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Minimizing Message Size in Stochastic Communication Patterns:
Fast Self-Stabilizing Protocols with 3 bits*

Lucas Boczkowski † Amos Korman † Emanuele Natale ‡

Abstract

This paper considers the basic PULL model of communication, in which in each round, each
agent extracts information from few randomly chosen agents. We seek to identify the smallest
amount of information revealed in each interaction (message size) that nevertheless allows for
efficient and robust computations of fundamental information dissemination tasks. We focus on
the Majority Bit Dissemination problem that considers a population of n agents, with a designated
subset of source agents. Each source agent holds an input bit and each agent holds an output bit.
The goal is to let all agents converge their output bits on the most frequent input bit of the sources
(the majority bit). Note that the particular case of a single source agent corresponds to the classical
problem of Broadcast (also termed Rumor Spreading). We concentrate on the severe fault-tolerant
context of self-stabilization, in which a correct configuration must be reached eventually, despite all
agents starting the execution with arbitrary initial states. In particular, the specification of who is a
source and what is its initial input bit may be set by an adversary.

We first design a general compiler which can essentially transform any self-stabilizing algorithm
with a certain property (called “the bitwise-independence property”) that uses `-bits messages to
one that uses only log`-bits messages, while paying only a small penalty in the running time. By
applying this compiler recursively we then obtain a self-stabilizing Clock Synchronization protocol,
in which agents synchronize their clocks modulo some given integer T , within Õ(logn logT ) rounds
w.h.p., and using messages that contain 3 bits only.

We then employ the new Clock Synchronization tool to obtain a self-stabilizing Majority Bit
Dissemination protocol which converges in Õ(logn) time, w.h.p., on every initial configuration,
provided that the ratio of sources supporting the minority opinion is bounded away from half.
Moreover, this protocol also uses only 3 bits per interaction.

1 Introduction

1.1 Background and motivation Distributed systems composed of limited agents that interact
in a stochastic fashion to jointly perform tasks are common in the natural world as well as in
engineered systems. Examples include a wide range of insect populations [36], chemical reaction
networks [17], and mobile sensor networks [3]. Such systems have been studied in various disciplines,
including biology, physics, computer science and chemistry, while employing different mathematical
and experimental tools.

*A preliminary version of this work appears as a 3-pages Brief Announcement in PODC 2016 [14] and as an extended abstract at SODA
2017 [15].
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From an algorithmic perspective, such complex systems share a number of computational chal-
lenges. Indeed, they all perform collectively in dynamically changing environments despite being
composed of limited individuals that communicate through seemingly unpredictable, unreliable, and
restricted interactions. Recently, there has been significant interest in understanding the computa-
tional limitations that are inherent to such systems, by abstracting some of their characteristics as
distributed computing models, and analyzing them algorithmically [2, 3, 6, 11, 29, 33]. These models
usually consider agents which are restricted in their memory and communication capacities, that inter-
act independently and uniformly at random (u.a.r.). By now, our understanding of the computational
power of such models is rather advanced. However, it is important to note that much of this progress
has been made assuming non-faulty scenarios - a rather strong assumption when it comes to natural
or sensor-based systems. For example, to synchronize actions between processors, many known dis-
tributed protocols rely on the assumption that processors know when the protocol is initiated. How-
ever, in systems composed of limited individuals that do not share a common time notion, and must
react to a dynamically changing environment, it is often unclear how to achieve such conditions. To
have a better understanding of such systems, it is desirable to identify the weakest computational
models that still allow for both efficient as well as robust computations.

This paper concentrates on the basic PULL model of communication [21, 23, 24, 38], in which
in each round, each agent can extract (pull) information from few other agents, chosen u.a.r. In
the computer science discipline, this model, as well as its companion PUSH model, gained their
popularity due to their simplicity and inherent robustness to different kinds of faults. Here, focusing
more on the context of natural systems, we view the PULLmodel as an abstraction for communication
in well-mixed scenarios, where agents can occasionally “observe” arbitrary other agents. We aim to
identify the minimal model requirements with respect to achieving basic information dissemination
tasks under conditions of increased uncertainty. As many natural systems appear to be more restricted
by their communication abilities than by their memory capacities [35, 1, 32], our main focus is
on understanding what can be computed while revealing as few bits per interaction as possible1.
In dealing with such an existential question, we do not claim that our solution represents actual
plausible strategies employed in nature, yet we believe that such mathematical results can be helpful
in understanding the limitations of natural systems.

Self-stabilizing Bit Dissemination. Disseminating information from one or several sources to
the rest of the population is one of the most fundamental building blocks in distributed computing
[16, 18, 21, 23, 38], and an important primitive in natural systems [49, 47, 48]. Here, we focus on
the Majority Bit Dissemination problem defined as follows. We consider a population of n agents. The
population may contain multiple source agents which are specified by a designated bit in the state of
an agent indicating whether the agent is a source or not. Each source agent holds a binary input bit,
however, sources may not necessarily agree on their input bits. In addition, each agent holds a binary
output bit (also called opinion). The goal of all agents is to converge their opinion on the majority bit
among the initial input bits of the sources, termed bmaj . This problem aims to capture scenarios in
which some individuals view themselves as informed, but some of these agents could also be wrong,
or not up-to-date. Such situations are common in nature [20, 47] as well as in man-made systems.
The number of sources is termed k. We do not assume that agents know the value k, or that sources
know whether they are in the majority or minority (in terms of their input bit). For simplicity, to avoid

1We note that stochastic communication patterns such as PULL or PUSH are inherently sensitive to congestion issues. Indeed, in
such models it is unclear how to simulate a protocol that uses large messages while using only small size messages. For example, the
straightforward strategy of breaking a large message into small pieces and sequentially sending them one after another does not work, since
one typically cannot make sure that the small messages reach the same destination. Hence, reducing the message size may have a profound
impact on the running time, and perhaps even on the solvability of the problem at hand.



dealing with the case that the fraction of the majority input bit among sources is arbitrarily close to
that of the minority input bit, we shall guarantee convergence only when the fraction of source agents
holding the majority input bit is bounded away from 1/2.

The particular case where we are promised to have k = 1 is called Bit Dissemination, for short.
In this case we have a single source agent that aims to disseminate its input bit b to the rest of
the population, and there are no other sources introducing a conflicting opinion. Note that this
problem has been studied extensively in different models under different names (e.g., Broadcast or
Rumor Spreading). A classical example of Bit Dissemination considers the synchronous PUSH/PULL
communication model, where b can be propagated from the source to all other agents in O(logn)
rounds, by simply letting each uninformed agent copy it whenever it sees an informed agent [38]. The
correctness of this protocol heavily relies on the absence of incorrect information held by agents. Such
reliability however may be difficult to achieve in dynamic or unreliable conditions. For example, if the
source is sensitive to an unstable environment, it may change its mind several times before stabilizing
to its final opinion. Meanwhile, it may have already invoked several consecutive executions of the
protocol with contradicting initial opinions, which may in turn “infect” other agents with the wrong
opinion 1 − b. If agents do not share a common time notion, it is unclear how to let infected agents
distinguish their current wrong opinion from the more “fresh”, correct opinion. To address such
difficulty, we consider the context of self-stabilization [22], where agents must converge to a correct
configuration from any initial configuration of states.

1.2 Technical difficulties and intuition Consider the Bit Dissemination problem (where we are
guaranteed to have a single source agent). This particular case is already difficult in the self-stabilizing
context if we are restricted to use O(1) bits per interaction. As hinted above, a main difficulty lies in
the fact that agents do not necessarily share a common time notion. Indeed, it is easy to see that if all
agents share the same clock, then convergence can be achieved in O(logn) time with high probability
(w.h.p.), i.e, with a probability of at least 1−n−Ω(1), and using two bits per interaction.

Self-stabilizing Bit Dissemination (k = 1) with 2 bits per interaction, assuming synchronized
clocks. The source sets her output bit to be her input bit b. In addition to communicate its output bit
bu , each agent u stores and communicates a certainty bit cu . Informally, having a certainty bit equal
to 1 indicates that the agent is certain of the correctness of its output bit. The source’s certainty bit is
always set to 1. Whenever a non-source agent v observes u and sees the tuple (bu , cu), where cu = 1, it
copies the output and certainty bits of u (i.e., sets bv = bu and cv = 1). In addition, all non-source agents
count rounds, and reset their certainty bit to 0 simultaneously every T = O(logn) rounds. The reset
allows to get rid of “old” output bits that may result from applying the protocol before the source’s
output bit has stabilized. This way, from the first time a reset is applied after the source’s output bit
has stabilized, the correct source’s output bit will propagate to all agents within T rounds, w.h.p. Note
however, that if agents do not share a consistent notion of time they cannot reset their certainty bit
to zero simultaneously. In such cases, it is unclear how to prevent agents that have just reset their
certainty bit to 0 from being “infected” by “misleading” agents, namely, those that have the wrong
output bit and certainty bit equal to 1.

Self-stabilizing Bit Dissemination (k = 1) with a single bit per interaction, assuming synchro-
nized clocks. Under the assumption that all agents share the same clock, the following trick shows
how to obtain convergence in O(logn) time and using only a single bit per message, namely, the output
bit. As before, the source sets her output bit to be her input bit b. Essentially, agents divide time into
phases of some prescribed length T = O(logn), each of them being further subdivided into 2 subphases
of length T /2. In the first subphase of each phase, non-source agents are sensitive to opinion 0. This



means that whenever they see a 0 in the output bit of another agent, they turn their output bit to 0,
but if they see 1 they ignore it. Then, in the second subphase of each phase, they do the opposite,
namely they switch their output bit to 1 as soon as they see a 1 (see Figure 1). Consider the first phase
starting after initialization. If b = 0 then within one complete subphase [1,T /2], every output bit is 0
w.h.p., and remains there forever. Otherwise, if b = 1, when all agents go over a subphase [T /2 + 1,T ]
all output bits are set to 1 w.h.p., and remain 1 forever. Note that a common time notion is required to
achieve correctness.
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Figure 1: The division in subphases used for self-stabilizing Bit Dissemination with a clock. During
the first half, between times 1 and T /2, agents are sensitive to 0. Then they are sensitive to 1.

