greater than or equal to
4. Moreover, the patterns considered are not exactly ‘ar-
bitrary’ because they do not allow multiplicities, that is
the points of any given pattern to be formed by n robots
compose a set of n distinct elements. In our study, as
well as in [22], patterns may allow multiplicities, and
this deeply affects the design of resolution algorithms.

– Other approaches found in the literature to solve PF are
probabilistic, see [4,5,32]. In particular, in [4,5] the au-
thors claim to solve APF (and hence PF) with a strat-
egy that is divided into two main phases: the first phase
is probabilistic and is used to make asymmetric the in-
put configuration; the second phase is deterministic and
solves PF from asymmetric configurations even without
assuming any form of multiplicity detection. Basically,
the strategy in the second phase solves APF from asym-
metric configurations. Unfortunately, the proposed strat-
egy suffers of some lack of rigorous arguments support-
ing the correctness of the proposed algorithm. We are
able to provide counter-examples that affect the ratio-
nale behind the proposed strategy, and then also in this
case the proposed algorithm is not correct. An extended
version of those papers can be found in [6].

– Further ‘unofficial’ results can be found in [7,16]. Con-
cerning [7], not all patterns are considered but only
asymmetric ones. Concerning [16], the authors claim
to solve APF by slightly modifying the results of [18].
There are three main issues about this paper. First of
all, the main proof is given by a sketchy description,
whereas we show how formal arguments are extremely
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necessary in this context. In fact, we are able to provide
counter-examples that invalidate the proposed strategy,
hence discovering a further algorithm which is not cor-
rect.
Secondly, the patterns considered in [16] do not allow
multiplicities. In our study, as well as in [22], patterns
may allow multiplicities, and this deeply affects the de-
sign of resolution algorithms. In fact, also the gather-
ing becomes a sub-problem of PF where it is required
to solve the so-called point formation. It is well-known
how difficult is the resolution of the gathering prob-
lem [9]. Finally, the minimum number of robots required
by the proposed algorithm is 5. Note that in robot based
computing systems, instances with small numbers of
robots usually require very different and non-trivial ar-
guments with respect to the general algorithm. This is
the case for instance for the square formation [25] and
for gathering both in the Euclidean plane [9] or in dis-
crete rings [12,13,15,3] and grids [11].

Such an analysis along with a useful interaction with anony-
mous referees, motivated us to study not only asymmetric
configurations but also leader configurations, in order to see
whether APF is equivalent to Leader Election also in our
more general setting.

Nevertheless, our investigation inspired the third aim of
this paper, that is to provide a rigorous approach for design-
ing algorithms in ASYNC. The need of new ways of express-
ing algorithm in ASYNC is widely recognized. For instance,
in [1,19,27] a formal model to describe mobile robot pro-
tocols under synchrony and asynchrony assumptions is pro-
vided. So far, these only concern robots operating in a dis-
crete space i.e., with a finite set of possible robot positions.

1.2 Our results

We provide fundamental arguments affecting the correctness
of [22], [4,5] and [16]. The relevance of our finding is given
not only by the fact that we re-open the PF and the APF
problems in some ASYNC contexts, but also that possibly
other tasks may suffer of the same arguments. It follows that
problems considered already solved, like for PF in the case
of robots with chirality or like APF in the case of robots
without chirality, must be carefully revised. We show that
the resolution of such problems might be really difficult, es-
pecially for providing correctness proofs with an adeguate
level of formalism.

We fully characterize the APF problem (and hence PF)
from initial leader configurations, that is for any number of
robots we can form any pattern, including symmetric ones
and those with multiplicities. Since we do not assume chi-
rality, symmetries to be considered for the robots and for the
patterns are not only rotations as in [22,17,18], but also re-

flections and symmetries due to multiplicities. The proposed
algorithm shows the equivalence between APF and Leader
Election within our setting, generalizing previous results in
terms of number of robots that now can be any, in terms of
robots capability as we removed the chirality assumption,
and in terms of formable patterns that now can include mul-
tiplicities and symmetries. Our main result can be stated as
follows:

Theorem 1 Let R be an initial configuration of ASYNC

robots without chirality. APF is solvable from R if and only
if Leader Election is solvable in R.

To reach this result, we design our algorithm according
to a rigorous approach. Such an approach is based on basic
predicates that composed in a Boolean logic way provides
all the invariants needed to be checked during the execution
of the algorithm. Differently to previous approaches used in
the literature, we make a careful use of invariants to describe
properties holding during the movements of robots. As al-
ready observed, the technique of specifying formal invari-
ants to define the different phases of an algorithm is some-
thing that other authors have adopted. However in this paper
the level of details reached to describe every single move
and the corresponding trajectory is something new. In turn,
this implies that for each single move the algorithm may re-
quire three different invariants (to describe properties at the
start, during, and at the end of the move). Hence, our algo-
rithm is organized as a set of moves, each associated to up
to three invariants. Moves are grouped and associated to a
phase, where a phase represents a general task of the algo-
rithm. Summarizing, the approach leads to a greater level of
detail that provides us rigorous arguments to state the cor-
rectness of the algorithm. This approach itself represents
a result of this paper, as it highlights crucial properties in
ASYNC contexts that so far have been underestimate in the
literature.

As further remarks, it is worth to note that differently
from [22], we do not require that the local coordinate sys-
tem specific of a single robot remains the same among dif-
ferent Look-Compute-Move cycles. Moreover, the trajecto-
ries traced during a move specified by our algorithm are
always well-defined either as straight lines or as rotations
along specified circles.

Finally, our algorithm does not require to specify the pat-
tern to be formed as a set of coordinates in a Cartesian sys-
tem. There are two possible options. As in [24], the pattern
can be specified as a list of ratios of its sides and angles be-
tween the sides. Another option is to provide the list of dis-
tances among all points. In both cases, each robot can locally
evaluate a possible set of points consistent with the input and
its local coordinate system. Clearly, it turns out that doing
this way robots do not share the same information about the
pattern but each one acquires its own representation.
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1.3 Outline

In the next section, some further details on the considered
robots’ model are provided. In Section 3, useful notation
and definitions are introduced. Section 4 provides a first
description of our strategy to solve APF in ASYNC with-
out chirality and starting from initial leader configurations.
Section 5 contains a description of some counter-examples
about previous strategies for PF and APF in ASYNC, hence
re-opening some of these problems. Section 6, provides our
new distributed algorithm. It is given in terms of various
sub-phases where different moves are performed. The cor-
rectness of the algorithm is given in Section 7. Finally, Sec-
tion 8 concludes the paper.

2 Robot Model

The robot model is mainly borrowed from [22] and [8]. We
consider a system composed by a set R of n mobile robots.
Let R be the set of real numbers, at any time the multiset
R = {r1,r2, . . . ,rn}, with ri ∈ R2, contains the positions of
all the robots.

We arbitrarily fix an x-y coordinate system Z0 and call
it the global coordinate system. A robot, however, does not
have access to it: it is used only for the purpose of descrip-
tion, including for specifying the input. All actions taken
by a robot are done in terms of its local x-y coordinate sys-
tem, whose origin always indicates its current position. Let
ri(t) ∈R2 be the location of robot ri (in Z0) at time t. Then a
multiset R(t) = {r1(t),r2(t), . . . ,rn(t)} is called the configu-
ration of R at time t (and we simply write R instead of R(t)
when we are not interested in any specific time).

A robot is said to be stationary in a configuration R(t) if
at time t it is:

– inactive, or
– active, and:

– it has not taken the snapshot yet;
– it has taken snapshot R(t);
– it has taken snapshot R(t ′), t ′ < t, which leads to a

null movement.

A configuration R(t) is said to be stationary1 if all robots are
stationary in R(t).

If two or more robots occupy the same position, then
there is an element r ∈ R occurring more than once. In such
a case r is said to belong to (or compose) a multiplicity.

1 The definition of stationary robot provided in [22] is slightly differ-
ent but also inaccurate. In fact, it does not catch the third scenario about
active robots described by our definition. If removing such a case, no
configuration might be declared stationary during an execution. Sim-
ilarly, the definition of static robot from [5] does not describe for in-
stance the case where a robot is not moving but has already performed
the Look phase.

Definition 1 A configuration R is said initial if it is station-
ary and all elements in R are distinct, that is, no multiplicity
occurs.

Each robot ri has a local coordinate system Zi, where the
origin always points to its current location. Let Zi(p) be the
coordinates of a point p ∈R2 in Zi. If ri takes a time interval
[t0, t1] for performing the Look phase, then it obtains a mul-
tiset Zi(R(t)) = {Zi(r1(t)),Zi(r2(t)), ...,Zi(rn(t))} for some
t ∈ [t0, t1], where Zi(ri(t))= (0,0). That is, ri has the (strong)
multiplicity detection ability and can count the number of
robots sharing a location. More generally, if P is a multiset
of points, for any x-y coordinate system Z, by Z(P) we de-
note the multiset of the coordinates Z(p) in Z for all p ∈ P.

Let {ti : i= 0,1, . . .} be the set of time instants at which a
robot takes the snapshot R(ti) during the Look phase. With-
out loss of generality, we assume ti = i for all i = 0,1, . . ..
Then, an infinite sequence E : R(0),R(1), . . . is called an ex-
ecution with an initial configuration I = R(0) that by defi-
nition is stationary and without multiplicities. Actually, de-
pending on the algorithm, multiplicities may be created in
R(i), with i > 0.

Let P1 and P2 be two multisets of points: if P2 can be
obtained from P1 by translation, rotation, reflection, and
uniform scaling, then P2 is similar to P1. Given a pattern
F expressed as a multiset Z0(F), an algorithm A forms
F from an initial configuration I if for any execution E :
R(0)(= I),R(1),R(2), . . ., there exists a time instant i > 0
such that R(i) is similar to F and no robots move after i, i.e.,
R(t) = R(i) hold for all real numbers t ≥ i.

Unlike the initial configuration, in general, not all robots
are stationary in R(i) when i > 0, but at least one robot that
takes the snapshot R(i) is stationary by definition. Whether
or not a given configuration R is stationary (or a robot is
stationary at R) depends not only on R but also on the ex-
ecution history, in general. Let E : R(0),R(1), . . . ,R( f ) and
E′ : R′(0),R′(1), . . . be two executions, and assume R( f ) =
R′(0). Then EE′ : R(0),R(1), . . . ,R( f )(= R′(0)),R′(1), . . .
is always a correct execution for SSYNC (and hence for
FSYNC) robots since R( f ) is stationary by the definition
of SSYNC robots. However, this is not the case for ASYNC

robots, since in E′, R′(0) is assumed to be stationary, but in
E, R( f ) may not be; the transition from R′(0) to R′(1) may
be caused by the Look of a robot r which is moving at R( f )
and hence cannot observe R( f ). If an algorithm can guar-
antee that R( f ) is stationary, like for SSYNC robots, then
we can safely concatenate E and E′ to construct a legitimate
execution even for ASYNC robots. An execution fragment
that starts and ends at a stationary configuration is called a
phase.

Consider an execution of an algorithm A, and assume
that at a given time t algorithm A produces a stationary con-
figuration R(t). As observed in the Introduction, A should
use some invariants to decide which move to apply to R(t).
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According to the invariants, a given move is then applied to
a subset S of robots in R(t) in order to produce a new station-
ary configuration. In this general case, a phase is realized by
the move, and we could say that the phase is a consequence
of the invariants verified at R(t).

In order to provide the correctness proof for A, it is not
sufficient to define the invariants associated to a phase, but
it is mandatory to prove that the defined moves do not af-
fect the stationarity of robots not belonging to S. In fact, if
such a situation happens, robots not in S may ‘believe to be
in a different phase’ and hence may start moving (possibly
producing intractable cases).

For addressing correctly this problem, we introduce the
following definition of transition-safe algorithm.

Definition 2 Let R be a configuration and S ⊆ R be the
robots allowed to move according to a move m dictated by
algorithm A. Let [t1, t2] be any time interval in which some
robots in S are moving but at least one has not yet reached
its target, and let R′ be any configuration observed during
[t1, t2].
We say that m is safe if in R′ algorithm A allows only robots
in S to move; A is transition-safe if each move in A is safe.

Note that, in the situation described by the above defini-
tion, if R′ is stationary and has been obtained from R by
means of move m, necessarily the adversary has stopped
some moving robots in S (while the other moving robots
have reached their targets). From there, if A is transition-
safe then either move m is again performed by robots in S or
still robots in S move according to a move m′ 6= m (possibly
toward different targets).

3 Notation and basic properties

Given two distinct points u and v in the Euclidean plane, let
d(u,v) denote their distance, let line(u,v) denote the straight
line passing through these points, and let (u,v) ([u,v], resp.)
denote the open (closed, resp.) segment containing all points
in line(u,v) that lie between u and v. The half-line starting
at point u (but excluding the point u) and passing through
v is denoted by hline(u,v). We denote by ^(u,c,v) the an-
gle centered in c and with sides hline(c,u) and hline(c,v).
The angle ^(u,c,v) is measured from u to v in clockwise or
counter-clockwise direction, the measure is always positive
and ranges from 0 to less than 360 degrees, and the direction
in which it is taken will be clear by the context.

Given an arbitrary multiset P of points in R2, C(P) and
c(P) denote the smallest enclosing circle of P and its cen-
ter, respectively. Let C be any circle concentric to C(P). We
say that a point p ∈ P is on C if and only if p is on the cir-
cumference of C; ∂C denotes all the points of P that are on
C. We say that a point p ∈ P is inside C if and only if p is

in the area enclosed by C but not in ∂C; int(C) denotes all
the points inside C. The radius of C is denoted by δ (C). The
smallest enclosing circle C(P) is unique and can be com-
puted in linear time [26]. A useful characterization of C(P)
is expressed by the following property.

Property 1 [29] C(P) passes either through two of the
points of P that are on the same diameter (antipodal points),
or through at least three points. C(P) does not change by
eliminating or adding points to int(P). C(P) does not change
by adding points to ∂C(P). However, it may be possible that
C(P) changes by either eliminating or changing positions of
points in ∂C(P).

Given a multiset P, we say that a point p ∈ P is critical
if and only if C(P) 6= C(P \ {p})2. It easily follows that if
p ∈ P is a critical point, then |∂C(P)∩{p}|= 1.

Property 2 [10] If |∂C(P)| ≥ 4 then there exists at least one
point in ∂C(P) which is not critical.

Given a multiset P, consider all the concentric circles
that are centered in c(P) and with at least one point of P
on them: Ci

↑(P) denotes the i-th of such circles, and they
are ordered so that by definition C0

↑(P) = c(P) is the first
one, C(P) is the last one, and the radius of Ci

↑(P) is greater

than the radius of C j
↑(P) if and only if i > j. Additionally,

Ci
↓(P) denotes one of the same concentric circles, but now

they are ordered in the opposite direction: C0
↓(P) = C(P) is

the first one, c(P) by definition is the last one, and the radius
of Ci

↓(P) is greater than the radius of C j
↓(P) if and only if

i < j.
The radius of three of such circles will play a special role

in the remainder: δ0(P) = δ (C0
↓(P)), δ1(P) = δ (C1

↓(P)), and
δ2(P) = δ (C2

↓(P)) (with δ1 and δ2 equal to zero when the
corresponding circles do not exist).

Definition 3 Let R be a configuration. We define δ0,1 =

(δ0(R)+δ1(R))/2 and δ0,2 = (δ0(R)+δ2(R))/2, and we de-
note by C0,1(R) and C0,2(R) the circles centered in c(R) and
with radii δ0,1 and δ0,2, respectively.

Definition 4 Let R be a configuration and F a pattern. As-
suming C(R) = C(F), let d = δ (C1

↑(F)). The guard circle
Cg(R) and the teleporter circle Ct(R) are defined as the cir-
cles centered in c(R) of radii equal to d/2i and d/2(i−1),
respectively, with i > 1 being the minimum integer such that
the following conditions hold:

– int(Cg(R))\ c(Cg(R)) = /0;
– |int(Ct(R))\ int(Cg(R))| ≤ 1;
– |∂Ct(R)| ≤ 1.

2 Note that in this work we use operations on multisets.
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c(R)

C(R)
g′

Ct(R)

Cg(R)

g

α

g′′

Fig. 1 A visualization of basic concepts and notation in the definition
of the common reference system.

Circles Cg(R) and Ct(R) are not defined for any configu-
ration. For a visualization see Figure 1. Circle Cg(R) will be
used by our algorithm as the place where a specific robot g is
moved in order to establish a common reference coordinate
system by which robots can embed F on the area occupied
by robots. Circle Ct(R), which is larger than Cg(R), repre-
sents the place closest to c(R) where a robot deviates in case
its trajectory should traverse Cg(R). Doing so, no robots can
be confused with g.

Definition 5 Let F be a pattern, the reference angle α is
defined as the following value:

α =
1
3
·min{^(x,c(F),y) : x,y ∈ ∂C(F),x 6= y}.

Such a reference angle will be used to correctly place robot
g on Cg(R) during the formation of pattern F .

3.1 View of a point and symmetries

We now introduce the concept of view of a point in the plane;
it can be used by robots to determine whether a configuration
R and/or a pattern F is symmetric or not.

Given a set of robots R, the distance d(r,s) between
two robots r, s ∈ R is the length of the segment connect-
ing their positions in the plane. A map ϕ : R→R is called
an isometry or distance preserving if for any r,s∈R one has
d(ϕ(r),ϕ(s)) = d(r,s). If R admits only the identity isom-
etry, then R is said asymmetric, otherwise it is said symmet-
ric. These definitions naturally extend to the corresponding
configuration R of robots in R, and in general to a generic
multiset of points P. Notice that, whenever a configuration
(or a pattern) contains a multiplicity, then it is symmetric, no
matter where the multiplicity is. In fact, two distinct robots
(or target points of a pattern) in the multiplicity can be al-
ways mapped to each other.

Let P be a generic multiset of points. For p ∈ P, with
p 6= c(P), we denote by V+(p) the counter-clockwise view
of P computed from p. Essentially, V+(p) is a string whose
elements are the polar coordinates of all points in P. The ele-
ments in V+(p) are arranged as follows: first p, then in order
and starting from c(P) all the points in the ray hline(c(P), p),
and finally all the points in the other rays, with rays pro-
cessed in counter-clockwise fashion. Similarly, V−(p) de-
notes the clockwise view of P computed from p. By assum-
ing a lexicographic order for polar coordinates, the view of
p is defined as V (p) = min{V+(p),V−(p)}.

If c(P) ∈ P then c(P) is said the point in P of minimum
view, otherwise any p = argmin{V (p′) : p′ ∈ P} is said of
minimum view in P. Given P and P′⊆P, we use the notation
min_view(P′) to denote any point p with minimum view in
P′.

The possible symmetries that P can admit are reflections,
rotations and those due to multiplicities. P admits a reflec-
tion if and only if there exist two points p,q∈P, p,q 6= c(P),
not necessarily distinct, such that V+(p) = V−(q);3 P ad-
mits a rotation if and only if there exist two distinct points
p,q ∈ P, p,q 6= c(P), such that V+(p) = V+(q). It follows
that if P is asymmetric then there exists a unique multipoint
with minimum view. The above properties can be exploited
by robots to detect whether the observed configuration dur-
ing the Look phase is symmetric or not. When P is sym-
metric, in general, it cannot be guaranteed the existence of
a single point of minimum view. However, if P admits ex-
actly one axis of reflection ` with P∩ ` 6= /0 and at least a
single point on `, then among all the single points on ` there
exists one of minimum view (otherwise P would admit an-
other axis of reflection). Similarly, if P admits a rotation
with c(P) ∈ P and c(P) is a single point, then c(P) can be
uniquely determined. In all such cases basically a leader can
be elected in P.

Definition 6 A configuration R is said a leader configura-
tion if there exists a robot r ∈ R such that for each isometry
ϕ , ϕ(x) = x.

In this work we assume any initial configuration R(0) to
be a leader configuration. In Figure 2 relationships among
different kinds of configurations are shown.

We now redefine the concept of clockwise (and hence
of counter-clockwise) direction for a multiset of points P so
as to make it independent of a global coordinate system.4 If
P is asymmetric and p = min_view(P \ c(P)), then the di-
rection used to compute V (p) during the analysis of all the
rays starting from c(P) is the clockwise direction of P. If P
is symmetric, there might be many multipoints of minimum

3 When chirality can be exploited, reflections can be ignored as
V+(p) can be always discriminated from V−(q).

4 Indeed, this is not necessary when chirality is assumed.
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mult

sym asym

leader

Fig. 2 A visualization of the relationships between the different kinds
of configurations addressed in the paper, where “sym”, “asym”, “mult”,
and “leader” stand for symmetric configurations, asymmetric configu-
rations, configurations with multiplicities, and leader configurations,
respectively. In this work initial configurations are leader configura-
tions without multiplicities, which include all the asymmetric configu-
rations.

view. Symmetries we take care of are of three types: rota-
tions, reflections and those due to multiplicities. If P is re-
flexive, any direction can be assumed as the clockwise direc-
tion of P since they are indistinguishable. In any other case
the direction used to compute V (p) from any point p 6= c(P)
of minimum view determines the clockwise direction of P.

