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Abstract
TheMeeting problem for k ≥ 2 searchers in a polygon P (possibly with holes) consists in making the searchers move within
P , according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless
of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision.
Depending on the shape of P , we minimize the number of searchers k for which theMeeting problem is solvable. Specifically,
if P has a rotational symmetry of order σ (where σ = 1 corresponds to no rotational symmetry), we prove that k = σ + 1
searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting
problem with k = 2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes).
Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look–Compute–Move
cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate
system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are
arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information
by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations (provided
that the coordinates of the polygon’s vertices are algebraic real numbers in some global coordinate system), and each searcher
can geometrically construct its own destination point at each cycle using only a compass and a straightedge. We stress that
such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information
they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent
interest.

A preliminary version of this paper has appeared at the 31st
International Symposium on Distributed Computing (DISC’17) [18].
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1 Introduction

1.1 Framework

Meeting problemConsider a set of k ≥ 2 autonomousmobile
robots, modeled as geometric points located in a polygonal
enclosure P , which may contain holes. The boundary of P
limits both visibility andmobility, in that robots cannot move
or see through the edges of P . Each robot observes the vis-
ible portion of P (taking an instantaneous snapshot of it),
executes an algorithm to compute a visible destination point,
and then moves to that point. Such a Look–Compute–Move
cycle is repeated forever by every robot, each time taking a
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new snapshot and moving to a newly computed point.1 In
this paper we study the Meeting problem, which prescribes
the k robots to move in such a way that eventually at least
two of them come to see each other and become “mutually
aware”. We will refer to these robots as P-searchers, or sim-
ply searchers.

Searchers’ limitations Our searchers are severely limited,
which makes the Meeting problem harder to solve.

– They do not know the shape of P in advance, nor their
whereabouts within P .

– They are anonymous, implying that they all execute the
same algorithm to determine their destination points.

– They are oblivious, meaning that each destination point
is computed based only on the last snapshot taken, while
older snapshots are forgotten, and no memory is retained
between cycles.2

– They are deterministic, meaning that they cannot resort
to randomness in their computations. Hence, their task
has to be accomplished in all cases, as opposed to “with
high probability”.

– They are asynchronous, in the sense that we make
no assumptions on how fast each searcher completes
a Look–Compute–Move cycle compared to the others.
These parameters are dynamic and are controlled by an
adversarial scheduler.

– They are disoriented,whichmeans that they have nomag-
netic compasses,GPSdevices, or agreements of any kind.
Each searcher has its own independent local orientation,
unit of length, and handedness.

– They are silent, in that they cannot communicate with
one another in any way. In particular, there is no shared
memory, and the information contained in a snapshot can
only be accessed by the searcher who took that snapshot.

– They have arbitrary initial locations within P .

The polygon P is anonymous, as well. In particular, its ver-
tices do not carry labels, and can only be distinguished by
their relative positions. There are no other landmarks or
objects that can help the searchers orient themselves. Our
goal is to design an algorithm that allows these searchers to
solve theMeeting problem regardless of their initial locations
within P and regardless of how the adversarial scheduler
decides to control their behaviors (by slowing down some and
speeding up others).We emphasize that a searcher’s snapshot

1 The typical assumption in this model is that a searcher’s local ref-
erence frame retains its orientation, scale, and handedness after each
move. We will make this assumption as well, although it is not strictly
needed by our algorithms (see the footnote in Sect. 2).
2 In Sect. 3 we will drop this assumption in order to give a cleaner
exposition of our algorithms. In Sect. 4 we will restore the assumption
and show how to extend our algorithms to oblivious searchers.

contains the full geometry of the visible part of P , in contrast
with other models where only some geometric information
is available (e.g., only angles and no distances, as in [16]).

Applications In real-life applications, being in line of sight
may allow robots to communicate in environments where
non-optical means of communication are unavailable or
impractical. For instance, free-space optical communica-
tion [29] is a technology that uses a laser to implement
a communication channel that is resilient to jamming and
radio-frequency noise.

Solving the Meeting problem is a necessary preliminary
step to more complex tasks, such as space coverage [30]
or the extensively studied Gathering problem, where all k
robots have to physically reach the same point and stop there.
In the special case of k = 2 robots, the Gathering problem
is also called Rendezvous problem. Clearly, the terminating
condition of the Meeting problem is more relaxed than that
of Gathering; hence, any solution to the Gathering problem
would also solve Meeting. Unfortunately, no solution to the
Gathering problem in the setting considered here exists in the
literature (see Sect. 1.3), and to the best of our knowledge
there are no previous results on the Meeting problem.

In fact, given our searchers’ many handicaps, and espe-
cially their lack of memory and orientation, it is hard to see
how they could solve any non-trivial problem at all. Nonethe-
less, in this paper wewill present the surprising result that the
Meeting problem is solvable in almost every polygon, even
for k = 2 searchers.

1.2 Our contributions

Techniques Since our searchers are disoriented and have no
kind of a-priori agreement, they must use the geometric fea-
tures of P to implicitly agree on some “landmarks”which can
help them in their task. In order to identify such landmarks,
each searcher has to visit P and construct a map of it. But
this cannot be done straightforwardly, because searchers are
oblivious, and they forget everything as soon as they move.
To cope with this handicap, they carefully move within P
in such a way as to implicitly encode information as their
distance from the closest vertex.

This positional encoding technique poses some obvi-
ous difficulties. First, it greatly limits the freedom of the
searchers: they have to do precise movements to encode
the correct information, and still manage to visit all of P
and update the map as they go. Second, since searchers can
be located anywhere in P when the execution starts, they
could be implicitly encoding anything. This includes mis-
leading information, such as a false map of P that happens
to be locally coherent with the surroundings of the searcher.
Therefore, a searcher can never rely on the information it is
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implicitly encoding, but it must constantly re-visit the entire
polygon to make sure that the map it is encoding is correct.3

Hence, searchers cannot simply agree on a landmark and
sit on it waiting for one another, because that would pre-
vent them from re-visiting P . This inconvenience drastically
complicates theMeeting problem, and forces the searchers to
follow relatively complicated movement patterns that make
at least two of them necessarily meet.

There is also a subtle problem with the actual encod-
ing of complex data as the distance from a point, which
is a single real number. One could naively pack several
real numbers into one by interleaving their digits, but this
encoding would not be computable by real random-access
machines [3]. Hence, we propose a more sophisticated tech-
nique, which only requires basic arithmetic operations. Such
a technique can substitute the naive one under the reasonable
assumption that the vertices of P be points with algebraic
coordinates (as expressed in some global coordinate system,
which is not necessarily the local one of any searcher).4

Statement of resultsWe prove that the Meeting problem in a
polygon P can be solved by k = σ +1 searchers, where σ is
the order of the rotation group of P (which is also called the
symmetricity of P). We also give a matching lower bound,
showing that there are polygons of symmetricty σ where σ

searchers cannot solve the Meeting problem.
Then, since all our lower-bound examples are polygons

with a hole around the center, we wonder if the Meeting
problem can be solved by fewer searchers if we exclude this
small class of polygons (i.e., the polygons with a hole around
the center).5 Surprisingly, it turns out that in all the remaining
polygons only two searchers are sufficient to solve the Meet-
ing problem. In particular, these include all the polygonswith
no holes.

Additionally, searchers can geometrically construct their
destination points with a compass and a straightedge, pro-
vided that the vertices of P are algebraic points. Equivalently,
searchers only have to compute combinations of basic
arithmetic operations and square root extractions on the coor-
dinates of the visible vertices of P . This is done via an
encoding technique of independent interest, which we apply
to mobile robots for the first time.

As a subroutine of our algorithms, we employ a self-
stabilizingmap construction algorithm that is of independent
interest, as well.

3 For this reason, there is no distributed algorithm that, for every poly-
gon P , allows a team of memoryless searchers to either solve the
Meeting problem in P or terminate if the problem is unsolvable in
P .
4 A real number is said to be algebraic if it is a root of a polynomial
with integer coefficients [8].
5 Collectively, these polygons constitute a subset of measure 0 of the
set of all polygons with holes.

Paper summary In Sect. 2,we formally define all the elements
of the Meeting problem. In Sect. 3, we consider the Meeting
problem for searchers equipped with an unlimited amount of
persistent internalmemorywhose initial contents can be arbi-
trary (hence possibly “incorrect”). This simplification allows
us to present “cleaner” versions of our algorithms, which are
not burdened by the technicalities of our positional encoding
method. In Sect. 4, we present our encoding technique and
we show how to apply it to theMeeting algorithms of Sect. 3,
thus extending our results to oblivious searchers. Finally, in
Sect. 5 we discuss directions for further research.

1.3 Related work

Static version If searchers are unable to move, then the
Meeting problem becomes equivalent to asking what is the
maximum number of points that can be placed in a polygon
in such a way that no two of them see each other. This is
called the hidden set problem, and has been studied in [33],
where tight bounds are given in terms of the number of ver-
tices of the polygon. The situation with mobile searchers is
of course radically different.

Gathering in the plane The Gathering problem has been
extensively studied in several contexts [1,19]. The literature
can be divided into works considering robots in a geometric
space, and works considering agents on a graph [1,4,11,14].

Here we focus on Gathering in geometric spaces, since
it is related to our setting. In the Look–Compute–Move
model, asynchronous oblivious robots with unlimited visi-
bility can solve the Gathering problem without additional
assumptions [7].

The case of limited visibility has been studied, as well.
Any given pattern can be formed by asynchronous robots
with agreement on a coordinate system [21]. Without such
agreement, it is still possible to converge to the same point,
perhaps without ever reaching it [2].

Fault-tolerant Gathering has been investigated in [12,15]
for oblivious robots with unlimited visibility. Rendezvous
has been investigated also when the robots have a constant
amount of “visible memory” [22].

All the aforementioned results hold for robots that inhabit
an unbounded plane where no extraneous objects can block
visibility or movement. In particular, none of these results
pertains robots in a polygon.

Rendezvous in a polygon The work that is most relevant to
ours is represented by a series of papers on Rendezvous and
approximate Rendezvous by two robots in polygons or more
general planar enclosures [9–11,13]. The authors show how
to guarantee that the two robots’ trajectories will intersect (or
get arbitrary close to each other in case of approximate ren-
dezvous) within finite time, in spite of a powerful adversary
that controls the speed and the movements of the robots on
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their trajectories. However, termination happens implicitly:
the robots are not necessarily aware of each other’s presence,
and Rendezvous is considered solved even if they are both
moving. Moreover, none of these papers considers oblivious
robots, and none of them allows the initial memory contents
of the robots to be arbitrary. Both are simplifications of the
problem, because they allow robots to implicitly agree on a
single landmark and just move there.

In [11,13], the authors study the feasibility of approx-
imate Rendezvous by two robots with unique ids (i.e.,
non-anonymous) in any closed path-connected subset of the
plane. Robots have unlimited persistent memory and do not
agree on a system of coordinates.

In [9], they investigate upper and lower bounds on the
movements of two robots solving the Rendezvous problem
in a polygon. The authors give awealth of results under differ-
ent assumptions, but a common handedness (i.e., a common
notion of clockwise direction) and unlimited persistentmem-
ory are always assumed.

In [10], feasibility conditions for Rendezvous and con-
structive algorithms are given. Here robots have a constant
amount of persistent memory (hence they are not oblivious)
and a common handedness.

Further works include [5,6], addressing the weak ren-
dezvous problem in a polygon, where all robots have to attain
mutual visibility at the same time. It is shown that robots can
agree on a clique in the visibility graphof the polygon, and the
weak rendezvous protocol is to reach a vertex of the elected
clique and wait. Unfortunately, such an interesting technique
cannot be used in our case. Indeed, we are aiming for a self-
stabilizing meeting procedure, which implies that a searcher
cannot remain forever in a sub-portion of the polygon. This
is clear if we consider an initial memory configuration that
forces two searchers to remain in different parts of the poly-
gon (e.g, two disjoint cliques of the visibility graph), each
searcher wrongly believing to be in the “elected portion”.
Another drawback of [5,6] is the need for an upper bound on
the number of vertices of the polygon.

