
Fast Distributed Approximation for TAP and
2-Edge-Connectivity∗†

Keren Censor-Hillel1 and Michal Dory2

1 Technion, Department of Computer Science, Haifa, Israel
ckeren@cs.technion.ac.il

2 Technion, Department of Computer Science, Haifa, Israel
smichald@cs.technion.ac.il

Abstract

The tree augmentation problem (TAP) is a fundamental network design problem, in which the
input is a graph G and a spanning tree T for it, and the goal is to augment T with a minimum
set of edges Aug from G, such that T ∪Aug is 2-edge-connected.

TAP has been widely studied in the sequential setting. The best known approximation ratio
of 2 for the weighted case dates back to the work of Frederickson and JáJá, SICOMP 1981.
Recently, a 3/2-approximation was given for the unweighted case by Kortsarz and Nutov, TALG
2016, and recent breakthroughs by Adjiashvili, SODA 2017, and by Fiorini et al., 2017, give
approximations better than 2 for bounded weights.

In this paper, we provide the first fast distributed approximations for TAP. We present a
distributed 2-approximation for weighted TAP which completes in O(h) rounds, where h is the
height of T . When h is large, we show a much faster 4-approximation algorithm for the unweighted
case, completing in O(D +

√
n log∗ n) rounds, where n is the number of vertices and D is the

diameter of G.

Immediate consequences of our results are an O(D)-round 2-approximation algorithm for
the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the
running time of previous approximation algorithms, and an O(hMST +

√
n log∗ n)-round 3-

approximation algorithm for the weighted case, where hMST is the height of the MST of the
graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augment-
ing the connectivity of any connected spanning subgraph to 2.

Finally, we complement our study with proving lower bounds for distributed approximations
of TAP.

1998 ACM Subject Classification G.2.2 Graph Theory: Graph algorithms

Keywords and phrases approximation algorithms, distributed network design, connectivity aug-
mentation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.21

∗ Supported in part by the Israel Science Foundation (grant 1696/14).
† The full version of the paper is available at https://arxiv.org/abs/1711.03359.

© Keren Censor-Hillel and Michal Dory;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 21; pp. 21:1–21:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Distributed TAP and 2-Edge-Connectivity

1 Introduction

The tree augmentation problem (TAP) is a central problem in network design. In TAP, the
input is a 2-edge-connected1 graph G and a spanning tree T of G, and the goal is to augment
T to be 2-edge-connected by adding to it a minimum size (or a minimum weight) set of edges
from G. Augmenting the connectivity of T makes it resistant to any single link failure, which
is crucial for network reliability. TAP is extensively studied in the sequential setting, with
several classical 2-approximation algorithms [9,13,15,18], as well as recent advances with the
aim of achieving better approximation factors [1, 5, 8, 21].

TAP is part of a wider family of connectivity augmentation problems. Finding a minimum
spanning tree (MST) is another prime example for a problem in this family, but, although an
MST is a low-cost backbone of the graph, it cannot survive even one link failure. Hence, in
order to guarantee stronger reliability, it is vital to find subgraphs with higher connectivity.
The motivation for considering TAP is for the case that adding any new edge to the backbone
incurs a cost, and hence if we are already given a subgraph with some connectivity guarantee
then we would naturally like to augment it with additional edges of minimum number or
weight, rather than to compute a well-connected low-cost subgraph from scratch. Connectivity
augmentation problems also serve as building blocks in other connectivity problems, such as
computing the minimum k-edge-connected subgraph. A natural approach is to start with
building a subgraph that satisfies some connectivity guarantee (e.g., a spanning tree), and
then augment it to have stronger connectivity.

Since the main motivation for TAP is improving the reliability of distributed networks, it
is vital to consider TAP also from the distributed perspective. In this paper, we initiate the
study of distributed connectivity augmentation and present the first distributed approximation
algorithms for TAP. We do so in the CONGEST model [29], in which vertices exchange
messages of O(logn) bits in synchronous rounds, where we show fast algorithms for both
the unweighted and weighted variants of the problem. In addition to fast approximations
for TAP, our algorithms have the crucial implication of providing efficient algorithms for
approximating the minimum 2-edge-connected spanning subgraph, as well as several related
problems, such as verifying 2-edge-connectivity and augmenting the connectivity of any
spanning connected subgraph to 2. Finally, we complement our study with proving lower
bounds for distributed approximations of TAP.

1.1 Our Contributions
Distributed approximation algorithms for TAP
Our first main contribution is the first distributed approximation algorithm for TAP. In
particular, our algorithm provides a 2-approximation for weighted TAP in the CONGEST
model, summarized as follows.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

The approximation ratio of our algorithm matches the best approximation ratio for
weighted TAP in the sequential setting. Its round complexity of O(h) is tight if h = O(D),
where D is the diameter of G. This happens, for example, when T is a BFS tree, and follows
from a lower bound of Ω(D) rounds which we show in Section 6.

1 A graph G is 2-edge-connected if it remains connected after the removal of any single edge.

K. Censor-Hillel and M. Dory 21:3

However, the height h of the spanning tree T may be large, even if the diameter of G is
small, which raises the question of whether the dependence on h is necessary. We address
this question by providing an algorithm for unweighted TAP that has a round complexity
of O(D +

√
n log∗ n) rounds, which is significantly smaller for large values of h. This only

comes at the price of a slight increase in the approximation ratio, from 2 to 4.

I Theorem 1.2. There is a distributed 4-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(D +

√
n log∗ n) rounds.

Applications

The key application of our TAP approximation algorithm is an O(D)-round 2-approximation
algorithm for the minimum size 2-edge-connected spanning subgraph problem (2-ECSS),
which is obtained by building a BFS tree and augmenting it to a 2-edge-connected subgraph
using our algorithm.

I Theorem 1.3. There is a distributed 2-approximation algorithm for unweighted 2-ECSS
in the CONGEST model that completes in O(D) rounds.

The time complexity of our algorithm improves significantly upon the time complexity of
previous approximation algorithms for 2-ECSS, which are O(n) rounds for a 3

2 -approximation
[22] and O(D +

√
n log∗ n) rounds for a 2-approximation [33].

In addition, our weighted TAP algorithm implies a 3-approximation for weighted 2-ECSS.
Other applications of our algorithms are an O(D)-round algorithm for verifying 2-edge-
connectivity, and an algorithm for augmenting the connectivity of any connected spanning
subgraph H of G from 1 to 2.

Lower bounds

We complement our algorithms by presenting lower bounds for TAP. We first show that
approximating TAP is a global problem which requires Ω(D) rounds even in the LOCAL
model [25], where the size of messages is not bounded.

I Theorem 1.4. Any distributed α-approximation algorithm for weighted TAP takes Ω(D)
rounds in the LOCAL model, where α ≥ 1 can be any polynomial function of n. This holds
also for unweighted TAP, if 1 ≤ α < n−1

2c for a constant c > 1.

Theorem 1.4 implies that if h = O(D) then our TAP approximation algorithms have
an optimal round complexity. We also consider the case of h = ω(D) and show a family
of graphs, based on the construction in [32], for which Ω(h) rounds are needed in order to
approximate weighted TAP, were h = Θ(

√
n

log n).