We can now apply the redefined concept of clockwise
direction to a configuration R and/or a pattern F . For in-
stance, in Figure 3.(a), the multiset R is asymmetric, hence
its clockwise direction coincides with that used to compute
V (r), with r = min_view(R); whereas in Figure 3.(b), the
set F is rotational and reflexive, hence its clockwise direc-
tion does not distinguish a left-right orientation.

4 The strategy

In this section, we provide a general description of the strat-
egy underlying our algorithm for the resolution of APF
starting from initial leader configurations. It is based on
a functional decomposition approach: the problem is di-
vided into five sub-problems denoted as RefSys (Refer-
ence System), ParForm (Partial Formation), Fin (Finaliza-
tion), SymBreak (Symmetry Breaking), and Membership.
For each sub-problem but Membership an algorithm is pro-
vided. Each algorithm is defined in a way that its execu-
tion consists of a sequence of phases, whereas Membership
crosses different phases. The whole strategy is then realized
by composing the algorithms of each phase.

We now provide a high-level description of the four sub-
problems.

Problem RefSys: It concerns the main difficulty arising
when the pattern formation problem is addressed: the lack
of a unique embedding of F on R that allows each robot to
uniquely identifying its target (the final destination point to
form the pattern).5 In particular, RefSys can be described

5 In the literature, this is sometime realized by inducing a common
coordinate system. This method can be effective only if F is specified
by coordinates and not by distances.

as the problem of moving some (minimal number of) robots
into specific positions such that they can be used by any
other robot as a common reference system. Such a refer-
ence system should imply a unique mapping from robots to
targets, and should be maintained along all the movements
of robots (except for the finalization phase, where the algo-
rithm moves the robots forming the reference system).

Our strategy solves RefSys by using three robots (called
guards). Such guards are positioned as described in Fig-
ure 1: the boundary guards are denoted as g′ and g′′ and are
two antipodal robots on C(R), the internal guard is denoted
as g and is the unique robot on Cg(R) (the guard circle). The
internal guard is placed so that the angle ^(g,c(R),g′) is
equal to α (the reference angle) whose value only depends
on F . Once RefSys is solved, each robot can use the guards
to univocally determine its target position in the subsequent
phases.

Notice that in specific cases the presence of Cg(R) im-
plies a refinement to the strategy defined for the sub-problem
RefSys. In fact, in case of a multiplicity in c(F), all the
robots in c(R) (but one) must be placed before Cg(R) (and
hence the internal guard g) is used. Then, two distinct phases
are designed for addressing RefSys:

– phase F1, responsible for setting the external guards g′

and g′′ and, if required, for placing the multiplicity in
c(R);

– phase F2, responsible for setting the internal guard g.

Problem ParForm: This sub-problem concerns moving all
the non-guards robots (i.e., n−3 robots) toward the targets.
In our strategy, phase F3 is designed to solve this problem.
The difficulties in this phase are the following: (1) during
the phase, the reference system must be preserved, (2) the
movements must be performed by avoiding undesired multi-
plicities (collision-free routes), and (3) the movements must
be performed without entering into the guard circle (routing
through the teleporter circle).

Once the guards are placed, a unique robot per time is
chosen to be moved toward its target: it is the one not on
a target, closest to an unoccupied target, and of minimum
view in case of tie. We are ensured that always one sin-
gle robot r will be selected since the configuration is main-
tained a leader configuration by the guards. The selected
robot is then moved toward one of the closest targets until
it reaches such a point. All moves must be performed so as
to avoid the occurrence of undesired multiplicities; hence,
it follows that sometimes the movements are not straight-
forward toward the target point but robots may deviate their
trajectories. To this aim, the strategy makes use of a pro-
cedure called COLLISIONFREEMOVE designed ad-hoc for
computing alternative trajectories. Moreover, according to
the role of the internal guard g, robots cannot enter into the
circle Cg(R), otherwise the reference system induced by the
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C(F)C(R)

Fig. 3 An example of input for the PF problem: in (a), robots R; in (b), the pattern F .

guards is lost. The latter implies that, in case of a possible
route passing through Cg(R), a robot avoids entering into the
guard circle by deviating along the boundary of Ct(R) (the
teleporter circle); such a circle is centered in c(R) and its
radius is opportunely chosen so that in its interior there is
only g and in ∂Ct(R) there is at most one robot.

Problem Fin: It refers to the so-called finalization phase,
where the last three robots (the guards) must be moved to
their targets to complete the formation of pattern F . In our
strategy, a phase F4 is designed to solve this problem. This
phase must face a complex task, since (1) moving the guards
leads to the loss of the common reference system, and (2)
moving without a common reference system makes hard to
finalize the pattern formation.

In order to solve APF , two additional problems must be
faced. The first one concerns the case where the initial con-
figuration in symmetric.

Problem SymBreak: Consider the case in which the initial
leader configuration admits a symmetry while the pattern to
be formed is asymmetric. In this situation it is mandatory
for each solving algorithm to break the symmetry (i.e., to
transform the initial configuration into an asymmetric one).
In fact, without breaking the symmetry, any pair of symmet-
ric robots may perform the same kind of movements and
this prevent the arbitrary pattern formation. In our strategy,
phase F5 is used to address this sub-problem. It carefully
moves the robot away from the center (in case of rotational
symmetry) or one robot away from the unique axis (in case
of reflections) until to obtain a stationary asymmetric con-
figuration.

The main difficulties in this sub-problem are: (1) to
avoid the formation of other kind of symmetries that could
prevent the pattern formation (e.g., rotational symmetries),
and (2) to correctly face the situation in which multiple steps
are necessary to reach the target. In the latter case, the algo-
rithm must recognize the obtained asymmetric configuration
as a “configuration originated from a symmetric one where
some robot has not yet reached a designed target”.

The second problem that crosses different phases is that
described in the Introduction.

Problem Membership: This is the problem of avoiding that
moves defined in the algorithm can change the membership
of the current configuration while robots are moving. In fact,
if such a situation happens, other robots believing to be in
a different phase may start moving and then the situation
becomes sometimes intractable or even they prevent the al-
gorithm to accomplish the PF (for instance, this is the case
for the algorithm proposed in [22]). In contrast, our strategy
correctly addresses such a general problem by making use of
two ingredients: safe moves and an ad-hoc procedure called
STATIONARYMOVE. By using only moves that are safe, we
obtain an algorithm which is transition-safe. This means that
while robots are moving according to a move m, only robots
planned by m can move until all robots correctly reached
the target. By using Procedure STATIONARYMOVE, the al-
gorithm can control each move that potentially could lead
to non-stationary configurations, and hence to change the
membership of the current configuration in an uncontrolled
manner.6 Among others, Procedure STATIONARYMOVE ex-
ploits two main properties of our algorithms that are en-
sured during the most of the computations: there is at most
one moving robot and C(R(0)) = C(R(t)) = C(F), t > 0.
Such properties do not hold only in a few of the cases han-
dled by phase F5. For instance, while solving RefSys, the
embedding of F into R is not yet defined but the property
that C(R) =C(F) might be exploited. In fact, in some cases
STATIONARYMOVE can force the moving robots crossing
circles Ci

↓(F) to stop on such circles (hence potentially on
a point of F). In this way, we force the configuration to be-
come stationary while its membership may have changed,
because perhaps an embedding of F that leads to a different
phase holds.

5 Counter-examples

In this section we provide fundamental arguments affecting
the correctness of [22], [4,5] and [16]. It is worth to remark

6 The technique adopted by means of Procedure
STATIONARYMOVE is similar to the so-called cautious move
in [20,25].
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that our algorithm does not fix all the problems arisen in
this section, however our technique might be helpful as a
guideline for approaching such inconsistencies.

5.1 A counter-example to the correctness of the algorithm
presented in [22]

In this section, we provide a counter-example to the correct-
ness of the algorithm FORM presented in [22] to solve PF
assuming chirality. FORM is designed to form a pattern F
(possibly with multiplicities) from an initial configuration I
(without multiplicity) each time ρ(I) divides ρ(F), where
ρ(·) is the parameter that captures the symmetricity of a
multiset of points in the plane (cf. [22]). Since the algorithm
assumes robots empowered with chirality, function ρ(·) only
measures the number of possible rotations that the input set
of points admits. In fact, dealing with chirality overcomes
managing reflections.

An execution of algorithm FORM is partitioned into four
phases called the pattern embedding (EMB), the embedded
pattern formation (FOR), the finishing (FIN), and the gath-
ering (GAT) phases. Phase EMB embeds a given pattern
F , phase FOR forms a substantial part F̃ of F , and phase
FIN forms the remaining F \ F̃ of F to complete the forma-
tion. Phase GAT treats a pattern F with multiplicities. These
phases occur in this order, but some of them may be skipped.

For each of the phases, the authors present an algorithm
and an invariant (i.e., predicate) that every configuration in
the phase satisfies. Each invariant INV is considered as a
set too; a configuration R satisfies INV if and only if R ∈
INV . Authors show that the defined invariants are pairwise
disjoint, so exactly one of the algorithms implementing the
phases is executed.

We start by briefly recalling both the invariant INVEMB
and the algorithm AEMB for the first phase EMB. For a formal
understanding of the arguments below, the reader is invited
to refer to [22] for the definition of `-stable configurations,
which in turn defines a set Λ ⊆ ∂C(R):

– INVEMB = ¬(INVFOR ∨ INVFIN). Informally, INVFOR is
the set of the so called `-stable configurations R such
that not all robots in R \Λ are located at their final po-
sitions in F , while INVFIN is the set of configurations
R such that all robots in R \Λ are located at their final
positions in F .
Figure 4.(a) shows an initial configuration I such that
I ∈ INVEMB. Notice that the number of robots in I is odd
and ρ(I) = 1 (since I is asymmetric).

– AEMB consists of three algorithms A1, A2, and A3, that
are devoted to three different cases. Such algorithms are
responsible of forming a `-stable configuration. In par-
ticular A1 is responsible for forming a T -stable configu-
ration, that is a configuration R with exactly three robots

in ∂C(R) such that two of them are antipodal and the
third one is a midpoint of them. Actually, A1 is invoked
when |∂C(R)|= 2 (and this is the case in I), and it moves
an additional robot on C(R) to get a T -stable configura-
tion.
From I, algorithm A1 moves robot r7 straightly toward
the point [c(I),r7]∩C(I).

Both the invariant INVFIN and the algorithm AFIN for the
third phase FIN are also necessary to build our counter-
example. The finishing phase consists of different invariants
depending on the kind of `-stable configuration obtained in
the first phase. In particular, when the T -stable configuration
has been built according to algorithm A1, INVFIN consists of
three invariants INVa, INVb, and INVc, each associated to an
algorithm that moves one of the three robots on C(R). What
we need to explore for the counter-example is INVc.

– A configuration R satisfies INVc if and only if R\F = {r}
and r is on τc, where τc is a route designed as follows:

– Let R = {r1,r2, . . . ,rn}, F = { f1, f2, . . . , fn} be the
set of robots and pattern points ordered according
to their distance from c(R) and c(F), respectively.
Assume that c(R) = c(F) and that R\{rn} is similar
to F \{ fn}. In such a case, pattern F can be formed
from R by moving just rn toward fn along a route τc
defined as any route such that, for any point p on τc,
still rn is the unique robot to be moved (toward fn) to
form F from R′, where R′ is constructed from R by
replacing rn with p.

Concerning the algorithm executed when INVc holds, it
simply requires that robot rn traces the path τc.

We have recalled all the details necessary to describe the
counter-example. Assume now that algorithm A1 is moving
r7 to form a T -stable configuration, and consider the pattern
F depicted in Figure 4.(b) composed by the black and white
circles. Notice that ρ(F) = 1 as F is asymmetric. Since A1
moves robot r7 straightly toward the point [c(I),r7]∩C(I),
at a certain time it is possible that robot r9 observes (during
a Look phase) the configuration R depicted in Figure 4.(c).
This means that during the movement of r7, robot r9 starts
moving toward f9 according to the algorithm associated to
the invariant INVc. If this happens, the following properties
hold:

1. there are two moving robots;
2. each move is due to a different phase;
3. if both moving robots reach their current targets – see

Figure 4.(d) – then the obtained configuration R′ admits
ρ(R′) = 3 and from there it would be impossible to form
F . In fact, as proved in [22], F is formable from R′ if and
only if ρ(R′) divides ρ(F), but here ρ(F) = 1.

By personal communications, the authors of [22] con-
firmed us that the provided counter-example and most im-
portantly the rationale behind it represents a main issue that
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Fig. 4 A counter-example to the correctness of the algorithm FORM presented in [22]. Grey circles represent robots, white circles represent points
in the pattern F , black circles represent both robots and points in F . (a) An initial configuration I; (b) A visualization of a pattern F to be formed
along with points of I; (c) A configuration R obtainable from I during the movement of robot r7 in the first phase (execution of the algorithm A1
to form a T -stable configuration). From it, since invariant INVc holds, also robot r9 might start moving (toward f9); (d) A symmetric configuration
R′ obtainable if both r7 and r9 complete their scheduled moves.

requires deep investigation. While it is possibly easy to find
a patch to the counter-example by slightly modifying algo-
rithm A1, it is not straightforward to provide general argu-
ments that can ensure the correctness of the whole algo-
rithm. The main question left is: how can be guaranteed
among all the phases that the membership of a configura-
tion to a phase does not change while a robot is moving?

As we are going to show in the correctness section, our
algorithm does not suffer of such arguments as it prevents
such scenarios. Actually, the authors of [22] are working to
devise an erratum to solve the posed problems. The current
version of such an erratum is available from [23].

5.2 A counter-example to the correctness of the algorithm
presented in [4,5]

In this section, we show how missing arguments affect the
correctness of [4,5]. After our personal communications to
the authors, a new version [6]_v3 (i.e., version v3 of [6]) of
the extended paper [6]_v2 has been recently released which
includes the case discussed here. Still we believe it is im-
portant to report the counter-example as it highlights how

the lack of formalism may cause the missing of possible in-
stances.

Similarly to our approach, the algorithm in [6]_v2 se-
lects a specific robot r1 closest to c(R) to serve as what we
call guard. Such a robot is moved in a specific placement in
order to be always recognized as such until the very last step
that finalizes the formation of the input pattern F .

Another ingredient of the algorithm presented in [6]_v2
we need to describe for our purpose is how the authors get
rid of any form of multiplicity detection. When F contains
multiplicities, the robots first form a different pattern F̃ ob-
tained by the robots from F as follows: for each point p of
multiplicity k, k− 1 further points p1, . . ., pk−1 are added
such that the distance of each pi from c(F) equals the dis-
tance of p from c(F), ^(p,c(F), pi)< pi, and |pi− p|= d

4i ,
with d = min f , f ′∈F | f − f ′|.

For all algorithm phases except Termination, F̃ is used
instead of F . To execute the Termination phase, the con-
figuration must be totally ordered (using the set of points,
excluding multiplicity information), and at least one robot
must be located at each point of F (except maybe the small-
est one). If there exists a robot r 6= r1 not located at a point
in F , then r chooses the closest point in F as its destination
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and rotates toward it while remaining in its circle. The global
coordinate system remains unchanged because r1 does not
move. Eventually, r1 becomes the only robot not located at
its destination, then it moves toward it, and the pattern F is
formed.

As shown in the description of our strategy, and in par-
ticular in phase F2, before creating our internal guard g,
we ensure to move k− 1 robots in c(R) if F admits a mul-
tiplicity of k elements in c(F). Such type of patterns (with
a multiplicity in c(F)) are completely ignored in [6]_v2. In
such a case, the general description provided above does not
apply. First of all, F̃ is not well-defined. Secondly, once r1 is
correctly placed, k robots should be moved close or perhaps
in c(R). This is not clear but in any case there will be robots
getting closer to c(R) with respect to r1, hence affecting the
global coordinate system.

The lack of details as well as of a rigorous approach led
the authors to design a partial algorithm that cannot cope
with all possible input. It is worth to remark that in our
strategy, the case of a multiplicity in c(F) required a sep-
arate phase due to the arisen difficulties. The design of such
a phase might not be easy since, in general, several robots
must be moved at or close to c(R) before the global coordi-
nate system is established.

p

c(R)

C(R)

`

r

Fig. 5 A counter-example to the correctness of the algorithm presented
in [16].

5.3 A counter-example to the correctness of the algorithm
presented in [16]

In [18], the authors show the equivalence of APF and Leader
Election for a number of robots greater than or equal to 4,
endowed with chirality and for patterns without multiplici-
ties. In [16], the same authors claim to extend the results to
a number of robots greater than or equal to 5 but without
chirality. The need of one robot more is justified by the way

they want to build a common reference system for all robots.
This is done by making use of two robots instead of one, the
closest two robots to the center. They claim that such two
robots can be always selected since they start from initial
leader configurations. Hence a leader and a ‘second leader’
can always be detected and moved close to the center so as
they can be always recognized by all robots. Even though the
description is rather sketchy, their strategy is clear. Unfortu-
nately it is not correct. Just to provide a counter-example,
we refer to Figure 5. The represented configuration is sym-
metric, admitting one axis of reflection ` with a robot r on it.
Such a robot can be elected as leader, that is, this is a leader
configuration and the proposed algorithm should solve any
pattern from it. Following the arguments in [16], since the
configuration admits an axis of reflection with one robot on
it, r should move close to c(R) in order to become the unique
robot closest to c(R). The authors wrongly argue that dur-
ing its motion r cannot lose its leadership because it is the
unique robot on `, and by moving along ` it always remains
the unique robot on `.

Even though during the movement it is true that r re-
mains the unique robot on `, it cannot move toward c(R)
without creating further axes of reflection, (five axes in this
case) once position p is reached. Once r is in position p,
all robots look the same as the configuration admits a ro-
tation, that is the configuration is not a leader configuration
anymore, hence preventing the resolution of APF . As we are
going to show in the correctness section, our algorithm care-
fully addresses the case by means of a sub-phase of phase
F5.

6 The algorithm

In this section, a robot always means an oblivious ASYNC

robot. Recall that initially a configuration is an initial leader
configuration, hence it does not contain multiplicities by
definition. Concerning the number of robots n, for n = 1 the
APF problem is trivial. When n = 2 the problem is unsolv-
able as the gathering of two robots has been shown to be
unsolvable, see [9].

Concerning the pattern to form, it might contain mul-
tiplicities. The case of point formation (Gathering) is dele-
gated to [9], so we do not consider such a case as input for
our algorithm.

Similarly to [22], for n = 3, we design an ad-hoc algo-
rithm.

Theorem 2 Let R = {r1,r2,r3} be an initial leader config-
uration with three robots, and let F = { f1, f2, f3} be any
pattern. Then, there exists an algorithm able to form F from
R.

Proof We assume that F does not contain a point of mul-
tiplicity 3, otherwise the algorithm in [9] for the Gathering
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Fig. 6 Pictures showing arguments for the proof of Theorem 2.

problem can be used. Assume that the point in F and in R
are not collinear and let TR and TF be the triangles formed
by points in R and F respectively. Degenerate cases with
collinear points or with F admitting a multiplicity of cardi-
nality two will be considered later.

Let αi (βi, resp.) be the internal angle of TR (TF , resp.)
associated with the vertex ri ( fi, resp.), for each i = 1,2,3.
Since R is a leader configuration, the case with α1 = α2 =

α3 = 60◦ cannot occur. Without loss of generality, we as-
sume α1 ≤ α2 ≤ α3, and β1 ≤ β2 ≤ β3 (hence α1 ≤ 60◦

and β1 ≤ 60◦). We prove the thesis by showing an algorithm
that forms F by modifying angles of TR so that eventually
αi = βi, for each i = 1,2,3.

According to such angles, the algorithm distinguishes
among the following cases when R is not similar to F :
(a) α2 = α3,α1 6= β1. In this case, robot r1 lies on an axis

of symmetry ` and the algorithm performs the follow-
ing step: r1 moves along ` toward the point that makes
true the condition α1 = β1. Notice that during the move-
ment of r1 no further symmetries can be created as α1
remains the smallest angle being β1 ≤ 60◦. Hence r1 is
always recognized as the robot to move until its target is
reached. After this step, either R and F are similar (when
αi = βi for each i = 2,3) or the next case (b) occurs.

(b) α2 = α3, α1 = β1. Like in case (a), robot r1 lies on an
axis of symmetry. Then robots embed f2 and f3 on r2 and
r3, respectively, and r1 moves along the unique circle
C passing through all the three robots toward a point p
that makes the configuration similar to F (since the con-
figuration is symmetric there are two equivalent points
toward which r1 can move). For the analysis see case
(c), since immediately after r1 starts moving we have
α2 < α3 whereas α1 remains equal to β1.