Miscellanea Another problem for robots in polygons is the
search for an intruder, e.g., [34,35], where one robot tries to
escape while others have to locate it. This setting is clearly
quite different, as in theMeeting problemwe consider robots
that cooperate to achieve a common goal.

The model in which robots can obstruct each other’s view
has also been studied. Here, the goal is typically to make all
robots see each other by making sure that no three of them
are collinear [17,31,32]. As with the literature on Gathering,
none of these works considers robots in a polygon.

Recall that a sub-routine of our Meeting algorithms con-
sists in drawing a map of the polygon. A related problem
is that of constructing the visibility graph of a polygon by
mobile robots: this has been addressed in [5,6,16], where

great efforts have been devoted to finding minimal assump-
tions on the robots’ power that allow them to solve the
problem. In particular, in [16] the mapping is done with-
out any a-priori knowledge about the polygon bound, and
only using the measurements of angles (hence without mea-
suring distances). However, extending this algorithm to the
memory-less case is far from trivial.

Computability issues The issue of defining a model for the
“local” computations of mobile robots has hardly ever been
addressed in the relevant literature. It is nevertheless inter-
esting to establish what destination points are computable by
mobile robots, and what it means for a robot to compute a
point.

To the best of our knowledge, only two papers deal with
this problem. In [7], a definition of computation is not explic-
itly given, but it is said that a certain point is not computable,
in the sense that its coordinates cannot be computed with
basic arithmetic operations and extractions of roots of any
degree. In [20], computation is explicitly defined in terms
of algebraic functions, although all that is actually needed
is the ability to construct regular polygons, as well as all
points that can be geometrically obtained with compass and
straightedge.

Interestingly, solutions to geometric problems have been
proposed that involve functions whose computability (in an
intuitive sense) is unclear. An example is in [9], where the
Rendezvous point computed byoneof the algorithms is either
the central vertex or the midpoint of the central segment of
the medial axis of a polygon. Since the central segment of
the medial axis could be any parabolic arc, its midpoint is a
transcendental function of the polygon’s vertices. As such,
it is not constructible with compass and straightedge [24].
It turns out that this is not a real problem for that particular
algorithm, because the robots can easily agree on an endpoint
of the aforementioned parabolic arc or on the parabola’s ver-
tex, instead of its midpoint. Still, it is interesting to observe
that the notion of computability emerging from [9] is more
“comprehensive” than the one of [20].

Another contribution of this paper is a formal definition
of the concept of computability for mobile robots (see the
beginning of Sect. 4.2). Accordingly, all of our geomet-
ric constructions can be performed with a compass and a
straightedge.

2 Definitions

Polygons A polygon in the Euclidean plane R
2 is a non-

empty, bounded, connected, and topologically closed 2-
manifold whose boundary is a finite collection of line
segments. The vertices, edges, and diagonals of a polygon
are defined in the standard way, as well as the notion of
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v

u ′u

Fig. 1 v can fully see u, and it can see u′ but not fully

adjacency between vertices. One connected component of a
polygon’s boundary, called the external boundary, encloses
all others, which are called holes.

If a polygon has an axis of symmetry, we say that it is
axially symmetric. If it has a center of symmetry, we say
that it is centrally symmetrc. The largest integer σ such that
rotating a polygon around its barycenter by 2π/σ radians
leaves it unchanged is called the symmetricity of the poly-
gon.6 In other words, the symmetricity is the order of the
rotation group of the polygon. If σ > 1, the polygon is said
to be rotationally symmetric. (Most of these concepts are
introduced, for instance, in [25].)

We say that a point p ∈ P sees a point q ∈ P (or, equiva-
lently, that q is visible to p) if the line segment pq lies in P .
If, in addition, no vertices of P lie in the relative interior of
pq, then p fully sees q (equivalently, q is fully visible to p),
as Fig. 1 illustrates.

Searchers Let P be a polygon. By P-searcher we mean an
anonymous robot represented by a point in P , which, infor-
mally, can observe its surroundings and move within P . If a
P-searcher is located in p ∈ P , we say that it sees all the
points of P that are visible to p. When P is understood, we
will omit it and simply refer to searchers.

The life cycle of a P-searcher consists of three phases,
which are repeated forever: Look, Compute, and Move. In a
Look phase, the P-searcher takes a “snapshot” of the subset
of P that it currently sees, along with the locations of the P-
searchers that it currently sees. The snapshot is expressed in
the local reference system of the observing searcher, which
is a Cartesian system of coordinates with the searcher’s cur-
rent location as the origin. In a Compute phase, the searcher
executes a deterministic algorithm whose input is the last

6 Here and throughout the paper, we will refer to the barycenter only
because it is a well-defined point in every polygon. However, this choice
is not essential: equivalently, we could take the center of symmetry if
the polygon has one, or any point otherwise.

snapshot taken, and the output is a destination point, again
expressed in the local reference system of the searcher. In
theMove phase, the searcher continuously moves toward the
destination point it just computed. Once it gets there, it stops
moving and starts a new Look phase, and so on. A searcher’s
local coordinate system translates as the searcher moves (to
keep the searcher’s location at the origin), but it retains its
orientation, scale, and handedness.7

When several P-searchers are present, we stipulate that
they all execute the same algorithm. Furthermore, each
searcher’s local coordinate system is independent of the
others, and has its own orientation, scale, and handedness.
Therefore, each P-searcher sees a differently scaled, rotated,
translated, and possibly reflected version of P . Searchers
are also asynchronous, in the sense that their life cycles are
completely independent: each phase of each cycle of each
searcher lasts an unpredictably long (but finite) time, which
is decided by an adversarial scheduler. Also, the speed of
a searcher during a Move phase is not necessarily constant.
We stress that P’s vertices are “anonymous”, in the sense that
they can be distinguished only by their relative positions, and
no labels are attached to them.

Meeting We say that two P-searchers are mutually aware at
some point in time if they have seen each other during their
most recent Look phases. That is, if searcher s1 sees searcher
s2 during a Look phase at time t1, s2 sees s1 during a Look
phase at time t2 ≥ t1, and neither s1 nor s2 performs another
Look phase in the time interval (t1, t2), then s1 and s2 are
mutually aware at time t2 (and they remain mutually aware
until s1 performs a Look phase without seeing s2, or vice
versa). A very similar notion of mutual awareness has been
defined in [28].

Given a team of P-searchers, the Meeting problem pre-
scribes that at least two of them become mutually aware.
More precisely, the Meeting problem for k searchers in P
is solvable if there exists an algorithm A such that, if all k
searchers execute A during all their Compute phases, at least
two of them eventually become mutually aware, regardless
of how the searchers are initially laid out in P , and regardless
of how the scheduler decides to control their behavior. Occa-
sionally, we will say that two searchers meet, as a synonym
of becoming mutually aware.

7 The fact that a searcher retains its local reference frame’s orienta-
tion, scale, and handedness is common in most of the related literature.
However, in this work we will not strictly need it: in our algorithms, a
searcher will always move (close) to a vertex of P . Hence, after a move,
it will always be able to correctly match its new view with the previous
one. This is possible even if its reference frame has reflected after the
move: it is sufficient to make the searcher stop close enough to the angle
bisector stemming from the destination vertex, but not exactly on it. On
the next turn, the searcher will be able to tell its new reference frame’s
handedness based on whether it is located to the left or the right of the
angle bisector (cf. Sect. 4.2).

123



G. A. Di Luna et al.

x
y

x

y

x
y

x

y

x

y

x
y

x y

Fig. 2 Constructions used in Theorem 1 for σ = 2 and σ = 5

In Sect. 3, we are going to assume that each searcher has
an unlimited amount of persistent internal memory, which
can be read and updated by the searcher during each Com-
pute phase, and is retained for use in later Compute phases.
The initial contents of the internal memory of each searcher
are arbitrary, and possibly “incorrect”. In Sect. 4, we will
drop the persistent memory requirements, andwewill extend
our algorithms to oblivious searchers, whose computations
only rely on the single snapshot taken in the most recent
Look phase, and whose internal memory is erased during
each Move phase.

3 Algorithms and correctness

In this section, we set out to minimize the number of P-
searchers that can solve the Meeting problem in a polygon
P . In Sect. 3.1, we provide a tight bound in terms of P’s
symmetricity, by means of a lower-bound construction (The-
orem 1) and an algorithm which, as a bonus, is independent
of P (Theorem 2). As a tool, we use a self-stabilizing map
construction algorithm. In Sect. 3.2, we exclude a patholog-
ical class of polygons, and we prove that in all remaining
polygons the Meeting problem can be solved by just two
searchers (which is obviously optimal), again with an algo-
rithm independent of the polygon (Theorem 3).

We first present our algorithms assuming that searchers
have an unlimited amount of persistent internal memory,
which initially may contain arbitrary data. Then, in Sect. 4,
we will extend these algorithms to oblivious searchers.

3.1 General algorithm

Lower bound First we give a lower bound on the minimum
number of searchers required to solve the Meeting problem

in a polygon. Our bound is in terms of the polygon’s sym-
metricity.

Theorem 1 For every integer σ > 0, there exists a polygon
with symmetricity σ in which σ (or fewer) searchers cannot
solve the Meeting problem.

Proof If σ = 1, the statement is trivial. If σ > 1, we con-
struct a polygon with symmetricity σ shaped as a σ -pointed
star with one large hole almost touching the external bound-
ary, as shown in Fig. 2.We then arrange σ ′ ≤ σ searchers and
orient their local coordinate systems in a symmetric fashion,
as in Fig. 2. Now, let the initial memory contents of all the
searchers be equal, and suppose that the scheduler always
activates them synchronously. By the rotational symmetry of
our construction, each searcher gets an identical snapshot of
the polygon, and therefore all searchers compute symmet-
ric destination points and modify their memory in the same
way. This holds true at every cycle, and so, by induction,
the searchers will always be found at σ ′ symmetric loca-
tions throughout the execution. Note that our polygon has
the property that no two of its points whose angular distance
(with respect to the barycenter) is a multiple of 2π/σ can see
each other. Hence, no matter what algorithm the searchers
are executing, no two of them will ever be mutually aware.

��
Note that the above theoremholds for searcherswithmem-

ory, and hence a fortiori it holds for oblivious searchers.
Next we will prove that the bound of Theorem 1 is tight,

and hence σ + 1 searchers are optimal. Our Algorithm 1 is
illustrated below. We have some persistent variables and the
procedure Compute, which takes as input the current snap-
shot, i.e., the part of polygon that is currently visible to the
executing searcher plus the searchers it currently sees. This
algorithm assumes that searchers have unlimited memory,
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and hence they can store the entire history of the snapshots
they have taken since the beginning of the execution. In
Sect. 4, we will show how to drop this requirement and apply
our algorithms to oblivious searchers.

Algorithm 1 Meeting algorithm for general polygons

Persistent variables
SnapshotList
Action
Direction
Polygon
PivotPoint

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if SnapshotList is inconsistent or (Action = PATROL and PivotPoint is not

consistent with Polygon) then
SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
Polygon := Extract (partial) polygon from SnapshotList
U := Unvisited vertices of Polygon
if U �= ∅ then

v := First vertex of U
Compute a shortest path to v within Polygon, and move to the last

visible point along this path
else

Action := PATROL
Direction := CLOCKWISE
S := Set of axes of symmetry of Polygon
if S = ∅ then

C := Select a rotation class of vertices of Polygon in a similarity-
invariant way

PivotPoint := Select any vertex in C
else

S′ := Select a class of equivalent axes in S in a similarity-invariant
way

� := Select any axis in S′
C := Select a class of equivalent points of � on the boundary of

Polygon in a similarity-invariant way
PivotPoint := Select any point in C

Augment Polygon using PivotPoint as pivot in a similarity-invariant
way to make it simply connected

if Action = PATROL then
if I am in PivotPoint then

Invert Direction
Move to the next vertex of Polygon, following its boundary in the direc-

tion stored in variable Direction

Checking for other searchers By definition, the Meeting
problem is solved when two searchers become mutually
aware. So, in our algorithm, whenever a searcher s1 sees
another searcher s2, it stays idle for a cycle and waits to be
noticed by s2. Then, if s1 no longer sees s2, it realizes that
they are not mutually aware, and resumes the algorithm (this
may happen if s2 is in the middle of a Move phase when it is
seen by s1, and it goes through an area that is invisible to s1
before performing its next Look phase). Otherwise, s1 and s2
become mutually aware, and the Meeting problem is solved.