The previous protocol indicates that the self-stabilizing Bit Dissemination problem is highly
related to the self-stabilizing Clock Synchronization problem, where each agent internally stores a clock
modulo T = O(logn) incremented at every round and, despite having arbitrary initial states, all agents
should converge on sharing the same value of the clock. Indeed, given such a protocol, one can obtain
a self-stabilizing Bit Dissemination protocol by running the Clock Synchronization protocol in parallel
to the last example protocol. This parallel execution costs only an additional bit to the message size
and a O(logn) additive term to the time complexity over the complexities of the Clock Synchronization
protocol.

Intuition behind the self-stabilizing Clock Synchronization algorithm. Our technique for ob-
taining the Clock Synchronization protocol is based on a compact recursive use of the stabilizing con-
sensus protocol proposed by Doerr et al. [24] through our Message Reduction Theorem (Theorem
3.1).

In the Preliminary section (Section 2.2) we describe a simple protocol called Syn-Simple that uses
O(logT ) bits per message. In Syn-Simple, each agent u maintains a clock Cu ∈ [0,T −1]. At each round,
each agent u displays the opinion of her clock, pulls 2 other such clock opinions, and updates her clock
as the bitwise majority of the two clocks she pulled and her own. Then the clock Cu is incremented.
This protocol essentially amounts to running the protocol of Doerr et al. on each bit separately and in
parallel, and self-stabilizes in O(logT logn) rounds w.h.p. (Proposition 2.1).

We want to apply a strategy similar to Syn-Simple, while using only O(1) many bits per interaction.
The core technical ingredient, made rigorous in the Message Reduction Theorem, is that a certain
class of protocols using messages of ` bits, to which Syn-Simple belongs, can be emulated by another
protocol which uses dlog`e+1 bits only. The idea is to build a clock modulo ` using Syn-Simple itself on
dlog`e bits and sequentially display one bit of the original `-bit message according to such clock. Thus,



by applying such strategy to Syn-Simple itself, we use a smaller clock modulo `′ � ` to synchronize a
clock modulo `. Iterating such process, in Section 4.2, we obtain a compact protocol which uses only 3
bits.

1.3 The model
The communication model. We adopt the synchronous PULLmodel [12, 21]. Specifically, in the

PULL(η) model, communication proceeds in discrete rounds. In each round, each agent u “observes”
η arbitrary other agents, chosen uniformly at random (with replacement), which we abbreviate as
u.a.r., among all agents, including herself. (We often omit the parameter η when it is equal to 2). When
an agent u “observes” another agent v, she can peek into a designated visible part of v’s memory. If
several agents observe an agent v at the same round then they all see the same visible part. The message
size denotes the number of bits stored in the visible part of an agent. We denote with PULL(η,`) the
PULL(η) model with message size `. We are primarily interested in message size that is independent
of n, the number of agents.

Agents. We assume that agents do not have unique identities, that is, the system is anonymous.
We do not aim to minimize the (non-visible) memory requirement of the agent, yet, we note that our
constructions can be implemented with relatively short memory, using O(loglogn) bits. We assume
that each agent internally stores a clock modulo some integer T = O(logn), which is incremented at
every round.

Majority Bit Dissemination problem. We assume a system of n agents each having an internal
state that contains an indicator bit which indicates whether or not the agent is a source. Each source
holds a binary input bit and each agent (including sources) holds a binary opinion. . Note that having
the indicator bit equal to 1 is equivalent to possessing an input bit: both are exclusive properties of
source nodes. However, we keep them distinct for a clearer presentation. The number of sources (i.e.,
agents whose indicator bit is 1) is denoted by k. We denote by k0 and k1 the number of sources whose
input bit is initially set to 1 and 0, respectively. Assuming k1 , k0, we define the majority bit, termed
bmaj , as 1 if k1 > k0 and 0 if k1 < k0. Source agents know that they are sources (using the indicator bit)
but they do not know whether they hold the majority bit. The parameters k, k1 or k0 are not known to
the sources or to any other agent. It is required that the opinions of all agents eventually converge to
the majority bit bmaj .

We note that agents hold their output and indicator bits privately, and we do not require them
to necessarily reveal these bits publicly (in their visible parts) unless they wish to. To avoid dealing
with the cases where the number of sources holding the majority bit is arbitrarily close to k

2 , we shall
guarantee correctness (w.h.p.) only if the fraction of sources holding the majority is bounded away
from 1

2 , i.e., only if | k1
k0
− 1| > ε, for some positive constant ε. When k = 1, the problem is called

Bit Dissemination, for short. Note that in this case, the single source agent holds the bit bmaj to be
disseminated and there is no other source agent introducing a conflicting opinion.

T -Clock Synchronization. Let T be an integer. In the T -Clock Synchronization problem, each agent
maintains a clock modulo T that is incremented at each round. The goal of agents is to converge on
having the same value in their clocks modulo T . (We may omit the parameter T when it is clear from
the context.)

Probabilistic self-stabilization and convergence. Self-stabilizing protocols are meant to guaran-
tee that the system eventually converges to a legal configuration regardless of the initial states of the
agents [22]. Here we use a slightly weaker notion, called probabilistic self-stabilization, where stability
is guaranteed w.h.p. [10]. More formally, for the Clock Synchronization problem, we assume that all



states are initially set by an adversary. For the Majority Bit Dissemination problem, we assume that
all states are initially set by an adversary except that it is assumed that the agents know their total
number n, and that this information is not corrupted.

In the context of T -Clock Synchronization, a legal configuration is reached when all clocks show
the same time modulo T , and in the Majority Bit Dissemination problem, a legal configuration is
reached when all agents output the majority bit bmaj . Note that in the context of the Majority Bit
Dissemination problem, the legality criterion depends on the initial configuration (that may be set by
an adversary). That is, the agents must converge their opinion on the majority of input bits of sources,
as evident in the initial configuration.

The system is said to stabilize in t rounds if, from any initial configuration w.h.p., within t rounds it
reaches a legal configuration and remains legal for at least some polynomial time [10, 12, 24]. In fact,
for the self-stabilizing Bit Dissemination problem, if there are no conflicting source agents holding a
minority opinion (such as in the case of a single source agent), then our protocols guarantee that once
a legal configuration is reached, it remains legal indefinitely. Note that, for any of the problems, we do
not require that each agent irrevocably commits to a final opinion but that eventually agents arrive at
a legal configuration without necessarily being aware of that.

1.4 Our Results Our main results are the following.

Theorem 1.1. Fix an arbitrarily small constant ε > 0. There exists a protocol, called Syn-Phase-Spread,
which solves the Majority Bit Dissemination problem in a self-stabilizing manner in Õ(logn) rounds2 w.h.p
using 3-bit messages, provided that the majority bit is supported by at least a fraction 1

2 + ε of the source
agents.

Theorem 1.1 is proved in Section 5. The core ingredient of Syn-Phase-Spread is our construction
of an efficient self-stabilizing T -Clock Synchronization protocol, which is used as a black-box. For
this purpose, the case that interests us is when T = Õ(logn). Note that in this case, the following
theorem, proved in Section 4, states that the convergence time of the Clock Synchronization algorithm
is Õ(logn).

Theorem 1.2. Let T be an integer. There exists a self-stabilizing T -Clock Synchronization protocol, called
Syn-Clock, which employs only 3-bit messages, and synchronizes clocks modulo T within Õ(logn logT )
rounds w.h.p.

In addition to the self-stabilizing context our protocols can tolerate the presence of Byzantine agents,
as long as their number is3 O(n1/2−ε). However, in order to focus on the self-stabilizing aspect of our
results, in this work we do not explicitly address the presence of Byzantine agents.

The proofs of both Theorem 1.2 and Theorem 1.1 rely on recursively applying a new general
compiler which can essentially transform any self-stabilizing algorithm with a certain property (called
“the bitwise-independence property”) that uses `-bit messages to one that uses only dlog`e + 1-bit
messages, while paying only a small penalty in the running time. This compiler is described in Section
3, in Theorem 3.1, which is also referred as “the Message Reduction Theorem”. The structure between
our different lemmas and results is summarized in the picture below, Figure 2.

2With a slight abuse of notation, with Õ(f (n)g(T )) we refer to f (n)g(T ) logO(1)(f (n)) logO(1)(g(T )). All logarithms are in base 2.
3Specifically, it is possible to show that, as a corollary of our analysis and the fault-tolerance property of the analysis in [24], if T ≤ poly(n)

then Syn-Clock can tolerate the presence of up to O(n1/2−ε) Byzantine agents for any ε > 0. In addition, Syn-Phase-Spread can tolerate
min{(1 − ε)(kmaj − kmin),n1/2−ε} Byzantine agents, where kmaj and kmin are the number of sources supporting the majority and minority
opinions, respectively. Note that for the case of a single source (k = 1), no Byzantine agents are allowed; indeed, a single Byzantine agent
pretending to be the source with the opposite opinion can clearly ruin any protocol.



It remains an open problem, both for the self-stabilizing Bit Dissemination problem and for the
self-stabilizing Clock Synchronization problem, whether the message size can be reduced to 2 bits or
even to 1 bit, while keeping the running time poly-logarithmic.
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Figure 2: The structure of our arguments. Note that the Message Reduction Theorem is used on three
occasions.

1.5 Related work The computational study of abstract systems composed of simple individuals that
interact using highly restricted and stochastic interactions has recently been gaining considerable
attention in the community of theoretical computer science. Popular models include population
protocols [3, 7, 5, 9], which typically consider constant size individuals that interact in pairs (using
constant size messages) in random communication patterns, and the beeping model [1, 32], which
assumes a fixed network with extremely restricted communication. Our model also falls in this
framework as we consider the PULL model [21, 38, 39] with constant size messages. So far, despite
interesting works that consider different fault-tolerant contexts [4, 5, 9], most of the progress in this
framework considered non-faulty scenarios.