(c) α2 < α3, α1 = β1. We analyze two sub-cases, according
to the comparison of α2 with β2, and of α3 with β3.
If α2 ≥ β2 and α3 ≤ β3, the algorithm is based on the
following steps: (1) robots embed f2 and f3 on r2 and r3,
respectively, (2) robots elect r1 as the only robot allowed
to move, (3) like in case (b), r1 moves along the unique
circle C passing through all the three robots toward the

unique point p that makes the configuration similar to
F (here p is unique as the configuration is asymmetric).
This case is described by Figure 6 (left side). During the
movement: α1 does not change, α2 decreases (without
exceeding β2), and α3 increases (without exceeding β3).
As a consequence, the relationships between angles re-
main the same, the obtained configuration is recognized
as belonging to case (c), and r1 is always recognized
as the moving robot. Once r1 reaches p, R and F be-
come similar and the pattern is formed. Note that during
the movement the configuration is asymmetric as α1 re-
mains strictly less than α2. Angle α1 can match α2 only
if F is symmetric and r1 has reached its target p.
If α2 ≤ β2 and α3 ≥ β3, the algorithm remains the same.
The only difference is the analysis of the angles during
the movement of r1: α1 does not change, α2 increases,
and α3 decreases. Anyway, as in the previous sub-case,
r1 is always recognized as the moving robot and the pat-
tern is eventually formed.

(d) α2 <α3,α1 6= β1. This case concerns different sub-cases
that can be described by referring to Figure 6 (right
side). Without loss of generality, in the figure we assume
dist(r1,r2)≥ dist(r1,r3)≥ dist(r2,r3), and hence robot
r3 is inside the shaded area depicted in Figure 6. No-
tice that r3 cannot be on the arc of the circle delimited
by points p and r2, otherwise α3 = α2 against hypoth-
esis, and cannot be in the segment [q,r2] as otherwise
the three robots would be collinear. If r3 is in the inte-
rior of the shaded area, then α1 < α2 < α3 and the initial
configuration is asymmetric; if r3 belongs to the open
segment (p,q), we get α1 = α2 < α3.
Assuming dist( f1, f2) ≥ dist( f1, f3) ≥ dist( f2, f3), the
algorithm is based on the following steps: (1) robots
embed f1 and f2 on r1 and r2, respectively, (2) robots
elect r3 as the only robot allowed to move, (3) r3 em-
beds f3 as closer as possible to itself, and (4) r3 moves
straightly toward f3. According to step 3, it follows that
f3 is in the segment formed by intersecting the half-line
` = hline(r1 f3) with the shaded area. In particular, it is
in the interior of the shaded area when F is asymmetric,
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whereas it is on the boundary of that area if F is symmet-
ric. To conclude the analysis of f3, notice that this point
cannot be on the half-line starting from r1 and passing
through r3 since we assumed α1 6= β1.
It is clear that, during the movements, r3 will be always
elected as the only robot allowed to move and hence it
eventually reaches the target to form F .

Summarizing, when the algorithm handles a leader config-
uration in case (a), the generated configurations remain in
the same case (a) until a stationary leader configuration be-
longing to case (b) is created or the pattern is formed. When
the algorithm handles a leader configuration in cases (b), as
soon as the moving robot starts its movement the configura-
tion belongs to case (c) where the same move is continued
until forming the pattern. If a configuration is in case (c),
or (d) the generated configurations remain in the same case
until the pattern is formed.

Now, let us consider the degenerated cases when α3 =

180◦ or β3 = 180◦ and F has no multiplicities. If α3 = 180◦,
the embedding is like in case (d) and, referring to Figure 6,
robot r3 is in the segment [q,r2) whereas f3 is either in the
same segment or in the interior of the shaded area, according
to whether β3 = 180◦ or not. The algorithm simply moves
r3 toward f3.

The case α3 6= 180◦ and β3 = 180◦ requires a deeper
analysis. Obviously, α1 6= β1 as β1 = 0 whereas α1 6= 0. If
α2 = α3 the configuration is symmetric, but the algorithm
cannot act as in cases (a) since r1 should go to infinity to
make α1 = β1 = 0. Then, if α1 < α2, r1 moves along the cir-
cle C until α1 = α2. If the robot is stopped during the move-
ment, α1 < α2 < α3 holds, and r1 is recognized as the robot
to be moved on C until α1 = α2. When α1 = α2, still refer-
ring to Figure 6, TR is symmetric and r3 is in the segment
(p,q). Robot r3 moves toward q maintaining α1 = α2, and
then it is always recognizable if stopped. When r3 reaches q
then α3 = 180◦ and the algorithm acts as above by moving
r3 toward f3.

Finally, if F admits a multiplicity it is assumed f2 ≡ f3,
hence f1 is not in the multiplicity. Then the algorithm simply
acts as in the above degenerate cases when β3 = 180◦. ut

In the remainder, we will provide an algorithm able to
form any pattern F (which is not a single point) starting
from any initial leader configuration with n≥ 4. A possible
input for the algorithm is shown in Figure 7. We construct
our algorithm in such a way that the execution consists of a
sequence of phases F1, F2, F3, F4, and F5 not neces-
sarily in this order (some of which might be skipped whereas
some other might be repeated a finite number of times). To
each phase, we assign an invariant such that every config-
uration satisfies exactly one of the invariants (hence robots
can correctly recognize the phase in which they are). Since
each algorithm associated to a phase is composed of differ-

ent kinds of moves, each phase is divided into sub-phases.
Each sub-phase is characterized by a single move. More-
over, apart for a few exceptions, each time robots switch to
a different phase/sub-phase, the current configuration is sta-
tionary, that is the move performed in a sub-phase is initi-
ated from a stationary configuration (this property is crucial
to prove the correctness of our algorithm). Basically, when-
ever a robot becomes active, it can deduce from the acquired
snapshot to which phase and sub-phase the observed config-
uration belongs to, and whether it is a robot designated to
move. In case it is its turn to move, it applies the move as-
sociated to the sub-phase detected. As it will be shown in
the proof of correctness, our algorithm always maintains the
current configuration as a leader configuration until the pat-
tern is formed. The algorithm also assures there will always
be exactly one robot moving in phases F1−F4 and at most
two robots moving concurrently in phase F5, however, all
moves are safe. In turn we prove the algorithm is transition-
safe.

Table 1 contains all predicates required by our algo-
rithm, whereas Table 2 describes in which phase a config-
uration is, according to the specified properties. Notice that
for each arbitrary phase/sub-phase X we need three predi-
cates Xs, Xd , and Xe to distinguish between the invariant
that the configuration satisfies at the beginning of the phase
(start), once robots start to move (during), and once the mov-
ing robots have terminated to apply the same move (end),
respectively. In the most cases, we have Xd = Xs; in the
remaining cases, as it will be clarified in the correctness sec-
tion, when Xd 6= Xs, Xd and Xe always coincide. For this
reason we omit Xd in the presented tables.

About moves, Table 3–7 contain a description of
all moves applied by our algorithm for each phase. As
described in Section 4, sometimes the trajectories de-
fined by the proposed moves are opportunely manipulated
so as to guarantee stationarity (by means of Procedure
STATIONARYMOVE) and to avoid collisions (by means of
Procedure COLLISIONFREEMOVE).

It is important to keep in mind that during the whole
algorithm it is assumed a first embedding of F such that
C(R) =C(F). Actually C(R) never changes in phases F1−
F4 whereas in phase F5 it might change, however within
F5 robots do not exploit the embedding, hence the assump-
tion considering C(R) =C(F) does not affect any reasoning.
We are now ready to consider each phase separately to see
how the desired behavior is obtained.

6.1 Phase F1

As described in Section 4, this phase is responsible for set-
ting the external guards g′ and g′′ and, if required, for placing
robots in c(F). Due to its complexity, the algorithm for this
phase is composed of many different moves, and each move
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Table 1 The basic Boolean variables used to define all the phases’ invariants. In the first column, the phase in which the corresponding variables
are mainly used. Missing notations can be found in the corresponding sections. The table contains a formal definition for all variants except q and
i1, . . . ,i6. Such variables are formally defined in Section 6.4, where they are used to recognize the guards in different scenarios when guards have
to be moved in the finalization phase.

phase var definition

* a R is a leader configuration

F1

s2 |∂C(R)|= 2

s3 |∂C(R)|= 3

s+ |∂C(R)|> 3

c |{c(R)}∩R|= 1

t0 s3 ∧ points in ∂C(R) form a triangle of angles all different from 90◦

t1 s3 ∧ points in ∂C(R) form a triangle of angles equal to 30◦, 60◦, and 90◦

l |∂C1
↓(R)| ≥ 2∨δ1 ≤ δ0,2

m0 |{c(F)}∩F |= k, k > 1

m1 m0∧|{c(R)}∩R|= k−1

F2

g0 |∂Cg(R)|= 1

g1 g0∧∃!g′ ∈ ∂C(R) : ^(g,c(R),g′) = α

g2 g1∧∃g′′ ∈ ∂C(R) antipodal to g′

f2 (m0⇒ m1)∧s2∧l

F3

d0 ∂Ct(R) = {r}
d1 d0∧∃ f ∗ ∈ F∗ : r = [c(F), f ∗]∩Ct(R)

d2 Ct(R)∩ (r,µ(r)] 6= /0, where r = min_view(R¬m
η )

f3 (m0⇒ m1)∧g2

F4

q ∂C(F) = F , F without multiplicities, and |F |−1 points of F are on the same semi-circle

i1, . . . ,i6 guards g, g′ and g′′ are detectable ∧ R\{g,g′′} is similar to F \{µ(g),µ(g′′)}
f4 ¬q∧ (i1∨i2) ∨ q∧ (i3∨i4∨i5∨i6)

F5

b0 R is symmetric

b1 ∃ a reflection axis ` for R: |R∩ `|= 1

b2 ∃ a reflection axis ` for R: |R∩ `| ≥ 2 ∧ at least two robots in R∩ ` are not critical

b3 ∃ a reflection axis ` for R: |R∩ `|= 2 ∧ exactly one robot in R∩ ` is critical

b4 ∃ a reflection axis ` for R: |R∩ `|= 3 ∧ exactly two robots in R∩ ` are critical

b5 ∃ a reflection axis ` for R: |R∩ `|= 2 ∧ both robots in R∩ ` are critical

e R does not contain multiplicities

z1 let ∂C(R) = {r,r1,r2} with r faraway robot, and let t be the point on C(R) closest to r s.t. points t, r1, and
r2 form a right-angled triangle: ∃ a reflection axis ` for R′ = R \ {r} that reflects r1 to r2 ∧ r belongs to the
smallest arc of C(R) between ` and t (excluded) ∧ R′∩ `= /0

z2 ∃r ∈ R: ∂C1
↑(R) = {r} ∧ R \ {r} is symmetric ∧ [ either c or (¬b0 ∧ ¬i2 ∧ d(c(R),r) < δ (Cg(R)) ∧ ∀r′ ∈

∂C(R),^(r,c(R),r′) 6= α)]

u1 ∃i > 0: ∂Ci
↑(R) = {r

(2)} ∧ d(r(2),c(R)) = 1/2[δ (Ci−1
↑ (R))+δ (Ci+1

↑ (R))]

u2 r(2) 6∈ [t60, t55]∨ r(2) = tx∨ r(2) = t55

f5 (b0∨z1∨z2)∧e

* w R is similar to F
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Table 2 Each label on the first column specifies a different phase. In column ‘start’, for each phase it is specified the invariant that holds while
a configuration belongs to the corresponding phase. In column ‘end’, it is specified the possible phases outside the considered one that can be
reached or whether w may hold.

phase start end

F1 ¬f2∧¬f3∧¬f4∧¬f5∧¬w F2s∨F3s∨F4s∨F5s∨w
F2 f2∧¬f3∧¬f4∧¬f5∧¬w F3s∨F4s∨w
F3 f3∧¬f4∧¬f5∧¬w F4s

F4 f4∧¬f5∧¬w w

F5 f5∧¬w F1s∨F2s∨F4s∨w

C(F)

(2)

(2)

(2)

(2)

C(R)

Fig. 7 An example of input for the PF problem: robots R (left) and the pattern F (right). The number closed to a point denotes a multiplicity.
Notice that R belongs to the sub-phase A 1 (i.e., predicates F1 and A 1s = s+∧l hold), hence the algorithm applies move m1 (cf Table 3).

is referred to a sub-phase. Table 3 describes all such sub-
phases, and also the corresponding invariants and moves.

The first sub-phase A (logically divided into A 1 and
A 2) leaves exactly three robots on C(R) when more than
three robots are there. This is realized by selecting any not
critical robots for C(R) but three (see Property 2). We re-
mind that a robot is critical for C(R) if its removal makes
C(R) changing. The selected robots are moved one by one
inside C(R) so as to maintain the configuration being asym-
metric. This is realized by moving each of such robots to-
ward a specific new circle C1

↓(R) (hence concentric to C(R)
and inside it).

As an example, the configuration R in Figure 7 belongs
to the sub-phase A 1 (i.e., predicate A 1s = s+ ∧ l holds),
and hence move m1 (cf Table 3) is applied. As soon as a
robot r leaves ∂C(R), the obtained configuration switches to
A 2 and hence move m2 is applied until r reaches the desired
circle. In fact, if r ends its movement before reaching its tar-
get, it is selected again by the algorithm and again move m2
is applied. Once r reaches its target, predicate A 1s = s+∧l
holds. Such moves are repeated so that the configuration
with |∂C(R)| = 3 in Figure 8 left is obtained: this config-
uration belongs to C 1 since C 1s = s3∧t0∧l holds.

Actually, both m1 and m2 are performed by invoking
Procedure STATIONARYMOVE (see Algorithm 1). This is
done because while moving, a robot r may incur along the

way in a point p that makes the current configuration be-
longing to the finalization phase F4 or even final, that is
predicate w holds. Such situations may happen when accord-
ing to some embedding of F on R, difficult to detect at this
stage, p coincides with a point in F . If other robots perform
their Look phase while r is on p, they may start moving
according to a different rule specified by our strategy, hence
violating the desired property to maintain stationarity among
phases. In order to avoid such a behavior, we simply force r
to stop on points that potentially may cause the described sit-
uations. For m1 and m2, such points belong to some Ci

↓(F),
see Lines 4-5 of STATIONARYMOVE. If after a stop, still the
configuration belongs to F1, then the same robot r will be
selected again to keep on moving.

The sub-phase B is concerned with the case of just two
robots in ∂C(R) and F admits a multiplicity in c(F). In such
a case, a third robot is moved from int(C(R)) to C(R) (see
move m3 of Table 3).

Sub-class C (logically divided into C 1 and C 2) pro-
cesses configurations with exactly three robots in ∂C(R),
and moves them so that they form a triangle with angles of
30◦, 60◦ and 90◦. Now, assume that the three robots form a
triangle with angles α1 ≥ α2 ≥ α3 and let r1, r2 and r3 be
the three corresponding robots. C 1 takes care of the case in
which all the angles are different from 90◦ (see Figure 8, left
side): by move m4, robot r2 rotates on C(R) in such a way
that α1 becomes of 90◦ (see Figure 8, right side).
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Table 3 (left) Invariants and moves for all the sub-phases of F1. Each label on the first column specifies a different sub-phase to which a
configuration belongs to. Then, with respect to each sub-phase, in the upper (shaded) side it is specified the invariant that the configuration satisfies
at the beginning of the phase (start), and which sub-phase within F1 can be reached (end). In the lower side, it is specified the corresponding move
performed by the algorithm, and on the last column the possible phases outside F1 that can be reached or whether w may hold. (right) Description
of the moves performed by the algorithm in F1.

phase start end

A 1 s+∧l As∨Cs∨Ds∨E 1s

m1 F4s∨w
A 2 (s+∨s3)∧¬l As∨Cs∨Ds∨E 1s

m2 F4s∨w
B s2∧m0∧¬m1 Cs∨Ds

m3

C 1 s3∧t0∧l C 2s∨Ds∨E 1s

m4 F4s∨F5s∨w
C 2 s3∧¬t0∧¬t1∧l∧m0∧¬m1 Ds

m5

D s3∧t1∧l∧m0∧¬m1 E 1s

m6 F3s

E 1 s3∧¬t0∧l∧ (m0⇒ m1) E 2

m1 F2s∨F4s∨w
E 2 s2∧¬l∧ (m0⇒ m1)

m2 F2s∨F4s∨w

name description

m1 Let r be the not critical robot on C(R) with minimum view. r
moves according to STATIONARYMOVE toward t = [r,c(R)]∩
C0,1(R).

m2 Let r be the robot on C1
↓(R). r moves according to

STATIONARYMOVE toward t = [r,c(R)]∩C0,2(R).

m3 Let ∂C(R) = {r1,r2}, r ∈ C1
↓(R) of minimum view and p1,

p2 be the intersections of C(R) with the line perpendicular
to [r1,r2] passing through c(R). r moves radially toward t on
C(R) if t 6∈ {r1,r2, p1, p2}, else toward C(R) along the line tan-
gent to C1

↓(R) in r.

m4 The three robots on C(R) form a triangle with angles α1 ≥
α2 ≥α3 and let r1, r2 and r3 be the three corresponding robots.
For equal angles, the role of the robot is selected according to
the view, i. e. if α1 = α2 then the view of r1 is smaller than
that of r2. r2 rotates according to STATIONARYMOVE toward
the closest point t such that α1 equals 90◦.

m5 Let r be the robot on C(R) such that its antipodal point is not
in R. r rotates toward the closest point t such that the triangle
formed by t and the two antipodal robots admits angles of 30◦,
60◦ and 90◦.

m6 The robot closest to c(R) but not in c(R), of minimum view,
moves toward c(R).

C(R)C(R)

Fig. 8 Configurations obtained from R as described in Figure 7 after sub-phases A (left) and C 1 (right), respectively. The configuration on the
right side is in phase C 2.

Similarly to m1 and m2, move m4 is performed by in-
voking Procedure STATIONARYMOVE. The points in F on
which the moving robot r2 must stop are now a bit different
than before, as m4 rotates r2 along C(R) rather than moving
straightly. This may cause different situations: still incurring
in points in F (Lines 9-10), or creating an unexpected refer-
ence angle of α degrees (Lines 12-13), or creating an asym-
metric configuration belonging to F5 (Lines 15-16).

If r2 completes move m4 by making α1 = 90◦ like in Fig-
ure 8, then there are two antipodal robots on C(R) that will
be detected as g′ and g′′ in the subsequent phases. The third
robot r on C(R) is now moved either along C(R) or toward a

position inside C(R), depending on whether F admits a mul-
tiplicity in c(F) of k > 1 elements or not. In the former case
(see Figure 8, right side), the algorithm is in sub-phase C 2
and by move m5 it rotates r on C(R) along the shortest path
in such a way the composed triangle admits the required an-
gles of 30◦, 60◦ and 90◦ (see Figure 9, left side). In the latter
case r is moved inside C(R) by means of sub-phase E .

Once the robots in ∂C(R) have formed the required tri-
angle (case in which F admits a multiplicity of k elements in
c(F)), sub-phase D can move the k−1 robots closest to c(R)
toward it (cf move m6 of Table 3 and Figure 9). The specific
triangle formed by the robots in ∂C(R) assures that during
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90◦

60◦

30◦
C(R) C(R)

Fig. 9 Configurations obtained from R as described in (the right side of) Figure 8 after sub-phases C 2 (left) and D (right), respectively.

(1,2)

(1,2)

(0,2) (0,2)

C(R)

C(R)=C(F)

Fig. 10 Configurations obtained from R as described in (the right side of) Figure. 9 after sub-phases E (left); such a configuration will be processed
by phase F2 (in particular, by the sub-phase G 1). On the right, a possible embedding of F onto R: black points denote robots on targets (points
of F), a pair of numbers denotes multiplicities of robots and targets, respectively. The real embedding will be fixed only when the internal guard g
will be correctly placed (cf Figures 11 and 12, left side).

sub-phase D the configuration remains always a leader con-
figuration.

The last sub-phase of F1 (sub-phase E ) is applied after
creating a multiplicity of k− 1 robots in c(R) if F requires
k elements in c(F), and when exactly three robots are in
∂C(R). Among such robots, there are two antipodal ones g′

and g′′ plus a third one r. Robot r is moved inside C(R).
Sub-phase E is logically divided into E 1 and E 2; this is
because the same moves of A 1 and A 2 are used to perform
the required task (cf Figure 9 right side with Figure 10 left
side).

6.2 Phase F2

This phase is responsible for setting the internal guard g. In
particular, g is initially identified as the closest robot to c(R)
(excluding possible robots in c(R) required to compose a
multiplicity), and hence moved on the guard circle Cg(R)
(cf Definition 4). Such a move is performed either by sub-
phase G (logically divided into G 1 and G 2) or by sub-phase
H . Table 4 describes all such sub-phases, and also the cor-
responding invariants and moves.

Sub-phase G starts when the invariant G 1s =¬g0∧(c⇒
m1) holds, that is when g0 is false (i.e., the guard g is not
yet on Cg(R)) and c⇒ m1 is true (i.e., if there is one robot
on the center c(R) = c(F) then this is due to the presence
of a multiplicity in c(F)). An example of such a case is
described in Figure 10 (right side). Sub-phase G 1 then re-
peatedly applies move m7 (cf Table 4) to move the closest
robot to c(R) on Cg(R) (cf Figure 11). Note that, similarly
to moves m1 and m2, move m7 is performed by invoking
Procedure STATIONARYMOVE.