I Theorem 1.5. For any polynomial function α(n), there is a Θ(n)−vertex graph of diameter
Θ(logn) for which any (perhaps randomized) distributed α(n)-approximation algorithm for
weighted TAP with an instance tree T ⊆ G of height h = Θ(

√
n

log n) requires Ω(h) rounds in
the CONGEST model.

Theorem 1.5 implies that our algorithm for weighted TAP is optimal on these graphs.
In particular, there cannot be an algorithm with a complexity of O(f(h)) for a sublinear
function f .

OPODIS 2017

21:4 Distributed TAP and 2-Edge-Connectivity

1.2 Technical overview of our algorithms
As an introduction, we start by showing an O(h)-round 2-approximation algorithm for
unweighted TAP, which allows us to present some of the key ingredients in our algorithms.
Later, we explain how we build on these ideas and extend them to give an algorithm for the
weighted case, and a faster algorithm for unweighted TAP.

Unweighted TAP
A natural approach for constructing a distributed algorithm for unweighted TAP could be to
try to simulate the sequential 2-approximation algorithm of Khuller and Thurimella [18]. In
their algorithm, the input graph G is first converted into a modified graph G′. Then, the
algorithm finds a directed MST in G′, which induces a corresponding augmentation in G.

When considered in the distributed setting, this approach imposes two difficulties. The
first is that we cannot simply modify the input graph, because it is the graph that represents
the underlying distributed network, whose topology is given and not under our control.
The second is in the directed MST procedure, as finding a directed MST efficiently in the
distributed setting seems to be difficult. The currently best known time complexity of this
problem is O(n2) for an asynchronous setting [14], which is trivial in the CONGEST model.

We overcome the above using two key ingredients. First, we bring into our construction
the tool of computing lowest common ancestors (LCAs). We show that building G′ and
simulating a distributed computation over it can be done by an efficient computation of
LCAs, and we achieve the latter by leveraging the labeling scheme for LCAs presented in [2].

Second, we drastically diverge from the Khuller-Thurimella framework by replacing the
expensive directed MST construction by a completely different procedure. Roughly speaking,
we show that the simple structure of G′ allows us to find an optimal augmentation in G′
efficiently by scanning the input tree T from the leaves to the root and performing the
following procedure. Each vertex sends to its parent information about edges that may be
useful for the augmentation since they cover many edges of the tree, and the vertices use the
LCA labels in order to decide which edges to add to the augmentation.

While a direct implementation of this would result in much information that is sent
through the tree, we show that at most two edges need to actually be sent by each vertex.
Thus, applying the labeling scheme and scanning the tree T result in a time complexity of
O(h) rounds, where h is the height of T . Finally, we prove that an optimal augmentation in G′
gives a 2-approximation augmentation for G, which gives a 2-approximation for unweighted
TAP in O(h) rounds.

Weighted TAP
Our algorithm for the unweighted case relies heavily on the fact that we can compare edges
and decide which one is the best for the augmentation according to the number of edges they
cover in the tree. However, once the edges have weights, it is not clear how to compare edges.
This is because of the tension between light edges that cover only few edges and heavier edges
that cover many edges. Therefore, Theorem 1.1, which applies for the weighted case, cannot
be directly obtained according to the above description. Hence, sending two edges per vertex
up in the tree, as we do for the unweighted case, is insufficient. That is, the number of edges
that should be considered for the augmentation could be much larger and vertices cannot
decide locally which edges are useful without feedback from their ancestors in the tree.

Nevertheless, we show how to overcome this by introducing a technique of having each
vertex send to its parent edges with altered weights. The trick here is that we modify the
weight that is sent for an edge in a way that captures the cost for covering each edge of

K. Censor-Hillel and M. Dory 21:5

the tree. This successfully addresses the competing needs of covering as many tree edges as
possible, while using the lightest possible edges, and allows focusing on a smaller number of
edges that may be useful for the augmentation. Finally, using standard pipelining, this gives
a time complexity of O(h) rounds for the weighted case as well.

Faster unweighted TAP
Both of our aforementioned algorithms rely on scanning the tree T , which results in a time
complexity that is linear in the height h of the tree T . In order to avoid the dependence on
h, one must be a able to add edges to the augmentation without scanning the whole tree.

However, if a vertex v does not get information about the edges added to the augmentation
by the vertices in the whole subtree rooted at v, then it may add additional edges in order
to cover tree edges that are already covered. But then we are no longer guaranteed to get an
optimal augmentation in G′, or even a good approximation for it.

Nevertheless, we are still able to show a faster algorithm for unweighted TAP, which
completes in O(D +

√
n log∗ n) rounds. The key ingredient in our algorithm is breaking the

tree T into fragments and applying our 2-approximation for unweighted TAP algorithm on
each fragment separately, as well as on the tree of fragments. Since our algorithm does not
scan the whole tree, it may add different edges to cover the same tree edges, which makes
the analysis much more involved. The approximation ratio analysis is based on dividing the
edges to different types and bounding the number of edges of each type separately, using a
subtle case-analysis. Although our algorithm does not find an optimal augmentation in G′,
it gives a 2-approximation for it, which results in a 4-approximation augmentation for the
original graph G.

1.3 Related Work

Sequential algorithms for TAP
TAP is intensively studied in the sequential setting. Since TAP is NP-hard, approximation
algorithms for it have been studied. The first 2-approximation algorithm for weighted
TAP was given by Frederickson and JáJá [9], and was later simplified by Khuller and
Thurimella [18]. Other 2-approximation algorithms for weighted TAP are the primal-dual
algorithm of Goemans et al. [13], and the iterative rounding algorithm of Jain [15].

Recently, a new algorithm achieved a 1.5-approximation for unweighted TAP [21], and
recent breakthroughs give approximations better than 2 for bounded weights [1,8]. Achieving
approximation better than 2 for the general weighted case is a central open question.
See [17, 20] for surveys about approximation algorithms for connectivity problems. Also, the
related work in [1] gives an overview of many recent sequential algorithms for TAP.

Related work in the distributed setting
While ours are the first distributed approximation algorithms for TAP itself, there are
important related studies in the distributed setting.

MST. In the distributed setting, finding an MST, which is a minimum weight subgraph
with connectivity 1, is a fundamental and well studied problem (see, e.g., [6, 7, 10, 11, 23, 28]).
The first distributed algorithm for this problem is the GHS algorithm that works in O(n logn)
time [10]. Following algorithms improved the round complexity to O(D +

√
n log∗ n) [11, 23].

OPODIS 2017

21:6 Distributed TAP and 2-Edge-Connectivity

k-ECSS. For the minimum weight 2-edge-connected spanning subgraph (2-ECSS) problem,
there is a distributed algorithm of Krumke et al. [22]. Their approach is finding a specific
spanning tree and then augmenting it to a 2-edge-connected graph. In the unweighted case,
they augment a DFS tree following the sequential algorithm of Khuller and Vishkin [19],
which results in an O(n)-round 3

2 -approximation algorithm for 2-ECSS. In the weighted case
they augment an MST and suggest a general O(n logn)-round 2-approximation algorithm
for weighted TAP, which gives an O(n logn)-round 3-approximation algorithm for 2-ECSS.
Our algorithms for TAP imply faster approximations for unweighted and weighted 2-ECSS.