Information dissemination is one of the most well-studied topics in the community of distributed
computing, see, e.g., [4, 16, 21, 23, 24, 33, 38]. Classical examples include the Broadcast (also referred
to in the literature as Rumor Spreading) problem, in which a piece of information residing at one
source agent is to be disseminated to the rest of the population, and majority-consensus (here, called
Majority Bit Dissemination) problems in which processors are required to agree on a common output
value which is the majority initial input value among all agents [4, 40] or among a set of designated
source agents [33]. An extensive amount of research has been dedicated to study such problems in
PUSH/PULL based protocols (including the phone call model), due to the inherent simplicity and
fault-tolerant resilience of such meeting patterns. Indeed, the robustness of PUSH/PULL based
protocols to weak types of faults, such as crashes of messages and/or agents, or to the presence of
relatively few Byzantine agents, has been known for quite a while [31, 38]. Recently, it has been shown
that under the PUSH model, there exist efficient Broadcast and Majority Bit Dissemination protocols
that use a single bit per message and can overcome flips in messages (noise) [33]. The protocols therein,



however, heavily rely on the assumption that agents know when the protocol has started. Observe
that in a self-stabilizing context, in which the adversary can corrupt the initial clocks setting them to
arbitrary times, such an assumption would be difficult to remove while preserving the small message
size.

In general, there are only few known self-stabilizing protocols that operate efficiently under
stochastic and capacity restricted interactions. An example, which is also of high relevance to this
paper, is the work of Doerr et al. on Stabilizing Consensus [24] operating in the PULL model. In that
work, each agent initially has a state taken out of a set ofm opinions and the goal is to converge on one
of the proposed states. The proposed algorithm which runs in logarithmic time is based on sampling
the states of 2 agents and updating the agent’s state to be the median of the 2 sampled states and
the current state of the agent (3 opinions in total). Since the total number of possible states is m, the
number of bits that must be revealed in each interaction is Ω(logm). Another example is the plurality
consensus protocol in [12], in which each agent has initially an opinion and we want the system to
converge to the most frequent one in the initial configuration of the system. In fact, the Majority Bit
Dissemination problem can be viewed as a generalization of the majority-consensus problem (i.e. the
plurality consensus problem with two opinions), to the case in which multiple agents may initially
be unopinionated. In the previous sense, we also contribute to the line of research on the majority-
consensus problem [11, 19, 30].

Another fundamental building block is Clock Synchronization [8, 41, 42, 43]. We consider a
synchronous system in which clocks tick at the same pace but may not share the same opinion. This
version has earlier been studied in e.g., [13, 25, 27, 28, 34, 37] under different names, including “digital
Clock Synchronization” and “synchronization of phase-clocks”; We simply use the term “Clock
Synchronization”. There is by now a substantial line of work on Clock Synchronization problems in a
self-stabilizing context [26, 28, 45, 44]. We note that in these papers the main focus is on the resilience
to Byzantine agents. The number of rounds and message lengths are also minimized, but typically as
a function of the number of Byzantine processors. Our focus is instead on minimizing the time and
message complexities as much as possible. The authors in [45, 44] consider mostly a deterministic
setting. The communication model is very different than ours, as every agent gets one message from
every other agent on each round. Moreover, agents are assumed to have unique identifiers. In contrast,
we work in a more restricted, yet randomized communication setting. In [26, 45] randomized protocols
are also investigated. We remark that the first protocol we discuss Syn-Simple (Proposition 2.1),
which relies on a known simple connection between consensus and counting [26], already improves
exponentially on the randomized algorithms from [26, 45] in terms of number of rounds, number of
memory states, message length and total amount of communication, in the restricted regime where
the resilience parameter f satisfies logn ≤ f ≤

√
n. We further note that the works [44, 45] also use

a recursive construction for their clocks (although very different from the one we use in the proof of
Theorem 1.2). The induction in [45] is on the resilience parameter f , the number of agents and the
clock length together. This idea is improved in [44] to achieve optimality in terms of resilience to
Byzantine agents.

To the best of our knowledge there are no previous works on self-stabilizing Clock Synchronization
or Majority Bit Dissemination that aim to minimize the message size beyond logarithmic in the PULL
model.



2 Preliminaries

2.1 A majority based, self-stabilizing protocol for consensus on one bit Let us recall4 the stabiliz-
ing consensus protocol by Doerr et al. in [24]. In this protocol, called maj-consensus, each agent holds
an opinion. In each round each agent looks at the opinions of two other random agents and updates
her opinion taking the majority among the bits of the observed agents and its own. Note that this
protocol uses only a single bit per interaction, namely, the opinion. The usefulness of maj-consensus
comes from its extremely fast and fault-tolerant convergence toward an agreement among agents, as
given by the following result.

Theorem 2.1. (Doerr et al. [24]) From any initial configuration, maj-consensus converges to a state in
which all agents agree on the same output bit in O(logn) rounds, w.h.p. Moreover, if there are at most
κ ≤ n1/2−ε Byzantine agents, for any constant ε > 0, then after O(logn) rounds all non-Byzantine agents
have converged and consensus is maintained for nΩ(1) rounds w.h.p.5

2.2 Protocol Syn-Simple: A simple protocol with many bits per interaction We now present a
simple self-stabilizing T -Clock Synchronization protocol, called Syn-Simple, that uses relatively many
bits per message, and relies on the assumption that T is a power of 2. The protocol is based on
iteratively applying a self-stabilizing consensus protocol on each bit of the clock separately, and in
parallel.

Formally, each agent u maintains a clock Cu ∈ [0,T − 1]. At each round, u displays the opinion of
her clock Cu , pulls 2 uniform other such clock opinions, and updates her clock as the bitwise majority
of the two clocks it pulled, and her own. Subsequently, the clock Cu is incremented. We present the
pseudo code of Syn-Simple in Algorithm 1.

Syn-Simple protocol

1 u samples two agents u1 and u2.

2 u updates its clock with the bitwise majority of its clock and those of the sample nodes.

3 u increments its clock by one unit.

Algorithm 1: One round of Syn-Simple, executed by each agent u.

We prove the correctness of Syn-Simple in the next proposition.

Proposition 2.1. Let T be a power of 2. The protocol Syn-Simple is a self-stabilizing protocol that uses
O(logT ) bits per interaction and synchronizes clocks modulo T in O(logT logn) rounds w.h.p.

Proof. Let us look at the least significant bit. One round of Syn-Simple is equivalent to one round of
maj-consensus with an extra flipping of the opinion due to the increment of the clock. The crucial

4Our protocols will use this protocol as a black box. However, we note that the constructions we outline are in fact independent of the
choice of consensus protocol, and this protocol could be replaced by other protocols that achieve similar guarantees.

5The original statement of [24] says that if at most κ ≤
√
n agents can be corrupted at any round, then convergence happens for all but at

most O(κ) agents. Let us explain how this implies the statement we gave, namely that we can replace O(κ) by κ, if κ ≤ n
1
2−ε . Assume that we

are in the regime κ ≤ n
1
2−ε . It follows from [24] that all but a set of O(κ) agents reach consensus after O(logn) round. This set of size O(κ)

contains both Byzantine and non Byzantine agents. However, if the number of agents holding the minority opinion is O(κ) = O(n1/2−ε), then
the expected number of non Byzantine agents that disagree with the majority at the next round is in expectation O(κ2/n) = O(n−2ε). Thus,
by Markov’s inequality, this implies, that at the next round consensus is reached among all non-Byzantine agents w.h.p. Note also that, for
the same reasons, the Byzantine agents do not affect any other non-Byzantine agent for nε rounds w.h.p.



point is that all agents jointly flip their bit on every round. Because the function agents apply, maj,
is symmetric, it commutes with the flipping operation. More formally, let ~bt be the vector of the first
bits of the clocks of the agents at round t under an execution of Syn-Simple. E.g. (~bt)u is the value
of the less significant bit of node u’s clock at time t. Similarly, we denote by ~ct the first bits of the
clocks of the agents at round t obtained by running a modified version of Syn-Simple in which time
is not incremented (i.e. we skip line 3 in Algorithm 1). We couple ~b and ~c trivially, by running the
two versions on the same interaction pattern (in other words, each agent starts with the same memory
and pulls the same agents at each round in both executions). Then, ~bt is equal to ~ct when t is even,
while is equal to ~bt = 1 − ~ct when t is odd. Moreover, we know from Theorem 2.1 that ~ct converge to
a stable opinion in a self-stabilizing manner. It follows that, from any initial configuration of states
(i.e. clocks), w.h.p, after O(logn) rounds of executing Syn-Simple, all agents share the same opinion
for their first bit, and jointly flip it in each round. Once agents agree on the first bit, since T is a power
of 2, the increment of time makes them flip the second bit jointly once every 2 rounds. More generally,
assuming agents agree on the first ` bits of their clocks, they jointly flip the ` + 1’st bit once every 2`

rounds, on top of doing the maj-consensus protocol on that bit. Hence, the same coupling argument
shows that the flipping doesn’t affect the convergence on bit ` + 1. Therefore, O(logn) rounds after the
first ` bits are synchronized, w.h.p. the ` + 1’st bit is synchronized as well. The result thus follows by
induction.

2.3 The bitwise-independence property Our general transformer described in Section 3 is useful
for reducing the message size of protocols with a certain property called bitwise-independence. Before
defining the property we need to define a variant of the PULL model, which we refer to as the BIT
model. The reason we introduce such a variant is mainly technical, as it appears naturally in our
proofs. Thus, unless explicitly stated, we always refer to the PULLmodel.