When G 1 is terminated, the sub-phase G 2 starts with the
aim of rotating the robot g placed on Cg(R) so that g, c(R),
and one of the antipodal robots on C(R), now detected as
g′, form an angle equal to the reference angle α (cf Defi-
nition 5). Move m8 performs this task. At the end of G 2,
the three guards g, g′ and g′′ compose the required common
reference system for all robots.

Sub-phase H handles the specific configurations in
which the invariant Hs = c∧¬m0 holds, that is the cases
where there is one robot in c(R) = c(F) and there is no mul-
tiplicity in c(F). In such a cases, m9 moves the robot away
from the center c(R), so that the obtained configuration is
subsequently managed by G .
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Cg(R)
(1,2)

α

Ct(R)

Fig. 11 Zooming on the circles Ci
↑(R), 0≤ i≤ 2, of the configuration shown in Figure 10 (right side). On the left side, the guard circle Cg(R) and

the teleporter circle Ct(R) are shown. On the right side, the configuration obtained at the end of sub-phase G 1 after move m7 lead a robot on the
guard circle. The obtained configuration will be processed by the sub-phase G 2 to place the internal guard at the reference angle α .

g

g′′

(1,2)

(0,2) (0,2)

1(1,2)

2

3

g′

6
5

4
7

C(R)=C(F)

Fig. 12 On the left side, the whole configuration of Figure 11 (right side). On the right side, the mapping between non-guard robots and targets
produced during phase F3 (the numbers show the order in which the mapping is produced according to distances).

6.3 Phase F3

This phase is responsible for moving all the non-guards
robots (i.e., n−3 robots) toward the targets. It is composed
of three sub-phases, as described in Table 5.

We remark that at the end of F2, the required common
reference system for all robots has been established (based
on the three guards g, g′ and g′′). This implies that all robots
can now embed F on C(R). This embedding is obtained as
follows:

– as already observed, C(F) is superimposed on C(R);
– the counter-clockwise direction for R is assumed to be

the one such that g becomes collinear with g′ and c(R)
by rotating of α degrees;

– the counter-clockwise direction for F is that defined in
Section 3 for any multiset of points;

– let f ′ be a point in ∂C(F) such that f ′ is the sec-
ond point appearing in V ( f ), being f any point in
min_view(∂C(F)); f ′ is superimposed on g′, and any
other point in F is superimposed such that the clockwise
direction of F coincides with that of R.

This embedding is shown in Figure 12 (left side). According
to this embedding, each robot uses the following mapping
µ : {g′,g′′,g} → F for determining the final target of each
guard:

– µ(g′) = f ′;
– µ(g′′) = f ′′, where f ′′ is the point in ∂C(F) closest to

g′′ (in case of tie, that reachable from g′′ in the counter-
clockwise direction);

– µ(g) = f , where f ∈ F \ { f ′, f ′′} and if c(F) ∈ F
then f = c(F), else f is the point in ∂C1

↑(F) closest
to g (in case of tie, the first of such points reached
by hline(c(R),g) when this half-line is turned counter-
clockwise around the center).

This embedding is maintained along all phase F3; we
remark that g, g′ and g′′ are not moved during this phase.
Any other robot, one by one, is moved toward its closest
point of F \{µ(g),µ(g′),µ(g′′)} (see Figure 12, right side).
At any time, each robot must determine (1) whether it is
already on its target or not (i.e., whether it is matched or not),
(2) if it is not matched, which is its target, and (3) whether it
is its turn to move or not. To this aim, each robot computes
the following data:
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Procedure: STATIONARYMOVE
Input: target t.

1 Let m be the current move,
2 tmp = t;
3 if m ∈ {m1,m2,m7} then
4 if ∃p ∈ (r, t) being the closest point to r intersecting a

circle C j
↓(F) then

5 tmp = p
6 end
7 end
8 if m = m4 then
9 if the number of distinct points in ∂C(F) is 3 and ∃p along

the way toward tmp s. t. (∂C(R)\{r})∪{p} form a
triangle similar to that formed by ∂C(F) then

10 tmp = p
11 end
12 if ∃r′ ∈ ∂Cg(R)∧∃p along the way toward tmp s. t.

^(p,c,r′) = α then
13 tmp = p
14 end
15 if ∃p along the way toward tmp s.t. in R\{r}∪{p}

predicate z1 holds then
16 tmp = p
17 end
18 end
19 move toward tmp;

Algorithm 1: Procedure STATIONARYMOVE per-
formed by any robot r when moves m1, m2, m4 or m7
are executed.

– the sets of matched robots and matched targets, that is
Rm = R∩ (F \{µ(g),µ(g′),µ(g′′)}) and Fm = F ∩Rm;

– the sets of unmatched robots and unmatched targets, that
is R¬m = R \ (Rm ∪ {g,g′,g′′}) and F¬m = F \ (Fm ∪
{µ(g),µ(g′),µ(g′′)});

– the minimum distance between unmatched robots and
unmatched targets, that is η = min{d(r, f ) : r ∈
R¬m, f ∈ F¬m};

– the set of unmatched robots at minimum distance from
unmatched targets, that is R¬m

η = {r ∈ R¬m : d(r,F¬m) =

η};
– in a given turn, which is the robot r that has to move

toward its target, that is r = min_view(R¬m
η ), and which

is the corresponding target µ(r), that is any point in { f ∈
F¬m : d(r, f ) = η}.

According to the strategy described in Section 4, the
robot that moves toward its target has two constraints: (1)
avoiding undesired collisions (in case the trajectory meets
an already matched robot), and (2) avoiding entering into
the guard circle (to preserve the common reference system).

For the former constraint, a Procedure
COLLISIONFREEMOVE is designed. The procedure is
given in Algorithm 2 while its description can be found in
the corresponding correctness proof provided in Lemma 1.

For the latter, in case the segment [r,µ(r)] meets the
teleporter circle Ct(R), then an alternative trajectory is com-

puted. For this computation, robots also need the following
data: the set F∗ = { f ∈ F¬m : d( f ,c(F)) is minimum}. The

µ(r)

p1
p2

g
r

g′′

g′

Fig. 13 Visualization of a robot trajectory through the teleporter circle.
The robot traces the path represented by the black polygonal curve
consisting of two segments and one arc.

new trajectory is divided into three parts (see Figure 13):

(a) a collision free trajectory toward the closest point p1 on
the teleporter circle, that is p1 = (r,µ(r)]∩Ct(R);

(b) a rotation along Ct(R) toward the closest point p2 =

[c(F), f ∗]∩Ct(R), where f ∗ ∈ F∗;
(c) a collision free trajectory toward f ∗.

Note that in case (c), the destination f ∗ may differ from the
original destination µ(r) computed in case (a), but this is
not a problem since, as shown in the correctness section, no
other robot is moved until r reaches its final destination.

The algorithm (see Table 5) performs such a new tra-
jectory by moving robots along the teleporter circle as fol-
lows. Sub-phase M concerns case (b) above, that is con-
figurations fulfilling invariant Ms = d0 ∧¬d1 (i.e., config-
urations where there is a unique robot r on the Ct(R) but r
does not coincide with a point p = [c(F), f ∗]∩Ct(R), where
f ∗ ∈ F∗). Then, move m10 rotates r toward such a point p.
Sub-phase N concerns case (a) above. Via move m11 (that
invokes COLLISIONFREEMOVE), N is in charge of lead-
ing r on a point on Ct(R) if needed (cf d2 in Ns = (d0 ⇒
d1)∧ d2). Finally, sub-phase O is concerned with case (c)
above, that is when the trajectory from r to its target µ(r)
does not meet the teleporter circle. Move m12 (that invokes
COLLISIONFREEMOVE) performs this final task.

Lemma 1 Procedure COLLISIONFREEMOVE performed
by a robot r with input a target f always moves r avoid-
ing collisions with other robots either toward f , if there are
no robots between r and f , or toward a point p fulfilling the
following conditions:

1. p is inside both C(R) and the cell D f of the Voronoi dia-
gram induced by F¬m where f lies;
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Table 4 Invariants and moves for all the sub-phases of F2.

phase start end

G 1 ¬g0∧ (c⇒ m1) G 2s

m7 F3s∨F4s∨w
G 2 g0∧¬g1∧ (c⇒ m1)

m8 F3s∨F4s

H c∧¬m0 G 2s

m9

name description

m7 Let r be the robot on C1
↑(R) of minimum view. r moves according

to STATIONARYMOVE toward t = (r,c(R)]∩Cg(R)

m8 Let r be the robot on Cg(R). r rotates along Cg(R) toward the
closest point t such that ^(g′,c, t) (taken in any direction) is equal
to α

m9 Let g′ be the robot on C(R) of minimum view. The robot in c(R)
moves toward a point t on Cg(R) such that ^(g′,c, t) = α/2.

Table 5 Invariants and moves for all the sub-phases of F3.

phase start end

M d0∧¬d1 Os

m10

N (d0⇒ d1)∧d2 Ms∨Os

m11

O (d0⇒ d1)∧¬d2 Ns∨Os

m12 F4s

name description

m10 The unique robot r on Ct(R) rotates toward the closest point p2 =
[c(F), f ∗]∩Ct(R), where f ∗ ∈ F∗.

m11 Robot r = min_view(R¬m
η ) moves according to COLLISIONFREEMOVE

toward the closest point p1 on the teleporter circle, that is p1 = (r,µ(r)]∩
Ct(R);.

m12 Robot r = min_view(R¬m
η ) moves according to COLLISIONFREEMOVE

toward µ(r).

Procedure: COLLISIONFREEMOVE
Input: A target f .

1 if there are no robots between r and f then
2 move toward f
3 end
4 else
5 r̄ = argminx{d(r,x) : x ∈ R∩ [r, f ]} ;
6 let ` be one of the half-lines starting from r̄, perpendicular

to [r, f ], and on an open half-plane that does not include
c(R);

7 P = {p = `∩hline(r,x) : p 6= r̄ and x ∈ R\{r}} ;
8 p′ = `∩C(R) ;
9 let p′′ be the intersection between ` and the circle centered

in f of radius [ f ,r];
10 let p′′′ be the intersection, if it exists, between ` and a side

of the cell of the Voronoi diagram induced by F¬m where
f lies;

11 p̄ = argminx{d(r̄,x) : x ∈ P∪{p′, p′′, p′′′}} ;
12 let p be the median point in [r̄, p̄] ;
13 move toward p ;
14 end

Algorithm 2: Procedure COLLISIONFREEMOVE per-
formed by any robot r when moves m11 or m12 must be
executed.

2. there is no robot between p and f ;
3. d( f , p)< d( f ,r).

Moreover, all the points x reached by r during its movement
share the same properties of p.

Proof At Line 2, Procedure COLLISIONFREEMOVE moves
r toward f when there are no robots between r and f . As the
movement is straightforward and since both D f and the disk

enclosed by C(R) are convex, all the points x reached by r
during its movement are inside C(R) and D f .

If there are robots between r and f , among such robots
the procedure, at Line 5, identifies as r̄ the closest to r. The
point p is calculated on one of the two half-lines perpendic-
ular to [r, f ] in r̄, in accordance to the position of c(R), see
Line 6. On `, a set P = {p = `∩ hline(r,x) : p 6= r̄ and x ∈
R\{R}} is calculated at Line 7. The target p is different by
any point in P: being these points on the lines between r and
any another robot, this will assure that the movement will
be free by further collisions. To set the exact position of p
on `, three other points are calculated at Lines 8, 9, and 10.
The first one is p′, that is the intersection of ` and C(R). The
target p is such that d(r̄, p) < d(r̄, p′), then all the points
x reached by r during its movement are inside C(R). The
second one is p′′, that is the intersection between ` and the
circle centered in f of radius [ f ,r]. The target p is such that
d(r̄, p) < d(r̄, p′′), then all the points x reached by r during
its movement are closer and closer to f . The third one, if
exists, is p′′′, that is the intersection of ` and a side of cell
D f . The target p is such that d(r̄, p)< d(r̄, p′′′), then all the
points x reached by r during its movement are inside this
cell. This assures that the points x reached by r are closer to
f than any other target. Moreover, there is no robot between
x and f . In fact, if such robot r′ exists, the line hline(r,x)
would intersect ` in a point closest to r̄ than each point in P,
a contradiction as the target p is the closer one.

Finally, at Line 12, the point p is set at a position ful-
filling all the above constraints. In addition, notice that the
choice of half-line ` ensures that p cannot be on or inside
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Ct(R); this implies that the procedure can be safely applied.
In turn, all such properties prove that the claim holds. ut

6.4 Phase F4

This phase concerns the finalization steps, where the last
three robots (the guards) must be moved to their targets to
complete the formation of pattern F . In particular, since in
this phase we use the embedding defined in phase F3, g′ is
already matched and hence at most g and g′′ remain to be
moved. Moving the guards leads to the loss of the common
reference system, and hence ad-hoc moves must be designed
to complete the pattern.

The algorithm for this phase is composed of two sub-
phases denoted as P and Q (see Table 6). The former
handles the majority of configurations by moving first g′′

and then g toward the respective targets. The latter manages
some special cases where g′′ is critical for C(R). In particu-
lar, predicate q (informally introduced in Table 1) is used to
characterize such special cases. Formally:

Definition 7 Let F = { f1, f2, . . . , fn} be a pattern to be
formed. We say that the predicate q holds if F fulfills the
following conditions:

1. ∂C(F) = F ;
2. F does not contain multiplicities;
3. assuming f1 = min_view(F) and ( f1, f2, . . . , fn) as the

counter-clockwise sequence of points on C(F), then
^( fn,c(F), f2)> 180◦, where such an angle is obtained
by rotating hline(c(F), fn) counter-clockwise.

Figure 14.(a) shows an embedding of a pattern F in which
q holds: note that r1 is g, r2 is g′′ and f2 is matched with g′.

Sub-phase P is divided into P1 and P2 to manage
the moves of g′′ and g, respectively. We now describe each
sub-phase: its invariant, the task it performs, and the corre-
sponding move.

In P1, g′′ rotates along C(R) toward µ(g′′). Each robot
can recognize this phase by performing, in order, the follow-
ing steps:

1. test whether g1 holds;
2. if the previous test is passed, it uses the same embed-

ding defined in phase F3: this embedding allows to rec-
ognize the guard g′, and, in turn, to determine g′′ as the
robot on C(R) closest to the antipodal point of g′;

3. finally, it tests whether such an embedding makes R \
{g,g′′} similar to F \ {µ(g),µ(g′′)} and g′′ 6= µ(g′′),
where also the targets µ(g) and µ(g′′) are those defined
in phase F3.

The result of test at Item 3 above can be seen as the value
of an invariant i1 (cf phase P1 at Table 6). When a robot

checks that i1 holds and recognizes itself as g′′, it simply ap-
plies move m13 to complete the rotation along C(R) to reach
its target µ(g′′). For instance, referring to Figure 12 right
side, once all non-guard robots are correctly placed during
F3, the configuration belongs to P1, and g′′ rotates in the
clockwise direction along C(R) to compose the multiplicity
on the left. This is in fact the closest point on C(R) to g′′ (in
the clockwise direction as there is a tie to break) with respect
to the defined embedding of F . Once also g′′ is correctly po-
sitioned on its target, as we are going to see, i2 holds and
only g remains to move toward µ(g) to finalize F . In the
specific example of Figure 12, µ(g) = c(R).

The movement of g is realized in P2 via a straight move
of g toward µ(g). Each robot can recognize this phase by
performing, in order, the following steps:

1. compute the set E = {(r, f ) : ({r} = c(R) ∨ {r} =
∂C1
↑(R))∧R\{r} is similar to F \{ f}};

2. test whether there exists a pair (r, f ) ∈ E such that
f = c(F) ∨ (c(F) 6∈ F) ∧ f ∈ C1

↑(F) ∧ d(c(R),r) <

d(c(F), f );
3. if there are many pairs (r, f ) that fulfill the previous test,

it selects one for which d(r, f ) is minimum;
4. the pair (r, f ) selected in the previous step allows robots

to recognizes the internal guard g (i.e., g coincides with
r) and the target of g (i.e., the point f ).

The result of test at Item 2 above can be seen as the value of
an invariant i2. When a robot checks that i2 holds and rec-
ognizes itself as g, it simply applies move m14 to complete
the movement toward the remaining unmatched target f .

To ensure a correct finalization even when q holds and
hence when g′′ might be critical for C(R), the sub-phase Q
is divided into four sub-phases. They are responsible for:

– Q1: moving g radially toward C(R);
– Q2: rotating g′′ of at most α along C(R);
– Q3: rotating g from the position acquired at Q1 along

C(R) toward its target;
– Q4: rotate again g′′ if necessary along C(R) toward its

target.

The movement of g toward its target performed in two
steps guarantees to avoid possible symmetries. We now de-
scribe each sub-phase: its invariant, the task it performs, and
the corresponding move. To recognize each phase among
Q1, . . . ,Q4, robots perform the following test:

1) test whether there exists an embedding of F such that
r2,r3, . . . ,rn−1 are matched with f2, f3, . . . , fn−1, respec-
tively. We recall that here predicate q holds, hence points
in F fulfill all the conditions in Definition 7 (see Fig-
ure 14.(a)).

As we are going to show in the correctness section, in or-
der to fulfill the required conditions R must is asymmetric.
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Table 6 Invariants and moves for all the sub-phases of F4.

phase start end

P1 ¬q∧i1 P2s

m13

P2 ¬q∧i2

m14 w

Q1 q∧i3 Q2s∨Q3s

m15

Q2 q∧i4 Q3s

m16

Q3 q∧i5 Q4s

m17 w

Q4 q∧i6

m13 w

name description

m13 g′′ rotates toward µ(g′′).

m14 g moves toward µ(g).

m15 g moves toward C(R)∩hline(c(R),g).

m16 g′′ rotates along C(R) toward the closest point among µ(g′′) and the antipodal
point to g.

m17 g rotates toward µ(g).

fn

(d)

f2

r1
f3

fn−1

(e)(c)(b)(a)

rn

f1

Fig. 14 Visualization of some configurations belonging to Q (points f4, . . . , fn−1, if any, all lie on the black arc). In (a), a configuration where Q1s
holds, in (b) Q2s holds, in (c) Q3s holds, in (d) Q4s holds, and finally in (e) w holds.

Hence the above test always determines a unique ordering
for the robots. After, robots perform two additional tests,
according to the specific sub-phases to be recognized. Con-
cerning Q1, the following additional tests are needed:

2) test whether both ∂C1
↑(R)= {r1} and ^(r1,c(R), f2)=α

hold;
3) test whether rn is antipodal to r2 (which coincides with

f2).

If all the previous tests are passed, robots recognize g as r1,
g′ as r2, and g′′ as the antipodal robot to g′. The result of
such a process can be seen as the value of an invariant i3.
When a robot recognizes itself as g and checks that q∧ i3
holds, it simply applies move m15 to move radially toward
C(R) (cf cases (a) and (b) of Figure 14).

Concerning Q2, the following additional tests are
needed:

2) test whether r1 is on C(R) between f1 and f2 such that
^(r1,c(R), f2) = α;

3) test whether rn is on C(R) such that rn 6= fn and
^(rn,c(R), p)< α , where p is the antipodal point to f2.

If all the previous tests are passed, robots recognize g as r1,
g′ as r2, and g′′ as the closest robot to p. The result of such
a process can be seen as the value of an invariant i4. When
a robot checks that q∧i4 holds and recognizes itself as g′′,
it applies move m16 to rotate of at most an angle α from p
or to reach its target fn if residing before p. This is done
to maintain C(R), being g′′ critical (cf cases (b) and (c) of
Figure 14).

Now, notice that according to the definition of view
of F given in Section 3.1 and according to Definition 7,
^( f1,c(F), f2) = 3α . Hence, for sub-phase Q3 the follow-
ing additional tests are needed:

2) test whether r1 is on C(R) between f1 and f2 such that
α ≤ ^(r1,c(R), f2)< 3α;

3) test whether rn is on C(R) such that rn = fn or
^(rn,c(R), p) = α , where p is the antipodal point to f2.

If all the previous tests are passed, robots recognize g as r1,
g′ as r2, and g′′ as the closest robot to p. The result of such
a process can be seen as the value of an invariant i5. When
a robot checks that q∧ i5 holds and recognizes itself as g,
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it applies move m17 to complete the rotation along C(R) to
reach its target f1 (cf cases (c) and (d) of Figure 14).

Finally, for Q4 the following additional tests are needed:

2) test whether r1 is matched with f1, according to the em-
bedding defined at test 1;

3) test whether rn is on C(R) such that rn 6= fn and α ≤
^(rn,c(R), p)< ^( fn,c(R), p), where p is the antipodal
point to f2.

If all the previous tests are passed, robots recognize g as
r1, g′ as r2, and g′′ as the closest robot to p. The result of
such a process can be seen as the value of an invariant i6.
When a robot checks that q∧i6 holds and recognizes itself
as g′′, it applies move m13 to reach fn (cf cases (d) and (e)
of Figure 14).