Checking for incongruities Let P be the polygon in which
the searchers are located. Since the initial memory contents
may be incorrect, if a searcher notices a discrepancy between
the current snapshot of P and the history of snapshots stored

in memory, it forgets everything and restarts the execution
from wherever it is. Note that a searcher can always recon-
struct all its previous movements within P by looking at the
history of snapshots and “simulating” procedure Compute on
all of them. Therefore, when the searcher “believes” to be re-
visiting some region of P , it can compare the new snapshot
with the old ones taken from the same region, and is able to
tell if something looks different. If this is the case, it must
be because its initial memory contents were “corrupt”, and
hence it overwrites everything with the current snapshot.

Exploring the polygon We observe that each searcher must
keep re-visiting every part of the boundary of P . Indeed, if
it stops visiting some parts of the boundary, it can never be
sure that the shape of P is actually the one it has in memory,
and it is easy then to prove that the algorithm cannot solve
the Meeting problem (revisiting the boundary of P is what
makes the map construction subroutine self-stabilizing).

Ourmain algorithm is divided into twophases: EXPLORE
and PATROL. Roughly speaking, in the EXPLORE phase,
a searcher visits all vertices of P; in the PATROL phase, it
moves back and forth along the boundary of P , searching
for a companion. The EXPLORE phase is relatively simple:
as the searcher explores new vertices, it keeps track of the
ones that it has seen but not visited. Then it picks the first
of such vertices and moves to it along a shortest path. Since
the searcher may not have a complete picture of P yet, by
“shortest path” we mean a shortest path in the portion of P
that has been recorded in memory thus far.

Selecting the pivot point For the PATROL phase, the searcher
must first choose a pivot point of P , which is the point where
the searcher changes direction as it patrols P’s boundary. It
also has to cope with the fact that the boundary of P may
not be connected, since P may have holes. The pivot point is
chosen in a different way depending if P is axially symmetric
or not.

Let n be the number of vertices of P , and let σ be its
symmetricity. Suppose first that P is not axially symmetric.
Then, the orbit of each vertex under the rotation group of
P has size exactly σ , and therefore there are n/σ different
orbits (or rotation classes) of vertices. The searcher will pick
one rotation class of vertices in a similarity-invariant way.
This means that the selection algorithm should not depend
on the scale, rotation, position, and handedness of P , but it
should be a deterministic algorithm that only looks at angles
between vertices and ratios between segment lengths.8 This

8 As an example, we show how to do it when P has no holes. Extending
this method to the general case is just slightly more complicated, but
the principles are the same. Pick the (unique) circle of smallest radius
that contains all the vertices of P , and let r be its radius. Name the ver-
tices of P v0, v1, …, vn−1 in clockwise order. Pick any vertex vi , and
construct the right-handed coordinate system having origin in vi , unit
r , and x axis oriented like −−−→vivi+1 (indices are always taken modulo n).
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Fig. 3 Augmenting an axially
symmetric polygon and defining
a tour of its boundary

� pivot

is to guarantee that all searchers that have a correct picture of
P in memory (expressed in their respective local coordinates
systems) will select the same class of vertices. Once this
rotation class has been selected, the searcher picks any of its
elements as the pivot point.

Suppose now that P is axially symmetric: hence it has σ

distinct axes of symmetry. If σ is odd, all axes of symmetry
are rotationally equivalent (i.e., for any twoaxes of symmetry,
there is a rotation of the plane that maps one into the other
and leaves the polygon unchanged); if σ is even, there are two
distinct classes of rotationally equivalent axes of symmetry,
each of size σ/2. (For instance, the pentagonal star in Fig. 2
has five equivalent axes of symmetry, while the polygon in
Fig. 3 has symmetricity 4 and two pairs of equivalent axes
of symmetry.) The searcher will select a class of axes of
symmetry in a similarity-invariant way, and then pick any
axis � in this class. The pivot point will then be a point in the
intersection between � and the boundary of P . If σ is odd, all
such points are distinguishable, so any one of them is chosen
by the searcher in a similarity-invariant way. If σ is even,
these points come in symmetric pairs along � (see Fig. 3). In
this case, one such pair is selected in a similarity-invariant
way, and then any point in the pair is picked by the searcher
as the pivot point. Note that the pivot point is either a vertex
of P or the midpoint of an edge.

Augmenting the polygonOnce a searcher has selected a pivot
point, it adds some “artificial” edges to P in order to make

Footnote 8 continued
Give a representation of P in this coordinate system, i.e., the ordered
list of the x and y coordinates of vi+1, …, vn , v1, …, vi−1. Then con-
struct another representation in the same coordinate system, but taking
the vertices in the reverse order, i.e., vi−1, …, v1, vn , …, vi+1. Pick
the lexicographically smaller of these two representations (if they are
equal, pick any of them), and call it Ri . Repeating the same construction
with all the vi ’s yields the representations R0, R1, …, Rn−1: let Rm be
the lexicographically smallest among them. Now, pick all vertices vi
such that Ri = Rm : these constitute a rotation class of P chosen in
a similarity-invariant way. Indeed, no matter how we rotate, translate,
uniformly scale by a non-zero factor, or reflect P , we will always pick
the same set of vertices.

it simply connected, i.e., remove all its holes. This may be
impossible to do in a similarity-invariant way (for instance,
in the polygons of Fig. 2 it is impossible), so the pivot point
will be used to determine how symmetries are broken. Also,
we will make sure that no such artificial edges are incident
to the pivot point.

If P is not axially symmetric, then an orientation (i.e.,
clockwise or counterclockwise) can be chosen in a similarity-
invariant way. Given the pivot point and an orientation, then
breaking symmetries is trivial. In order to remove a hole, we
draw a diagonal of P that connects two different connected
components of the boundary (i.e., two different holes or a
hole and the external boundary). The diagonal is selected
in a deterministic way, and should not be incident to the
pivot point. Cutting P along such a diagonal merges two
connected components of its boundary, reducing the number
of holes by one. This procedure is repeated until the boundary
is connected.

Suppose now that P is axially symmetric, and let � be the
axis of symmetry containing the pivot point.Wewill augment
P while keeping it symmetric with respect to �. If a hole of
P intersects �, we connect it to a neighboring hole or to the
external boundary of P in a deterministic way, by drawing a
sub-segment of � not incident to the pivot point. If a hole H
of P does not intersect �, it must have a symmetric hole H ′
on the other side of �. Then we draw a diagonal (again, in a
deterministic way) not intersecting � to connect H to another
hole or to the external boundary.We also draw the symmetric
diagonal to connect H ′. Since the two diagonals do not inter-
sect each other (or they would intersect �), cutting P along
them does not disconnect it. Figure 3 shows an example of
how such diagonals can be chosen in a symmetric polygon
(in this example, � is the vertical axis).

Patrolling the polygon In the previous paragraphs, we
described how to select a finite set of segments in P: let
D be the union of these segments. As a result of cutting
P along such segments, we obtain a degenerate simply con-
nected polygon ˜P = P\D. By “degenerate” wemean that its
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boundary is no longer the boundary of a topologically closed
2-manifold. However, it is possible to perform a tour of the
boundary of ˜P , by walking along the external boundary of
P , and then taking a detour along a segment of D and around
a hole of P , as soon as one is found. The resulting tour can
be clockwise or counterclockwise, and traverses each edge
of P once and each segment of D twice (once in each direc-
tion). One such tour is illustrated in Fig. 3. Intuitively, this
would correspond to slightly “thickening” each segment of
D, subtracting D from P , and walking around the boundary
of the resulting (non-degenerate) polygon.

The PATROL phase of our algorithm consists in taking a
tour of ˜P and switching direction (from clockwise to coun-
terclockwise and vice versa) every time the pivot point is
reached. So, all vertices of P are perpetually visited in some
fixed order, then in the opposite order, and so on. At any time,
the searcher can always determine its next destination point
based on the history of snapshots stored in memory.

Correctness of Algorithm 1 We will now prove the correct-
ness of this algorithm.

Theorem 2 There is an algorithm that, for every integer
σ > 0, solves the Meeting problem with σ + 1 searchers
(regardless of their initial memory contents) in every poly-
gon with symmetricity σ .

Proof We will show that Algorithm 1 correctly solves the
Meeting problem for σ + 1 searchers in any polygon P with
symmetricity σ . We have to show that, as the searchers exe-
cute the algorithm (asynchronously), at least two of themwill
eventually become mutually aware, regardless of the initial
memory contents of the searchers and their initial locations.

Since the initial memory contents of a searcher may be
incorrect, when a searcher notices a discrepancy between the
current observation and a previous observation, it erases its
ownmemory and restarts the execution. The same happens if
it realizes that the pivot point it has chosen does notmatch the
polygon. From that point onward, the searcher’smemorywill
only contain correct information, and the executionwill never
be restarted again. Hence, in the following, we will assume
that no such discrepancy is ever discovered, and therefore the
execution is never restarted.

The EXPLORE phase relies on the connectedness of the
visibility graph of P . Recall that the visibility graph of P
is the graph on the set of vertices of P whose edges are the
edges and diagonals of P . This graph is connected because
from any vertex to any other vertex there is a shortest path
that is a polygonal chain turning only at (reflex) vertices of
P . So, as the searcher walks through the visibility graph,
it maintains a list of vertices that have been discovered but
not visited. It then walks to the first of these vertices along
a shortest path while updating the list, and so on. Note that
the “shortest path” may change as new vertices are discov-
ered. However, this can only happen finitely many times, and

eventually the target vertex is indeed reached. So, the list of
discovered but unvisited vertices will eventually be depleted.
By the connectedness of the visibility graph, this happens if
and only if all vertices have been visited. This means that
eventually the searcher will have a complete representation
P ′ of the polygon P . Recall that P and P ′ may not be the
same polygon, because the searcher may have an arbitrary
list of snapshots initially in memory, which may be coherent
with the current snapshot.

Now that the searcher has a representation P ′ of P , it
makes its boundary connected by choosing a pivot point and
adding some extra segments, and then starts the PATROL
phase. Observe that the pivot point and the extra segments
remain fixed as the searcher moves, since they have been
stored in the persistent memory. In the PATROL phase, the
searcher will repeatedly attempt to visit every vertex of P ′.
So, if P �= P ′, the searcher will eventually find out: if some
vertices of P ′ are not vertices of P or if P has some extra
vertices, the searcher is bound to see the discrepancy, again
due to the connectedness of the visibility graph. But this
contradicts our assumptions, hence we may as well assume
that P = P ′.

We can therefore assumewithout loss of generality that, at
some point, all searchers are in the PATROL phase, they all
have a correct representation of P in memory, and they have
correctly computed a pivot point and correctly augmented P
to make it simply connected. Suppose that P is not axially
symmetric. Since the rotation class of vertices to which the
pivot point belongs is chosen in a similarity-invariant way
by all searchers, they all have picked the same class. Hence
there are only σ possible choices for the pivot point, and two
searchers must have picked the same, by the pigeonhole prin-
ciple. Suppose now that P is axially symmetric, and hence it
has σ axes of symmetry. If σ is odd, two searchers must have
picked the same axis of symmetry, say �. These two searchers
have then identified a pivot point on � in a similarity-invariant
way, and therefore they have picked the same point. If σ is
even, there are two classes of equivalent axes, each of size
σ/2. All searchers have picked an axis from the same class,
and hence three searchers must have picked the same axis,
say �, by the pigeonhole principle. Then, each of these three
searchers has chosen one of two equivalent points of �, and
therefore two searchers have chosen the same point.