Recall that in the PULL(η,`) model, at any given round, each agent u is reading an `-bit message
mvj for each of the η observed agents vj chosen u.a.r. (in our case η = 2), and then, in turn, u updates
her state according to the instructions of a protocol P. Informally, in the BIT model, each agent u also
receives η messages, however, in contrast to the PULL model where each such message corresponds
to one observed agent, in the BIT model, the i’th bit of each such message is received independently
from a (typically new) agent, chosen u.a.r. from all agents.

Definition 1. (The BIT model) In the BIT model, at each round, each agent u picks η` agents u.a.r.,

namely, v(1)
1 ,v

(1)
2 , . . .v

(1)
` ,. . . ,v(η)

1 ,v
(η)
2 , . . .v

(η)
` , and reads ŝi (j) = si(v

(j)
i ), the i-th bit of the visible part of agent

v
(j)
i , for every i ≤ ` and j ≤ η. For each j ≤ η, let m̂j(u) be the `-bit string m̂j(u) := (ŝ1

(j), ŝ2
(j), . . . , ŝ`

(j)). By a
slight abuse of language we call the strings {m̂j(u)}j≤η the messages received by u in the BIT model.

Definition 2. (The bitwise − independence property) Consider a protocol P designed to work in the
PULL model. We say that P has the bitwise-independence property if its correctness and running time
guarantees remain the same under the BIT model (assuming that given the messages {m̂j(u)}j≤η it receives
at any round, each agent u performs the same actions that it would have, had it received these messages in
the PULL model).

Let us first state a fact about protocols having the bitwise-independence property.

Lemma 2.1. Assume we are given two protocols Syn-Generic and P, designed to work in the PULL model,
such that

• Protocol Syn-Generic synchronizes clocks modulo T for some T and



• Protocol P works assuming agents share a clock modulo T .

Denote by Syn-P the parallel execution of Syn-Generic and P, with P using the clock synchronized by
Syn-Generic. Then

1. If Syn-Generic and P are self-stabilizing then so is Syn-P, and the convergence time of Syn-P is at
most the sum of convergence times of Syn-Generic and P.

2. Finally, if Syn-Generic and P have the bitwise-independence property, and P is also self-stabilizing,
Syn-P has the bitwise-independence property too.

Proof. The self-stabilizing property of Syn-P and its convergence time directly follow from those of
Syn-Generic and P (part 1 of the statement). We just need to check the correctness of Syn-P, when
run in the BIT model (part 2 of the statement). The fact that Syn-Generic and P are run in parallel
means that the part of the message and computations regarding Syn-Generic are not affected by those
regarding P. This still holds when running the protocol in the BIT model. Since, by hypothesis,
Syn-Generic has the independence property, there exists a time τ after which all agents share a
synchronized clock modulo T , even in the BIT model. Thus, after time τ , we can disregard the
part of the message corresponding to Syn-Generic, and view the execution of Syn-P as simply P. The
assumption that P is self-stabilizing and has the independence property implies that, regardless of the
nodes’ memory states concerning the execution of P at time τ , Syn-P still works in the BIT model
as in the original PULLmodel, thus inheriting the bitwise-independence property from Syn-Generic

and P.

We next show that the protocol Syn-Simple has the aforementioned bitwise-independence property.

Lemma 2.2. Syn-Simple has the bitwise-independence property.

Proof. Let us start by commenting on Syn-Simple, when run in the usual PULL model. Let `′ be the
size of the clocks. Assume the first i < `′ bits of the clocks have been synchronized. At this stage, the
(i + 1)-st bit of each agent u is flipped every 2i rounds (from 0 to 1 or from 1 to 0) and updated as the
majority of the (i + 1)-st bit of C(u) and the 2 pulled messages on each round. Since the first i bits are
synchronized, the previous flipping is performed by all agents at the same round. Let us now consider
the protocol over the BIT model. Observe that, in order for Syn-Simple to work, we do not need
the bit at index (i + 1) to come from the same agent as the bits corresponding to indices ≤ i, as long
as convergence on the first i bits has been achieved. Hence, as is, the reasoning above for the PULL
model holds in the BIT model as well.

3 A General Compiler that Reduces Message Size

In this section we present a general compiler that allows to implement a protocol P using `-bit
messages while using messages of order log` instead, as long as P enjoys the bitwise-independence
property. The compiler is based on replacing a message by an index to a given bit of the message.
This tool will repeatedly be used in the following sections to obtain our Clock Synchronization and
Majority Bit Dissemination algorithms that use 3-bit messages.

Theorem 3.1. (the Message Reduction Theorem) Any self-stabilizing protocol P in the PULL(η,`)
model having the bitwise-independence property, and whose running time is L

P
, can be emulated by a proto-

col Emul(P) which runs in the PULL(2,dlog(η2`)e+1) model, has running time O (log(η`) logn)+ η
2`LP and

has itself the bitwise-independence property.



Remark 1. The only reason for designing Emul(P) to run in the PULL(2,dlog(η2`)e+1) model in the Message
Reduction Theorem is the consensus protocol we adopt, maj-consensus, which works in the PULL(2) model.
In fact, Emul(P) can be adapted to run in the PULL(1,dlog(η`)e + 1) model by using a consensus protocol
which works in the PULL(1) model. However, no self-stabilizing binary consensus protocol in the PULL(1)
model with the same performances as maj-consensus is currently known.

Proof of Theorem 3.1. Let s(u) ∈ {0,1}` be the message displayed by an agent u under P at a given
round. For simplicity’s sake, in the following we assume that η is even, the other case is handled
similarly. In Emul(P), agent u keeps the message s(u) privately, and instead displays a clock C(u)
written on dlog(η2`)e bits, and one bit of the message s(u), which we refer to as the P-bit. Thus, the
total number of bits displayed by the agent operating in Emul(P) is dlog(η2`)e+ 1. The purpose of the
clock C(u) is to indicate to agent u which bit of s(u) to display. In particular, if the counter has value 0,
then the 0-th bit (i.e the least significant bit) of s(u) is shown as the P-bit, and so on. In what follows,
we refer to s(u) as the private message of u, to emphasize the fact that this message is not visible in
Emul(P). See Figure 3 for an illustration.

1 0

Only updated ev-
ery 8 rounds.

1

A counter modulo 8.

Kept private.

Output bit.
Kept private.

s1, s2, . . . , s8
P emul(p)

Figure 3: On the left is a protocol P using ` = 8 bits in total and pulling only one node per round
(η = 1). On the right is the emulated version Emul(P) which uses 4 bits only. The bits depicted on
the bottom of each panel are kept privately, while the bits on the top are public, that is, appear in the
visible part.

Each round of P executed in the PULL(η,`) model by an agent u is emulated by η
2` rounds of

Emul(P) in the PULL(2,dlog(η2`)e+ 1) model. We refer to such η
2` rounds as a phase, which is further

divided to η
2 subphases of length `. Note that since each agent samples 2 agents in a round, the total

number of agents sampled by an agent during a phases is η`.
For a generic agent u, a phase starts when its clock C(u) is zero, and ends after a full loop of its

clock (i.e. whenC(u) returns to zero). Each agent u is running protocol Syn-Simple on the dlog(η2`)e bits
which correspond to her clock C(u). Note that the phases executed by different agents may initially be
unsynchronized, but, thanks to Proposition 2.1, the clocks C(u) eventually converge to the same value,
for each agent u, and hence all agents eventually agree on when each phase (and subphase) starts.

Let u be an arbitrary agent. Denote by ŝ(1)
1 , ŝ

(1)
2 , . . . ŝ

(1)
` , ..., ŝ

(η)
1 , ŝ

(η)
2 , . . . ŝ

(η)
` the P-bits collected by u

from agents chosen u.a.r during a phase. Consider a phase and a round z ∈ {1, · · · , η2`} in that phase.
Let i and j be such that z = j · ` + i. We view z as round i of subphase j + 1 of the phase. On this round,
agent u pulls two messages from agents v and w, chosen u.a.r. Once the clocks (and thus phases and
subphases) have synchronized, agents v and w are guaranteed to be displaying the ith index of their

private messages, namely, the values si(v) and si(w), respectively. Agent u then sets ŝ(2j−1)
i equal to si(v)

and ŝ(2j)i equal to si(w).
In Emul(P), the messages displayed by agents are only updated after a full loop of C. It therefore

follows from the previous paragraph that the P-bits collected by agent u after a full-phase are



distributed like the bits collected during one round of P in the BIT model (see Definition 1), assuming
the clocks are synchronized already.
Correctness. The bitwise-independence property of Syn-Simple (Lemma 2.2), implies that Syn-Simple
still works when messages are constructed from the P-bits collected by Emul(P). Therefore, from
Proposition 2.1, eventually all the clocks C are synchronized. Since private messages s are only
updated after a full loop of C, once the clocks C are synchronized a phase of Emul(P) corresponds
to one round of P, executed in the BIT model. Hence, the hypothesis that P operates correctly in a
self-stabilizing way in the BIT model implies the correctness of Emul(P).
Running time. Once the clocks C(u) are synchronized, for all agents u, using the first dlog(η2`)e bits
of the messages, the agents reproduce an execution of P with a multiplicative time-overhead of η

2`.
Moreover, from Proposition 2.1, synchronizing the clocks C(u) takes O (log(ηm) logn) rounds. Thus,
the time to synchronize the clocks costs only an additive factor of O (log(ηm) logn) rounds, and the
total running time is O (log(ηm) logn) + η

2` ·LP.
Bitwise-independence property. Protocol Emul(P) inherits the bitwise-independence property from that
of Syn-Simple (Lemma 2.2) and P (which has the property by hypothesis): We can apply Lemma 2.1
where Syn-Generic is Syn-Simple and P is the subroutine described above, which displays at each
round the bit of P whose index is given by a synchronized clock C modulo ` (i.e. the one produced by
Syn-Simple). Observe that the aforementioned subroutine is self-stabilizing, since it emulates P once
clocks are synchronized. Then, in the notation of Lemma 2.1, Emul(P) is Syn-P. �

4 Self-Stabilizing Clock Synchronization

In Section 2.2 we described Syn-Simple - a simple self-stabilizing Clock Synchronization protocol
that uses logT bits per interaction. In this section we describe our main self-stabilizing Clock
Synchronization protocol, Syn-3Bits, that uses only 3 bits per interaction. We first assume T is a
power of 2. We show how to get rid of this assumption in Section 4.2.