6.5 Phase F5

As remarked in Section 4, to solve APF it is necessary to
face the SymBreak sub-problem, that is to break possible
symmetries in the initial leader configuration provided to
the algorithm. We recall that the initial symmetric config-
urations handled by the algorithm consist of any configura-
tion R without multiplicities fulfilling one of the following
conditions:

(1) there exists a unique reflection axis ` for R such that |R∩
`| ≥ 1;

(2) there exists a rotational symmetry in R and c(R) ∈ R.

The strategy used to address this sub-problem is to carefully
move one robot away from the axis (if case (1) occurs) or
the robot away from the center (if case (2) occurs), in or-
der to obtain a stationary asymmetric configuration. In fact,
during this phase multiplicities are not created. In particu-
lar, configurations with a reflection axis are always prelim-
inary transformed by moving one robot along the axis ` to-
ward c(R), if possible; otherwise (cf Figure 5), a robot on
` is moved ‘sufficiently faraway’ along ` and then rotated
on C(R). Whereas, if c(R) is reached or case (2) occurs, the
robot in c(R) is moved radially away from the center. In all
the cases, in order to maintain stationarity, we aim to obtain
a configuration different from those addressed in the other
phases F1, . . . ,F4 until the moving robot does not reach a
specific target.

The strategy for breaking the symmetries presents some
complexities that lead the algorithm for this phase to be
composed of many different moves. As in the previous
phases, each of such moves is referred to a sub-phase; Ta-
ble 7 describes all such sub-phases, and also the correspond-
ing invariants and moves. We now provide a description of
each sub-phase.

Sub-phase T concerns any configuration R where pred-
icate b0 ∧¬c∧ b1 ∧¬z1 holds. Informally, this means that

R is symmetric (cf b0), there is no robots in c(R) (cf ¬c)
and hence R must admit one single axis ` of reflection with
robots on it. Actually, there exists a unique robot r on ` (cf
b1), and no robot has started to move away from ` (cf z1).
Figure 15.(a) shows an example for such a configuration R.
Move m18 moves r toward c(R\{r}) if possible. This move-
ment can be performed only when r admits a rotational-free
path toward c(R\{r}). Such a path is defined as follows:

– given a robot r ∈ `, if in the segment (r,c(R\{r})) there
are no robots and there is no point t such that R \ {r}∪
{t} has a rotational symmetry, then we say that there
exists a rotational-free path for r toward c(R\{r}).

If it is not possible for r to reach c(R\{r}), that is r does not
admit a rotational-free path, then move m18 moves r along `

so that a faraway configuration R′ is created.
A configuration R is said to be a faraway configuration

if in R the following conditions hold:

– s3, that is |∂C(R)|= 3;
– there exists a robot r among the three on C(R) such that

R\{r} admits one axis of reflection ` that reflects to each
other the other two robots on C(R), referred to as r1 and
r2;

– r1 and r2 are the furthest robots from r;
– ^(r1,r,r2)≤ 59◦.

In such a case, robot r is said to be a faraway robot.
Concerning the configuration shown in Figure 15.(a),

since r does not admit a rotational-free path, then move
m18 moves r to create a faraway configuration R′. In The-
orem 12, it is shown that r becomes a faraway robot and that
∂C(R′) = {r,r1,r2}.

Sub-phase U handles any faraway configuration R.
These configurations are characterized by predicate z1. In
particular, since ∂C(R) = {r,r1,r2}, with r being a faraway
robot, then move m19 moves robot r along C(R) so that even-
tually r is antipodal to either r1 or r2. It is worth to note that
as soon as r leaves the axis `, the obtained configuration
is no longer symmetric. Anyway, predicate z1 characterizes
not only faraway configurations that are symmetric, but also
configurations in which robot r is stopped before reaching
its target.

Sub-phases V 1, . . . ,V 4 are responsible for transforming
configurations with one axis of reflection and at least two
robots on it into configurations having one robot in c(R). In
these sub-phases we use the following additional notation.
Let R be a configuration with one axis of reflection ` such
that |R∩ `| ≥ 2. Then:

– It is possible to total order the elements in R∩ ` by ex-
ploiting their distance from c(R) and, in case of ties, by
giving priority to robots being not critical, to those ad-
mitting rotational-free paths, and then of minimum view;
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Table 7 Invariants and moves for all the sub-phases of F5.

phase start end

T b0∧¬c∧b1∧¬z1 Us∨Ws

m18 w

U z1

m19 F1s∨w
V 1 b0∧ (¬c∨¬u1)∧b2 Ws

m20 w

V 2 b0∧ (¬c∨¬u2)∧b3 Ws

m21 w

V 3 b0∧¬c∧b4 Ws

m22 w

V 4 b0∧¬c∧b5 V 2s

m23 w

W z2∧¬V 1s∧¬V 2s

m24 F1s∨F2s∨F4s

name description

m18 Let r be the only robot on the axis of symmetry `. If ∃ a rotational-
free path for r then r moves toward c(R\{r}), else r moves toward
the closest point t ∈ ` such that R\{r}∪{t} is a faraway configu-
ration.

m19 the faraway robot r rotates along C(R) toward the point t defined
in predicate z1.

m20 If ∃ a rotational-free path for r(1) then r(1) moves toward c(R);
concurrently, r(2) moves toward a point that makes predicate u1

true, without swapping its role with r(1) nor crossing C j
↓(R), for

any j.

m21 If ∃ a rotational-free path for r(1) then r(1) moves toward c(R);
Else let Ci

↓(R) be the circle where r(1) resides, then r(1) moves
toward a point t that halves its distance from Ci+1

↓ (R). If r(2) ∈
[t60, t55), then it moves toward tx if such a point exists else toward
t55.

m22 r(1) moves toward c(R).

m23 Let r ∈ {r(1),r(2)} be the robot closest to C(R \ {r(1),r(2)}), r(1)

in case of ties. Let t be the closest point to r on C(R\{r}∪ t)∩ `
with t not critical for C(R\{r}∪ t)∩ `. r moves toward t.

m24 Let r be the robot closest to c(R), and t be a point on Cg(R) s.t.
t is not on an axis of symmetry and ^(t,c(R),r′) 6= α for any
r′ ∈ ∂C(R). r moves radially toward t.

– According to the above ordering, we denote by r(1) the
first robot, and by r(2) the second robot. For instance,
robot r(1) is the only robot moved by m22 in sub-phase
V 3 (cf Figure 15.(f)). Robots r(1) and r(2) will be possi-
bly moved concurrently by move m20 in sub-phase V 1;

– When |R∩ `| = 2 and exactly one robot in R∩ ` is criti-
cal (i.e., predicate b3 holds - cf Figure 15.(e)), we need
some additional notation. Note that the unique critical
robot on ` is by definition r(2). Let r′, r′′ be the closest
robots to r(2) that belong to ∂C(R). We denote by t60

and t55 the points on ` such that ^(r′, t60,r′′) = 60◦ and
^(r′, t55,r′′) = 55◦, respectively. Moreover, if it exists,
let tx on ` be the point between t60 and t55, closest to t60

such that |C(R \ {r1} ∪ {tx})∩R| > 3. Move m21 uses
points t60, t55, and tx to define the movement of robot
r(2).

Sub-phase V 1 concerns any configuration R where pred-
icate b0∧ (¬c∨¬u1)∧b2 holds. Informally, this means that
R is symmetric (cf b0), there exist at least two robots on the
axis of reflection ` and at least two of them are not criti-
cal for C(R) (cf b2), there is no robot in c(R) (cf ¬c), or
r(2) has not yet reached its target (cf ¬u1). Figures 15.(b)-
(c) show examples for such a configuration R. The move
planned for this phase is m20. If r(1) admits a rotational-free
path then m20 moves r(1) toward the center of the current
configuration, like in Figure 15.(b). Concurrently, move m20
makes r(2) moving along the axis toward a point such that
r(2) remains the unique robot on Ci

↑(R) at a distance form

c(R) which is in the middle between Ci−1
↑ (R) and Ci+1

↑ (R).
Concerning Figure 15.(c), notice that as soon as r(2) starts
moving, a rotational-free path for r(1) is created; hence the
two robots move concurrently. During the concurrent move-
ments, r(2) must take care to not swap its role with r(1),
hence maintaining bigger its distance from c(R) with respect
to r(1).

Sub-phase V 2 concerns any configuration R where pred-
icate b0∧ (¬c∨¬u2)∧b3 holds. Informally, this means that
R is symmetric (cf b0), there are two robots on the reflec-
tion axis ` and exactly one of them is critical for C(R) (cf
b3), there is no robots in c(R) (cf ¬c), or r(2) has not yet
reached its target (cf ¬u2). Figures 15.(d)-(e) show exam-
ples for such a configuration R. The move planned for this
phase is m21. If r(1) admits a rotational-free path then m21
moves r(1) toward c(R) (cf Figure 15.(d)), else r(1) moves
still in the direction of c(R) but without reaching any circle
Ci
↓ where other robots resides. Concurrently, if r(2) lies in

[t60, t55) then move m21 makes r(2) move along the axis to-
ward tx if it exists, or t55 like in Figure 15.(e). Notice that,
like for V 1, there might be two robots that move concur-
rently even though now they do not risk to swap their roles.

Sub-phase V 3 concerns any configuration R where pred-
icate b0∧¬c∧b4 holds, that is symmetric configurations (cf
b0) with three robots on the reflection axis `, and with ex-
actly two of such robots critical for C(R) (cf b4). Moreover,
in R there is no robot in c(R) (cf ¬c). An example of such



26 S. Cicerone, G. Di Stefano, A. Navarra

t55

r(2) = t60

r′

r(2)

r′′
r(1)

C(R)

c(R)

(e) ( f )

r(1)

C(R)

c(R)

r

r2

r = r1

t

(g)

C(R)

c(R)

p
r(1)

C(R)

c(R)

(d)

r(2)

r(1)
C(R)

C(R)

c(R)

(c)

C(R)

c(R)c(R)

r(2)

r(1)

(b)(a)

Fig. 15 Visualization of some configurations belonging to F5. In (a), a configuration where Ts holds (notice that it corresponds to the counter-
example provided in Section 5.3), in (b) and (c) V 1s holds, in (d) and (e) V 2s holds, in (f) V 3s holds, and in (g) V 4s holds.

configurations is provided in Figure 15.(f). In such a case it
is easy to see that r(1) admits a rotational-free path. Conse-
quently, move m22 moves r(1) in c(R).

Sub-phase V 4 concerns any configuration R where pred-
icate b0 ∧¬c∧ b5 holds, that is symmetric configurations
(cf b0) with two robots only on the reflection axis ` that are
both critical for C(R) (cf b5), and with no robots in c(R) (cf
¬c). Assuming R∩ ` = {r1,r2}, move m23 moves the robot
r ∈ {r1,r2} closest to C(R\{r1,r2}). The target is the point
t ∈ ` closest to r that is not critical for C(R \ {r} ∪ t). An
example of such a case is provided in Figure 15.(g). Notice
that when r reaches the target t, a configuration belonging to
V 2 is obtained.

Finally, sub-phase W concerns any configuration R
where predicate z2 ∧¬V 1s ∧¬V 2s holds. This means that
there are two possibilities for R: either R is symmetric with
a robot r in c(R), or R is asymmetric, potentially obtained
from a symmetric configuration by moving a robot r away
from c(R). The movement of r toward Cg(R) is dictated by
move m24 in a direction that does not form the reference an-
gle α (used in Phase F2) nor leaves symmetries. It follows
that as soon as r moves from c(R), the configuration is asym-
metric. It is possible that the obtained configuration belongs
to phase F4 and in particular sub-phase P2 in case r is the
unique robot left to be correctly moved toward the final tar-
get in order to form F , that is predicate i2 holds. Since in
phase W predicate i2 must be false when the configuration

is asymmetric, robots can always recognize which phase the
configuration belongs to, and that r is the only moving robot.

7 Correctness

In this section, we provide all the results necessary to as-
sess the correctness of our algorithm. To this end, we have
to show that for each non-final configuration (that is con-
figurations not satisfying w) exactly one of the start predi-
cates (predicates for stationary configurations) in Table 2 is
true. We will show that a stationary configuration satisfying
a starting predicate in Table 2 will be transformed by robots’
moves into a stationary configuration of another phase or in
a stationary configuration satisfying w. To this end, for each
phase (that is for each configuration that satisfies a starting
predicate of Table 2), we have to show that exactly one of the
starting predicates in the corresponding table (one among
Table 3, 4, 5, 7, 6, and 7) is true. For each applied move, we
have to show that during its implementation no undesired
symmetry (and hence multiplicity) is created, and all robots
but those involved by the move remain stationary. This as-
sures that at the end of the move the configuration is nec-
essarily stationary. Finally, we will show that during a move
the starting predicate of Table 2 indicating the phase remains
unchanged, with the exception of a few remarked situations
which do not affect the correctness of the algorithm.
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Lemma 2 Given an initial leader configuration R and a
pattern F, if w does not hold then exactly one of the pred-
icates defining a starting phase of Table 2 is true.

Proof First, we show that each phase manages a different
set of configurations, that is the logical conjunction of any
two predicates among those defining the five starting phases
in Table 2 is false. Then, we show that the logical disjunction
of all the predicates defining the five phases of Table 2 along
with predicate w is a tautology.

The conjunction of F1s, with F2s, F3s, F4s, and F5s
is false because of variables f2, f3, f4, and f5, respectively.
Similarly, the conjunction of F2s with F3s, F4s, and F5s
is false because of variables f3, f4, and f5, respectively. The
conjunction of F3s with F4s and F5s is false because of
f4 and f5, respectively. Finally, the conjunction of F4s with
F5s is false because of f5.

For the second part of the proof, let us consider F1s ∨
F2s ∨F3s ∨F4s ∨F5s. This expression is equivalent
to ¬w ∧ [(¬f2 ∧ ¬f3 ∧ ¬f4 ∧ ¬f5) ∨ (f2 ∧ ¬f3 ∧ ¬f4 ∧
¬f5)∨ (f3 ∧¬f4 ∧¬f5)∨ (f4 ∧¬f5)∨ f5]. Since the sub-
expression in square brackets is true, the whole expression
is equivalent to ¬w which is clearly true in disjunction with
w. ut

Lemma 2 basically shows that our algorithm can take as
input any initial configuration for which it has been designed
for, that is leader configurations.

Lemma 3 Given a configuration R and a pattern F, if F1s
is true then exactly one of the predicates for the starting
phases in Table 3 is true.

Proof We first show that at least one predicate among A 1s,
A 2s, Bs, C 1s, C 2s, Ds, E 1s, and E 2s is true. By simple al-
gebraic transformations, we obtain A 1s∨A 2s∨Bs∨C 1s∨
C 2s∨Ds∨E 1s∨E 2s = s+∨s3∨ (s2∧¬((m0⇒ m1)∧l)).
Note that s+ ∨ s3 ∨ s2 is true for each configuration, since
that expression is referred to all the possibilities about the
number of robots on C(R) as we assumed |R| ≥ 4. So it is
sufficient to show that F1s⇒¬((m0⇒ m1)∧l) when s2 is
true. As F1s implies ¬f2 = ¬((m0⇒ m1)∧s2∧l) (see Ta-
ble 2), when s2 holds we trivially get that ¬(l∧ (m0⇒ m1))

holds.
We now show that at most one of the predicates for start-

ing phases in Table 3 is true. To this end, it is sufficient to
show that the logical conjunction of any two predicates is
false. In most cases, this is obtained by showing that both
the predicates imply the same variable, but with opposite
logical values.

– Concerning A 1s = s+ ∧ l, it is disjoint with A 2s be-
cause of l. Since s+ implies ¬(s2 ∨ s3), then A 1s is
disjoint with any of the remaining predicates, as for them
either s2 or s3 is true.

– Concerning A 2s = (s+ ∨s3)∧¬l, either it implies s+
(and then, as above, it differs from all the remaining
predicates) or it implies s3∧¬l. However, l is positive
in all the remaining predicates where s3 holds; predi-
cates Bs and E 2s are both disjoint with A 2s because of
s2.

– Predicate Bs is disjoint with all the remaining predicate
but E 2s because of s2 (the others require s3). Bs and
E 2s are disjoint because of m0⇒ m1.

– Concerning C 1s = s3 ∧ t0 ∧ l, it is disjoint with both
C 2s and E 1s because of t0, with Ds because of t1 (since
t0 implies ¬t1), and with E 2s because s3 implies ¬s2.

– Predicate C 2s is disjoint with Ds because of t1, with
E 1s because of m0 ⇒ m1, and with E 2s because s3 im-
plies ¬s2.

– Predicate Ds is disjoint with E 1s because of m0 ⇒ m1,
and with E 2s because s3 implies ¬s2.

– Predicate E 1s is disjoint with E 2s because s3 implies
¬s2.

Summarizing, we get that exactly one of the predicates for
the starting phases in Table 3 is true when F1s holds. ut

Lemma 4 Given a configuration R and a pattern F, if F2s
is true then exactly one of the predicates for the starting
phases in Table 4 is true.

Proof We first show that at most one of the predicates for
starting phases in Table 4 is true. To this end, it is sufficient
to show that the logical conjunction of any two predicates is
false. This is obtained by showing that both the predicates
imply the same variable, but with opposite logical values.
In particular, G 1s and G 2s are disjoint because of g0. Since
m1⇒ m0, we can assume that both G 1s and G 2s imply c⇒
m0 = ¬c∨ m0 = ¬(c∧¬m0). Then, both G 1s and G 2s are
disjoint with Hs because of (c∧¬m0).

We now show that exactly one of the predicates for start-
ing phases in Table 4 is true. To this end, we show that
G 1s ∨G 2s ∨Hs is true when F2s holds. We first analyze
G 1s∨G 2s; it corresponds to [¬g0∧ (c⇒ m1)]∨ [g0∧¬g1∧
(c⇒ m1)] = [¬g0∨ (g0∧¬g1)]∧ (c⇒ m1) = [¬g0∨¬g1]∧
(c⇒ m1). Since ¬g0⇒¬g1, the last expression can be sim-
plified into

G 1s∨G 2s = ¬g1∧ (c⇒ m1). (1)

Now, observe that F2s implies both f2 = (m0 ⇒ m1)∧
s2 ∧ l and ¬f3 = ¬[(m0 ⇒ m1)∧ g2] = ¬(m0 ⇒ m1)∨¬g2.
In turn, it follows that F2s implies (m0⇒ m1), s2, and ¬g2.
According to the definition of g2, it follows that either g1 is
false or 6 ∃g′′ ∈ ∂C(R) antipodal to g′. The latter condition
cannot hold since F2s implies s2, and hence g1 is false.
Concluding, Eq. 1 is equivalent to G 1s∨G 2s = c⇒ m1.

Finally, we get G 1s ∨ G 2s ∨Hs = (c ⇒ m1) ∨ (c ∧
¬m0) = ¬c∨ (m0 ⇒ m1). Since in F2s predicate m0 ⇒ m1
holds, then the claim follows.
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Summarizing, we get that exactly one of the predicates
for the starting phases in Table 4 is true when F2s holds.

ut

Lemma 5 Given a configuration R and a pattern F, if F3s
is true then exactly one of the predicates for the starting
phases in Table 5 is true.

Proof By observing that d0 ∧¬d1 is equivalent to ¬(d0 ⇒
d1), it is easy to see that the logical conjunction of any two
predicates among Ms, Ns, and Os is false. Then at most
one of these predicates is true for R. On the other hand the
logical disjunction of predicates Ms, Ns, and Os is also triv-
ially true. Then, exactly one of the predicates for the starting
phases in Table 5 is true. ut

Lemma 6 Given a configuration R and a pattern F, if F4s
is true then exactly one of the predicates for the starting
phases in Table 6 is true.

Proof We first show that at least one predicate among P1s,
P2s, Q1s, Q2s, Q3s, and Q4s is true. Since F4s = f4 ∧
¬f5∧¬w holds, then f4 holds as well. Since f4 =¬q∧(i1∨
i2) ∨ q∧ (i3 ∨ i4 ∨ i5 ∨ i6), then the logical disjunction
P1s∨P2s∨Q1s∨Q2s∨Q3s∨Q4s is true.

We now show that R is processed by exactly one sub-
phase of F4. P1s is disjoint with P2s since i1 implies
that exactly two robots are unmatched, while i2 implies that
exactly one robot is unmatched. P1s and P2s are disjoint
with (any sub-phase of) Q because of q. According to the
formal definitions of predicates i3, . . . ,i6, it follows that
Q1s is disjoint with any other sub-phase of Q, since i3 im-
plies r1 inside C(R) while i4, . . . ,i6 all imply R = ∂C(R).
Q4s is disjoint with both Q2s and Q3s since i6 implies that
exactly one robot is unmatched, while both i4 and i5 im-
ply that exactly two robots are unmatched. Finally, Q2s and
Q3s are disjoint because of the third items in the definitions
of i4 and i5. ut

Lemma 7 Given a leader configuration R and a pattern F,
if F5s is true then exactly one of the predicates for the start-
ing phases in Table 7 is true.