Another distributed algorithm for unweighted k-ECSS is an O(k(D +
√
n log∗ n))-round

algorithm of Thurimella [33] that finds a sparse k-edge-connected subgraph. The general
framework of the algorithm is to repeatedly find maximal spanning forests in the graph
and remove their edges from the graph (this framework is also described in sequential
algorithms [17, 26]). This gives a k-edge-connected spanning subgraph with at most k(n− 1)
edges. Since any k-edge-connected subgraph has at least kn

2 edges, since the degree of each
vertex is at least k, this approach guarantees a 2-approximation for unweighted k-ECSS.

Fault-tolerant tree structures. Another related problem is the construction of fault-tolerant
tree structures. Distributed algorithms for constructing fault tolerant BFS and MST struc-
tures are given in [12], producing sparse subgraphs of the input graph G that contain a BFS
(or an MST) of G \ {e} for each edge e, for the purpose of maintaining the functionality of a
BFS (or an MST) even when an edge fails. However, TAP is different from these problems
in several aspects. First, we augment a specific spanning tree T rather then build the whole
structure from scratch. In addition, since we need to preserve only connectivity when an
edge fails and not the functionality of a BFS or an MST, optimal solutions for TAP may be
much cheaper.

Additional related problems. Another connectivity augmentation problem studied in the
distributed setting is the Steiner Forest problem [16,24]. There are also distributed algorithms
for finding the 2-edge-connected and 3-edge-connected components of a connected graph
[30, 31], and distributed algorithms that decompose a graph with large connectivity into
many disjoint trees, while almost preserving the total connectivity through the trees [4].

1.4 Preliminaries
For completeness, we first formally define the notion of edge connectivity.

I Definition 1.6. An undirected graph G is k-edge-connected if it remains connected after
the removal of any k − 1 edges.

The Tree Augmentation Problem (TAP). In TAP, the input is an undirected 2-edge-
connected graph G with n vertices, and a spanning tree T of G. The goal is to add to T
a minimum size (or a minimum weight) set of edges Aug from G, such that T ∪ Aug is
2-edge-connected. In the weighted version, each edge has a non-negative weight, and we
assume that the weights of the edges can be represented in O(logn) bits.

I Definition 1.7. An edge e in a connected graph G is a bridge in G if G\{e} is disconnected.

I Definition 1.8. A non-tree edge e = {u, v} covers the tree edge e′ if e′ is on the unique
path in T between u and v, i.e., if e′ is not a bridge in T ∪ {e}.

K. Censor-Hillel and M. Dory 21:7

A graphG is 2-edge-connected if and only if it does not contain bridges. Hence, augmenting
the connectivity of T requires covering of all the tree edges.

Models of distributed computation. In the distributed CONGEST model [29], the network
is modeled as an undirected connected graph G = (V,E). Communication takes place in
synchronous rounds. In each round, each vertex can send a message of O(logn) bits to each
of its neighbors. The time complexity of an algorithm is measured by the number of rounds.
Our algorithms work in the CONGEST model, where some of our lower bounds hold also in
the stronger LOCAL model [25], where the size of messages is not bounded.

In the distributed setting, the input to TAP is a rooted spanning tree T of G with root r,
whose height is denoted by h. The tree T is given to the vertices locally, that is, each vertex
knows which of its adjacent edges is in T and which of those leads to its parent in T .2 For
each vertex v 6= r, we denote by p(v) the parent of v in T . The output is a set of edges Aug,
such that T ∪Aug is 2-edge-connected. In the distributed setting it is enough that at the
end of the algorithm each vertex knows which of the edges incident to it are added to Aug.

All the messages sent in our algorithms consist of a constant number of ids, labels and
weights, hence the maximal message size is bounded by O(logn) bits, as required in the
CONGEST model.

Roadmap. In Section 2, we describe our O(h)-round 2-approximation algorithm for un-
weighted TAP, and in Section 3 we extend it to the weighted case. In Section 4, we show
applications of these algorithms, in particular for approximating 2-ECSS, and in Section 5
we present our faster algorithm for unweighted TAP. We present lower bounds for TAP in
Section 6, and discuss questions for future research in Section 7. Full details of our algorithm
for weighted TAP, as well as main proofs for it appear in Appendix A. Full details and proofs
appear in the full version [3].

2 A 2-approximation for Unweighted TAP in O(h) rounds

As an introduction, we start by describing an O(h)-round 2-approximation algorithm, AT AP ,
for unweighted TAP. Here we give a high-level description of AT AP . Full details and proofs
appear in [3]. The general structure of AT AP is as follows. It starts by building a related
virtual graph G′ as in [18]. Afterwards, we diverge completely from the approach of [18] since
we cannot simulate it efficiently in the distributed setting, as explained in the introduction.
Instead, AT AP finds an optimal augmentation in G′, and converts it to an augmentation Aug
in G. We show that the size of Aug is at most twice the size of an optimal augmentation
in G. All the communication in the algorithm is on the edges of the graph G, since G′ is
a virtual graph. In order to simulate the algorithm on G we use labels that represent the
edges of G′.

Building G′ from G. AT AP starts by building a related undirected virtual graph G′. To
simplify the presentation of the algorithm it is convenient to give an orientation to the edges
of G′. However, we emphasize that G′ is an undirected graph, that is, we do not address the
notion of directed connectivity. The graph G′ is defined as follows (as in [18]). The graph
G′ includes all the edges of T , and they are all oriented towards the root r of T . For every

2 If a root and orientation are not given, we can find a root r and orient all the edges towards r in O(h)
rounds using standard techniques.

OPODIS 2017

21:8 Distributed TAP and 2-Edge-Connectivity

Figure 1 There are two cases for every non-tree edge in G. The left graph shows the first case,
where the edge {u, v} is between an ancestor and a descendant in T . The right graph shows the
second case, where t = LCA(u, v).

non-tree edge e = {u, v} in G there are two cases (see Figure 1). If u is an ancestor of v in
T , we add the edge {u, v} to G′, oriented from u to v. Otherwise, denote t = LCA(u, v). In
this case we add to G′ the edges {t, u} and {t, v}, oriented from t to u and to v, respectively.

In order to build the graph G′ in the distributed setting, we use the labeling scheme for
LCAs of Alstrup et al. [2]. This labeling scheme assigns labels of size O(logn) bits to the
vertices of a rooted tree with n vertices, such that given the labels of u and v it is possible
to infer the label of their LCA. The algorithm for computing the labels can be implemented
in O(h) rounds in the distributed setting.

Since G′ is a virtual graph, the rest of the communication in the algorithm is only over
the tree edges. In order to simulate the rest of the algorithm over G′, it is enough that
each vertex knows only the tree edges incident to it (which is its input), and the labels of
the non-tree edges incoming to it in G′. Using the labeling scheme, each vertex learns this
information by exchanging labels with all of its neighbors. For more details, see [3].

The Correspondence between G and G′. A non-tree edge e = {u, v} in G covers all the
edges in the unique path in T between u in v. To build G′ from G, for each non-tree edge
e ∈ G, we added one or two corresponding edges to G′, which together cover exactly the
same tree edges as e. This allows us to show that an optimal augmentation in G′ gives a
2-approximation augmentation in G, when we replace each edge of the augmentation in G′
by a corresponding edge in G. For full details and proofs see [3].