4.1 Clock Synchronization with 3-bit messages, assuming T is a power of two In this section, we
show the following result.

Lemma 4.1. Let T be a power of 2. There exists a synchronization protocol Syn-Intermediate which syn-
chronizes clocks modulo T in time Õ

(
log2T logn

)
using only 3-bit messages. Moreover, Syn-Intermediate

has the bitwise-independence property.

Before presenting the proof of Lemma 4.1, we need a remark about clocks.

Remark 2. In order to synchronize a clock C modulo T , throughout the analysis we often obtain a clock C′

modulo T which is incremented every ` rounds. However, C′ can still be translated back to a clock modulo
T which is incremented every round, by keeping a third clock C′′ modulo ` and setting

C = `C′ +C′′ mod T .

Proof of Lemma 4.1. At a high level, we simply apply iteratively the Message Reduction Theorem in
order to reduce the message to 3 bits, starting with P = Syn-Simple. A pictorial representation of our
recursive protocol is given in Figure 4, and a pseudocode is given in Algorithm 2. The pseudocode
deviates slightly from the presentation done in the proof, as it makes no use of recursion.

Let us consider what we obtain after applying the Message Reduction Theorem the first time to P

=Syn-Simple for clocks modulo T . Recall that we assume that T is a power of 2. From Proposition 2.1
we know that in this case, the convergence time of Syn-Simple is L

P
= O (logT logn), the number of

pulled agents at each round is 2 and the number of bits of each message is ` = logT .
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Figure 4: A more explicit view of our 3-bit emulation of protocol P, obtained by iterating Lemma 3.1.
The down-most layer represents the 27-bits message displayed by protocol P. Each layer on the picture
may be seen as the message of a protocol emulating P with fewer bits, that is, as we go up on the figure
we obtain more and more economical protocols in terms of message length. In particular, the top layer
represents the 3-bit message in the final emulation. The left-most part of each message (colored in
light blue) encodes a clock. The right-most bit (colored in light yellow) of each message (except the
bottom-most one) corresponds to a particular bit of the layer below it. The index of this particular
displayed bit is given by the value of the clock. Each clock on an intermediate layer is updated only
when the clock on the layer above completes a loop (i.e., has value 0). The clock on the top-most layer
is updated on every round.

With the emulation produced by the Message Reduction Theorem, the clock used in P =Syn-Simple
is incremented only every ` = logT rounds. Another way to interpret this is that we obtain a clock
modulo T · ` and using Remark 2 we can turn it into a counter modulo T that is incremented at each
round. Hence, by the running time analysis of the Message Reduction Theorem, we obtain a protocol
Emul(P) which synchronizes a clock modulo T in O (logn loglogT ) +O

(
log2T logn

)
= O

(
log2T logn

)
rounds. The message size is reduced from logT to dloglogT e+ 1 = O (loglogT ).

By repeatedly applying the Message Reduction Theorem, we reduce the size of the message ` as
long as ` > dlog`e+1, i.e. as long as ` > 3. The number of repeated application of the Message Reduction
Theorem until the message size is 3 is thus of order log∗T .

Let us analyze the running time. Let `1 = logT , `i+1 = dlog`ie+ 1 and let τ(T ) = τ be the smallest
integer such that `τ = 3. We apply the Message Reduction Theorem i ≤ τ times, and we obtain a
message size `i and a running time Li , such that

(4.1) Li+1 ≤ γ1(log`i logn+ `iLi),

for some constant γ1 independent of i. Let a and b be two given numbers. Given two real numbers a
and b, we use the notation a∨b to denote the maximum of a and b. Set L1 to be L1 := L

Syn-Simple
∨logn =

O (logT logn) ∨ logn, taking the maximum with logn for technical convenience. The second term
dominates in Equation (4.1) because `i >> log`i and Li > logn. Hence, we obtain from Equation (4.1)
that Li+1 ≤ 2γ1`iLi . It follows by induction that

Li+1 ≤ (2γ1)iL1

i∏
j=1

`j .



Syn-Intermediate protocol

Memory: Each agent u keeps a sequence of clocks C1, . . . ,Cτ and a sequence of bits b1, . . . , bτ . The clock
C1 runs modulo T , the clock Cτ runs modulo 4, and the i-th clock Ci runs modulo 2`i−1 (see proof of
Lemma 4.1). Each agent u also maintains a sequence of heaps (or some ordered structure) Sδi , for each
δ ∈ {1,2} and i = 1, . . . , τ .

Message: u displays Cτ (2 bits) and bτ (1 bit). For all i ∈ [τ],bi(u) is the Ci(u)-th bit of the string
obtained concatenating the binary representation of Ci−1(u) and bi−1(u).

1 u samples two agents u1 and u2.

2 u updates its clock with the bitwise majority of its clock and those of the sampled nodes.

3 u increments its clock by one unit.

4 u sets i∗ equal to the maximal i < τ such that Ci+1 , 0.

5 For δ = 1,2, u pushes bτ (uδ) in Sδi∗ .
(Note that, if Ci∗+1, . . . ,Cτ are synchronized, then all agents are displaying the bit with index Ci∗+1
of (Ci∗ ,bi∗) as bτ .)

6 While i > 1 and Ci = 0, u does the following:

7 | Pops the last `i−1 − 1 bits from Sδi−1 and set sδ equal to it.

8 | Sets Ci−1 equal to the bitwise majority of Ci−1(u), s1 and s2.

9 | Increments Ci−1 and decrement i by one unit.

Algorithm 2: Iterative version of the protocol Syn-Intermediate, executed by each agent u, unfolding
the recursion in proof of Lemma 4.1.

The running time of Emul(P) =Syn-Clock after the last application of the Message Reduction
Theorem, i.e. τ , is thus

L
Syn-Clock

:= Lτ ≤ (2γ1)τL1

τ−1∏
i=1

`i .

We use the following fact.

Fact 4.1. If |x| < 1, it holds
e

x
1+x ≤ 1 + x ≤ ex ≤ 1 +

x
1− x

.

From the bounds L1 = O(logT logn),
∏τ
i=1 `i ≤ `1`2`

τ
3 , `1 = O (logT ), `2 = O (loglogT ) and Lemma B.1,

we obtain (2γ1)τ = (logloglogT )O(1) = O (loglogT ) and

`τ3 ≤ 2O((loglogloglogT )2) ≤ 2O(logloglogT ) ≤ (loglogT )O(1) .

We thus conclude that

L
Syn-Clock

≤ (2γ1)τ
τ∏
i=1

`iL1 ≤ O (loglogT ) · `1`2`
τ
3 · O(logT logn)



≤ O (loglogT ) · O (logT ) · O (loglogT ) · O (loglogT )O(1) · O(logT logn)

≤ log2T logn · (loglogT )O(1) .

The total slowdown with respect to Syn-Simple corresponds to
∏τ
i=1 `i = Õ(logT ). Hence the clock

produced by the emulation is incremented every Õ(logT ) rounds. In other words we obtain a clock
modulo T · f (T ) for some function f . But using Remark 2 we can still view this as a clock modulo T . �

4.2 Extension to general T and running time improvement. In this subsection we aim to get rid of
the assumption that T is a power of 2 in Lemma 4.1, and also reduce the running time of our protocol
to Õ (logn logT ), proving Theorem 1.2.

Syn-Clock protocol

Memory: Each agent u stores a clock C′(u) which runs modulo T ′ � γ logn logT . Each agent u also
stores a variable Q which is incremented only once every T ′ rounds and runs modulo T .

Message: Each agent u displays 4 bits. On the first 3 bits, protocol Syn-Intermediate is applied to
synchronize C′. The 4-th bit b(u) is the bit with index (b C

′(u)
γ lognc mod dlogT e) of Q(u).

1 u samples two agents u1 and u2.

2 u updates b(u) with the majority of b(u), b(u1) and b(u2).

3 If C′ = 0, increment Q by one unit modulo T .

Output: The clock modulo T is obtained as C := (C′ +Q · T ′) mod T
Algorithm 3: The protocol 4-bit Syn-Clock, executed by each agent u.

Proof of Theorem 1.2. From Lemma 4.1, we know that Syn-Intermediate synchronizes clocks modulo
T in time Õ

(
log2T logn

)
using only 3-bit messages, provided that T is a power of 2. While protocol

Syn-Intermediate emulates protocol Syn-Simple, it displays the first bit of the message of Syn-Simple
only once every Õ (logT ) rounds. Of course, it would be more efficient to display it O (logn) times in
a row, so that maj-consensus would make every agent agree on this bit, and then move to agreeing on
the second bit, and so on. To achieve this, as in the proof of Syn-Simple, we can view a clock modulo T ,
say Q, as written on logT bits. If agents already possess a “small” counter modulo T ′ := O (logT logn)
they can use it to display the first bit for O (logn) rounds, then the second one for O (logn) rounds,
and so on until each one of the dlogT e bits of T has been synchronized. This would synchronize all
bits of the desired clock within O (logT logn) rounds, w.h.p., while being very economical in terms of
message length, since only 1 bit is displayed at any time.

Therefore, we can use Lemma 4.1 to synchronize a counter modulo O (logT logn) in
Õ((loglogT )2 logn) rounds, using 3 bits per message. Then, we can use a fourth bit to run maj-

consensus on each of the logT bits of Q for O(logn) consecutive rounds, for a total running time
of O(logT logn) rounds. At this point, an application of the Message Reduction Theorem would give
us a protocol with running time O(logT logn) using 3-bit messages. However, perhaps surprisingly, a
similar strategy enables us to synchronize a clock modulo any integer (not necessarily a power of 2).