Proof We first show that at least one predicate among Ts,
Us, V 1s, V 2s, V 3s, V 4s and Ws is true. F5s implies (b0∨
z1∨z2)∧e. Hence, R does not contain multiplicities. If z1 is
true, then Us is true. If z2 is true, then one predicate among
Ws, V 1s, or V 2s is true. If both z1 and z2 are false, then
necessarily b0 holds and c must be false as otherwise z2 is
true. It follows that R admits exactly one axis of reflection
` with robots on it. In such a case T ∨V 1s ∨V 2s ∨V 3s ∨
V 4s = b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5. Actually, such an expression
is true as b1, . . ., b5 cover all the possible cases concerning
robots lying on `.

We now show that at most one of the predicates for start-
ing phases in Table 7 is true. To this end, it is sufficient to

show that the logical conjunction of any two predicates is
false.

– Concerning Ts = b0 ∧¬c∧b1 ∧¬z1, it is disjoint with
Us because of z1. It is disjoint with V 1s, V 2s, V 3s and
V 4s because of b1 (V 1s, V 2s, V 3s and V 4s require that
that at least one predicate among b2, . . . ,b5 holds, while
predicates b1, . . . ,b5 are pairwise disjoint). It is disjoint
with Ws because Ts implies that b0∧¬c holds, whereas
Ws implies that ¬b0∨c holds.

– Concerning Us = z1, it is disjoint with V 1s, V 2s, V 3s
and V 4s because such predicates require that that at least
one among b2, . . . ,b5 holds, and this implies that R must
have a reflection axis with at least two robots on the axis.
Conversely z1 implies that R is either asymmetric or re-
flexive with at most one robot on the axis. To prove that
Us is disjoint with Ws we show that z1⇒¬z2. Consider
a configuration R that fulfills z1:

– if R is symmetric (i.e., b0 holds) then c(R) is not oc-
cupied (i.e., ¬c holds) – since z2 implies c∨¬b0
holds, then z2 is false;

– if R is asymmetric (i.e., ¬b0 holds), let r be the
faraway robot detected by predicate z1. Since R is
asymmetric then r is not on the axis ` given in
the definition of predicate z1. If r′ = ∂C1

↑(R), then
R\{r′} cannot be symmetric as the asymmetry of R
is due to r. This means that z2 cannot hold.

– Concerning V 1s = b0 ∧ (¬c∨¬u1)∧ b2, it is disjoint
with V 2s, V 3s and V 4s because of b2. Moreover it is
trivially disjoint with Ws (Ws requires ¬V 1s).

– Concerning V 2s = b0 ∧ (¬c∨¬u2)∧ b3, it is disjoint
with V 3s and V 4s because of b3. Moreover it is trivially
disjoint with Ws (Ws requires ¬V 2s).

– Concerning V 3s = b0 ∧¬c∧b4, it is disjoint with V 4s
because of b4. It is disjoint with Ws because if R belongs
to W then it fulfills b0∧¬c holds, while we have already
observed that z2 implies ¬b0∨c.

– Concerning V 4s = b0 ∧¬c∧ b5, it is disjoint with Ws
because we are in the same situation of V 3s vs Ws.

ut

We are now ready to provide the correctness proof of our
algorithm for each phase, and then we combine all phases by
means of the final theorem that provides the correctness of
the whole algorithm. For each phase we consider all possi-
ble sub-phases. For each sub-phase we show all the possible
scenarios where the corresponding moves lead. In particular,
for each phase among F1, F2, F3, F4, F5, and for each
move m defined in the algorithm, we need to show several
properties that guarantee to our algorithm to safely evolve
until pattern F is formed. For the first four phases F1, F2,
F3, and F4 all moves involve only one robot and we are
going to prove the following properties:

H0: at the beginning, m involves only one robot;
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H1: while a robot is moving according to m, the configura-
tion is a leader configuration;

H2: m is safe, and in particular that while a robot is moving
according to m, all other robots are stationary;

H3: while a robot is moving according to m, no collisions are
created;

H4: if m is associated to phase X , then the predicate Xe
holds once a robot has terminated to apply m;

H5: m preserves stationarity.

Basically property H2 is needed to correctly address the
Membership problem described in Section 4.

About Property H4, the stop of a robot r is due to three
events. First, the adversary may stop r before reaching its
target. Second, the move might be subject to Procedures
STATIONARYMOVE or COLLISIONFREEMOVE, hence r
reaches an intermediate target. Third, r reaches the real tar-
get imposed by the current move. From the proofs, we omit
the analysis of the first condition because the situation ob-
tained once the adversary stops the moving robot r always
equals what can happen while r is moving, that is the analy-
sis of property H2 holds.

About Property H5, we always omit this property form
our proofs because it comes for free from the other proper-
ties once we have shown that there is always only one robot
r moving. So whenever r stops moving, the configuration is
stationary.

Lemma 8 Let R be a stationary configuration in F1. From
R the algorithm eventually leads to a stationary configura-
tion belonging to F2, F3, F4, F5 or where w holds.

Proof By Lemma 3, exactly one of the predicates for the
starting phases in Table 3 is true. In turn, this implies that
exactly one of the moves associated to the sub-phases of F1
is applied to R. We show that the properties H0, . . . ,H4 hold
for each possible move applied to R.
Let us consider sub-phase A 1 where move m1 is performed.

H0: Move m1 only concerns the not critical robot r on C(R)
of minimum view.

H1: During the movement of r, the configuration remains a
leader configuration. Actually it is asymmetric as there
are no multiplicities yet and r cannot participate to nei-
ther a rotation, being the only robot on C1

↓(R), or a re-
flection as the axis of symmetry should pass through r,
but then the starting configuration R was symmetric, a
contradiction.

H2: We show that m1 is safe. As soon as the robot moves,
predicate A 2 = (s+∨s3)∧¬l holds, since from s+ by
moving one robot either s+ or s3 holds and ¬l holds as
the robot has not yet reached the target.
Any configurations R′ observed during the move of r
cannot belong to F2 as s2 does not hold. It cannot be-
long to F3 as well because f3 does not hold. In fact,

f3 does not hold in A 1s and move m1 cannot change
this status. Possibly, the R′ falls in F4, in particular
sub-phases P2 and Q1. In fact, in P1 predicate g1
should hold, but r is certainly not on Cg(R); in Q2, Q3,
and Q4 all robots should belong to ∂C(R), but r does
not. If P2s holds, then only r can be the remaining un-
matched robot that moves in P2 since r is guaranteed
to not meet a point in F according to the use of Pro-
cedure STATIONARYMOVE. It follows that during the
movement, in case r is stopped by the adversary, it will
be selected again by the algorithm as the unique robot
that performs move m14. Similar arguments can be ap-
plied if Q1 holds, where there is only one robot inside
C(R).
Finally, we prove that R′ cannot belong to F5 by show-
ing that ¬f5 = ¬e∨ (¬b0 ∧¬z1 ∧¬z2) holds in R′. As
the moving robot is alone on C1

↓(R
′), R′ is asymmetric,

that is b0 does not hold. If predicate s+ holds then z1 is
false. If s3 holds, then there should be a faraway robot
r′ on C(R′) such that R′ \{r′} admits an axis where r re-
sides (being alone on C1

↓(R
′)), that is z1 is false. Now we

show that z2 is false in R′. If r is the closest robot to c(R′)
then its distance from c(R′) is not less than δ (Cg(R′)),
that is z2 is false; else let r′ be the robot closest to c(R′).
It follows that if R′′ = R′ \{r′} is symmetric, that is r is
on an axis of symmetry of R′′, then also R\{r′} is sym-
metric. This contradicts the fact that z2 was false in R as
¬f5 and e hold.
The above arguments also ensure that no other robot than
r can move from the reached configurations.

H3: Move m1 guarantees there are no robots between r and
its target.

H4: Assume that r stops moving because it reaches
an intermediate target dictated by Procedure
STATIONARYMOVE. In this case, predicates w,
P1s, or P2s might hold because i1 or i2 become
true (clearly, i3, . . . ,i6 cannot become true as F should
equal ∂F). If this is not the case, r is unmatched and
the same considerations given for H2 hold, that is the
configuration belongs to phases A 2 or P2 or Q1.
Assume that r reaches the target t = [r,c(R)]∩C0,1(R).
If the configuration remains in F1, then l holds and the
configuration is either in A 1 if s+ holds, or in A 2, C ,
D , or E 1 if s3 holds. If the configuration is not in F1,
then by the above analysis it belongs to F4 or w holds.

Sub-phase A 2, where move m2 is performed, is the con-
tinuation of sub-phase A 1 in case the moving robot r stops
before reaching its target on C0,1(R) to make predicate l

newly true. Then the same analysis of move m1 applies.
Hence moves m1 and m2 are repeatedly applied in order to
remove not critical robots from ∂C(R) until there remain ex-
actly three robots on C(R) (unless the configuration reaches
phase F4 or satisfies w before). This can be done according
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to Properties 1 and 2. Once the resulting configuration satis-
fies s3∧l, it does not belong to sub-phase A anymore. This
situation occurs in a finite number of steps. In fact, as shown
above, move m1 along with move m2 bring not critical robots
one by one to their designed targets. Since by assumption a
robot is guaranteed to traverse at least distance ν each time
it moves, then a finite number of steps suffices to reach the
desired configuration.

Three robots on C(R) are necessary to maintain the
configuration a leader one in case a multiplicity should be
formed in c(R), that is when predicate m0 ∧ ¬m1 is true.
If there are only two robots in ∂C(R), a third one from
int(C(R)) is moved on C(R). This is done in sub-phase B
by means of move m3.

H0: The move only concerns robot r on C1
↓(R) with mini-

mum view.
H1: During the movement of r the configuration remains a

leader configuration. Actually it is asymmetric as there
are no multiplicities yet, r cannot participate to neither
a rotation, being the only robot on C1

↓(R), or a reflec-
tion as the axis of symmetry should pass through r, but
then the starting configuration R was symmetric too, a
contradiction.

H2: We show that m3 is safe. Assuming that the configu-
ration observed during the move of r still belongs to
F1, then r is always detected as the unique robot on
C1
↓(R) and hence Bs still holds. The configuration ob-

served while r moves cannot belong neither to F2 nor
to F3 as m0 ⇒ m1 does not hold (we have m0 ∧¬m1 by
hypothesis). Similarly, it cannot belong to F4 as a mul-
tiplicity in c(R) must be created. Finally, it cannot be-
long to F5 as the configuration is asymmetric, that is
b0 is false; s2 holds hence z1 is false; z2 remains false
because, by removing the closest robot to c(R), the con-
figuration cannot be symmetric due to the movement of
robot r, as observed in H1.
The above arguments ensure that during the movement
all robots but r are stationary as the configuration re-
mains in B.

H3: No collision is possible as, by definition, there are no
robots between C1

↓(R) and C(R), and the target t on C(R)
cannot coincide with one of the positions of the two
robots on C(R).

H4: Once r reaches its target, the configuration cannot be-
long to F2, F3, F4 for the same reasons as in H2. The
configuration cannot belong to F5 as it is asymmetric,
that is b0 is false; s3 holds, but the robots on C(R) form a
right-angle triangle and then z1 is false; z2 remains false
for the same reasons as in H2. It follows that the config-
uration remains in F1. In particular, the configuration is
in C1, C2 or D , depending on the kind of triangle formed
by the robots on C(R), that is the status of predicates t0
and t1.

When |∂C(R)|= 3, we have to guarantee that two robots
on C(R) are antipodal before removing the third one, other-
wise C(R) could change its radius. This is done in sub-phase
C 1 by means of move m4. The move involving one of the
three robots on C(R) makes the triangle they form contain-
ing a 90◦ angle, and hence two antipodal robots.

H0: As specified by the definition of m4, the only robot r
involved in this move is that on C(R) corresponding to
angle α2 if the triangle has angles α1 ≥ α2 ≥ α3 (in case
of ties, the uniqueness of r is guaranteed by using the
view of robots).

H1: r remains always detectable because as soon as it starts
moving we get α1 > α2 > α3, that is the triangle formed
by the three robots on C(R) is asymmetric. Moreover
the triangle remains asymmetric as during the movement
and until the end, α1 increases, α2 maintains its value
and α3 decreases.

H2: We show that m4 is safe. Assuming that the config-
uration observed during the move of r still belongs to
F1, as s3∧t0 remains true during the movement, then
the configuration remains in C 1. While r moves the ob-
served configuration cannot belong to F2 as s2 does not
hold. The same for F3, as there are no two antipodal
robots and then g2 is false. Predicates F4s cannot hold
as the movement is controlled by STATIONARYMOVE

which preventively calculates the possible points that
could make F4s true at the end of the movement. So,
during the movement, F4s remains false. Similarly,
F5s is false as it is controlled by STATIONARYMOVE.
As the above defined angles are such that α1 > α2 >

α3 during the move, then the robot r on α2 is always
uniquely determined;

H3: No collisions are created as the robot moves on C(R)
having as target a point antipodal to one of the other two
robots. The third robot cannot be on its trajectory as, oth-
erwise, the smallest enclosing circle would be different
from C(R).

H4: If r stops on a target specified by Procedure
STATIONARYMOVE, the configuration can remain in
C 1. As in case H2, the configuration cannot belong to
F2 as s2 does not hold. The same for F3, as there are
no two antipodal robots and then g2 is false. If Proce-
dure STATIONARYMOVE computes a target specified at
line 10, it could be possible that there exists an embed-
ding satisfying i1. Then the configuration can belong
to sub-phase P1 of F4. Moreover, predicate w might
hold. If the computed target comes from line 12 of Pro-
cedure STATIONARYMOVE, an angle of α degrees is
formed with a robot on Cg(R). In that case the configu-
ration may belong to either sub-phase P1 or sub-phase
P2 of F4. If the computed target comes from line 15
of Procedure STATIONARYMOVE, an asymmetric con-
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figuration where z1 holds is reached that may belong to
sub-phase U of F5.
If the robot stops reaching the target of move m4, form-
ing an angle of 90◦, t0 is false and then the configuration
can satisfy C 2s∨Ds∨E 1s. If the configuration is not in
F1, as above, it can satisfy w, F4s, or F5s.

In case a multiplicity in c(R) must be formed, in order to
guarantee that the configuration remains a leader configura-
tion, the algorithm ensures the triangle formed by the three
robots on C(R) is asymmetric. To guarantee the stationarity
of the configuration, we impose that the triangle has angles
equal to 30◦, 60◦, and 90◦ degrees. This is done in sub-phase
C 2 by means of move m5.

H0: Among the three robots on C(R), only the one that
does not admit an antipodal robot is moved (notice that
the status of t0 in C 2s implies two antipodal robots on
C(R)).

H1: The configuration is always asymmetric because the tri-
angle formed by the three robots can be symmetric only
at the beginning.

H2: We show that m5 is safe. As predicate m0 ∧¬m1 holds
during the whole movement, that is a multiplicity in c(R)
must be formed, then the configuration observed dur-
ing the movement remains in sub-phase C 2 until t1 be-
comes true. For the same reason, the configuration can-
not belong to F2, F3, and F4. About F5, the con-
figuration is asymmetric hence b0 is false; there are two
antipodal robots, hence z1 is false; the configuration ob-
tained by excluding the closest robot to c(R) cannot be
symmetric as the triangle on C(R) is asymmetric, then
z2 is false.
During the movement all other robots are stationary, for
the same reason as in H0.

H3: No collisions are created as the target of the moving
robot is always between the antipodal robots on C(R).

H4: As discussed in H2, the configuration remains in F1
and in particular in C 2 or D depending on t1.

Once the three robots on C(R) form a triangle having an-
gles equal to 30◦, 60◦, and 90◦ degrees, the multiplicity in
c(R) can be safely formed with respect to undesired symme-
tries. This is done in sub-phase D by means of move m6.

H0: The only moving robot r is the closest to c(R), not in
c(R), and of minimum view.

H1: The configuration remains a leader configuration as
predicate t1 remains true during the movement. In fact,
none of the three robots on C(R) is moved because at
least two points in F are on C(F), so the multiplicity
to be formed is at most of |F | − 2 elements. However
the algorithm moves at most |F |−3 robots in c(R) (see
predicate m1).

H2: We show that m6 is safe. Predicate t1∧m0∧¬m1 holds
during the whole movement, then the configuration re-
mains in D until m1 becomes true. As long as m1 is false,
the configuration cannot be in F2, F3, and F4. It can-
not be in F5 because either e is false or b0 ∨z1 ∨z2 is
false. In fact, if e is true, the configuration is asymmet-
ric, that is b0 is false. During the movement predicate z1
remains false as the three robots on C(R) form a right-
angle triangle. The configuration without r is asymmet-
ric, that is z2 is false.
During the movement all other robots are stationary, for
the same reason as in H0.

H3: No collisions are created as the moving robot is the
closest to the target.

H4: Once the robot reaches c(R), either another robot must
be moved in c(R) because m1 is still false and then the
configuration is still in D , or m1 holds. In the latter case
the configuration can be in E 1. It cannot be in F2, as s3
holds, and w cannot be satisfied as at least one robot must
be still moved in c(R). The configuration can be in any
sub-phase of F3 as, by chance, g2 might hold. More-
over the configuration can belong to F4, sub-phase P ,
but not Q as predicate q is false. Finally, the configura-
tion cannot be in F5 for the same reasons as in H2.

As soon as phase D terminates and the configuration is
in E 1, move m1 is applied to remove one robot from C(R)
leaving only the two antipodal robots.

H0: The only not critical robot r on C(R) is moved.
H1: During the movement of r the configuration remains a

leader configuration as r cannot participate to neither a
rotation, being the only robot on C1

↓(R), nor a reflection
as the axis of symmetry should pass through r, but then
the starting configuration R was symmetric too, a con-
tradiction.

H2: We prove that m1 in E 1 is safe. Assuming that the con-
figuration R′ observed during the movement of r still be-
longs to F1, then as soon as r starts moving, predicate
E 2s = s2 ∧¬l∧ (m0 ⇒ m1) holds. In fact, in E 1 predi-
cate s3 holds and by moving one robot, s2 becomes true
while l becomes false as the robot has to reach its target.
The configuration while r moves cannot belong to F2
as l does not hold. It cannot belong to F3 as well be-
cause f3 does not hold in E 1 and m1 cannot change
this status. Possibly, the configuration falls in F4, in
particular only in sub-phase P2. In fact, in P1 pred-
icate i1 should hold, but since s2 holds, g′′ should be
on µ(g′′). In Q, there must be at least three robots on
C(R). If P2 holds then only r can be the remaining un-
matched robot that moves in P2 since r is guaranteed
to not meet a point in F according to the use of Pro-
cedure STATIONARYMOVE. It follows that during the
movement and once r is stopped by the adversary, it will
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be selected again by the algorithm as the unique robot
that performs move m14.
The configuration R′ cannot belong to F5 as either e
is false or we now show that b0 ∨ z1 ∨ z2 is false. As
the moving robot is alone on C 1

↓ (R
′), the configuration

is asymmetric, that is b0 is false. Since s2 holds z1 is
false. Finally as z2 is false in R, then, by removing the
closest robot to c(R′), the obtained configuration cannot
be symmetric, hence z2 remains false.
The above arguments also ensure that no other robot than
r can move from the reached configurations.

H3: Move m1 guarantees there are no robots between r and
its target.

H4: If r stops because it reaches an intermediate target dic-
tated by Procedure STATIONARYMOVE, then w or P2
might hold, because i2 becomes true. For the same rea-
sons as above, P1 and Q cannot be reached. If r reaches
the target t = [r,c(R)]∩C0,1(R), the obtained configura-
tion is not in F1 anymore, as f2 holds. Then, it can be
in F2 as f2 is now true, and as above it can be in F4 or
w holds.

Similarly to sub-phases A 1 and A 2, sub-phase E 2 is
the continuation of sub-phase E 1 in case the moving robot r
stops before reaching its target on C0,1(R) to make predicate
l newly true. Then the same analysis of move m1 for E 1
applies. Once r reaches its target, predicate f2 holds, and
the configuration can be in F2, F4 or w holds. ut

Lemma 9 Let R be a stationary configuration in F2. From
R the algorithm eventually leads to a stationary configura-
tion belonging to F3, F4 or where w holds.

Proof Recall that the aim of F2 is the formation of a con-
figuration satisfying predicate g2 (cf definition of predicate
f3 in F3s). That is, the target configuration has three robots
acting as guards such that two of them, g′ and g′′, are an-
tipodal on C(R) and the third one g is on Cg(R) forming an
angle of α degree with g′.

By Lemma 4, exactly one of the predicates for the start-
ing phases in Table 4 is true. In turn, this implies that exactly
one of the moves associated to the sub-phases of F2 is ap-
plied to R. We show that the properties H0, . . . ,H4 hold for
each possible move applied to R.

We analyze move m7: it is performed in sub-phase G 1 to
bring a robot r on Cg(R).

H0: The move selects only one robot: the robot r on C1
↑(R)

of minimum view.
H1: During the movement of r, the configuration remains a

leader configuration as r cannot participate to neither a
rotation, being the only robot on C1

↑(R), or a reflection as
the axis of symmetry should pass through r, but then the
starting configuration R was symmetric too, a contradic-
tion.