In any case, there are two searchers s1 and s2 that have
the same pivot point. These two searchers will also compute
the same augmented polygon ˜P , because this is done in a
similarity-invariant way (even if P is axially symmetric and
s1 and s2 do not have the same notion of clockwise direc-
tion). So, both searchers will perform a clockwise tour of the
boundary of ˜P , touching all of its vertices is some fixed order,
followed by a counterclockwise tour, touching all vertices in
the opposite order, and so on. Since they both turn around
at the same pivot point, they do the same tour. As a conse-
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quence, by the time one of them has completed a full tour,
they will have to traverse the same edge e of ˜P in opposite
directions at the same time. So, they will become mutually
aware when reaching the endpoints of e, solving theMeeting
problem. (As a special case, they may reach the same vertex
of ˜P at the same time, and then they immediately become
mutually aware.)

There is one last detail to consider. Recall that a searcher
s1 remains idle for a cycle whenever it sees another searcher
s2, even if s2 is not going to notice s1. This may happen, for
instance, if s2 is traveling between two points that cannot see
s1’s location. If this situation keeps repeating every time s1
takes a snapshot, then s1 is stuck forever, unable to explore
or patrol the polygon, and perhaps unable to ever become
mutually visible with any other searcher. However, not all
searchers can remain stuck in the aforementioned way with-
out at least two of them being mutually aware. Hence, even
if s1 is stuck forever and the Meeting problem is not solved
yet, at least one searcher necessarily makes steady progress
in the algorithm, becoming mutually aware with s1 by the
time it completes a full tour of the polygon. ��

We emphasize that, if a searcher were tasked to construct
a map of P , it could do so by simply executing the above
algorithm indefinitely (i.e., ignoring the presence of other
searchers). Since the algorithm eventually discovers and cor-
rects any possible inconsistency in the initial memory state
of the searcher, it is self-stabilizing.

The importance of exploring holes The reader may wonder
why we chose to include the holes as part of the tour of
the boundary of P that the searchers perform in the PATROL
phase. Indeed, the searchers could easily identify the external
boundary of P (by computing the sign of its total curvature),
so it would be tempting to let them patrol only that part of the
boundary, ignoring the holes. This, however, may not work
if the initial memory contents of the searchers are incorrect.
Say P is not rotationally symmetric, but suppose that it looks
rotationally symmetric from the external boundary. This may
be because it has a small irregular central hole that is hidden
from the external boundary by other holes, while everything
else is rotationally symmetric, as in Fig. 4. Since P is not
rotationally symmetric, two P-searchers should be able to
select the same pivot point, and hence meet as they patrol the
external boundary. However, their internal representation of
Pmaybe incorrect, and showapolygon P ′ that is rotationally
symmetric and coincides with P as seen from the external
boundary. So, the searchers may actually choose different
pivot points and never notice any discrepancy between P
and P ′ as they patrol the external boundary. But then, they
may fail to meet if they occupy symmetric locations and the
scheduler keeps activating them synchronously, as explained
in Theorem 1.

x
y

x
y

Fig. 4 The polygon has symmetricity 1, but its symmetricity looks 2 if
it is observed from the external boundary. The searchers cannot meet if
they do not explore the holes

3.2 Improved algorithm for polygons with
barycenter not in a hole

Recall that the worst-case examples given in Theorem 1 are
polygons with a hole around the barycenter. It is natural to
wonder if the Meeting problem can be solved with fewer
searchers if we exclude this special type of polygons. It turns
out that in all other cases Algorithm 1 can be drastically
improved: only two searchers are needed whenever the poly-
gon’s barycenter is not in a hole. Notably, this includes all
polygons with no holes.

Counterexample Observe that simply making the searchers
patrol the boundary of the polygon as in the previous algo-
rithmmaynot solve theMeeting problem, even if the polygon
has no holes. For instance, assume that the polygon has sym-
metricity 4 and has a central region with four equal branches,
shaped in such away that a searcher that is far enough inside a
branch cannot see any of the central region, as in Fig. 5. Sup-
pose that two searchers are patrolling this polygon, and they
have different pivot points. Then, the scheduler can always
keep them in different branches of the polygon and make
them move symmetrically within their respective branches
(recall that they are executing the same deterministic algo-
rithm). When they have to move to the next branch, the
scheduler will make one searcher quickly move to the cen-
tral region and into the new branch while the other searcher
remains hidden inside its ownbranch. Then the schedulerwill
make the second searcher move through the central region
while the first one is hidden. This way, the searchers will
never meet.

Our improved Meeting algorithm is given below as
Algorithm 2. It begins by testing for the presence of
another searcher, followed by some consistency tests, and
an EXPLORE phase, which are essentially the same as in
the previous algorithm. It then proceeds with a PATROL
phase, which is more complex than the old one. Note that
Algorithm 1 already solves the Meeting problem with two
searchers if the polygon is not rotationally symmetric (i.e.,
for σ = 1). So, in this special case, our improved algorithm
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Fig. 5 If two searchers patrol
the boundary with different pivot
points, they may never meet

works exactly as the previous one. In the following, we will
therefore assume that the polygon is rotationally symmetric,
and we will discuss only the new PATROL phase.

Selecting the pivot vertex Let P be the polygon in which the
two searchers operate. Upon ending the EXPLORE phase,
a searcher does some pre-processing on the polygon. First
it picks a pivot vertex of P . To do so, it selects a similarity
class of vertices C that are closest to the center of the poly-
gon in a similarity-invariant way. A similarity class is a set
of vertices that are equivalent up to similarity. This means
that both searchers will select the same class of vertices C
(assuming they have a correct picture of P in memory). If
the symmetricity of P is σ , then C has size either σ or 2σ :
indeed, the points of C must be either the vertices of a regu-
lar σ -gon or of two rotated copies of a regular σ -gon. Each
searcher then arbitrarily picks a pivot vertex in this class and
stores it in its persistent memory.

Augmenting the polygon The next step is to augment P with
some extra edges. Note that the vertices of C (as defined
in the previous paragraph) form an equiangular polygon Q
around the center of P (a polygon is equiangular if all its
internal angles are equal). In particular, Q is convex. Since
the center of P is not in a hole, Q is completely contained
in P , i.e., it intersects the boundary of P only at the vertices.
We call each of the connected components of P\Q a branch
of P . For each axis of symmetry � of a branch that is also
an axis of symmetry of P , we cut the branch along �. This
operation may merge different connected components of the
boundary of P , reducing the number of its holes. However,
it is easy to see that it cannot disconnect P , because we cut
only along axes of symmetry, and we leave the central area
Q uncut.

If some holes are remaining in the branches, we resolve
them by further cutting P\Q along some segments, chosen
in a similarity-invariant way, whose endpoints are collinear
with the center of P . We do so without disconnecting any
branch. Note that, since these segments are “radial”, they
cannot intersect each other or the axes of P .

The resulting degenerate polygon ˜P has simply connected
interior andhas the sameaxes of symmetry and the same sym-
metricity as P . Moreover, any searcher performing the above
operations on P obtains the same ˜P , because everything is
computed in a similarity-invariant way.

Triangulating the branches Each connected component of
˜P\Q is called a sub-branch of P . So, each branch either
coincides with a sub-branch or is divided by an axis of
symmetry of P into two twin sub-branches. As a final pre-
processing step, each sub-branch of P is triangulated in a
similarity-invariant way. This means, in particular, that twin
sub-branches are triangulated in symmetricways. The central
polygon Q is not triangulated.

The dual graph of the triangulation of each sub-branch is a
tree. If we add a root node corresponding to Q and we attach
all these trees to it, we obtain a rooted tree that is the dual of
the entire partition of ˜P . We denote the height of this rooted
tree by m.

Figure 6 shows the result of the above operations on an axi-
ally symmetric and centrally symmetric. polygon with holes.
In this example, the symmetricity is 4, the branches are four,
the sub-branches are eight, and m = 8.

Patrolling the polygon Once P has been augmented and
its sub-branches have been triangulated, the PATROL phase
starts. This phase has a “primitive” operation called j -tour,
where j is an integer between 0 andm. Let Pj be the union of
Q and the triangles of the triangulation whose corresponding
nodes of the dual graph have depth at most j (with respect
to the root corresponding to Q). So, for instance, P0 = Q
and Pm = P . A j-tour is a tour of the boundary of Pj , start-
ing and ending at the pivot vertex, following the edges of ˜P .
For example, a 0-tour is simply a tour of the boundary of
Q, an m-tour is a tour of the boundary of ˜P (much like the
tours of Algorithm 1), and Fig. 6 shows a 3-tour and a 6-tour.
Obviously, a searcher can perform a j-tour in two different
directions: clockwise or counterclockwise. In the following,
when we say “clockwise” and “counterclockwise”, we mean
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Fig. 6 Augmented and triangulated axially symmetric polygon with a 3-tour and a 6-tour. Solid thick segments represent the cuts that are made to
augment the polygon

it in the local reference system of the searcher executing the
algorithm.

The PATROL phase consists of several stages, and in each
stage the searcher performs a j-tour, for some j . The j-
tours are performed according to the following list, which is
repeated until the Meeting problem is solved:

– a clockwise 0-tour,
– a clockwise 1-tour,
– a clockwise 2-tour,
– …
– a clockwise (m − 1)-tour,
– a sufficiently large number of counterclockwise m-tours
(twice the square of the total number of triangles in the
triangulations of all the sub-branches of P is abundantly
enough),

– a counterclockwise (m − 1)-tour,
– a counterclockwise (m − 2)-tour,
– …
– a counterclockwise 1-tour.

The first m stages, where the searcher performs clockwise
j-tours, are called ascending stages. All the other stages are
called descending stages. Moreover, the first stage is called
the central stage, and the stages in which an m-tour is per-
formed are called perimeter stages. So, the central stage is
an ascending stage, and the perimeter stages are descending
stages.

Recall that two different searchers executing the algorithm
may not have the same notion of clockwise direction, and
therefore in their respective ascending stages they may actu-
ally perform tours in opposite directions. If two searchers

have the same notion of clockwise direction, they are said to
be concordant; otherwise, they are discordant.

Correctness of Algorithm 2 We can now proceed with the
proof of correctness of this algorithm.

Remark 1 Similar to the algorithm of Sect. 3.1, this one
also makes a searcher stop when it sees the other searcher.
However, this cannot cause one of them to remain stopped
indefinitely without being seen by the other searcher, as
already explained in the last paragraph of the proof of Theo-
rem 2. Therefore, for brevity, in the following proofs we will
omit to mention this aspect.

Lemma 1 Let two P-searchers be executing Algorithm 2, let
both be in the PATROL phase, and let both have a correct
representation of the polygon P in memory, which is rota-
tionally symmetric. Then, the searchers will either become
mutually aware or be in a perimeter stage at the same time.

Proof Assume that the searchers never become mutually
aware. Then, at some point in time, a searcher s1 must start
a full series of perimeter stages. If, at this point, the other
searcher s2 is also in a perimeter stage, there is nothing to
prove. So, let us assume that s2 is not in a perimeter stage.
Now, s1 will perform a full series of perimeter stages, repeat-
edly following the boundary of ˜P , and touching the central
polygon Q and every triangle of the triangulation at each
stage. This means that, in the time s1 performs one complete
perimeter stage, s2 cannot remain in the same triangle of the
partition (or on its boundary), because otherwise it certainly
meets s1.