Finding an optimal augmentation in G′. In the graph G′, all the edges that are not tree
edges are between an ancestor and a descendant of it in T . This allows us to compare edges
and define the notion of maximal edges. Intuitively, the notion of maximal edges would
capture our goal that during the algorithm, when we cover a tree edge, we would like to cover
it by an edge that reaches the highest ancestor possible, allowing us to cover many tree edges
simultaneously. This motivates the following definition. Let v be a vertex in the tree, and
let e = {u,w} and e′ = {u′, w′} be two edges between ancestors u, u′ of v and descendants
w,w′ of v. We say that e is the maximal edge among e and e′ if and only if u is an ancestor
of u′. If u = u′ we can choose arbitrarily one of them to be the maximal edge.

In order to cover all tree edges of G′, we assign each vertex v 6= r in G′ with the
responsibility of covering the tree edge {v, p(v)}. In our algorithm AAug for finding an
optimal augmentation in G′, the tree T is scanned from the leaves to the root, and whenever
a tree edge that is still not covered is reached, it is covered by the vertex responsible for it,
using the maximal edge possible. For doing so, it is enough that each vertex v sends to its
parent information about at most two edges. One of them is the maximal edge that was
already added to the augmentation in order to cover the tree edge {v, p(v)}, and one is the
maximal edge possible to cover the tree edge {v, p(v)}. We show that using the LCA labels
of edges, vertices can compute easily if a tree edge is covered, and which edge is the maximal
edge. The full description of the algorithm AAug is given in [3].

K. Censor-Hillel and M. Dory 21:9

Correctness proof. Denote by A the solution obtained by AAug, and by A∗ an optimal
augmentation in G′. We show in [3] that A is an optimal augmentation in G′. The key
ingredient is to show a one-to-one mapping from A to A∗. For each edge e ∈ A, we look at
the tree edge t(e) = {v, p(v)} where v is the vertex that decides to add e to the augmentation.
We map e to an edge e∗ ∈ A∗ that covers t(e). Showing that this mapping is one-to-one is
based on the fact that when we add a new edge to the augmentation, it is the maximal edge
possible. In addition, we show that the time complexity of the algorithm is O(h) rounds.
Since an optimal augmentation in G′ corresponds to a 2-approximation augmentation in G,
this gives the following.

I Theorem 2.1. There is a distributed 2-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

3 A 2-approximation for Weighted TAP in O(h) rounds

In this section, we give a high-level description of our algorithm for weighted TAP. Full
details and main proofs appear in Appendix A. Our algorithm for weighted TAP, AwT AP ,
has the same structure of AT AP . It starts by building the same virtual graph G′, and then it
finds an optimal augmentation in G′. The only difference in building G′ is that now each
edge e is replaced by one or two edges in G′ with the same weight that e has. The proof that
an optimal augmentation in G′ corresponds to an augmentation in G with at most twice the
cost of an optimal augmentation in G is the same as in the unweighted case.

The difference is in finding an optimal augmentation in G′. In the unweighted case, for
each vertex v, the only edge incoming to v in G′ that was useful for the algorithm was the
maximal edge. However, when edges have weights, potentially all the edges incoming to v
may be useful for the algorithm, and we can no longer use the notion of maximal edges in
order to compare edges. This is because of the tension between heavy edges that cover many
edges of the tree, and light edges that cover less edges of the tree. To overcome this obstacle,
we introduce a new technique of altering the weights of the edges we send in the algorithm.
We next describe how our new approach allows us to find an optimal augmentation in G′.

Finding an Optimal Augmentation in G′. In the weighted case, it is not clear anymore
how to compare edges. A vertex v may have many optional edges that cover {v, p(v)}, where
one of them has the minimum weight, but other edges cover more tree edges. In order to
cover the tree edge between v and its parent, it is best to add the edge with minimum weight.
However, in order to cover additional tree edges, we may want to add one of the other edges.
Since v alone does not have enough information to resolve this trade-off, one could have
the vertices propagate all the edges up in the tree, but this would accumulate to too much
information, which would render the algorithm very slow.

Instead, we pinpoint the exact source of the trade-off between length and weight of covering
edges, as follows. Let minv be the weight of the minimum weight edge that covers {v, p(v)}.
The intuition behind our approach is that in order to cover the tree edge {v, p(v)} we must
pay at least minv. Thus, minv captures the cost of covering this tree edge. Therefore, before
sending to its parent information about relevant edges, v alters their weights by reducing
from them the weight minv. In terms of p(v), the reduced weights represent the extra cost
incurred when choosing any of these edges in order to cover additional tree edges. Using the
reduced weights in our algorithm instead of the original ones is crucial for selecting which
edges to add to the augmentation, and allows to divide the weight of an edge in a way that
captures the cost for covering each tree edge. In addition, we show that using this approach,

OPODIS 2017

21:10 Distributed TAP and 2-Edge-Connectivity

sending information about at most h edges from each vertex to its parent suffices for selecting
the best edges for the augmentation.

The Algorithm. Our algorithm consists of two traversals of the tree: from the leaves to
the root and vice versa. As in AAug, each vertex v is responsible for covering the tree edge
{v, p(v)}.

In the first traversal, each vertex v computes the weight minv of the minimum weight
edge that covers the tree edge {v, p(v)} according to the weights of the edges it receives from
its children, and the weights of the edges incoming to it. It also computes the weights of the
minimum weight edges that cover the path from v to each of its ancestors u, according to
the weights v receives in the algorithm. Then, v subtracts minv from the weights of these
edges, and sends them to its parent with the altered weights.

In the second traversal, we scan the tree from the root to the leaves. Each child v of r
adds to the augmentation the edge having weight minv. It informs the relevant child who
sent it, if exists, and informs its other children it did not add their edges. Each internal
vertex v receives from its parent a message that indicates whether one of the edges it sent
was added to the augmentation by one of its ancestors or not. In the former case, v learns
that this edge was added to the augmentation and forwards the message to the relevant child
who sent it, if such exists. Otherwise, the tree edge {v, p(v)} is still not covered, and v adds
to the augmentation the edge having weight minv. It informs the relevant child who sent it,
if exists, and informs its other children that their edges were not added to the augmentation.

A full description of the algorithm is given in Appendix A.1.

Time analysis. In our algorithm, each vertex sends to its parent information about at most
h edges. If each vertex waits to receive all the messages from its children, before sending
messages to its parent, it would result in a time complexity of O(h2) rounds. However, using
pipelining we get a time complexity of O(h) rounds. The main intuition is that although
each vertex v may receive h different messages from each of its children during the algorithm,
in order for v to send to its parent p(v) the message concerning an ancestor u, the vertex
v only needs to receive one message from each of its children concerning the ancestor u.
Hence, if all the vertices send the messages according to increasing order of heights of their
ancestors, we can pipeline the messages and get a time complexity of O(h) rounds. The full
proof appears in [3].

Correctness proof. In Appendix A.3, we give a correctness proof for the algorithm. The
challenge in establishing the correctness of our algorithm lies in the fact that the vertices use
altered weights rather than the original ones. Nevertheless, we show that our intuition behind
choosing these altered weights faithfully captures the essence of finding an augmentation in
the weighted case. The key ingredient we use in our proof is giving a cost to each edge of T .
For a tree edge t = {v, p(v)}, we assign the cost c(t) = minv. We are then able to prove the
following.
(I) The sum of the costs of the edges of T is equal to the cost of the augmentation obtained

by the algorithm.
(II) The cost of any augmentation of G′ is at least the sum of costs of the edges of T .