H2: We show that m7 is safe. During the movement of r, as
f2 remains true, the observed configuration cannot be-
long to F1. Assuming the observed configuration still
belongs to F2, predicate G 1s remains true. Since r has
not yet reached the target, g2 is still false and hence the
observed configuration cannot belong to F3. Possibly,
the configuration falls in F4, in particular sub-phase
P2. In fact, in P1 predicate g1 should hold, but r is
certainly not on Cg(R) (target of the current move). In
Q there should be at least three robots in ∂C(R), but s2
holds. If P2 holds then only r can be the remaining un-
matched robot that moves in P2 since r is guaranteed
to not meet a point in F according to the use of Proce-
dure STATIONARYMOVE. The configuration cannot be-
long to F5 as either e is false or b0 ∨ z1 ∨ z2 is false.
In fact, if e is true then the configuration is asymmetric,
that is b0 is false; z1 cannot hold as s2 holds; z2 remains
false as m7 moves r toward Cg(R). It follows that during
the movement and once r is stopped by the adversary,
it will be selected again by the algorithm as the unique
robot that performs move m14.
Summarizing, while r is moving the configuration can
be in sub-phase G 1 of F2 or in sub-phase P2 of F4.
In both cases r is always recognized as the only robot
allowed to move.

H3: no collisions are created as there is no robot between r
and Cg(R).

H4: Assume that r stops moving because it reaches
an intermediate target dictated by Procedure
STATIONARYMOVE. Then, w can hold or the con-
figuration is still in G 1. In fact, by the analysis in H2,
the configuration might be in P2, but this is excluded
as the robot is on Ci

↑(F), for some i > 0, while i2 does
not hold because it requires that d(c(R),r)< d(c(F), f ),
where f is a point on C1

↑(F)∩F .
Assume r reaches its target on Cg(R). Then, w cannot
hold because there are no points of F on Cg(R) by def-
inition. The configuration is not in F1 as f2 holds. As
g0 holds, the configuration can be in G 2 and in F3 in
case also g1 holds. The configuration can be in F4, in
particular in P1 or P2 depending on i1 or i2. It cannot
be in Q because s2 holds. The configuration cannot be
on F5 by the same analysis in H2.

Once there is a robot r on Cg(R), to make g1 true, that
is to correctly place guard g, it should be rotated on Cg(R).
This is done in sub-phase G 2 by move m8.

H0: r is the unique robot on Cg(R);
H1: During the movement of r, the configuration remains a

leader configuration as r cannot participate to neither a
rotation, being the only robot on Cg(R), or a reflection as
the axis of symmetry should pass through r, and through
the antipodal robots g′ and g′′ or between them. These
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cases can happen only if r is collinear with g′ and g′′ or
if it lies on the line perpendicular to the segment [g′,g′′].
In any other case, the movement of g cannot generate
an axis of reflection as it would imply the existence of
a point t ′, representing the reflection of t with respect to
the axis, such that d(g, t ′)< d(g, t). This contradicts the
hypothesis that t is the required closest point.

H2: We show that m8 is safe. During the movement of r, as
f2 remains true, the observed configuration cannot be-
long to F1. Assuming the configuration still belongs to
F2, predicate G 2s remains true. As g2 is still not true,
the configuration cannot belong to F3. The observed
configuration does not fall in F4. In particular: as g1 is
false, it is not in P1; it is not in P2 otherwise i2 true
during the movement of r implies i2 true in the starting
configuration R too, a contradiction; it is not in Q as s2
still holds during the movement of r, while Q handles
configurations with at least n− 1 robots on C(R). The
configuration does not fall in F5. In particular: either e
is false or b0∨z1∨z2 is false. In fact, if e is true then the
configuration is asymmetric, that is b0 is false. z1 cannot
hold as s2 holds. z2 does not hold as r is on Cg(R).
As the configuration remains in G 2 by the above analy-
sis, robot r is always detected as the only moving one.

H3: No collisions are created as there is only r on Cg(R).
H4: If r reaches its target on Cg(G), w cannot hold because

there are no points of F on Cg(R) by definition. The con-
figuration is not in F1 as f2 holds. As g2 holds, the
configuration can be in F3. The configuration can be in
F4, in particular in P1 as i1 might hold. It cannot be
in P2 or in Q by the same analysis in H2. It cannot be
in F5 by the same analysis in H2.

In case a robot r is in c(R), but there is no multiplicity
in c(F), then r will be moved on Cg(R) in sub-phase H by
means of move m9.

H0: r is clearly the only robot to move;
H1: the configuration is always a leader configuration by the

same analysis provided for move m8 in sub-phase G 2.
H2: We show that m9 is safe. As soon as r starts moving, the

observed configuration can only belong in G . In fact,
during the movement of r, Cg(R) changes, but r is rec-
ognized as the unique robot on C1

↑(R). It follows that the
configuration is in G 2 or G 1 depending whether r is on
the current circle Cg(R) or not. The configuration cannot
be in F1 as f2 holds. It cannot be in H as c is false,
and it cannot be in F3 as g2 is false. It cannot be in F4
as g1 remains false and this excludes P1, i2 remains
false and this excludes P2, and Q is excluded by s2. It
cannot be in F5 as the configuration is asymmetric with
c(R) occupied, which means both z1 and z2 are false.
In any of the reachable sub-phases described, r is the
only moving robot.

H3: No collisions are created as there are no further robots
between c(R) and Cg(R).

H4: Once r reaches Cg(R), w cannot hold because there are
no points of F on Cg(R) by definition. The obtained con-
figuration is not in F1 as f2 holds, and is not in F3 as
g1 is false. The obtained configuration is not in F4 nor
in F5 as both f4 and f5 remain false, for similar reasons
as in H2. It means the configuration can only be in phase
F2, in particular it cannot be in G 1 as g0 is true, and it
cannot be in H as c is false. So it can only be in G 2.

ut

Lemma 10 Let R be a stationary configuration in F3.
From R the algorithm eventually leads to a stationary con-
figuration belonging to F4.

Proof By Lemma 5, exactly one of the predicates for the
starting phases in Table 5 is true. In turn, this implies that
exactly one of the moves associated to the sub-phases of F3
is applied to R. We show that the properties H0, . . . ,H4 hold
for each possible move applied to R.

Let P∗ = {[c(F), f ∗]∩Ct(R) | f ∗ ∈ F∗}, and let d be
the distance from any point in P∗ to any target in F∗. Let us
start the analysis of moves m10, m11, and m12 by assuming
there is exactly one robot r on Ct(R) and that r is not on a
point of P∗, that is d0 holds while d1 is false. In this case, the
configuration is in sub-phase M and move m10 is applied.

H0: The only moved robot is that on Ct(R), that by assump-
tion is r.

H1: The configuration is maintained a leader configuration
by the position of the three guards g, g′, and g′′. In fact,
as g is the only robot on Cg(R), the configuration cannot
be rotational. Moreover, the only possible reflection axis
should pass through g, but there is no robot that can be
reflected to g′ as, by predicate g1, g′ is the only robot
such that ^(g,c(R),g′) = α .

H2: We show that m10 is safe. As f3 holds during the move-
ment of r, the observed configuration cannot be in F1
and F2. Moreover, during the move, both robots r and
g do not stay neither on a target of F nor on C(R). As
each predicate among i1, . . . ,i6 requires that at most
two robots are not on target and at least one of them is
on C(R), they are all false and then the observed config-
uration is not in F4. The configuration does not fall in
F5. In particular: either e is false or b0∨z1∨z2 is false.
In fact, if e is true then the configuration is asymmetric
due to guard g, that is b0 is false. z1 cannot hold as g2
holds which implies the existence of antipodal robots on
C(R). z2 does not hold as there is g on Cg(R). Hence,
as d0∧¬d1 holds, the observed configuration remains in
F3, sub-phase M . Robot r remains the only robot on
Ct(R), then all the other robots are stationary.

H3: Collisions are impossible as r rotates on Ct(R) and it is
the only robot on it.
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H4: Once r reaches the target on Ct(R), by the analysis done
in H2, the configuration remains in F3, but now d1
holds. If still r = min_view(R¬m

η ), then d2 is false as the
current target µ(r) ∈ F∗ is reachable without intersect-
ing Ct(R). If another robot r′ = min_view(R¬m

η ) (this can
happen only the first time phase F3 is applied, and there
was already r on Ct(R)), then again d2 is false because
otherwise the distance from r′ to µ(r′) would be greater
than d, a contradiction. Hence, the obtained configura-
tion is in sub-phase O .

When d0 ⇒ d1 holds, the configuration is in sub-phase
N or O depending on whether d2 is true or not. Let us
assume that d2 is true, that is Ct(R)∩ (r,µ(r)] 6= /0, where
r = min_view(R¬m

η ). Then, move m11 is applied and r is
moved toward the closest point p1 in Ct(R)∩ (r,µ(r)] ac-
cording to Procedure COLLISIONFREEMOVE.

H0: The only moved robot is r that is the one with minimum
view in R¬m

η . It is unique as the configuration is a leader
configuration and hence there cannot be two robots in
R¬m

η with the same view.
H1: As in the analysis done for move m10, the configuration

is maintained a leader configuration by the guards.
H2: We show that m11 is safe. During the movement of r, the

configuration remains in F3 by the same analysis done
for move m10. In particular, it can still belong to sub-
phase N or to sub-phase O . In fact, if there are robots
between r and p1, then r receives an intermediate target
p by procedure COLLISIONFREEMOVE and hence d2
may remain true or not. By Lemma 1, condition 3), robot
r reduces its distance to p1 and then to µ(r), being p1
an intermediate point between the initial position of r
and µ(r). Then the distance η ′ of r to µ(r) is such that
η ′ < η , and hence it remains the only robot in R¬m

η ′ . All
the other robots remain stationary as their distance to any
target is at least η .

H3: Collisions are impossible as r is moved according to Pro-
cedure COLLISIONFREEMOVE.

H4: By the analysis provided for m10, the configuration re-
mains in F3 while r is moving. Here there are three
possible cases: (i) r reaches target p1; (ii) r has reached
the new target p (or it has been stopped before by the
adversary) and the trajectory toward µ(r) does not inter-
sect Ct(R) anymore; (iii) r has reached the new target p
(or it has been stopped before by the adversary) and still
the trajectory toward µ(r) intersects Ct(R). In case (i)
r is now the only robot on Ct(R), and the configuration
is in sub-phase M . In case (ii), d2 is false and the con-
figuration is in O , and by Lemma 1, r will be selected
again to move. In case (iii), the configuration is still in
N and robot r will be selected again by the algorithm. In
fact, by condition 3) of Lemma 1, r = min_view(R¬m

η ′ ),
with η ′ < η . Moreover, by condition 1) of Lemma 1,

C(R) and the target µ(r) do not change. Let p′ 6= p
be the closest point to r on (r,µ(r)]∩Ct(R). By con-
dition 2) of Lemma 1, there are no robots between r
and p′, that is there will not be a deviation by means of
COLLISIONFREEMOVE when r applies again m11. Note
that, in case (iii), still r applies m11, so predicate Ne does
not hold, but now p′ is assured to be reached within a fi-
nite number of steps because in each step r moves of at
least ν .

Let us assume that d2 is false, that is Ct(R)∩ (r,µ(r)] =
/0, where r = min_view(R¬m

η ). Then, the configuration is in
O , move m12 is applied and r is moved toward µ(r) accord-
ing to Procedure COLLISIONFREEMOVE.

H0: As in move m11, the only moved robot is that with mini-
mum view r = R¬m

η . Robot r is unique as the configura-
tion is a leader configuration.

H1: As in the analysis done for move m10, the configuration
is maintained a leader configuration by the guards.

H2: During the movement of r, the configuration remains
in F3 by the same analysis done for move m10. In
particular, it can only belong to O as the trajectory
from r to µ(r) cannot intersect Ct(R), even if Proce-
dure COLLISIONFREEMOVE assigns a new target. By
Lemma 1 condition 3), robot r reduces its distance to
µ(r). Then the distance η ′ of r to µ(r) is such that
η ′ < η , and hence it remains the only robot in R¬m

η ′ . All
the other robots remain stationary as their distance to any
target is at least η .

H3: Collisions are impossible as r is moved according to Pro-
cedure COLLISIONFREEMOVE.

H4: If r reaches a new target p assigned by
COLLISIONFREEMOVE (or it has been stopped
before by the adversary), the configuration is still in
O but now, by condition 2) of Lemma 1, there are
no robots between r and µ(r). By condition 1) of the
same lemma both C(R) and µ(r) do not change, and by
condition 3), robot r reduces its distance to µ(r). So r
applies again m12, predicate Oe does not hold, but now
µ(r) is assured to be reached within a finite number of
steps because in each step r moves of at least ν .
If r reaches µ(r) and there are still unmatched points in
F \{µ(g),µ(g′′)} then the configuration remains in F3
as f3 ∧¬f4 ∧¬f5 ∧¬w holds. In particular, it belongs
either to N or to O depending on d2. It cannot belong
to M as a robot on Ct(R) would move before r.
If r reaches µ(r) and all points in F \{µ(g),µ(g′′)} are
matched, then w does not hold as g is not on µ(g). The
configuration is not in F5 by the same analysis done for
H2 of move m10. Hence, the configuration is in F4. In
particular it can be in sub-phases P1, P2, or Q1, as g
is not on C(R).
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Clearly, the fact that from O the configuration can go
back to N or to O can happen only a finite number of times,
until all points in F \{µ(g),µ(g′′)} become matched.

In conclusion, moves m10, m11, and m12 can be applied
only a finite number of times, then eventually the configu-
ration leaves phase F3 and, following the above analysis,
phase F4 is reached. ut

Lemma 11 Let R be a stationary configuration in F4.
From R the algorithm eventually leads to a stationary con-
figuration where w holds.

Proof By Lemma 5, exactly one of the predicates for the
starting phases in Table 6 is true. In turn, this implies that
exactly one of the moves associated to the sub-phases of F4
is applied to R. We show that the properties H0, . . . ,H4 hold
for each possible move applied to R.

We recall that in this phase only guards g and g′′ need
to be moved to complete the formation of the pattern. As
guards move, the embedding exploited in phase F3 cannot
be always recognized, at least not straightforwardly. Each
sub-phase refers in fact to a different embedding that tries to
reconstruct where the configuration comes from.

Sub-phases P1 and P2 manage the case where q is
false. In sub-phase P1, guard g′′ rotates along C(R) in order
to reach µ(g′′), performing move m13. Since q is false, we
are guaranteed that C(R) does not change while g′′ moves.
In fact, let p be the antipodal point to µ(g′′). If q is false
because of the first condition that is ∂C(F) 6= F , then all
points in ∂C(F) \ µ(g′′) are occupied by robots as µ(g) is
inside C(R). Without loss of generality, let us assume that
g′′ needs to rotate in the clockwise direction to reach µ(g′′).
Since C(F) = C(R), there must exist a point f ∈ ∂C(F),
which is occupied, that either coincides with p or it can be
met in the clockwise direction by rotating on C(R) from p.
Robot g′′ moves in between µ(g′′) and f , and hence it is not
critical. Similar arguments hold if q is false because of the
second condition that is F contains multiplicities since µ(g)
is either inside C(R) or on a multiplicity. If q is false because
of the third condition, then ^( f2,c(R), fn)≤ 180◦. If µ(g′′)
is reached by g′′ in the counter-clockwise direction, then by
the disposal of the points on C(F) and the minimality of
f1, g′′ can safely move without affecting C(R). If µ(g′′) is
reached by g′′ in the clockwise direction, then the condition
on q assures that fn lies in the counter-clockwise direction
from g′′, it is occupied, and it is closer than p to µ(g′′).

H0: Only g′′ is involved in move m13. Even though g′′

moves, i1 ensures to always recognize the same robot
as g′′.

H1: As in F3, the configuration is maintained always a
leader configuration by the positioning of g on Cg(R).

H2: We show that m13 is safe. As q only depends on F , it
is always false. During the movement of g′′, i1 remains

true hence, by Lemma 6, the observed configuration al-
ways belongs to P1 and it cannot belong to any other
sub-phase of F4. The configuration cannot belong to
F5 because either e is false or we have to show that
b0∨z1∨z2 is false. Assuming e true, the configuration
is asymmetric because of the guards, that is g2 holds. z1
is false because s3 should hold and there should exist an
axis of reflection ` as defined in z1. The axis ` cannot
exist because of the chosen angle α formed by the guard
g. Predicate z2 is false because guard g is on Cg(R). It
follows that the configuration cannot belong to any other
phase because f4 holds and that g′′ is the only moving
robot.

H3: No collisions are created as there are no robots between
g′′ and µ(g′′) on C(R).

H4: Once g′′ reaches the target, predicate i1 does not hold
anymore as g′′ = µ(g′′) but predicate i2 holds, that is by
Lemma 6 the configuration is in P2. The configuration
cannot satisfy w as g is on Cg(R). It is not in any other
phase because the same arguments as in H2.

From P1 only guard g remains to be positioned in order
to form F . Now the embedding of F on R is more difficult
to detect and g moves according to move m14 in phase P2.

H0: Only g is involved in the move. Even though g moves,
i2 ensures to always recognize the same robot as g since
the distance to the target always decreases.

H1: The configuration is maintained always a leader config-
uration during the movement because g is the only robot
on C 1

↑ (R). So it cannot participate to a rotation. More-
over, the configuration cannot admit a reflection as the
axis of symmetry should pass through g. This means that
there exists another embedding of F such that the target
of g would be closer than that it has currently calculated,
but this contradicts predicate i2 that chooses the target
that minimizes the distance.

H2: We show that m14 is safe. As q only depends on F , it
is always false. During the movement i2 remains true,
hence, by Lemma 6, the configuration always belongs to
P2 and it cannot belong to any other sub-phase of F4.
The configuration cannot belong to F5 because either e
is false and we are done, or we have to show that b0 ∨
z1 ∨ z2 is false. Assuming e true, the configuration is
asymmetric because of the movement of g. z1 is false
because s3 should hold and there should exist an axis of
reflection ` as defined in z1. Such an axis cannot exist as
g should be on it being the only robot on C 1

↑ . Predicate
z2 is false because of i2. Moreover, it cannot belong to
any other phase because f4 holds. It follows that g is the
only moving robot.

H3: No collisions are created as there are no robots between
g and its target since g always moves inside C1

↑(F) to-
ward its border or toward c(F). In any case no further
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robot is met as all of them are already positioned ac-
cording to F .

H4: Once g reaches the target, predicate w holds, that is F
has been formed and the configuration does not belong
to any phase.

Sub-phases Q1–Q4 manage the case where q is true.
The main difficult here is to maintain C(R) unchanged while
guards are moving. In fact, if g′′ rotates toward µ(g′′) as in
sub-phase P1, C(R) could change.

As first move, in Q1 guard g is moved radially on C(R)
by means of move m15.

H0: Only g is involved in the move. As it moves radially
toward C(R), angle α is maintained along all the move-
ment, hence g is easily recognizable.

H1: The configuration is maintained always asymmetric as
F does not require multiplicities and g is the only robot
inside C(R). So it cannot participate to neither a rota-
tion, nor a reflection as the axis of symmetry should pass
through g, but then the starting configuration R was sym-
metric, a contradiction.

H2: We show that m15 is safe. As q only depends on F , it is
always true. During the movement of g, i3 remains true
and hence the observed configuration always belongs to
Q1. By Lemma 6, it cannot belong to any other sub-
phase of F4. The configuration cannot belong to F5
because e is true, and the configuration is asymmetric
because of the movement of g. z1 is false because s3
should hold and there should exist an axis of reflection
` as defined in z1. Such an axis cannot exist as g should
be on it being the only robot on C 1

↑ . Predicate z2 is false
because of the radial movement of g from C g(R). More-
over, the configuration cannot belong to any other phase
because f4 holds.
It follows that g is the only moving robot.

H3: No collisions are created as g is the only robot inside
C(R) and there are no robots forming an angle of α de-
grees on C(R) as they are all well positioned according
to F but for g′′ that by construction is not on the way of
g.

H4: Once g reaches the target, predicate i3 becomes false
while either i4 or i5 become true, depending whether
g′′ is already on target or not. By Lemma 6, this means
the configuration may belong to Q2 or Q3 and it cannot
belong to any other sub-phase of F4. The configuration
cannot belong to F5 because e is true, and the config-
uration is asymmetric because of g. z1 is false because
s3 is false. Predicate z2 is false because all robots are far
from C g(R). Moreover, the configuration cannot belong
to any other phase because f4 holds.

Sub-phase Q2 is applied if g′′ is not yet on its target.
Since now all robots are in ∂C(R), g′′ cannot freely move
toward µ(g′′) as this could change C(R). A safe place to

reach is the antipodal point p to g. Move m16 rotates g′′ on
C(R) toward the closest point among p and µ(g′′).

H0: Only g′′ is involved in the move. The angle α between
g and g′ maintains g′′ easily recognizable along all the
movement.