Let t be the total number of triangles in the triangulation of
the sub-branches of P , and let Tj be the set of such triangles
that are in Pj . Recall that a j-tour, for j > 0, is a tour of
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Algorithm 2 ImprovedMeeting algorithm for polygons with
barycenter not in a hole

Persistent variables
SnapshotList
Action
Stage
Polygon
PivotVertex
PolygonTriangles
PolygonLevels

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if Persistent variables are inconsistent then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
Polygon := Extract (partial) polygon from SnapshotList
U := Unvisited vertices of Polygon
if U �= ∅ then

v := First vertex of U
Compute a shortest path to v within Polygon, and move to the last

visible point along this path
else

Action := PATROL
Stage := −1
if Polygon is rotationally symmetric then

C := Select a similarity class of vertices of Polygon closest to the
center in a similarity-invariant way

PivotVertex := Select any vertex in C
Augment Polygon in a similarity-invariant way to make it simply

connected
Triangulate each branch of augmented Polygon in a similarity-

invariant way
PolygonTriangles := Total number of triangles in the triangulation

of augmented Polygon
PolygonLevels := Height of the dual tree of the triangulation of

each branch of augmented Polygon
else

PivotVertex := Select a vertex of Polygon in a similarity-invariant
way

if Action = PATROL then
if Polygon is rotationally symmetric then

if I am in PivotVertex then
Stage := Stage + 1
if Stage ≥ 2 · PolygonLevels + 2 · PolygonTriangles2 then

Stage := 0

if Stage = −1 then
Move to the next vertex in a shortest path to PivotVertex

else if Stage < PolygonLevels then
j := Stage
Move to the next vertex of a clockwise j-tour of Polygon

else
j := 2 · PolygonLevels + 2 · PolygonTriangles2 − Stage
if j > PolygonLevels then

j := PolygonLevels
Move to the next vertex of a counterclockwise j-tour of Polygon

else
if I am in PivotVertex then

Stage := Stage + 1

if Stage is odd then
Move to the next vertex of Polygon, following its boundary in the

clockwise direction
else

Move to the next vertex of Polygon, following its boundary in the
counterclockwise direction

the perimeter of Pj . Note that each triangle of Tj has either
one edge or two consecutive edges on the boundary of Pj .
It follows that, as s2 performs a j-tour, it moves from one
triangle of Tj to another at most |Tj | ≤ t times. For j = 0,
the same is trivially true: s2 touches at most t triangles in a
0-tour.

So, every time s1 performs t perimeter stages, s2 must
complete at least one stage. The number of non-perimeter
stages is 2m − 1 ≤ 2t − 1, which means that after at most
2t2 − t perimeter stages of s1, also s2 must start a perimeter
stage. When this happens, s1 still has some perimeter stages
to perform, because they are 2t2 in total. Hence, both s1 and
s2 will be found in a perimeter stage at the same time. ��
Corollary 1 Let two discordant P-searchers be executing
Algorithm 2, let both be in the PATROL phase, and let both
have a correct representation of the polygon P in memory,
which is rotationally symmetric. The searchers will eventu-
ally become mutually aware.

Proof Suppose for a contradiction that the two searchers s1
and s2 never become mutually aware. Following the proof of
Lemma 1, we argue that s1 still has some perimeter stages to
performwhen s2 is finally forced to start its first one. So, they
will both do at least one complete m-tour in opposite direc-
tions (because they are discordant), thus necessarily crossing
each other and becomingmutually aware. Note that our proof
goes through even if s2 is performing a perimeter stage when
s1 begins the first one. Indeed, s2 must move on to a non-
perimeter stage before s1 completes its first perimeter stage,
or else they would meet. From now on the proof is the same
as in Lemma 1, with the only difference that s1 has at most
one less perimeter stage to perform, which is irrelevant (we
chose the number of perimeter stages to be much higher than
needed). ��
Lemma 2 Let two concordant P-searchers be executing
Algorithm 2, let both be in the PATROL phase, and let both
have a correct representation of the polygon P in mem-
ory, which is rotationally symmetric. If one searcher begins
a j-tour in an ascending stage while the other searcher
is performing a ( j + 1)-tour in a descending stage, with
0 ≤ j < m, they eventually become mutually aware. Simi-
larly, if one searcher begins a j-tour in a descending stage
while the other searcher is performing a ( j − 1)-tour in an
ascending stage, with 0 < j < m, they eventually become
mutually aware.

Proof We will only discuss the case in which searcher s1 is
starting a j-tour in an ascending stage while searcher s2 is
performing a ( j + 1)-tour in a descending stage. The other
case is symmetric and the proof is essentially the same (it
is actually simpler, because it does not involve a j = 0 or
a j = m case). We are going to show that, by the time s1
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has finished the current stage, it becomes mutually aware
with s2. Note that, since the searchers are concordant, their
notion of clockwise direction is the same, andwemay assume
that this notion also agrees with the “global” one. So, the
searchers are traveling in opposite directions: s1 is ascending
(hence going clockwise) and s2 is descending (hence going
counterclockwise).

Because s1 has just started a j-tour, it will perform a
complete clockwise tour of the boundary of Pj , while s2
is somewhere in the middle of a counterclockwise tour of the
boundary of Pj+1 and will then proceed with a tour of Pj , as
well (because s2 is descending). The set difference between
Pj+1 and Pj is a collection of triangles T of the triangulation
of the sub-branches of P . Each triangle in T has an edge in
common with Pj . So, as s1 travels around Pj , it also gets
to see all of T , including all the locations in which s2 could
be as it performs the ( j + 1)-tour. Therefore, if s1 finishes
the j-tour before s2 has completed the ( j + 1)-tour (or at the
same time), they must becomemutually aware. This happens
in particular if s1 reaches the pivot vertex of s2 before s2 does
(or at the same time).

Suppose now that s1 reaches the pivot vertex of s2 strictly
after s2. So, when s2 reaches its pivot vertex, it finishes its
( j + 1)-tour and starts a j-tour, while s1 is still performing
its j-tour. If j = 0, both searchers are on the boundary of
the central polygon Q, and so they become mutually aware.
If j > 0, this is again a descending stage for s2, and so
the j-tour it performs is counterclockwise. Observe that s1
cannot terminate the current stage before reaching the pivot
vertex of s2. But since now both searchers are walking on
the boundary of Pj in opposite directions, they are bound to
bump into each other and become mutually aware. ��
Remark 2 Lemma 2 also holds when both searchers start a j-
tour in opposite directions at the same time, because this can
be considered the very end of the second searcher’s previous
( j + 1)-tour (or ( j − 1)-tour).

Theorem 3 There is an algorithm that solves the Meeting
problem with two searchers (regardless of their initial mem-
ory contents) in every polygon whose barycenter does not lie
in a hole.

Proof We will show that Algorithm 2 correctly solves the
Meeting problem for two searchers in any polygon P whose
barycenter does not lie in a hole. The proof of correctness is
the same as that of Theorem 2, except for the PATROL phase.
Also, as a searcher still visits every vertex of the polygon
during the PATROL phase, it still eventually finds out if its
memory is inconsistent with P , and in that case it restarts the
execution. This can happen only once, because afterwards its
memory contents are going to be always correct. So, in the
following, we will assume that both searchers already have a
correct picture of P in memory, and are both in the PATROL

phase. Moreover, since the new algorithm works in the same
way as the old one if P is not rotationally symmetric (and the
proof of correctness is the same as in Theorem 2), we will
assume that P is rotationally symmetric.

If the two searchers are discordant, they must become
mutually aware, due to Corollary 1. Let us then assume that
they are concordant, and that they never become mutually
aware. Therefore, by Lemma 1, they are eventually found in
a perimeter stage at the same time. Then, theywill perform all
the remaining descending stages, followed by the ascending
stages, starting with the central stage. If they start the central
stage at the same time, they necessarily become mutually
aware, because they are on the boundary of the central poly-
gon Q, which is convex and empty. So, one searcher must
begin the central stage while the other is still in a descending
stage. Then, as one searcher ascends and the other descends,
the hypotheses of Lemma 2 are going to be satisfied (also
due to Remark 2), which means that the searchers eventually
become mutually aware. ��

Polygons with even symmetricity Observe that, if a polygon
P is centrally symmetric and its center lies in a hole, then two
P-searchers placed in symmetric locations and activated syn-
chronously will never see each other (regardless of the shape
of the hole). Therefore, Theorem 3 yields a characterization
of the polygons of even symmetricity in which the Meeting
problem can be solved with two searchers.

Corollary 2 If P has even symmetricity, then the Meeting
problem for two P-searchers is solvable if and only if the
barycenter of P does not lie in a hole. ��

4 Memoryless implementations

The Meeting algorithms given in the previous section
assumed that the searchers were able to memorize the entire
history of the snapshots they had taken since the beginning of
the execution. With a little extra effort, we could have made
a more efficient use of memory, and we could have designed
equivalent algorithms that used only a number of variables
that is linear in the number of vertices of the polygon.

In this section, we are going to do much better: we will
show that we can re-implement our algorithms without using
any persistent memory at all. So, our searchers will be obliv-
ious, in the sense that the destination point computed in each
Compute phase will depend only on the snapshot taken in
the most recent Look phase, while all previous snapshots
and computations are forgotten.

We achieve this in two steps: in Sect. 4.1, we will discuss
two ways of encoding all the permanent variables as a single
real number; in Sect. 4.2, we will show how to apply these
encoding techniques to our algorithms.
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4.1 Encoding persistent variables

As a first step, we want to be able to encode all the persistent
variables used in our algorithms as a single real number. We
will briefly discuss a naive approach, which works for every
polygon but yields a code that is not computable on a real
random-access machine. Then, we will present an improved
code that can be computed with basic arithmetic operations
but requires the vertices of the polygon to be algebraic points.

Representing snapshotsWehave used several types of persis-
tent variables in Algorithms 1 and 2, such as integers, reals,
and snapshots. However, since the algorithms are determin-
istic, only the snapshots are really necessary. If a searcher
remembers the history of the snapshots taken during the exe-
cution, it can reconstruct at any time all its past computations,
including the history of all the modifications to the other
persistent variables (recall that the values of these variables
are fixed after each memory “reset”, when a searcher erases
its own memory and restarts the execution). So, since the
non-snapshot variables are redundant,wewill focus on repre-
senting snapshots. Up to this point, we have treated snapshots
as primitive data types that could somehow be processed by
searchers, but now we have to define them exactly in terms
of more elementary variables.

Recall that a snapshot is a representation of the visible
portion of the polygon plus a list of visible searchers. The
visible searchers are not very important in our Meeting algo-
rithms, and do not even have to be stored in the persistent
memory of the observing searcher. Their exact locations are
irrelevant, as well. In fact, wemay assume that each snapshot
that a searcher gets as input simply contains a flag indicating
the presence or absence of other searchers in the visible area.

The part of snapshot representing the visible portion of the
polygon demands more attention: it encodes a sub-polygon
of P expressed in the coordinate system of the observing
P-searcher. This region is fully described by the portion of
P’s boundary that is seen by the searcher, which in turn is
a union of line segments, each of which is a sub-segment of
an edge of P . So, we can stipulate that a snapshot takes the
form of a finite array of real numbers, say

(x1, y1, x
′
1, y

′
1, x2, y2, x

′
2, y

′
2, . . . ),

where (xi , yi ) and (x ′
i , y

′
i ) are the endpoints of the i th seg-

ment of the portion of P’s boundary that is visible to the
searcher (note that none of these points is necessarily a ver-
tex of P). Snapshots are received as input by the searcher in
this form (plus the visible searchers flag defined in the previ-
ous paragraph), and they are also represented by the searcher
in this form when they are stored in memory (without the
visible searchers flag).

It is easy then for the searcher to manipulate this data type
in its computations. For instance, it can readily merge differ-
ent snapshots and eventually construct a full representation
of P as a list of its edges.

General idea As an oblivious P-searcher has no persistent
memory and can only see its current surroundings, the only
way it can implicitly memorize information is by carefully
positioning itself within P . Specifically, suppose that, among
the vertices of P that are visible to the searcher, there is a
unique vertex v that is closest to it, and let d be their dis-
tance in the searcher’s coordinate system (recall that different
searchers may have difference units of distance). Then, we
say that the searcher encodes the number d, and its virtual
vertex is v. Note that, since v is the closest visible vertex, it is
also fully visible to the searcher (cf. Fig. 1), which is there-
fore always able to identify it as a vertex of P by examining a
snapshot taken from its current location, even if the snapshot
is represented as we explained above (hence not explicitly
marking the vertices of P). Once the searcher has identified
v, then it can easily retrieve d.