To show (1), for each edge e added to the augmentation, we assign a tree path Pe, as
follows. For an edge e = {u, x} added to the augmentation by a vertex v, where u is an
ancestor of x in the tree, we assign the tree path Pe between x to p(v). Then, we show that
w(e) =

∑
t∈Pe

c(t). The proof is based on the fact that the cost of the tree edge {v, p(v)}

K. Censor-Hillel and M. Dory 21:11

is minv by definition, however, its cost is also w(e) −
∑

v′∈V ′ minv′ where V ′ are all the
vertices on the path between x and v, excluding v. This is since each vertex v′ in this path
reduces minv′ from the weight of e before sending it to its parent, and since e is the edge v
chooses to add to the augmentation. This gives w(e) = minv +

∑
v′∈V ′ minv′ =

∑
t∈Pe

c(t).
In addition, we show that the paths Pe are disjoint and their union is the entire tree T , which
proves (1). The proof is based on the fact that the edges of the augmentation cover all tree
edges, and that a vertex v adds an edge to the augmentation only if the tree edge {v, p(v)} is
not already covered by an edge added by one of its ancestors. We prove (2) in a similar way.

In conclusion, our algorithm gives an optimal augmentation in G′, which gives a 2-
approximation augmentation in G.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

4 Applications

In this section, we discuss applications of our algorithms, and show they provide efficient
algorithms for additional related problems.

Minimum Weight 2-Edge-Connected Spanning Subgraph. In the minimum weight 2-
edge-connected spanning subgraph problem (2-ECSS), the input is a 2-edge-connected graph
G, and the goal is to find the minimum weight 2-edge-connected spanning subgraph of G.
Using AT AP we have the following.

I Theorem 1.3. There is a distributed 2-approximation algorithm for unweighted 2-ECSS
in the CONGEST model that completes in O(D) rounds.

Proof. We apply AT AP on G and a BFS tree T of G. Finding a BFS tree takes O(D)
rounds [29], and AT AP takes O(D) rounds since T is a BFS tree. The size of the augmentation
Aug is at most n − 1 because in the worst case we add a different edge in order to cover
each tree edge. Hence, T ∪Aug is a 2-edge-connected subgraph with at most 2(n− 1) edges.
Note that any 2-edge-connected graph has at least n edges, which implies a 2-approximation,
as claimed. J

The above algorithm has a better time complexity compared to the algorithm of [22],
which finds a 3

2 -approximation to 2-ECSS in O(n) rounds. In the algorithm of [22], the
augmented tree T is a DFS tree rather then a BFS tree. The same proof of [19, 22] gives
that if we apply AT AP on G and a DFS tree we also obtain a 3

2 -approximation to 2-ECSS in
O(n) rounds. For weighted 2-ECSS, using AwT AP gives the following.

I Theorem 4.1. There is a distributed 3-approximation algorithm for weighted 2-ECSS in
the CONGEST model that completes in O(hMST +

√
n log∗ n) rounds, where hMST is the

height of the MST.

Proof. We follow the same approach of [22]. We start by constructing an MST, which takes
O(D +

√
n log∗ n) rounds [23], and then we augment it using AwT AP in O(hMST) rounds.3

Let w(A) be the weight of an optimal solution A to weighted 2-ECSS. Since both the MST
and an optimal augmentation have weights at most w(A), and since our algorithm for

3 We assume that the MST is unique. Otherwise, hMST is the height of the MST we construct.

OPODIS 2017

21:12 Distributed TAP and 2-Edge-Connectivity

weighted TAP gives a 2-approximation, this approach gives a 3-approximation for weighted
2-ECSS. J

This algorithm has a better time complexity compared to the algorithm of [22], which
takes O(n logn) rounds, with the same approximation ratio.

Increasing the Edge-Connectivity from 1 to 2. AwT AP is a 2-approximation algorithm
for TAP, but can also be used to increase the connectivity of any spanning subgraph H of
G from 1 to 2. In order to do so, we start by finding a spanning tree T of H. Note that it
is not enough to apply AT AP on T and take the augmentation obtained, since edges from
H can be added to the augmentation with no cost. Hence, we apply AwT AP on G and T ,
where we set the weights of all the edges of H to be 0. The augmentation Aug we obtain is
a set of edges such that T ∪ Aug is 2-edge-connected, which also implies that H ∪ Aug is
2-edge-connected. In addition, its cost is at most twice the cost of an optimal augmentation
of H, because any augmentation of H corresponds to an augmentation of T with the same
cost, and Aug is a 2-approximation to the optimal augmentation of T . The time complexity
is O(DH) rounds where DH is the diameter of H, since finding a spanning tree T of H takes
O(DH) rounds and applying AwT AP takes O(DH) rounds because it is the height of T .

Verifying 2-Edge-Connectivity. The algorithm AT AP can be used in order to verify if a
connected graph G is 2-edge-connected in O(D) rounds, where at the end of the algorithm
all the vertices know if G is 2-edge-connected.4 We start by building a BFS tree T of G
and then apply AT AP to G and T . Note that when we find an optimal augmentation in
G′ by AAug, each vertex v is responsible to cover the tree edge {v, p(v)}. If the graph G is
2-edge-connected, all the edges can be covered. If the graph G is not 2-edge-connected, then
there is a tree edge {v, p(v)} that is a bridge in the graph, and hence cannot be covered by
any edge in G. In such a case, v identifies that it cannot cover the edge and hence the graph
is not 2-edge-connected. Therefore, after scanning the tree from the leaves to the root in
AAug, we can distinguish between these two cases, which takes O(D) rounds. The root r
can distribute the information to all the vertices in O(D) rounds as well.

5 A 4-approximation for Unweighted TAP in Õ(D +
√

n) rounds

The time complexity of AT AP and AwT AP is linear in the height of T . When h is large, we
suggest a much faster O(D +

√
n log∗ n)-round algorithm for unweighted TAP. Here we give

a high-level description of the algorithm, full details and proofs appear in [3].
The structure of the algorithm is the same as the structure of AT AP . It starts by building

the same virtual graph G′, and then it finds an augmentation in G′. However, since we want
to reduce the time complexity, our algorithm cannot scan the whole tree anymore. Therefore,
we can no longer use directly the LCA labeling scheme and the algorithm AAug for finding an
optimal augmentation. To overcome this, we break the tree T into fragments, and we divide
the algorithm into local parts, in which we communicate in each fragment separately, and
to global parts, in which we coordinate between different fragments over a BFS tree. This
approach is useful also in other distributed algorithms for global problems, such as finding an
MST [23] or a minimum cut [27]. The challenge is showing that this approach guarantees a

4 A verification algorithm with the same complexity can also be deduced from the edge-biconnectivity
algorithm of Pritchard [30].

K. Censor-Hillel and M. Dory 21:13

good approximation. Since our algorithm does not scan the whole tree T it may add different
edges in order to cover the same tree edges, which makes the analysis much more involved.