H1: The configuration is maintained always asymmetric as
the angle α between g and g′ guarantees no rotations.
Moreover, the only axis of reflection should cut α . Since
q holds, |F | − 1 points occupy a semi-circle. As all
robots but g and g′′ are not yet positioned according to
F , it follows that g is the only robot in the semi-circle
between g′ and g′′ in the clockwise direction. Since by
assumption there are at least four robots, this situation
cannot hold as there cannot be a robot specular to one
which is not a guard.

H2: We show that m16 is safe. As q only depends on F , it
is always true. During the movement of g′′, i4 remains
true. As a consequence, by Lemma 6, the observed con-
figuration belongs to Q2 and it cannot belong to any
other sub-phase of F4. The configuration cannot belong
to F5 because e is true, and the configuration is asym-
metric because of g. z1 is false because s3 is false. Pred-
icate z2 is false because all robots are far from C g(R).
Moreover, the configuration cannot belong to any other
phase because f4 holds. It follows that g′′ is the only
moving robot.

H3: No collisions are created as by construction the path
between g′′ and its target along C(R) does not contain
further robots.

H4: Once g′′ reaches the target, predicate i4 becomes false
while predicate i5 becomes true. By Lemma 6, this
means the configuration may belong to Q3 and it can-
not belong to any other sub-phase of F4. Moreover, it
cannot belong to any other phase because of the same
arguments as in H2.

In sub-phase Q3, guard g can freely move toward its
final target by means of move m17. In fact, because of pred-
icate q, the move does not affect C(R).

H0: Only g is involved in the move. Robot g is always rec-
ognizable as the only robot of minimum view.

H1: The configuration is maintained always asymmetric as
g is the only one with minimum view and its clockwise
view is different from its anti-clockwise view.

H2: We show that m17 in phase Q3 is safe. As q only de-
pends on F , it is always true. During the movement of
g, i5 remains true. Hence, by Lemma 6, the observed
configuration belongs to Q3 and it cannot belong to any
other sub-phase of F4. Moreover, it cannot belong to
any other phase because of the same arguments as for
move m13. It follows that g is the only moving robot.
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H3: No collisions are created as by construction the path be-
tween g and its target along C(R) does not contain fur-
ther robots.

H4: Once g reaches the target, predicate i5 becomes false
while either w or i6 become true, depending whether
g′′ is already on target or not. This means either F is
formed or the obtained configuration R′ belongs to Q4
according to Lemma 6. We now show that the configu-
ration cannot belong to F5 since b0 ∨ z1 ∨ z2 is false,
that is f5 is false. R′ is asymmetric (i.e. b0 is false) be-
cause q holds and hence R′ cannot be rotational and does
not admit multiplicities. The only possible axis of re-
flection in R′ should reflect g with g′′. In turn, this im-
plies that there must be another robot r specular to g′

such that ^(r,c(R′),g′′) = 3α with µ(g′′) being on the
smaller arc of C(R′) between g′′ and r. It follows that
^(r,c(R′),µ(g′′)) < 3α , contradicting the definition of
α . Predicate z1 is false because s3 is false. Predicate z2
is false because all robots are far from C g(R′). The con-
figuration cannot belong to any other phase as either f4
or w holds.

In sub-phase Q4, guard g′′ can freely move toward its
final target by means of move m13. In fact, predicate q guar-
antees that the target of g′′ does not overcome the antipodal
point to g, hence the movement does not affect C(R).

H0: Only g′′ is involved in the move. Robot g′′ is always
recognizable as i6 holds and g′′ is the only robot not on
target.

H1: During the movement, the configuration cannot admit a
rotation as the arc from g′ to g′′ in the clockwise direc-
tion is greater than half of C(R). There cannot be an axis
of symmetry that makes g specular to g′. In fact, g′′ can-
not admit a specular robot with respect to such an axis as
it is closer to the axis than g which contradicts the prop-
erty of g being the robot of minimum view. There can-
not be an axis making specular g to g′′. In fact, g cannot
admit a specular robot r with respect to such an axis as
^(r,c(R),g′′) should be equal to ^(g,c(R),g′) = 3α , but
this is possible only once g′′ has reached its target being
g the robot of minimum view.

H2: We show that m13 in phase Q4 is safe. As q only de-
pends on F , it is always true. During the movement of
g′′, i6 remains true. Hence, by Lemma 6, the configura-
tion belongs to Q3 and it cannot belong to any other sub-
phase of F4. Moreover, it cannot belong to any other
phase because of the same arguments as for move m17
holds. It follows that g′′ is the only moving robot.

H3: No collisions are created as by construction the path
between g′′ and its target along C(R) does not contain
further robots.

H4: Once g′′ reaches the target, predicate w becomes true.
This means the configuration does not belong to any
phase.

ut

Concerning phase F5, for each move m defined in Ta-
ble 7 we need to show several properties (similar to those
used for F1,F2,F3, and F4) that guarantee to our algo-
rithm to safely evolve until a different phase is reached:

H′0: at the beginning, m involves at most two robots;
H′1: while robots are moving according to m, the configura-

tion remains a leader configuration;
H′2: m is safe, and in particular that while robots are moving

according to m, all other robots are stationary;
H′3: while robots are moving according to m, no collisions

are created;
H′4: if m is associated to any phase X , then the predicate Xe

holds once the robots have terminated to apply m;
H′5: m preserves stationarity.

Note that, in this case we cannot get rid of property H′5
as we did with H5 for phases F1, F2, F3, F4 as now
there might be two robots moving concurrently.

Moreover, during phase F5 it is possible that by chance
a robot makes true predicate w while moving. For the
sake of clarity, and in order to not overcharge Procedure
STATIONARYMOVE, we prefer to ignore such occurrences.
This simply implies that the pattern will be formed succes-
sively by following the designed transitions, and from there
on robots will not move anymore. Differently, if a station-
ary configuration is reached where w holds, then no move
will be performed anymore. As described in Table 7, all sub-
phases of F5 with the exception of W may lead to station-
ary configurations where w holds. In the subsequent analysis
we omit to mention all the times such possibilities.

Lemma 12 Let R be a stationary configuration in F5.
From R the algorithm eventually leads to a stationary con-
figuration belonging to F1, F2, F4 or where w holds.

Proof By Lemma 7, exactly one of the predicates for the
starting phases in Table 7 is true. Then, exactly one of the
moves associated to the sub-phases of F5 is applied to R.
We show that the properties H′0, . . . ,H

′
5 hold for each possi-

ble move applied to R.
Let us consider sub-phase T where move m18 is per-

formed.

H′0: As b1 holds, there is only one robot r on the axis `

moved by m18.
H′1: If r admits a rotational-free path, then move m18 makes

r move toward c(R\{r}). Since r moves along the axis `,
then the obtained configuration remains a leader config-
uration. Moreover, r is always recognizable as the mov-
ing robot.
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If r does not admit a rotational-free path, let p′ be the
point on ` toward c(R \ {r}) such that, if reached by
r, the new configuration R′ becomes rotational. In this
case r is moved to become a faraway robot, that is ‘suf-
ficiently’ far from c(R). We now show that during the
movement no configuration admitting a rotation can be
created. By contradiction, let us assume that that there
exists a point p′′ such that, if reached by r the new con-
figuration R′′ admits a rotation. If in p′′ the robot r is not
critical, then R′′ has the same center of R and cannot ad-
mit a rotation as in p′ there is not a robot. So, in p′′ robot
r must be critical. In this case, the center is not main-
tained and, if R′′ is rotational, the robots on C(R′′) must
form a regular triangle (as in any other n-gon the robots
are not critical). Let r1 and r2 be the other two robots on
C(R′′). As they are at the same distance from `, they are
also on a same circle Ci

↑(R
′). If r1 and r2 are antipodal on

Ci
↑(R
′) then to make R′ rotational, r should be in c(R′),

but it is not possible by hypothesis. If r1 and r2 are not
antipodal on Ci

↑(R
′), then there are k equidistant robots

on Ci
↑(R
′), with k odd, as the robots on Ci

↑(R
′) consist of

r and pairs of symmetric robots with respect to `. More-
over, k > 3 as the case k = 3 is realized when r is in p′′.
This implies that there should be robots on Ci

↑(R
′) in the

arc between r1 and r2 external to C(R′′), a contradiction
to the definition of C(R′′). Hence, also in this case the
obtained configuration remains a leader configuration.

H′2: Move m18 is safe as b0 and e are both true during the
movement and then the configuration cannot be in F1,
F2, F3, F4. Moreover, as b1 ∧¬z1 remains true, the
configuration cannot be in the other sub-phases of F5
and r remains the only moving robot.

H′3: No collisions are created as r moves on ` and it is the
only robot on `.

H′4: As b0∧e is still true the configuration remains in F5.
If r reaches c(R), the configuration is in W as z2 is
clearly true, and both V 1s and V 2s are false as b2 and
b3 are false. If r becomes faraway, then z1 becomes true
and the configuration is in U .

H′5: As m18 is safe and a single robot is moving, then when
r stops the configuration is stationary.

Let us consider sub-phase U where move m19 is per-
formed.

H′0: There is only one faraway robot r moved by m19.
H′1: While r is moving according to m19, the configuration

remains asymmetric as the three robots on C(R) do not
form a regular triangle.

H′2: While r is moving, predicate f5 remains true as both
z1 and e maintain their values. Then the configuration
remains in F5. As b0 is false and z1 ⇒ ¬z2 (cf the
proof of Lemma 7), the configuration cannot belong to

any other sub-phase of F5. Finally, robot r remains al-
ways recognizable during the movement.

H′3: There are only three robots on C(R) and r is moving on
C(R) within an arc without other robots.

H′4: When r reaches its final position on t, predicate z1 is
false and so are b0 and z2. Then the configuration is no
more in F5 as f5 is false. The configuration can verify
F1s. In fact F2s is false as s2 is false, and F3s is not
verified as g2 is false being g0 false. Predicate g0 is false
because on C1

↑(R) there are at least two robots since R\
{r} is symmetric. Moreover the configuration is not in
F4 as q is false and neither i1 or i2 are verified, as g1
is false and ∂C1

↑(R) contains at least two robots.
H′5: As m19 is safe and a single robot is moving, then when

the robot r stops the configuration is stationary.

Let us consider sub-phase V 1 where move m20 is per-
formed.

H′0: Move m20 moves r(1); in some cases, it moves both r(1)

and r(2) concurrently. Hence, at the beginning, the move
involves at most two robots.

H′1: It is worth to note that r(1) cannot move only if it does
not admit a rotational-free path. Such a situation can
happen only if the robots on the circle Ci

↑(R) where r(2)

lies form a configuration admitting a rotation. For this
reason r(2) is moved so as to ensure that it is the only
robot on the circle where it lies. This implies that no ro-
tational symmetries are created and hence the configu-
rations remains a leader configuration. Moreover, robots
r(1) and r(2) are always recognizable as such since they
move without changing their order on `.

H′2: Move m20 is safe as b0 and e are both true during the
movement, that is, f5 holds and the configuration cannot
belong to F1, F2, F3, F4. Moreover, as b2 remains
true and at least one among r(1) and r(2) is not on its tar-
get, then, by Lemma 7, the configuration cannot be in
the other sub-phases of F5 as ¬c∨¬u1 holds. More-
over, as already observed in the previous item, robots
r(1) and r(2) are always recognizable.

H′3: No collisions are created as r(1) is the robot closest to
c(R), its target, and r(2), after starting to move, always
remains the only robot between Ci−1

↑ (R) and Ci+1
↑ (R).

H′4: Once both r(1) and r(2) reach their target, still b0∧e is
true hence the configuration remains in F5, z2 becomes
true but ¬c∨¬u1 is false, that is V 1s is false. Also V 2s
is false as b2 remains true, and hence Ws holds.

H′5: As m20 is safe with r(1) and r(2) being the moving
robots, when they both stop the configuration is station-
ary.

Let us consider sub-phase V 2 where move m21 is per-
formed.

H′0: As b3 holds, robots r(1) and r(2) are the only robots on
the axis `, exactly the robots moved by means of m21.
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H′1: The only case in which r(1) does not admit a rotational-
free path occurs when r(2) is on t60 (cf Figure 15.(e)).
In fact, this is the only case in which C(R) can admit a
rotation, with r(2) being critical by definition. Of course,
the rotational configuration must be avoided as it is not
a leader configuration. The only case in which r(2) does
not move from t60 is when tx = t60. However, if the cur-
rent configuration R admits |∂C(R)| > 4, then r(1) can
freely move toward c(R) whereas r(2) is already on tar-
get. If |∂C(R)|= 4, then r(1) ∈ ∂C(R) and moves toward
its intermediate target t. In so doing, tx changes and r(2)

can leave t60. From now on, r(1) admits a rotational-free
path. Note that, while robots are moving, both their tar-
gets change. In particular, tx can get further from t60 or
even disappearing. δC(R) grows and the target c(R) for
r(1) moves further from r(1) according to the movement
of r(2). Eventually, r(2) either reaches tx that does not
change anymore or it reaches t55. Hence, also r(1) can
eventually reach its final destination. Hence, during the
movements the obtained configuration is always a leader
configuration.

H′2: Move m21 is safe as b0 and e are both true during the
movement, that is, f5 holds and the configuration cannot
belong to F1, F2, F3, F4. Moreover, as b3 remains
true and at least one among r(1) and r(2) is not on its tar-
get, then, by Lemma 7, the configuration cannot be in
the other sub-phases of F5 as ¬c∨¬u2 holds. More-
over, robots r(1) and r(2) are always recognizable.

H′3: No collisions are created as there are no further robots
on `, whereas r(1) and r(2) cannot meet.

H′4: Once both r(1) and r(2) reach their targets, still b0∧e is
true hence the configuration remains in F5, z2 becomes
true but ¬c∨¬u2 is false, that is V 2s is false. Also V 1s
is false as b3 remains true, and hence Ws holds.

H′5: As m21 is safe with r(1) and r(2) being the moving
robots, when they both stop the configuration is station-
ary.

Let us consider sub-phase V 3 where move m22 is per-
formed.

H′0: As b4 holds, only r(1) moves on the axis ` by means of
m22.

H′1: While r moves toward c(R), it remains not critical and it
is always detected as the robot to move (cf Figure 15.(f)).
Moreover the configuration remains a leader configura-
tion as it cannot become rotational: in fact, the critical
robots are the only robots on C(R), then the only possi-
ble rotation ϕ is a 180◦ rotation, but in this case ϕ(r(1))
would not exists.

H′2: Move m22 is safe as b0 and e are both true during the
movement, that is, f5 holds and the configuration cannot
belong to F1, F2, F3, F4. Moreover, as ¬c∧b4 re-
mains true, the configuration cannot be in the other sub-
phases of F5 and r(1) remains the only moving robot.

H′3: No collisions are created as r(1) admits a rotational-free
path.

H′4: Once r reaches its target, still b0 ∧ e is true hence the
configuration remains in F5. Once r is in c(R), z2 holds.
Since b4 remains true, neither V 1s nor V 2s can become
true, then Ws holds.

H′5: As m22 is safe and a single robot is moving, then when
r(1) stops the configuration is stationary.

Let us consider sub-phase V 4 where move m23 is per-
formed.

H′0: As b5 holds, there is only one robot r on the axis `

moved by m23.
H′1: While r moves, it is always detected as the robot on `

closest to C(R\{r(1),r(2)}) (cf Figure 15.(g)). Then, no
rotational symmetry can be created and hence the con-
figuration remains a leader configuration.

H′2: Move m23 is safe as b0 and e are both true during the
movement, that is, f5 holds and the configuration cannot
belong to F1, F2, F3, F4. Moreover, as b5 ∧¬c re-
mains true, the configuration cannot be in the other sub-
phases of F5 and r remains the only moving robot.

H′3: No collisions are created as r moves on ` and the only
other robot on ` is antipodal.

H′4: Once r reaches its target, still b0 ∧ e is true hence
the configuration remains in F5. Now r is not critical,
hence b3 holds and sub-phase V 2 is reached.

H′5: As m23 is safe and a single robot is moving, then when
the robot r stops the configuration is stationary.

Let us consider sub-phase W where move m24 is per-
formed.

H′0: There is only one robot r moved by m24, the one iden-
tified as the closest to c(R).

H′1: While r is moving according to m24, the configuration
remains asymmetric as R′ = R\{r} is symmetric, being
z2 true, and r is not moving along an axis of symmetry.

H′2: While r is moving, either i2 becomes true or z2 ∧ e
holds and hence f5 remains true. In the first case, the
configuration may belong to F4, and in particular to
sub-phase P2. However, from P2, by move m14, only
the same robot r is allowed to move. In the second case,
the configuration remains in F5. As b0 is false and
z2⇒¬z1, the configuration cannot belong to any other
sub-phase of F5.

H′3: By definition of Cg(R) there are no robots between r
and its target.

H′4: When r reaches its final position on Cg(R), predicate z2
is false and so are b0 and z1. Then the configuration is
no more in F5 as f5 is false. The obtained configuration
can verify F1s, F2s or F4s. It cannot verify F3s as g2
is false being g1 false. Predicate g1 is false since r does
not form the reference angle of α degree. Predicate w

cannot hold as r is on Cg(R).



40 S. Cicerone, G. Di Stefano, A. Navarra

H′5: As m24 is safe and a single robot is moving, then when
the robot r stops the configuration is stationary.

ut

Theorem 3 Let R be an initial leader configuration of
ASYNC robots without chirality, and F any pattern (possi-
bly with multiplicities) with |F | = |R|. Then, there exists an
algorithm able to form F from R.

Proof As remarked in Section 6, the cases of |R| ≤ 2 are
either trivial or unsolvable, and hence are not required to
be managed by our algorithm. The case of F being a sin-
gle point is delegated to [9], whereas when |R| = 3 The-
orem 2 holds. When |R| > 3, the claim simply follows by
Lemmata 2, 8, 9, 10, 11, and 12. In fact, Lemma 2 shows
that R belongs to exactly one phase among F1, F2, F3,
F4, and F5. Lemmata 8–11 show that from a given phase
among F1, · · · ,F4 only subsequent phases can be reached,
or w eventually holds (cf Table 2, first and last column).
Lemma 12 instead shows that from F5 any other phase but
F3 can be reached, or w eventually holds. Cycles among
phases can occur only between F1 and F5. However, the
involved moves m4 and m19 guarantee that the transitions of
such a cycle can be traversed only once.

Inside each phase among F1, · · · , F5, the only possible
cycles among transitions can occur in phase F1 among sub-
phases A 1 and A 2, or in F3 among sub-phases M , N
and O . However, the corresponding Lemmata 8 and 10 also
show that such cycles can be performed only a finite number
of times. ut

From [21], it is possible to state the next theorem. For
the sake of completeness we also remind the corresponding
easy proof.

Theorem 4 [21] Let R be an initial configuration of n
ASYNC robots without chirality. If APF is solvable, then
also Leader Election can be solved.

Proof Consider the pattern F with n− 1 collinear points
evenly placed such that the distance between two adjacent
points is some d, and one further point on the same line at
distance 2d from its unique neighbor. If robots can form F ,
then the unique robot with one neighbor at distance 2d can
be elected as the leader. ut

From Theorem 3 and Theorem 4 we obtain Theorem 1
that we now rephrase in a more explicit form:

Theorem 5 Let R be an initial configuration of ASYNC

robots without chirality. There exists a deterministic
transition-safe algorithm that solves APF from R if and only
the Leader Election problem can be solved in R, that is, R is
a leader configuration.

8 Conclusion

We considered the Arbitrary Pattern Formation problem in
the well-known asynchronous Look-Compute-Move model.
So far the problem has been mainly investigated with the fur-
ther assumption on the capability of robots to share a com-
mon left-right orientation (chirality).

Our study removes any assumption concerning the ori-
entation of the robots. We shown that starting from ini-
tial leader configurations, robots can deterministically form
any pattern including symmetric ones and those containing
multiplicities. This extends the previously known results in
terms of required number of robots, orientation capabilities,
multiplicities, and formalisms. In fact, our algorithm does
not rely on any assumption on the number of robots, nor on
any orientation of the robots, it allows the formation of mul-
tiplicities if required by the given pattern, and it is provided
in terms of logical predicates that facilitate to check its cor-
rectness.

Also, the relevance of our results is shown in light of the
consequences obtained with respect to [22], [4,5], and [16].
Recently, errata to [22] and [4,5] have been delivered but the
level of formalism and details with respect to our approach
is still something remarkable.

The main open question left asks to provide a determin-
istic algorithm that solves the Pattern Formation rather than
the Arbitrary Pattern Formation from any initial configura-
tion, including symmetric ones. Potentially, robots should be
able to form any pattern if starting from configurations char-
acterized by symmetries that are included in the final pat-
tern. The main difficulty in designing an algorithm for such
cases is that in symmetric configurations many robots may
move simultaneously, all those that look equivalent with re-
spect to the symmetry. The adversary can decide to move
any subset of such robots, and all of them may traverse dif-
ferent distances as the adversary can stop them in different
moments. Hence, during a Look phase, it becomes very dif-
ficult to provide a mean to guess how the current configura-
tion has been originated.
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