Let us assume that T ∈N is an arbitrary integer. Let γ logn be an upper bound on the convergence
time of maj-consensus which guarantees a correct consensus with probability at least 1−n−2, for some
constant γ large enough [24]. Let T ′ be the smallest power of 2 bigger than logT · (γ logn+γ loglogT ).
By Lemma 4.1, using 3 bits, the agents can build a synchronized clock C′ running modulo T ′ in



time Õ((loglogT )2 logn). The other main ingredient in this construction is another clock QT ′ which is
incremented once every T ′ rounds and runs modulo T . The desired clock modulo T , which we denote
C, is obtained by

C := (C′ +QT ′ · T ′) mod T .

It is easy to check, given the definitions of C′ and QT ′ that this choice indeed produces a clock modulo
T .

It remains to show how the clock QT ′ modulo T is synchronized. On a first glance, it may seem
as if we did not simplify the problem since Q is a clock modulo T itself. However, the difference
between QT ′ and a regular clock modulo T is that QT ′ is incremented only once every T ′ rounds. This
is exploited as follows.

The counter QT ′ is written on dlogT e internal bits. We show how to synchronize QT ′ using a 4-th
bit in the messages, similarly to the aforementioned strategy to synchronize Q; we later show how to
remove this assumption using the Message Reduction Theorem. Let us call a loop of C′ modulo T ′ an
epoch. The rounds of an epoch are divided in phases of equal length γ logn+γ loglogT (the remaining
T ′ mod (γ logn+γ loglogT ) rounds are just ignored). The clock C′ determines which bit from QT ′ to
display. The first bit ofQT ′ is displayed during the first phase, then the second one is displayed during
the second phase, and so on. By Theorem 2.1, the length of each phase guarantees that consensus
is achieved on each bit of QT ′ via6

maj-consensus w.h.p. More precisely, after the first bit has been
displayed for γ logn+γ loglogT rounds, all agents agree on it with probability7 1− 1

n2 logT , provided γ
is large enough. Thus, at the end of an epoch, agents agree on all dlogT e bits of QT ′ with probability
greater than (1− 1

n2 logT )logT � 1−O(n−2).
We have thus shown that, by the time C′ reaches its maximum value of T ′, i.e. after one epoch, all

agents agree on QT ′ w.h.p. and then increment it jointly. From Lemma 4.1, Syn-Intermediate takes
Õ

(
log2T ′ logn

)
= O

(
(loglogn+ loglogT )2 logn

)
= O

((
(loglogn)2 logn+ (loglogT )2 logn

))
rounds to

synchronize a clock C′ modulo T ′ w.h.p. Together with the logT (γ logn+γ loglogT ) rounds to agree
onQT ′ w.h.p., this implies that after logT logn · (loglogT )O(1) · (loglogn)O(1) = Õ (logT logn) rounds the
clocks C are all synchronized w.h.p.

Finally, we show how to get rid of the extra 4-th bit to achieve agreement on QT ′ . Observe that,
once C′ is synchronized, this bit is used in a self-stabilizing way. Thus, since Syn-Intermediate has
the bitwise-independence property, using Lemma 2.1, the protocol we described above possesses the
bitwise-independence property too. By using the Message Reduction Theorem we can thus reduce the
message size from 4 bits to dlog4e + 1 = 3 bits, while only incurring a constant multiplicative loss in
the running time. The clock we obtain, counts modulo T but is incremented every 4 rounds only. It
follows from Remark 2 that we may still view this as a clock modulo T . �

Remark 3. (Internal memory space) The internal memory space needed to implement our protocols Syn-
Simple, Syn-Intermediate, and Syn-Clock is close to logT in all cases: protocol Syn-Simple uses one
counter written on logT bits, Syn-Intermediate needs internal memory of size

logT +O (loglogT + logloglogT + . . .) ≤ logT (1 + o(1)),

6Observe that, once clock C′ is synchronized, the bits of QT ′ do not change for each agent during each subphase. Thus, we may replace
maj-consensus by the Min protocol where on each round of subphase i each agent u pulls another agent v u.a.r. and updates her i-th bit
of Q to the minimum between her current i-th bit of Q and the one of v. However, for simplicity’s sake, we reuse the already introduced
maj-consensus protocol.

7From Theorem 2.1, we have that after γ logn rounds, with γ large enough, the probability that consensus has not been reached is
smaller than 1

n2 . Thus, after N · γ logn rounds, the probability that consensus has not been reached is smaller than 1
n2N . If we choose

N logn = logn+ loglogT , we thus get the claimed upper bound 1
n2 logT

.



and the internal memory requirement of Syn-Clock is of order logT + loglogn.

5 Majority Bit Dissemination with a Clock

In this section we assume that agents are equipped with a synchronized clock C modulo γ logn
for some big enough constant γ > 0. In the previous section we showed how to establish such a
synchronized clock in Õ(logn) time and using 3-bit messages. We have already seen in Section 1.2
how to solve the Bit Dissemination problem (when we are promised to have a single source agent)
assuming such synchronized clocks, by paying an extra bit in the message size and an O(logn) additive
factor in the running time. This section is dedicated to showing that, in fact, the more general Majority
Bit Dissemination problem can be solved with the same time complexity and using 3-bit messages,
proving Theorem 1.1.

In Section 5.1, we describe and analyze protocol Syn-Phase-Spread, which solves Majority
Bit Dissemination by paying only a O(logn) additive overhead in the running time w.r.t. Clock
Synchronization. For clarity’s sake, we first assume that the protocol is using 4 bits (i.e. 1 additional
bit over the 3 bits used for Clock Synchronization), and we later show how to decrease the number of
bits back to 3 in Section 5.2, by applying the Message Reduction Theorem.

The main idea behind the 3(+1)-bit protocol, called Syn-Phase-Spread, is to make the sources’
input bits disseminate on the system in a way that preserves the initial ratio k1

k0
between the number of

sources supporting the majority and minority input bit. This is achieved by dividing the dissemination
process in phases, similarly to the main protocol in [33] which was designed to solve the Bit
Dissemination problem in a variant of the PUSH model in which messages are affected by noise.
The phases induce a spreading process which allows to leverage on the concentration property of the
Chernoff bounds, preserving the aforementioned ratio. While, on an intuitive level, the role of noisy
messages in the model considered in [33] may be related to the presence of sources having conflicting
opinion in our setting, we remark that our protocol and its analysis depart from those of [33] on several
key points: while the protocol in [33] needs to know the noise parameter, Syn-Phase-Spread does not
assume any knowledge about the number of different sources, and our analysis does not require to
control the growth of the number of speaking agents from above.

In order to perform such spreading process with 1 bit only, the protocol in [33] leverages on the
fact that in the PUSH model agents can choose when to speak, i.e. whether to send a message or not.
To emulate this property in the PULL model, we use the parity of the clock C: on odd rounds agents
willing to “send” a 0 display 0, while others display 1 and conversely on even rounds. Rounds are then
grouped by two, so 2 rounds in the PULLmodel correspond to 1 round in the PUSH version.

5.1 Protocol Syn-Phase-Spread In this section we describe protocol Syn-Phase-Spread. As men-
tioned above, for clarity’s sake we assume that Syn-Phase-Spread uses 4-bit messages, and we show
how to remove this assumption in Section 5.2. Three of such bits are devoted to the execution
Syn-Clock, in order to synchronize a clock C modulo 2dγphase logne + γphased2logne for some con-
stant γphase large enough. Throughout this section we assume, thanks to Theorem 1.2, that C has
already been synchronized, which happens after Õ(logn) rounds from the start of the protocol. In Sec-
tion 5.1.1, we present a protocol Phase-Spread solving Majority Bit Dissemination assuming agents
already share a common clock.

5.1.1 Protocol Phase-Spread Let γphase be a constant to be set later. Protocol Phase-Spread is
executed periodically over periods of length 2dγphase logne + γphased2logne, given by a clock C. One
run of length 2dγphase logne+γphased2logne is divided in 2 + d2logne phases, the first and the last ones
lasting dγphase logne rounds, all the other d2logne phases lasting γphase rounds. The first phase is called



boosting, the last one is called polling, and all the intermediate ones are called spreading. For technical
convenience, in Phase-Spread agents disregard the messages they get as their second pull. In other
words, Phase-Spread works in the PULL(1) model.

During the boosting and the spreading phases, as we already explained in the introduction of this
section, we make use of the parity of time to emulate the ability to actively send a message or not to
communicate anything as in the PUSHmodel(in the first case we say that the agent is speaking, in the
second case we say that the agent is silent). This induces a factor 2 slowdown which we henceforth
omit for simplicity.

At the beginning of the boosting, each non-source agent u is silent. During the boosting and during
each spreading phase, each silent agent pulls until she sees a speaking agent. When a silent agent u
sees a speaking agent v, u memorizes b1 (v) but remains silent until the end of the phase; at the end of
the current phase, u starts speaking and sets b1 (u) = b1 (v). The bit b1 is then never modified until the
clock C reaches 0 again. Then, during the polling phase, each agent u counts how many agents with
b1 = 1 and how many with b1 = 0 she sees. At the end of the phase, each agent u sets their output bit to
the most frequent value of b1 observed during the polling phase. We want to show that, for all agents,
the latter is w.h.p. bmaj (the most frequent initial opinion among sources).

Phase-Spread protocol

1 If u is not speaking and b1(u) has not yet been set, and the current phase is either the boosting or
the spreading one, u does the following:

2 | u observes a random agent v.

3 | If v is speaking, u sets b1(u) equal to b1(v),
and u will be speaking from the next phase.

4 | u sets c0 and c1 equal to 0.

5 If the current phase is polling:

6 | u observes a random agent v.

7 | If b1(v) = 1, u increments c1, otherwise increment c0.