So, a P-searcher can encode a range of non-negative real
numbers that depends on its unit of distance and the shape of
P . Also, not all virtual vertices allow to encode the same set
of values. However, if d can be encoded under some virtual
vertex v, then any value in the range [0, d] can be encoded,
by letting the searcher approach v by a suitable amount.

Since this method only allows a searcher to encode one
number at a time, our goal is to “pack” a whole list of snap-
shots into a single non-negative real number. We would also
like to define our packing in such a way that the numbers
d and d/2 have the same meaning, for every d ≥ 0. This
is to make sure that everything that can be packed into a
number (which may be very large) can actually be encoded
by any searcher under any virtual vertex, regardless of the
searcher’s unit of distance. This “scalability” property also
gives a searcher the ability to get arbitrarily close to its vir-
tual vertex without losing information, by repeatedlymoving
halfway towards it (note that the virtual vertex is still the clos-
est visible vertex after this move).

Naive codeTo pack our data into a single real number, we use
the number’s binary digits. Let us restrict our attention to the
real numbers in the interval [0, 1). Each of these numbers
is identified by the fractional part of its binary representa-
tion, which is an infinite sequence of binary digits.Moreover,
if we forbid binary representations ending with an infinite
sequence of digits 1, the binary representation of any real
number is unique.

It is straightforward to pack a finite sequence of real num-
bers (a1, a2, . . . , an) into a real number in [0, 1). We first
express each ai as a sign bit si , which is 0 if ai ≥ 0 and 1

otherwise, an infinite binarymantissa
(

b(i)
1 , b(i)

2 , . . .
)

, and a

non-negative binary exponent ei , such that
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ai = (−1)si ·
∞
∑

j=1

b(i)
j · 2ei− j .

Then we express each exponent ei , which is a non-negative

integer, as the infinite sequenceof binarydigits
(

e(i)
1 , e(i)

2 , . . .
)

,

such that

ei =
∞
∑

j=1

e(i)
j · 2 j−1.

Hence we have n sign bits to pack, plus 2n infinite binary
sequences. We also want to fulfill the scalability requirement
of our code, and so we add a scale λ, which is a non-negative
integer. Our final result is the real number whose binary rep-
resentation is

0.0λ1n0s1s2 . . . snb
(1)
1 e(1)

1 b(2)
1 e(2)

1 . . .

. . . b(n)
1 e(n)

1 b(1)
2 e(1)

2 b(2)
2 e(2)

2 . . . b(n)
2 e(n)

2 . . . .

By 0λ we mean a sequence of λ digits 0, and by 1n we mean
a sequence of n digits 1. It is clear that the original sequence
(a1, a2, . . . , an) can be reconstructed from this number, and
that the number can be made arbitrarily small by increasing
λ.

Since we know how to represent a snapshot by a finite
array of coordinates, we can also pack it into a single real
number. Then, to pack an array ofm snapshots,we can simply
pack each snapshot separately, and then pack the resultingm
numbers into a single number.

Real random-access machines Let us see how our naive
encoding (and decoding) strategy could possibly be com-
puted, and what it means to compute a real number. Of
course, a traditional Turing machine with n tapes contain-
ing the binary representation of every ai could compute any
digit of the naive code in finite time. However, computing all
of its digits requires an infinitely long computation.

To overcome this limitation of Turing machines, some
models of computation that operate directly on real numbers
have been introduced. These include the Blum–Shub–Smale
machine [3], which is a random-access machine whose reg-
isters can store arbitrary real numbers. Its computational
primitives are the four basic arithmetic operations on real
numbers, and it can test (and branch) if a real number is
positive. Each of these operations takes one unit of time.

Depending on the application, it is also customary to
extend the basic model with additional primitives, such as
root extractions, trigonometric functions, etc. Of course, the
extra primitives that we include should be somewhat well-
behaved and intuitively computable, or else we would defeat
the purpose of using these machines as models of computa-
tion. For instance, it would be reasonable to require at the

very least that our unary primitives be real functions of a
real variable whose set of discontinuities is nowhere dense.
This would admit all the algebraic functions, the trigonomet-
ric functions, the exponential functions, the logarithms, and
many more.

Non-computability of the naive code As it turns out, our
naive encoding method is not implementable on an extended
Blum–Shub–Smale machine. Let us consider the simple
case in which we want to pack the two numbers a =
0.b1b2 . . . and a′ = 0.b′

1b
′
2 . . . into the number f (a, a′) =

0.110b1b′
1b2b

′
2 . . . . Being able to compute f (a, a′) for every

a and a′ is equivalent to having a primitive operator g(x)
that interleaves the binary digits of x with 0’s (assuming
that 0 ≤ x < 1). Indeed, g(x) = 8 · f (x, 0) − 6 and
f (a, a′) = g(a)/8 + g(a′)/16 + 3/4.
Assume that x �= 0 has a finite binary representation,

i.e., x = 0.b1b2 . . . bm , with bm = 1. Then, g(x) =
0.b10b20 . . . 0bm . Now, let xi = x − 2−m−i . Clearly,
limi→∞ xi = x . We have xi = 0.b1b2 . . . bm−101i , and
hence g(xi ) = 0.b10b20 . . . 0bm−100(01)i . So,

lim
i→∞ g(xi ) = 0.b10b20 . . . 0bm−10001 �= g(x).

Therefore, he have

g

(

lim
i→∞ xi

)

= g(x) �= lim
i→∞ g(xi ),

whichmeans that g is not continuous at x . Recall that x was a
generic number with a finite binary representation. Hence, g
is discontinuous on the set of rationals of the formm/2n , with
0 < m < 2n , which is dense in (0, 1). So, according to our
discussion on computability, g is not a reasonable primitive
for an extended Blum–Shub–Smale machine. It is not hard to
generalize our argument to the naive encoding of more than
two numbers, as well as the decoding functions.

Polygons with algebraic vertices We now propose a more
sophisticated encoding strategy, which is computable even
on a basic Blum–Shub–Smale machine (i.e., the one with
the four basic arithmetic operations only). A small drawback
is that we can only apply this method if the vertices of the
polygon P have algebraic coordinates (i.e., they arealgebraic
points) in some global coordinate system. (Recall that a real
number is algebraic if it is a root of a polynomial with integer
coefficients.) Note that we do not require that the searchers’
positions be algebraic points at any time during the execution.
Their local units of distance do not have to be algebraic,
either. As a consequence, even under our assumptions, the
snapshots of P that the searchers get do not necessarily have
vertices with algebraic coordinates.

In practice, we are not imposing a big limitation on our
inputs, in that basically all the polygons we can reasonably
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think of fall into this class. Indeed, the algebraic numbers
include the rationals and are closed under basic arithmetic
operations and extractions of roots of any degree [8]. More-
over, a simple consequence of de Moivre’s formula is that
the sines and cosines of all the rational multiples of π are
algebraic [27]. Hence, the vertices of all the regular poly-
gons inscribed in the unit circle and having a vertex in (1, 0)
are algebraic points. So, for instance, we could construct the
vertex set of our polygon P by putting together copies of
these “unit polygons”, rotated by rational multiples of π and
scaled by rational factors. This simple scheme already yields
a very rich class of polygons of all symmetricities.

Representing algebraic reals The reason why we insist on
working with algebraic numbers is that they have concise
representations that can bemanipulated efficiently. To under-
stand our technique, it is worth considering the rational
numbers first. The polygons with rational vertices do not
constitute a very interesting class, because their symmetric-
ity can only be 1, 2, or 4 (indeed, this is equivalent to the fact
that, for n /∈ {1, 2, 4}, there are no regular n-gons in the plane
whose vertices have integer coordinates, which in turn can
be proved by standard algebraic methods [26]). Nonetheless,
discussing rational numbers allows us to expose some of the
key ideas of our encoding method without getting involved
with technicalities. Let p/q be a rational number, with q > 0.
We can describe it by three non-negative integers: a sign
bit for p, the absolute value |p|, and q. We represent each
non-negative integer n as the bit string 0n1, and then we sim-
ply concatenate the representations of all three numbers as
the fractional part of a real number expressed in binary. For
instance, the rational 5/3 becomes 0.10000010001 (because
the sign bit of 5 is 0), and −5/3 becomes 0.010000010001
(because the sign bit of −5 is 1).

The advantage of this code over the standard binary repre-
sentation is that this one is always finite.We can then retrieve
the most significant bit b1 of this representation by multiply-
ing the number by 2 and testing if the result is less than 1.
We then subtract b1 from the result and we repeat the same
process to retrieve b2, etc. We know that all the remaining
bits are 0 when the number itself becomes 0. With a similar
technique we can modify any bit of the code, and therefore
we can transform the entire code by any Turing-computable
function. In particular, given the representations of two ratio-
nals p/q and p′/q ′, we can do basic computations on them
without ever reconstructing the actual numbers. For instance,
once we have the two pairs of integers (p, q) and (p′, q ′),
we can compute the sum p/q + p′/q ′ as the pair of integers
(pq ′+ p′q, qq ′), without actually constructing the real num-
ber p/q or the real number p′/q ′. Note that the low-level bit
manipulations that we do to achieve this are computable by
a basic Blum–Shub–Smale machine.

Representing generic algebraic numbers is done in a sim-
ilar way, although the procedure is complicated by some
technical issues. Since the algebraic number α is a root of
the polynomial with integer coefficients Q(x) = anxn +
an−1xn−1 + · · · + a1x + a0, we could attempt to represent it
as the array of the coefficients of Q, i.e., (an, an−1, . . . , a0).
We may also assume that Q is the minimal polynomial of
α, which is unique. However, since Q has n complex roots
(counted with their multiplicity), we also have to tell which
of these roots we are representing. Fortunately, the real roots
of Q can be ordered. Ifα is the i th real root of Q, we therefore
represent it by the sequence (n, i, an, an−1, . . . , a0), which
can easily be expressed as a single real number with a finite
binary representation by encoding the sign bit and the abso-
lute value of each of the integers, as we did with the rationals.
Observe thatwe explicitly stored the number n as a first thing,
so we know when to stop during the decoding procedure (we
may be given “by accident” a number with infinitely many
1’s in its binary representation, and we do not want to get
stuck in an infinite loop trying to decode it).

As we did with the rationals, once we have some alge-
braic numbers expressed in this finite form, we can do
Turing-computable bit manipulations to compute all kinds of
common functions on them. In particular, there are standard
ways of computing the basic arithmetic operations, as well as
root extractions of any degree. Moreover, since we are using
minimal polynomials, each algebraic number has a unique
code, and therefore testing if two of them are equal is triv-
ial. A comprehensive exposition of these techniques, along
with their theoretical background, is found in [8]. Essentially,
this is also one of the several ways in which mathemati-
cal software such as Sage, Mathematica, and CGAL handles
algebraic numbers and does exact computations with them.

The key point to keep in mind is that, once a number
is encoded in this form, we cannot necessarily retrieve it
in finite time; we can only approximate it arbitrarily well,
for instance via Sturm’s theorem [8]. However, we can still
evaluate computable predicates on these numbers exactly,
and have them influence the flow of our algorithms [8].

Computable code Suppose a basic Blum–Shub–Smale
machine has an algebraic number α stored in a register; let
us see how it can effectively construct its code. The machine
starts generating all finite sequences of bits in lexicographic
order. For each sequence, it checks if it is a well-formed
code of an algebraic number; if it is, it extracts the coeffi-
cients of the polynomial Q from it, as explained above. Then
it computes Q(α), which requires only additions and multi-
plications of real numbers. Since α is algebraic, eventually a
polynomial Q is found such that Q(α) = 0. It is well known
that Q must be a multiple of the minimal polynomial of α;
hence, it is sufficient to factor Q over Z and pick the irre-
ducible factor that has α as a root: this factor Q′ must be
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the minimal polynomial of α. Then Sturm’s theorem can be
applied to find out how many real roots of Q′ are smaller
than α, and this number is used along with the coefficients
of Q′ to encode α (the details of this process are explained
in [8]).