Building G′ from G. In order to build G′ from G we use the labeling scheme for LCAs
that we used in AT AP . However, applying this scheme directly takes O(h) rounds. We show
how to compute all the relevant LCAs more efficiently in O(D +

√
n) rounds. The idea is to

apply the labeling scheme on each fragment separately to obtain local labels, and to apply
the labeling scheme on the tree of fragments to obtain global labels. We show that using the
local and global labels, and additional information on the structure of the tree of fragments,
each vertex can compute all the edges incoming to it in G′. For full details see [3].

Finding an optimal augmentation in G′. In order to find an augmentation in G′, we need
to cover tree edges between fragments (global edges) and tree edges in the same fragment
(local edges). For doing so, we start by computing all the maximal edges that cover the
global edges. To cover all the global edges, one approach could be to add all these maximal
edges to the augmentation. However, this cannot guarantee a good approximation. Instead,
we apply AAug on the tree of fragments in order to cover all the global edges. Then, we
apply it on each fragment separately in order to cover the local edges in the fragment that
are still not covered. This algorithm requires coordination between different fragments,
since each vertex v needs to learn if the tree edge {v, p(v)} is already covered after the first
part of the algorithm. In addition, although the second part is applied on each fragment
separately, a vertex v may need to add an edge incoming to another fragment to cover the
tree edge {v, p(v)}. For achieving an efficient time complexity, we show how to use only
O(
√
n) different messages for the whole coordination of the algorithm. For full details see [3].

Approximation Ratio. We show that this approach gives a 2-approximation to the optimal
augmentation in G′. Denote by A the solution obtained by the algorithm and by A∗ an
optimal augmentation in G′. In the correctness proof of AT AP we show a one-to-one mapping
from A to A∗, but this mapping is no longer one to one here. However, if we could show that
each edge in A∗ is mapped to by at most two edges from A, we can obtain a 2-approximation.
Unfortunately, this does not hold either.

Our approach is to divide the edges in A to two types A1, A2 as follows. We map each
edge e ∈ A to a corresponding path Pe in T . If Pe contains an internal vertex with more than
one child in the tree we say that e ∈ A1, otherwise e ∈ A2. Then, we show that |A1| ≤ 2|A∗|,
and |A2| ≤ 2|A∗|. The main idea is that the number of edges in A1 is related to the degrees
of internal vertices in T , which affects the number of leaves in the tree. We use this in order
to show that |A1| ≤ 2` where ` is the number of leaves in T . Note that ` is a lower bound on
the size of any augmentation in G′, since we need to add to the augmentation a different
edge in order to cover each one of the leaves. This gives |A1| ≤ 2|A∗|.

In order to show that |A2| ≤ 2|A∗|, we use the fact that the edges of A2 correspond to
tree paths with a simple structure. This allows us to show a mapping between A2 to A∗ in
which each edge in A∗ is mapped to by at most two edges from A2, giving |A2| ≤ 2|A∗|.

In conclusion, |A| = |A1 ∪ A2| ≤ 4|A∗|. A more delicate analysis extending these
ideas gives |A| ≤ 2|A∗|. This gives a 2-approximation to the optimal augmentation of G′,
which results in a 4-approximation to the optimal augmentation in G. A full proof of the
approximation ratio is given in [3], and gives the following.

I Theorem 1.2. There is a distributed 4-approximation algorithm for unweighted TAP in
the CONGEST model that runs in O(D +

√
n log∗ n) rounds.

OPODIS 2017

21:14 Distributed TAP and 2-Edge-Connectivity

6 Lower Bounds

An Ω(D) Lower Bound for TAP in the LOCAL model. We show that TAP is a global
problem, which admits a lower bound of Ω(D) rounds, even in the LOCAL model where the
size of messages is unbounded.

I Theorem 1.4. Any distributed α-approximation algorithm for weighted TAP takes Ω(D)
rounds in the LOCAL model, where α ≥ 1 can be any polynomial function of n. This holds
also for unweighted TAP, if 1 ≤ α < n−1

2c for a constant c > 1.

The proof is based on considering two similar graphs G1, G2, defined as follows. The graph
G1 consists of a path T of n = 2k+ 1 vertices {v0, v1, ..., v2k}, and the edges {v2i, v2(i+1)} for
0 ≤ i < k, where G2 = G1 ∪{v0, v2k}. In G2, adding the edge {v0, v2k} already covers all the
edges of the tree T , where in G1 we must add many edges to the augmentation. However, a
vertex in the middle of the path T cannot distinguish between the graphs G1, G2 in less than
Ω(D) rounds. Based on these ideas, we show that approximating TAP takes Ω(D) rounds.
The full proof appears in [3].

A Lower Bound for weighted TAP in the CONGEST model. By Theorem 1.4, when
h = O(D) our algorithms AT AP , AwT AP are optimal up to a constant factor. But what
about the case of h = ω(D) for the CONGEST model? In [3], we show a family of graphs
where h = ω(D), in which Ω(h) rounds are needed in order to approximate weighted TAP,
where h = O(

√
n). The lower bound is proven using a reduction from the 2-party set-

disjointness problem, in which there are two players, Alice and Bob, that have to decide
whether their input strings are disjoint. Our construction is based on a construction presented
in [6, 32]. In order to use this construction for showing lower bounds for TAP, we add to it
additional parallel edges5 and give weights to the edges in such a way that all the edges of
the input tree T can be covered by parallel edges of weight 0, except for k edges, {ei}k

i=1.
The edge ei may be covered either by a corresponding parallel edge eA

i , or by a distant edge
eB

i that closes a cycle that contains ei (see Figure 2 for an illustration). However, the weights
of the edges eA

i and eB
i depend on the i’th bit in the input strings of Alice and Bob, such

that there is a light edge that covers ei if and only if this bit equals 0 at least in one of the
input strings. It follows that all the k edges can be covered by light edges if and only if the
input strings of Alice and Bob are disjoint.

Using a known lower bound on the communication complexity of set-disjointness, we
prove Theorem 1.5. Full details and proofs appear in [3].

I Theorem 1.5. For any polynomial function α(n), there is a Θ(n)−vertex graph of diameter
Θ(logn) for which any (perhaps randomized) distributed α(n)-approximation algorithm for
weighted TAP with an instance tree T ⊆ G of height h = Θ(

√
n

log n) requires Ω(h) rounds in
the CONGEST model.

7 Discussion

In this paper, we present the first distributed approximation algorithms for TAP. Many
intriguing problems remain open. First, can we get efficient distributed algorithms for
TAP with an approximation ratio better than 2? In the sequential setting, achieving an
approximation better than 2 for weighted TAP is a central open question. However, there

5 We also show a construction with no parallel edges.

K. Censor-Hillel and M. Dory 21:15

𝑟 = 𝑢0 𝑢𝑑𝑝−1𝑢1 𝑢2

𝑣0
1

𝑣0
2

𝑣0
𝑘

𝑣𝑑𝑝−1
1

𝑣𝑑𝑝−1
2

𝑣𝑑𝑝−1
𝑘

Figure 2 The structure of the graph G. The edges of the input tree T are marked with solid lines,
other edges are marked with dashed lines. The edge ei = {r, vi

0} can be covered either by a parallel
edge eA

i , or by the corresponding edge eB
i = {udp−1, vi

dp−1} (additional options are expensive).

are several recent algorithms achieving better approximations for unweighted TAP [5,21] or
for weighted TAP with bounded weights [1, 8].