8 u outputs 1 if and only if c1 > c0.

Algorithm 4: The protocol Phase-Spread, executed by each agent u.

5.1.2 Analysis We prove that at the end of the last spreading phase w.h.p. all agents are speaking
and each agent has b1 = 1 with probability 1

2 + εend for some positive constant εend = εend
(
γphase,ε

)
(where the dependency in γphase is monotonically increasing), b1 = 0 otherwise. From the Chernoff
bound (Corollary A.1) and the union bound, this implies that when γphase >

8
εend

at the end of the
polling phase w.h.p. each agent learns bmaj . Without loss of generality, let bmaj = 1, i.e. k1 > k0. For

convenience, we estimate ratios of the form k1
k0

, which requires that k0 > 0. The analysis can easily be
adapted to handle the case where k0 = 0.

For ε ∈ {0,1}, let us denote k(i)
ε the number of nodes with b1(·) = ε at the end of phase i. The analysis

is divided in the following lemmas.



Lemma 5.1. At the end of the boosting phase it holds w.h.p.

k
(1)
1 + k(1)

0 ≥


(k1 + k0)

γphase
3 logn if k1 + k0 <

n
2γphase logn

n
(
1− 1√

e

)
+ 1√

e
(k1 + k0)−

√
n logn if n

2γphase logn ≤ k1 + k0 ≤ n− 2
√
n logn,

n otherwise.

Moreover,

k
(1)
1

k
(1)
0

≥ k1

k0
·

1−

√
9

γphasek0

 .(5.2)

Proof. By using Fact 4.1, we have

E

[
k

(1)
1 + k(1)

0

]
= k1 + k0 + (n− k1 − k0)

1−
(
1− k1 + k0

n

)γphase logn
≥ k1 + k0 + (n− k1 − k0)

(
1− e−

k1+k0
n γphase logn

)
.(5.3)

We distinguish three cases.
Case k1 + k0 <

n
2γphase logn . By using Fact 4.1 again, from (5.3) we get

E

[
k

(1)
1 + k(1)

0

]
≥ k1 + k0 + (n− k1 − k0)

(
1− e−

k1+k0
n γphase logn

)
≥ k1 + k0 + (n− k1 − k0)

k1+k0
n γphase logn

1 + k1+k0
n γphase logn

≥ k1 + k0 + (n− k1 − k0)
k1 + k0

n

γphase
2

logn

≥ k1 + k0 +
(
1− k1 + k0

2n

)
(k1 + k0)

γphase
2

logn

≥ (k1 + k0)
(
1 +

(
1− 1

4γphase logn

)
γphase

2
logn

)
≥ (k1 + k0)

γphase
2

logn.(5.4)

From the Chernoff bound (Lemma A.1), we thus get that w.h.p.

k
(1)
1 + k(1)

0 ≥ (k1 + k0)
γphase

3
logn.

Case n
2γphase logn ≤ k1 + k0 ≤ n− 2

√
n logn. From (5.3), we have

E

[
k

(1)
1 + k(1)

0

]
≥ k1 + k0 + (n− k1 − k0)

(
1− e−

k1+k0
n γphase

)
≥ k1 + k0 + (n− k1 − k0)

(
1− 1
√
e

)
≥ n

(
1− 1
√
e

)
+
k1 + k0√

e
.



From the Chernoff bound (Lemma A.1), we thus get that w.h.p.

k
(1)
1 + k(1)

0 ≥ n
(
1− 1
√
e

)
+
k1 + k0√

e
−
√
n logn.

Case k(1)
1 + k(1)

0 > n− 2
√
n logn. The probability that a silent agent does not observe a speaking one

is (
n− k1 − k0

n

)γphase logn

≤
(

4logn
n

) 1
2γphase logn

,

hence by a simple union bound it follows that w.h.p. all agents are speaking.
Now, we prove (5.2). As before, we have two cases. The first case, k1

k0
≥ n

2γphase logn , is a simple

consequence of the Chernoff bound (Lemma A.1).
In the second case, k1

k0
< n

2γphase logn , let us consider the set of agents Sboost that start speaking
at the end of the boosting, i.e. that observe a speaking agent during the phase. Observe that

|Sboost | = k
(1)
1 − k1 + k(1)

0 − k0. The probability that an agent in Sboost observes a source supporting 1
(resp. 0) is k1

k1+k0
(resp. k0

k1+k0
). Thus

E

[
k

(1)
1

]
= k1 +

k1

k1 + k0
E [|Sboost |] and

E

[
k

(1)
0

]
= k0 +

k0

k1 + k0
E [|Sboost |] .(5.5)

In particular

(5.6)
E

[
k

(1)
1

]
E

[
k

(1)
0

] =
k1 + k1

k1+k0
E [|Sboost |]

k0 + k0
k1+k0

E [|Sboost |]
=
k1

k0
,

and from (5.4) and (5.5) we have

E

[
k

(1)
0

]
≥ k0

k1 + k0
E [|Sboost |]

=
k0

k1 + k0

(
E

[
k

(1)
1 + k(1)

0

]
− (k1 + k0)

)
≥ (1− o(1))

k0

k1 + k0

γphase
2

(k1 + k0) logn

= (1− o(1))k0
γphase

2
logn,(5.7)

where the lower bound follows from the assumption k1
k0
< n

2γphase logn and (5.4). From (5.7) and the

multiplicative form of the Chernoff bound (Corollary A.1), we have that w.h.p.

k
(1)
1 ≥ E

[
k

(1)
1

]
−
√
E

[
k

(1)
1

]
logn and

k
(1)
0 ≤ E

[
k

(1)
0

]
+

√
E

[
k

(1)
0

]
logn.(5.8)



Thus, since (5.5) implies E
[
k

(1)
1

]
≥ E

[
k

(1)
0

]
, we have

k
(1)
1

k
(1)
0

≥
E

[
k

(1)
1

]
−
√
E

[
k

(1)
1

]
logn

E

[
k

(1)
0

]
+

√
E

[
k

(1)
0

]
logn

=
E

[
k

(1)
1

]
E

[
k

(1)
0

] ·
1−

√
logn

E

[
k

(1)
1

]

1 +
√

logn

E

[
k

(1)
0

]

≥
E

[
k

(1)
1

]
E

[
k

(1)
0

] ·
1−

√√√ logn

E

[
k

(1)
1

] −√√√ logn

E

[
k

(1)
0

]


≥
E

[
k

(1)
1

]
E

[
k

(1)
0

] ·
1− 2

√√√ logn

E

[
k

(1)
0

]


=
k1

k0
·

1−

√
9

k0γphase

 ,(5.9)

concluding the proof.

Lemma 5.2. At the end of the i + 1th spreading phase, the following holds w.h.p.

k
(i+1)
1 + k(i+1)

0 ≥


(
k

(i)
1 + k(i)

0

)
γphase

3 , if k(i)
1 + k(i)

0 < n
2γphase

n
(
1− 1√

e

)
+ 1√

e

(
k

(i)
1 + k(i)

0

)
−
√
n logn, if n

2γphase
≤ k(i)

1 + k(i)
0 ≤ n− 2

√
n logn

n, otherwise.

k
(i+1)
1

k
(i+1)
0

≥
k

(i)
1

k
(i)
0

1− 4

√
logn

γphasek
(i)
0

 .(5.10)

Proof. The proof is almost the same as that of Lemma 5.1. Thus, we condense some analogous
calculations.

By using Fact 4.1, we have

E

[
k

(i+1)
1 + k(i+1)

0

]
≥ k(i)

1 + k(i)
0 +

(
n− k(i)

1 − k
(i)
0

)1− e−
k

(i)
1 +k

(i)
0

n γphase

 .(5.11)

We distinguish three cases.
Case k(i)

1 + k(i)
0 < n

2γphase
. By using Fact 4.1 again, from (5.11) we get

E

[
k

(i+1)
1 + k(i+1)

0

]
≥ k(i)

1 + k(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
·
k

(i)
1 + k(i)

0
2n

γphase ≥
(
k

(i)
1 + k(i)

0

) γphase
2

.(5.12)



After the boosting phase, i.e. for i ≥ 1, it follows from Lemma 5.1 that k(i)
1 +k(i)

0 = Ω
(
γphase logn

)
. From

the Chernoff bound (Lemma A.1), if γphase is chosen big enough, we thus get that w.h.p.

k
(i+1)
1 + k(i+1)

0 ≥
(
k

(i)
1 + k(i)

0

) γphase
3

.

Case n
2γphase

≤ k(i)
1 + k(i)

0 ≤ n− 2
√
n logn. From (5.11), we have

E

[(
k

(i+1)
1 + k(i+1)

0

)]
≥ k(i)

1 + k(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1− 1
√
e

)
≥ n

(
1− 1
√
e

)
+

1
√
e

(
k

(i)
1 + k(i)

0

)
.

From the Chernoff bound (Lemma A.1), we thus get that w.h.p.

k
(i+1)
1 + k(i+1)

0 ≥ n
(
1− 1
√
e

)
+

1
√
e

(
k

(i)
1 + k(i)

0

)
−
√
n logn.