Now that we know how to compute the code of a single
algebraic number, let us see how we can encode an entire
snapshot of a polygon P with algebraic vertices taken from
a point p ∈ P by some searcher s. Formally, this is the
set of points of P that are visible to p, transformed by an
affine map f p : R2 → R

2. This map translates points from
the global coordinate system to the coordinate system of s:
it translates p into the origin and then scales (by a non-zero
factor) and rotates the plane about the origin. Note that p
is not necessarily an algebraic point, and the parameters of
f p are not necessarily algebraic numbers. However, as f p is
a similarity transformation, it preserves the ratios between
segment lengths. Observe that the distance between any two
vertices of P is algebraic, because it is computable by basic
arithmetic operations and extractions of square roots (by the
Pythagorean theorem), and algebraic is therefore also the
ratio between two such distances. It follows that the distances
between vertices of f p(P) may not be algebraic, but all their
ratios are. The same reasoning can be extended from the
vertices of P to all the points that are algebraic in the global
coordinate system. These include the projection of any vertex
of P onto the line through two other vertices of P , because
the coordinates of such a point can be computed by a rational
function of the coordinates of the three vertices involved.

Now let v and v′ be two vertices of f p(P), and let
gv,v′ : R2 → R

2 be the (unique) similarity transformation
with positive scale factor that maps v into (0, 0) and v′
into (1, 0). Based on the previous paragraph’s reasoning, we
can conclude that the vertices of gv,v′( f p(P)) are algebraic
points. Indeed, let u be one such vertex, let u′ = g−1

v,v′(u), and

let u′′ be the projection of u′ onto vv′. We have that f −1(u′′)
is algebraic, and hence |u.x | = ‖vu′′‖/‖vv′‖ is also alge-
braic. Similarly, if u′′′ is the projection of u′ onto the line
through v that is orthogonal to vv′ (hence f −1(u′′′) is alge-
braic), we have that |u.y| = ‖vu′′′‖/‖vv′‖ is algebraic, as
well.

This basically means that, if s picks two visible vertices
of f p(P), say v and v′, it takes the line vv′ as the x axis and
the length ‖vv′‖ as the unit of distance, and expresses all the
visible vertices of f p(P) in this new coordinate system, then
these will be algebraic points, which can be encodedwith our
method by a basic Blum–Shub–Smale machine. The prob-
lem is that the snapshot taken from p may not only contain
vertices of f p(P). Recall that this snapshot is a list of sub-
segments of the edges of f p(P): if an edge is only partially
visible to s, it is seen by s as a segment (or a collection of
segments) with different endpoints. These endpoints may not

be algebraic in the new coordinate system, and hence they
cannot be encoded with our technique.

Our solution is to identify these potentially non-vertex
endpoints and simply mark them with an “undefined”
tag. These turn out to be precisely the endpoints that are
not fully visible to s (cf. Fig. 1). For instance, let S =
(x1, y1, x ′

1, y
′
1, x2, y2, x

′
2, y

′
2, . . . ) be the snapshot received

by s, and suppose that (xi , yi ) = c · (x j , y j ) for some
0 < c < 1. Then, we mark (x j , y j ) with a special tag.
More precisely, we add an “undefined” bit to all the entries
of the snapshot, and we set it to 0 or 1, depending if the corre-
sponding point is certainly a vertex of f p(P) or possibly not
a vertex. Note that this check can be done by a basic Blum–
Shub–Smale machine. Then we can pick any two “defined”
points v and v′ of S (which obviously exist), use vv′ as the x
axis, and transform all the “defined” points of S as detailed
above. Each “undefined” point of S is simply replaced with
a (0, 0) (preserving its “undefined” tag), or any algebraic
point of our choice. The result is a transformed snapshot S′
whose points are guaranteed to be all algebraic. Hence we
can effectively encode their coordinates with a finite number
of bits, and then concatenate all these sequences of bits into
the binary representation of a single real number. We also
encode the “undefined” bits and the indices of v and v′ in S.
Everything is preceded by the total number of elements in
the code: as usual, this is to let the decoding procedure know
when to stop. We denote the final result by C(p, v, v′).

Now, given C(p, v, v′), the searcher s can decode it and
reconstruct the “defined” vertices of the snapshot, as well as
the edges between them. The coordinates of these vertices
are still in our implicit form, but the searcher can operate
on them, computing new algebraic points, again in the same
implicit form. However, if s is currently in p, and therefore
has access to the original snapshot S, it can easily retrieve the
actual coordinates of v and v′, because their indices are stored
inC(p, v, v′) (and they are plain integers). So, suppose that s
has computed a point q in implicit form based onC(p, v, v′).
By Sturm’s theorem, it can explicitly construct a point q ′
that is arbitrarily close to q (i.e., q ′ is not encoded in our
implicit form, but it is a real number on which the machine
can directly operate). Then, knowing the coordinates of v and
v′, s can transform q ′, via rational functions, back into the
coordinate system in which S is expressed (which is the local
coordinate system of s). Knowing how close q ′ is to q (which
is a parameter of Sturm’s theorem that s can set), and knowing
the determinant of the transformation, s can infer how close
the resulting point is to the real one. In particular, if q is
supposed to represent a fully visible vertex of the polygon, s
can determine which vertex it is in finite time, by computing
a good-enough approximation of it, and comparing it with
the points in S.

We can pack any list ofm snapshots into a single real num-
ber by encodingm, followed by the codes of all the snapshots.
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Along with the snapshots, we can also pack as many other
finitely described elements as we want. We may add a fixed-
length “label” to the code of each element, describing its
content and specifying if it represents a snapshot, an integer,
etc. As with naive encoding, we also put a sequence of the
form 0λ1 as a first thing in our code, where λ is the scale.

Observe that our encoded snapshots are not exact copies
of the real ones, because some information about the “unde-
fined” points is lost. In the second part of this section, we
will show that the information that we encode is enough for
the purpose of our application to the Meeting problem.

4.2 Adapting the algorithms

Next we are going to apply our encoding methods to the
Meeting algorithms of Sect. 3, and we will show how oblivi-
ous searchers can solve theMeeting problem, aswell.Wewill
be using the improved encoding, so we will need searchers
to be able to compute only basic arithmetic operations on
real numbers, as well as extract square roots. Hence, inter-
nally, each searcher will run a Blum–Shub–Smale machine
extended with a square-root primitive. Only the four basic
arithmetic operations are required for our computable encod-
ing method, but square roots are needed in the geometric
computations. It is well known that the points whose coor-
dinates can be computed by composing these five operations
are precisely the ones that can be constructed with a com-
pass and a straightedge [24]. (In turn, the Mohr–Mascheroni
theorem states that these points can also be constructed with
a compass alone [23].)

Main ideas Recall that both our Meeting algorithms work by
making searchers jump from one vertex of the augmented
polygon ˜P to another. This behavior is roughly compatible
with the idea of simulating memory by moving close enough
to a vertex of P and encoding information as the distance
from it (in the terminology of Sect. 4.1, this is called the
virtual vertex). When activated, a searcher will compute its
distance from the virtual vertex (note that this requires the
extraction of a square root), and it will decode this distance,
thus retrieving its lost memory. It will then execute one of
the old algorithms, “pretending” to be located exactly on
the virtual vertex. Instead of moving onto the destination
vertex, it will move close enough to it, re-encoding its entire
memory plus the newest snapshot. Of course, this technique
introduces several issues.

– Recall that some information is lost in the encoding
of our snapshots, because some points are marked as
“undefined”. We have to make sure that this loss of
information does not invalidate the correctness of our
algorithms. (Indeed, we will show that the algorithms

work as intended even if the vertices recorded in the
encoding of a snapshot are just the fully visible ones.)

– As explained later, each snapshot is encoded by first re-
casting it into a different coordinate system, which is
not necessarily the searcher’s local one. A searcher may
not be able to reconstruct this special coordinate system
after it moves and its virtual vertex changes. We have to
show how a searcher can “transport” snapshots around P
without compromising their usability. (The solution is to
use a coordinate system where the x axis is marked by
the current and next virtual vertices, so the searcher can
reconstruct it after moving.)

– The EXPLORE phase of the algorithms relies on the
connectedness of the visibility graph of P . If a searcher
explores P by approaching its vertices but without prop-
erly touching then, it may be unable to discover some
unexplored vertices. We have to show how to avoid this
situation. (This is resolved by making the searcher move
close enough to all vertices of P and to their angle bisec-
tors.)

– The tours performed in the PATROL phase turn at the
pivot point and at the vertices of the augmented polygon
˜P , which are not necessarily vertices of P . Unfortunately,
oblivious searchers cannot approach generic points with-
out losing information. (We will show how to modify
their paths to make them turn only at vertices, without
compromising the correctness of the PATROL phase.)

– During the PATROL phase, two searchers are supposed
to become mutually aware, either because they travel on
the same edge or diagonal of P or because they reach
the same triangle of a special triangulation. Once again,
if searchers follow their predefined routes only approxi-
mately, theymay fail tomeet. (Wewill show how to avoid
this by making the searchers move within a thin-enough
band that approximates the intended path.)

In the following, we will address all these issues in greater
detail.

Approaching vertices In order to apply our encoding strat-
egy, we must first ensure that a searcher has a well-defined
virtual vertex. If a searcher has more than one closest visi-
ble vertex, it just moves to one of them. Similarly, if at any
time a searcher realizes that the information it is currently
encoding is either internally incoherent or contrasts with the
current snapshot, it moves onto its virtual vertex. So, when a
searcher finds itself on a vertex, it knows that it has to restart
the execution from the beginning.

In all other cases, a searcher has a destination vertex, and
it moves close enough to it. It may not be able to determine
right away how close it has to move, but it can reduce this
distance later, if needed. In Sect. 4.1 we introduced the scale
of a code, and we argued that a searcher can always get as
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Fig. 7 Moving around the reflex vertex v to see both its incident edges

close as it wants to its virtual vertex (by adjusting the scale)
without losing information. This “approaching move” keeps
the searcher on the same ray emanating from the virtual ver-
tex, and it is therefore useful when the searcher wants to
maintain a certain angle with respect to the virtual vertex’s
incident edges.

In general, during the EXPLORE phase, before choosing
its next destination vertex, a searcher s will first adjust its
position around its virtual vertex v in such a way that all the
points of its two incident edges vv′ and vv′′ become fully
visible to s (cf. Fig. 1). This is relatively easy to do, since s
has access to the current snapshot. If the interior of one of
the incident edges of v, say vv′′, is completely invisible to
s, it means that v is a reflex vertex of P , and s can see at
least part of the edge vv′. In this case, s moves to the line
through v perpendicular to vv′. The destination point p′ is
chosen in such a way that the circle through v centered in
p′ intersects the boundary of P only in v (see Fig. 7). This
guarantees that v will be the virtual vertex again. From there,
if the interior of vv′′ is still completely invisible, s moves
to the extension of the segment vv′, again keeping v as the
virtual vertex (this move is always possible, although the
destination of s may have to be much closer to v than p′ is:
i.e., the two circles in Fig. 7 do not necessarily have the same
radius). After this move, both incident edges of v will be at
least partially visible. Then, s approaches v until it can see
vv′ and vv′′ entirely.

When s finally sees both incident edges of v, it decides
what its next virtual vertexuwill be.Let s be currently located
in p. Then, u has to be a vertex of P that is fully visible
to every point on the segment vp. s also has to choose a
destination point p′, again fully visible to every point on vp.
Moreover, among the vertices that are visible to p′, u should
be the closest to p′. Since by our assumption u is fully visible
to p, a suitable point p′ can always be found by s. Namely,
if u is a convex vertex of P , then p′ will be chosen close
enough to u on its angle bisector (an entire neighborhood of
u is visible to p, so this is easy to do). If u is a reflex vertex,

then p′ will be the center of a circle that touches the boundary
of P only in u.