Second, can we show algorithms for weighted TAP and weighted 2-ECSS that are
more efficient? For unweighted TAP, we showed an algorithm with a time complexity of
O(D +

√
n log∗ n) rounds. In addition, for unweighted k-ECSS, the O(k(D +

√
n log∗ n))-

round algorithm of Thurimella [33] gives a 2-approximation. However, currently there are no
algorithms for the weighted problems with a similar time complexity.

There are many additional connectivity augmentation problems, such as increasing the
edge connectivity from k to k + 1 or to some function f(k), as well as augmentation for
increasing the vertex connectivity. Such problems have been widely studied in the sequential
setting, and a natural question is to design distributed algorithms for them.

Finally, it is interesting to study TAP and additional connectivity problems also in other
distributed models, such as the dynamic model where edges or vertices may be added or
removed from the network during the algorithm. An interesting question is how to maintain
highly-connected backbones when the network can change dynamically.

References

1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with
bounded costs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2384–2399. SIAM, 2017.

2 Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancest-
ors: A survey and a new algorithm for a distributed environment. Theory of Computing
Systems, 37(3):441–456, 2004.

3 Keren Censor-Hillel and Michal Dory. Fast distributed approximation for TAP and 2-edge-
connectivity. arXiv:1711.03359, 2017. URL: https://arxiv.org/abs/1711.03359.

4 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decom-
position. In Proceedings of the 2014 ACM symposium on Principles of distributed computing
(PODC), pages 156–165. ACM, 2014.

5 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via
lift-and-project, part II. Algorithmica, pages 1–44, 2015.

OPODIS 2017

https://arxiv.org/abs/1711.03359

21:16 Distributed TAP and 2-Edge-Connectivity

6 Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing, 36(2):433–456,
2006.

7 Michael Elkin. A simple deterministic distributed MST algorithm, with near-optimal
time and message complexities. In Elad Michael Schiller and Alexander A. Schwarz-
mann, editors, Proceedings of the ACM Symposium on Principles of Distributed Comput-
ing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 157–163. ACM, 2017.
doi:10.1145/3087801.3087823.

8 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. A 3/2-approximation
algorithm for tree augmentation via chvátal-gomory cuts. CoRR, abs/1702.05567, 2017.
arXiv:1702.05567.

9 Greg N Frederickson and Joseph JáJá. Approximation algorithms for several graph aug-
mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

10 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming Languages and
systems (TOPLAS), 5(1):66–77, 1983.

11 Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing, 27(1):302–316, 1998.

12 Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-tolerant
tree structures. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 387–396. ACM, 2016.

13 Michel X Goemans, Andrew V Goldberg, Serge A Plotkin, David B Shmoys, Eva Tardos,
and David P Williamson. Improved approximation algorithms for network design problems.
In SODA, volume 94, pages 223–232, 1994.

14 P Humblet. A distributed algorithm for minimum weight directed spanning trees. IEEE
Transactions on Communications, 31(6):756–762, 1983.

15 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

16 Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Effi-
cient distributed approximation algorithms via probabilistic tree embeddings. Distributed
Computing, 25(3):189–205, 2012.

17 Samir Khuller. Approximation algorithms for finding highly connected subgraphs. In Ap-
proximation algorithms for NP-hard problems, pages 236–265. PWS Publishing Co., 1996.

18 Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph aug-
mentation. Journal of Algorithms, 14(2):214–225, 1993.

19 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. Journal
of the ACM (JACM), 41(2):214–235, 1994.

20 Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity problems. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2010.

21 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Transactions on Algorithms (TALG),
12(2):23, 2016.

22 Sven O Krumke, Peter Merz, Tim Nonner, and Katharina Rupp. Distributed approxim-
ation algorithms for finding 2-edge-connected subgraphs. In International Conference On
Principles Of Distributed Systems (OPODIS), pages 159–173. Springer, 2007.

23 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing (PODC), pages 238–251. ACM, 1995.

http://dx.doi.org/10.1145/3087801.3087823
http://arxiv.org/abs/1702.05567

K. Censor-Hillel and M. Dory 21:17

24 Christoph Lenzen and Boaz Patt-Shamir. Improved distributed steiner forest construction.
In Proceedings of the 2014 ACM symposium on Principles of distributed computing (PODC),
pages 262–271. ACM, 2014.

25 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

26 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(1):583–596, 1992.

27 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

28 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time-and message-optimal
distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 743–756. ACM, 2017.

29 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
30 David Pritchard. Robust network computation. Master’s thesis, MIT, 2005.
31 David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle

space sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.
32 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal

Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

33 Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and
biconnected components. In Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing (PODC), pages 28–37. ACM, 1995.

A A 2-approximation for weighted TAP in O(h) rounds: full details

In this section, we give full details and main proofs for the algorithm AwT AP . We show the
following.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

As explained in Section 3, the algorithm AwT AP has the same structure of AT AP , but it
differs from it in the algorithm for finding an optimal augmentation in G′. In Section A.1,
we describe our algorithm for finding an optimal augmentation in G′. In Section A.2, we
analyze the time complexity of the algorithm, and in Section A.3 we prove its correctness.

A.1 The algorithm
A description of the algorithm is given in Algorithm 1. For simplicity of presentation, we
start by describing an algorithm which takes O(h2) rounds. Later, in Section A.2, we explain
how using pipelining we improve the time complexity to O(h) rounds.

Technical Details:

We assume in the algorithm that each vertex knows all the ids of its ancestors in T . We
justify it in the next claim. Note that when we construct G′, if {u, v} is an edge between
an ancestor u and its descendant v in T , v learns the label of u according to the LCA
labeling scheme and not the id of u. However, once v learns about the ids and labels of all
its ancestors, it knows the id of u as well, and can use it in the algorithm.

I Claim 1.1. All the vertices can learn the ids and labels of all their ancestors in O(h)
rounds.

OPODIS 2017

http://dx.doi.org/10.1137/0221015

21:18 Distributed TAP and 2-Edge-Connectivity

Algorithm 1 Finding an Optimal Augmentation in G′.

The code is for every vertex v 6= r

1: Initialization:
2: ev,u ← the minimum weight edge incoming to v that covers the path between v and its

ancestor u or ⊥ if there is no such edge.
3: wv(u)← w(ev,u) for each ancestor u of v such that ev,u 6= ⊥, and wv(u)←∞ otherwise.
4: Av ← the union of v and its children in T .
5: Augv ← ∅

6: First Traversal:
7: if v is a leaf then
8: for each ancestor u of v: senderv(u)← v

9: else
10: wait for receiving wv′(u) for all ancestors u of v, from each child v′ of v
11: for each ancestor u of v: wv(u)← minv′∈Avwv′(u), senderv(u)← argminv′∈Avwv′(u)
12: end if
13: minv ← wv(p(v))
14: for each ancestor u of v: wv(u)← wv(u)−minv

15: for each ancestor u 6= p(v) of v send (u,wv(u)) to p(v)

16: Second Traversal:
17: u← p(v)
18: if v is not a child of r then
19: wait for a message m from p(v)
20: if m 6= ⊥ then u← m

21: end if
22: end if
23: s← senderv(u)
24: if s = v then
25: Augv ← Augv ∪ {ev,u}
26: else
27: send u to s
28: end if
29: for each child v′ 6= s of v send ⊥ to v′

Proof. In order to do this, at the first round each vertex sends to its children its id and label.
In the next round, each vertex sends to its children the id and label it received in the previous
round, and we continue in the same way until each vertex learns about all its ancestors.
Clearly, after h rounds each vertex learns all the ids and labels of all its ancestors. J

I Claim 1.2. If a vertex v adds ev,u to Augv in line 25 of its algorithm, then ev,u 6= ⊥.