Case k(i)
1 +k(i)

0 > n−2
√
n logn. The probability that a silent agent does not observe a speaking one isn− k(i)

1 − k
(i)
0

n


γphase

≤
(

4logn
n

) 1
2γphase

,

hence by a simple union bound it follows that w.h.p. all agents are speaking.
Now, we prove (5.10). As in the proof of (5.2), we have two cases. The first case, k1

k0
≥ n

2γphase
, is a

simple consequence of the Chernoff bound (Lemma A.1). Otherwise, let us assume k1
k0
< n

2γphase
. With

an analogous argument to that for (5.5) and (5.6) we can prove

(5.13)
E

[
k

(i+1)
1

]
E

[
k

(i+1)
0

] =
k

(i)
1

k
(i)
0

,

and

E

[
k

(i+1)
1

]
= k(i)

1 +
k

(i)
1

k
(i)
1 + k(i)

1

E

[
k

(i+1)
1 − k(i)

1 + k(i+1)
0 − k(i)

0

]
,

E

[
k

(i+1)
0

]
= k(i)

0 +
k

(i)
0

k
(i)
1 + k(i)

0

E

[
k

(i+1)
1 − k(i)

1 + k(i+1)
0 − k(i)

0

]
.(5.14)

As in (5.8), from the multiplicative form of the Chernoff bound (Corollary A.1) we have that w.h.p.

k
(i+1)
1 ≥ E

[
k

(i+1)
1

]
−
√
E

[
k

(i+1)
1

]
logn and

k
(i+1)
0 ≤ E

[
k

(i+1)
0

]
+

√
E

[
k

(i+1)
0

]
logn.(5.15)

Thus, as in (5.9), from (5.15) and (5.13), we get

k
(i+1)
1

k
(i+1)
0

≥
E

[
k

(i+1)
1

]
E

[
k

(i+1)
0

] ·
1− 2

√√√ logn

E

[
k

(i+1)
0

]
 ≥ k

(i)
1

k
(i)
0

·

1− 4

√
logn

γphasek
(i)
0

 ,
where, as in (5.7), in the last inequality we used that from (5.12) and (5.14) it holds E

[
k

(i+1)
0

]
≥ γphase

4 k
(i)
0 .



From the previous two lemmas, we can derive the following corollary, which concludes the proof.

Corollary 5.1. If k1 ≥ k0(1 + ε) for some constant ε > 0, then at the end of the last spreading phase it holds
w.h.p.

k
(1+2logn)
1 = n− k(1+2logn)

0 ≥ k(1+2logn)
0 (1 + εend) ,(5.16)

where εend = ε
2 −

4√
γphase

.

Proof. The equality in (5.16) follows from the first part of Lemma 5.1. When k
(i)
1 + k(i)

0 < n
2γphase

,

k
(i)
1 + k(i)

0 increases by multiplicative a factor γphase at the end of each spreading phase. When
n

2γphase
≤ k(i)

1 + k(i)
0 ≤ n− 2

√
n logn,

n− k(i+1)
1 − k(i+1)

0 ≤
n− k(i)

1 − k
(i)
0√

e
−
√
n logn ≤

n− k(i)
1 − k

(i)
0√

e
.

Hence the number of silent agents decreases by a factor
√
e after each spreading phase. Lastly, when

k
(i)
1 +k(i)

0 > n−2
√
n logn, after one more spreading phase, a simple application of the union bound shows

that k(i+1)
1 +k(i+1)

0 is equal to n w.h.p. As a consequence, if γphase is big enough, after less than 1 +2logn

spreading phases w.h.p it holds that k(1+2logn)
1 = n− k(1+2logn)

0 .
The inequality in (5.16) can be derived from (5.10), as follows. From (5.2) and (5.10) we have

k
(1+2logn)
1

k
(1+2logn)
0

≥ k1

k0

1−

√
9

γphasek0

1+2logn∏
i=2

1−
√

16logn

γphasek
(i)
0

 .(5.17)

We can estimate the product as

1+2logn∏
i=2

1−
√

16logn

γphasek
(i)
0

 ≥ exp

−4
1+2logn∑
i=2

1(√
γphase

)i


≥ exp

4

1 +
1

√
γphase

−
1−

(
γphase

)− 2+2logn
2

1−
(
γphase

)− 1
2




≥ exp
{
−4

(
1

γphase −
√
γphase

−n−
2logγphase

2

)}
≥ exp

{
− 4
γphase

}
≥

(
1− 5

γphase

)
.(5.18)

In the first inequality we used that 1− x ≥ e−x if |x| < 1. To go from the first to the second line, we use∑a
2 x = −1−x+ 1−xa+1

1−x , with a = 1+2logn and x = 1

(√γphase)
i . To go from the third to the fourth line, we use

that for n big enough, 1
γphase−

√
γphase

−n−
2logγphase

2 ≥ 1
γphase

. The last inequality is obtained from e−x ≥ 1− 5
4x,

if x > 0 is small enough.



Finally, from (5.17) and (5.18) we get

k
(1+2logn)
1

k
(1+2logn)
0

≥ k1

k0

1−

√
9

γphasek0

(1− 5
γphase

)
≥ k1

k0

(
1− 4
√
γphase

)
,

which, together with the hypothesis k1
k0
≥ 1 + ε, concludes the proof.

5.2 Proof of Theorem 1.1

Proof. From Corollary 5.1, it follows that at the end of the last spreading phase, all agents have been
informed. After the last spreading phase, during the polling phase, each agent samples γphase logn
opinions from the population and then adopts the majority of these as her output bit. Thus, (5.16)
ensures that each sample holds the correct opinion with probability ≥ 1

2 + εend . Hence, by the
Chernoff bound and a union bound, if γphase is big enough then the majority of the γphase logn samples
corresponds to the correct value for all the n agents w.h.p.

The protocol obtained so far solves Majority Bit Dissemination, but it does it using 4 bits per
message rather than 3. Indeed, synchronizing a clock using Syn-Clock takes 3 bits, and we use an
extra bit to execute Phase-Spread described in Section 5.1.1. However, the protocol Syn-Phase-Spread
has the bitwise-independence property. This follows from Lemma 2.1 with Syn-Generic =Syn-Clock,
P =Phase-Spread, Syn-P =Syn-Phase-Spread, together with the observation that Phase-Spread is self-
stabilizing. We can thus reduce the message length of Syn-Phase-Spread to 3 bits using again the
Message Reduction Theorem, with a time overhead of a factor 4 only.

6 Conclusion and Open Problems

This paper deals with the construction of protocols in highly congested stochastic interaction patterns.
Corresponding challenges are particularly evident when it is difficult to guarantee synchronization,
which seems to be essential for emulating a typical protocol that relies on many bits per message with
a protocol that uses fewer bits. Our paper shows that in the PULLmodel, if a self-stabilizing protocol
satisfies the bitwise-independence property then it can be emulated with only 3 bits per message.
Using this rather general transformer, we solve the self-stabilizing Clock-Synchronization and Majority
Bit Dissemination problems in almost-logarithmic time and using only 3 bits per message. It remains
an open problem whether the message size of either one of these problems can be further reduced
while keeping the running time polylogarithmic.

In particular, even for the self-stabilizing Bit Dissemination problem (with a single source) it
remains open whether there exists a polylogarithmic protocol that uses a single bit per interaction. In
fact, we investigated several candidate protocols which seem promising in experimental simulation,
but appear to be out of reach of current techniques for analysing randomly-interacting agent systems
in a self-stabilizing context. Let us informally present one of them, called BFS

8. Let `,k ∈ N be two
parameters, say of order O(logn). Agents can be in 3 states: boosting, frozen or sensitive. Boosting
agents behave as in the maj-consensus protocol: they apply the majority rule to the 2 values they see
in a given round and make it into their opinion for the next round. They also keep a counter T . If
they have seen only agents of a given color b for ` rounds, they become sensitive to the opposite value.
b-sensitive agents turn into frozen-b agents if they see value b. b-frozen agents keep the value b for k
rounds before becoming boosters again. Intuitively what we expect is that, from every configuration,
at some point almost all agents would be in the boosting state. Then, the boosting behavior would lead
the agents to converge to a value b (which depends on the initial conditions). Most agents would then

8A similar protocol was suggested during discussions with Bernhard Haeupler.



become sensitive to 1−b. If the source has opinion 1−b then there should be a “switch” from b to 1−b.
The “frozen” period is meant to allow for some delay in the times at which agents become sensitive,
and then flip their opinion.

Acknowledgments: The problem of self-stabilizing Bit Dissemination was introduced through
discussions with Ofer Feinerman. The authors are also thankful for Omer Angel, Bernhard Haeupler,
Parag Chordia, Iordanis Kerenidis, Fabian Kuhn, Uri Feige, and Uri Zwick for helpful discussions
regarding that problem. The authors also thank Michele Borassi for his helpful suggestions regarding
the Clock Synchronization problem.
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A Technical Tools

Theorem A.1. ([46]) Let X1, ...,Xn be n independent random variables. If Xi ≤M for each i, then

Pr

∑
i

Xi ≥ E

∑
i

Xi

+λ

 ≤ e− λ2

2
(√∑

i E[X2
i ]+Mλ3

)
.(A.1)

Corollary A.1. Let µ = E [
∑
iXi]. If the Xis are binary then, for λ =

√
µ logn and sufficiently large n, (A.1)

gives

Pr

∑
i

Xi ≥ µ+
√
µ logn

 ≤ e−√µ logn,

Pr

∑
i

Xi ≤ µ−
√
µ logn

 ≤ e−√µ logn.

Proof. The fact that theXis are binary implies that
∑
iE

[
X2
i

]
≤

∑
iE [Xi]. By setting λ =

√
E [

∑
iXi] logn,

one can show that the l.h.s. of (A.1) is upper bounded by e−
√
µ logn.

B Proof of Lemma B.1

Lemma B.1. Let f ,τ : R+→R be functions defined by f (x) = dlogxe+ 1 and

τ(x) = inf
{
k ∈N | f ~k(x) ≤ 3

}
,

where we denote by f ~k the k-fold iteration of f . It holds that

τ(T ) ≤ log~4T +O(1).

Proof. We can notice that f (T ) ≤ T − 1, if T is bigger than some constant c. Moreover, when f (x) ≤ c,
the number of iterations before reaching 1 is O(1). This implies that τ(T ) ≤ T +O(1). But in fact, by
definition, `(T ) = τ

(
f ~4(T )

)
+ 4 (provided f ~4(T ) > 1, which holds if T is big enough). Hence

τ(T ) ≤ g
(
f ~4(T )

)
+ 4 ≤ f ~4(T ) +O(1) ≤ log~4T +O(1).