Proof. Since G′ is 2-edge-connected, we can cover all tree edges by edges from G′. Hence,
the minimum weight of an edge that covers some tree edge is never infinite. It follows that if
a vertex v adds ev,u to Augv, then ev,u 6= ⊥. J

K. Censor-Hillel and M. Dory 21:19

A.2 Time analysis

We next analyze the time complexity of the algorithm. In the second traversal of the tree,
each parent sends to each of its children one message, which takes O(h) rounds. In the first
traversal of the tree, each vertex sends to its parent at most h edges. If each vertex waited
until it got all the messages from its children before sending messages to its parent, it would
result in a time complexity of O(h2) rounds. We show how to get a time complexity of O(h)
rounds for this part using pipelining. To show this, we carefully design each vertex v to send
the messages (u,wv(u)) in increasing order of heights of its ancestors.

The main intuition is that although each vertex v may receive h different messages from
each of its children during the algorithm, in order for v to send to its parent p(v) the message
concerning an ancestor u, the vertex v only needs to receive one message from each of its
children concerning the ancestor u. Hence, if all the vertices send the messages according to
increasing order of heights of their ancestors, we can pipeline the messages and get a time
complexity of O(h) rounds. We formalize this intuition in the next lemma, which we prove
in the full version.

I Lemma A.3. A vertex v at height i sends to its parent until round i + j the message
(u,wv(u)) such that u is an ancestor of v at height j.

From the lemma we get that by round 2h all the children of r learn about the minimum
weight edge that covers the tree edge between them and r, so the first traversal is completed
after O(h) rounds. It follows that the overall time complexity of the algorithm is O(h) rounds
as needed, giving the following.

I Lemma A.4. Algorithm 1 completes in O(h) rounds.

A.3 Correctness Proof

I Lemma A.5. Algorithm 1 finds an optimal augmentation in G′.

Proof. Note that the solution obtained by the algorithm is an augmentation of G′ because
each vertex v adds an edge in order to cover the tree edge {v, p(v)} if it is not already covered
by an edge which one of its ancestors decides to add to the augmentation. In order to show
that the augmentation is optimal we give costs to the edges of T such that the sum of the
costs is equal to both the cost of the solution obtained by the algorithm and the cost of an
optimal augmentation of G′. Hence, we conclude that the cost of the solution obtained by
the algorithm is optimal.

Giving costs to the edges of T :

Fix a vertex v 6= r and let t = {v, p(v)}. We define c(t) = minv (the value of wv(p(v)) in
line 13 of the algorithm).

For an edge e = {u, x} that covers t, such that u is an ancestor of x in T , let P be the
path of tree edges between x and p(v) in T . For a vertex v′ such that {v′, p(v′)} ∈ P , let Pv′

be the path of tree edges between x and v′. Note that minv is the weight of the minimum
weight edge covering the tree edge t = {v, p(v)} according to the weights v receives in the
algorithm. Denote this edge by ev.

I Claim 1.6. w(ev) =
∑

t′∈P c(t′).

OPODIS 2017

21:20 Distributed TAP and 2-Edge-Connectivity

Proof. Let ev = {u, x}, where u is an ancestor of x in T . For each vertex v′ on the path
between x and v, ev is the minimum weight edge covering the path between v′ and its
ancestor p(v), according to the weights v′ receives in the algorithm, as otherwise we get a
contradiction to the definition of ev. Each vertex on this path reduces minv′ from the weight
of ev it receives before sending it to its parent. Denote by V ′ all the vertices on the path
between x and v, excluding v. It follows that

c(t) = minv = w(ev)−
∑

v′∈V ′

minv′ = w(ev)−
∑

t′∈Pv

c(t′),

which gives w(ev) =
∑

t′∈P c(t′). J

I Claim 1.7. The sum of the costs of the edges of T is equal to the cost of the solution
obtained by the algorithm.

Proof. We map each edge e added to the augmentation to a path Pe of tree edges, such
that:
(I) The paths that correspond to different augmentation edges are disjoint, and their union

is the entire tree T . That is, Pe ∩ Pe′ = ∅ for e 6= e′, and ∪Pe = T .
(II) The weight of e is equal to the sum of costs of tree edges in the corresponding path, i.e.,

w(e) =
∑

t′∈Pe
c(t′).

Let e = {u, x} be an edge added to the augmentation, such that u is an ancestor of x in
T . Let v be the vertex that decides to add e to the augmentation. Note that v decides to
add e to the augmentation because it covers the tree edge {v, p(v)}, which is not covered
yet by an edge that one of v’s ancestors decides to add to the augmentation. We map e to
the tree path Pe that consists of all the tree edges on the path between x and p(v). Note
that e covers all the edges on this path (and it may also cover other tree edges, on the path
between p(v) and u in T). This divides the tree edges to disjoint paths because the vertices
on the path between x and p(v) do not decide to add other edges to the augmentation, since
all the relevant tree edges are already covered by e. In addition, these paths include all tree
edges because the edges added to the augmentation cover all tree edges. This proves (I).

Note that v adds e to the augmentation because the tree edge {v, p(v)} is not covered yet.
So v chooses e because it is the minimum weight edge ev that covers {v, p(v)}. By Claim
1.6, it holds that w(ev) =

∑
t′∈P c(t′) where P = Pe is the path of tree edges between x and

p(v). This proves (II). (I) and (II) complete the proof that the cost of all the edges added to
the augmentation is equal to the sum of costs of the edges in T . J

A similar proof shows that the cost of any augmentation of G′ is at least the sum of costs
of the edges of T . The idea is to map a subset of edges in the augmentation to disjoint paths
in T , such that the union of the paths is the entire tree. We show that the weight of each
edge is at least the sum of costs of the tree edges on the corresponding path, which proves
the claim. The proof is in the full version. From the above and from Claim 1.7 we have that
the cost of the augmentation obtained by the algorithm is smaller or equal to the cost of any
augmentation of G′, hence the solution obtained by the algorithm is optimal. This completes
the proof of Lemma A.5. J

By Lemmas A.5 and A.4, Algorithm 1 finds an optimal augmentation A′ in G′ in O(h)
rounds. In the full version, we show that A′ corresponds to a 2-approximation augmentation
in G, and that building G′ takes O(h) rounds. This gives the following.

I Theorem 1.1. There is a distributed 2-approximation algorithm for weighted TAP in the
CONGEST model that runs in O(h) rounds, where h is the height of the tree T .

	Introduction
	Our Contributions
	Technical overview of our algorithms
	Related Work
	Preliminaries

	A 2-approximation for Unweighted TAP in O(h) rounds
	A 2-approximation for Weighted TAP in O(h) rounds
	Applications
	A 4-approximation for Unweighted TAP in widetildeO(D+sqrtn) rounds
	Lower Bounds
	Discussion
	A 2-approximation for weighted TAP in O(h) rounds: full details
	The algorithm
	Time analysis
	Correctness Proof