Transporting snapshots Recall that snapshots are encoded
in a coordinate system defined by two vertices of P , which
guarantees that the vertices in the snapshot can be encoded
as algebraic points (provided that the vertices of P are alge-
braic in some global coordinate system to begin with). Using
the notation introduced in Sect. 4.1, we will assume that all
the n snapshots that searcher s is currently encoding are of
the form C(pi , v, v′), with 1 ≤ i ≤ n. In our notation, pi
is the point from which the i th snapshot was taken, v is the
current virtual vertex of s, and v′ is another vertex of P that
is fully visible to all the points in the segment vp, where
p = pn+1 is the current location of s. So, all the snapshots
that s “remembers” are encoded in the same coordinate sys-
tem, defined by v and v′. Along with the snapshots, s also
remembers a rational approximation of v′ − v, expressed
in the local coordinate system of s. This approximation is
assumed to be so good that s can retrieve the coordinates of
v′ (in its local coordinate system) by looking at its current
snapshot. Knowing the coordinates of v and v′, s can then re-
map every C(pi , v, v′) into its local coordinate system, and
compute arbitrarily good approximations of any algebraic
point that it constructs implicitly.

Of course, as s moves around v and approaches it as
explained before, it must always make sure that, whenever
it moves from p to p′, every point of vp′ is fully visible to
v′. This is done by choosing p′ close enough to v, and it is
possible because v′ is fully visible to all points of vp, by our
assumption.

Suppose now that s, currently located in p = pn+1,
intends to change virtual vertex from v to u. By our assump-
tion, it does so only if u is fully visible to all points of
vp. In order to preserve the readability of the snapshots
that s is encoding, it has to convert them from the coordi-
nate system in which they are expressed into a different one,
which will allow s to reconstruct the snapshots from a neigh-
borhood of u. To do so, s converts each C(pi , v, v′) into
C(pi , u, v). Since s knows the exact positions of the three
vertices involved (i.e., u, v, v′), because they are all in the cur-
rent snapshot, it can perform this conversion, which is simply
a change of coordinates computable with a rational function.
Then s encodes the current snapshot in the same coordi-
nate system as the others, obtaining C(pn+1, u, v). Finally,
s computes (v + p)/2 − u and suitably truncates the binary
representation of its coordinates, obtaining a finite approxi-
mation w of it. The approximation must be good enough, so
that the point u + w is in the interior of P and closer to v

than any vertex of P that is currently visible to s (apart from
v itself). Then, s computes a destination point p′ whose dis-
tance to u encodes w (whose binary representation is finite),
followed by the snapshots C(pi , u, v), with 1 ≤ i ≤ n + 1
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(note that constructing p′ involves a square root extraction).
When s gets to p′, it finds its virtual vertex u and retrieves
w (as an explicit rational vector) from ‖up′‖. Then it com-
putes u + w, which is an approximation of the midpoint of
the segment vp. Since by our assumption all points of vp are
fully visible to p′, it is easy for s to identify v. Now s can
retrieve the snapshots C(pi , u, v) from ‖up′‖ and use u and
v to re-map them into its own coordinate system.

Exploring the polygon Suppose a P-searcher s has success-
fully decoded its distance from its virtual vertex v, obtaining
a history of snapshots. Since all these snapshots are expressed
in the same coordinate system, it is trivial for s to merge them
all together and check if the common parts of two different
snapshots match. If they do not match, it means that the cur-
rent position of s does not encode anything meaningful, and
so s moves to v. We have already explained how s can recon-
struct the coordinate system of these snapshots, and use it
to encode the new snapshot taken from its current location
in the same fashion. When all these snapshots (including the
current one) have been tested against each other and merged,
the result is a self-consistent collective snapshot S, which is
supposed to represent the part of P that s has already visited.

Also, whenever s encodes its current snapshot, it marks
the position of its virtual vertex with a special “visited” flag.
This flag is preserved when a snapshot is transported and
converted to a different coordinate system. So, when s con-
structs the collective snapshot S, it also knows what vertices
of S have already been visited.

The EXPLORE phase begins with s on a vertex v, and the
strategy is to keep following the connected component C of
the boundary of P that contains v, always in the same direc-
tion (either clockwise or counterclockwise), while encoding
all the snapshots taken. This is easy to do, because we have
explained how s can adjust its position around its virtual ver-
tex so that both its incident edges become fully visible.

Upon completing its first tour of C , s has a full picture of
it in the collective snapshot S, and starts a second tour ofC in
the same direction, this time carefully choosing its destina-
tion points, as explained next. Let v = v1, v2, …, vm be the
vertices of C , in the order s is following them. In the second
tour, for each vi , s wants to reach a point pi close enough to
it, so that the polygonal chain C = (p1, p2, . . . , pm) does
not self-intersect (i.e., it is the boundary of a simple polygon),
and does not intersect the boundary of P . For instance, pi
may be chosen on the angle bisector of vi and close enough
to it. So, upon reaching the angle bisector of vi (during the
second tour), s uses the information in S to compute how
close to vi it has to get to construct a suitable pi . An ade-
quate distance d is computed implicitly, and then s can get
an approximation of it in explicit form and choose a distance
that is certainly smaller than d.

When the second tour is complete and s has touched all
vertices ofC , it picks the first vertex v′ of P that is in S but is
not yet marked as visited. Then s follows a shortest path to v′
in which each vertex touched is fully visible to the previous
one. Note that this path obviously exists, because if a vertex
in the path does not fully see the next one, it can preliminarily
move toward the closest vertex that is on the same line and is
obstructing its vision. Once v′ has become the virtual vertex,
s follows the same exploration procedure on the connected
component of the boundary of P that contains v′, say C ′,
which is necessarily disjoint from C . During the second tour
ofC ′, s traces an approximated polygonal chainC

′
as before,

but with the additional requirement that it does not intersect
C . This can be done in the sameway aswithC , by computing
a thin-enough “band” around C ′ and making sure to move
within it.

This general procedure is repeated as long as new vertices
of P are discovered and appear in S as unvisited. Each time a
new connected componentC j of the boundary is discovered,
s follows it and constructs an approximationC j that does not
intersect any of the previously constructed ones and is also
disjoint from the boundary of P . So, when the procedure
ends, s has touched the vertices of some mutually disjoint
simple closed polygonal chains C j , with 1 ≤ j ≤ m, and
each vertex of P is either undiscovered or marked as visited.
To prove the correctness of the EXPLORE phase, we have to
show that in this situation all vertices of P have indeed been
discovered. Let us construct a new polygon P ′ by removing
every C j from the boundary of P and replacing it with C j .
P ′ is indeed a polygon because of the way the C j ’s have
been constructed. Also, if two points fully see each other
in P ′, they must also fully see each other in P . Moreover,
the unvisited vertices of P are also vertices of P ′. If some
unvisited vertices exist, then one of them, say u, must be
fully visible to a vertex u′ of some C j , because P ′ is con-
nected. Since u′ is a vertex of C j , s must have been exactly
in u′ and must have taken a snapshot from there. Recall that
fully visible vertices are never marked as “undefined” in the
encoded snapshots, and so s must have carried around the
implicit coordinates of u, which therefore must appear in the
collective snapshot S. This is a contradiction, and therefore
our exploration procedure is correct.

Basic patrollingLet us showhow to adapt the PATROLphase
of Algorithm 1 to oblivious searchers. Each P-searcher that
executes the EXPLORE phase correctly ends up with a col-
lective snapshot S that is a faithful copy of P expressed in
implicit form in a different coordinate system. So, all the
similarity-invariant geometric constructions made by our old
algorithmcanbeperformedagain byoblivious searchers. The
first technical issue here is that some of the points generated
by these constructions are not vertices of P but midpoints
of edges. Since we typically want the destination point of
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Fig. 8 Axially symmetric tour that visits all vertices and only turns at
vertices

a searcher to be as close as possible to a vertex, we cannot
make searchers turn at midpoints of edges as they patrol the
boundary of P , but only turn at vertices.

Let us see how we can modify the tour of the boundary
of P so that it only turns at vertices, without invalidating the
correctness of the algorithm. Patrolling the boundary of P is
what makes the map construction algorithm self-stabilizing:
as a searcher repeatedly touches every vertex of P , it is able
to tell if its memory contents are incorrect. So, we do not nec-
essarily have to augment P exactly as we did in Sect. 3.1; we
only have to make each searcher follow a path that touches
every vertex. Of course, we also want two searchers with the
same pivot point to follow the same path, so they necessarily
meet while patrolling it. If P is not axially symmetric, this is
simple, and Algorithm 1 already does it. If P is axially sym-
metric, we just make each searcher’s path symmetric with
respect to the axis that passes through its pivot point, in any
(deterministic) way that we want. This is to make sure that
if two searchers have that pivot point, they will compute the
same path even if they have a different notion of clockwise
direction. Figure 8 shows an example of how such a pathmay
be constructed in an axially symmetric polygon. Observe that
the pivot point in this example is in the middle of an edge,
and the tour covers that edge twice. This makes the last ver-
tex of the clockwise tour coincide with the first vertex of the
counterclockwise tour, and vice versa.

There are two remaining issues. First, a searcher perform-
ing a tour of the boundary of P without actually touching its
verticesmaybeunable to ever detect if the collective snapshot
that it is encoding has any mistakes. Second, two searchers
may fail to meet even if they have the same pivot point and
perform the same tour in opposite directions, because they
only trace an approximation of that tour. Fortunately, both
these issues have the same solution, which is the one we
already described for the EXPLORE phase. Namely, as a
searcher already has a full picture of P (or what it “believes”
to be P) it can pre-compute a thin-enough “band” around the
path it intends to follow, and always move within this band.
This can be done even if the band is only computed implic-

itly, as we showed for the EXPLORE phase. Also, whenever
a searcher reaches a new virtual vertex, it makes sure to stop
on its angle bisector and take a snapshot from there. This
way, if P and the collective snapshot of the searcher have
discrepancies, the searcher will eventually see a missing ver-
tex, a misplaced vertex, or an extra vertex, and this is proven
exactly as we did for the EXPLORE phase. Moreover, as
both searchers remain within the same thin band, they must
become mutually aware as soon as they cross each other on
the sameedgeor around the samevertex.Note that computing
a band with these properties is a straightforward geometric
problem that can be solved locally by the searchers given a
representation of P .

The rest of the proof of correctness is the same as for
Theorem 2, which is thus extended to oblivious searchers.

Theorem 4 There is an algorithm that, for every integer σ >

0, solves the Meeting problem with σ +1 oblivious searchers
in every polygon with symmetricity σ . If the polygon’s ver-
tices are algebraic points, the algorithm is implementable
on a real random-access machine that can compute basic
arithmetic operations and extract square roots. ��

Improved patrolling We can adapt the improved patrolling
strategy of Algorithm 2 to oblivious searchers almost in the
same way as we did with the basic one. However, the j-
tours and their “hierarchy” must be defined carefully. The
problem is once again that we have to decide what to do
with the triangles of the triangulation of ˜P whose vertices
are midpoints of edges or of diagonals of P (cf. Fig. 6). If P
is not axially symmetric, this is not a real problem: we can
augment P by cutting it along some diagonals, never creating
those improper vertices. The polygons Pj and the j-tours are
then defined in the same way as in Sect. 3.2.

Let us now focus on the case in which P is axially sym-
metric, and let a branch be a connected component of P\Q,
where Q is the central polygon, as defined in Sect. 3.2. In this
case, we want our j-tours to be axially symmetric, as well.
Our solution is to preliminarily construct an axially symmet-
ric partition of each branch of P into triangles and isosceles
trapezoids (a trapezoid is isosceles if its base angles are the
same). This is done in a similarity-invariant way by draw-
ing diagonals between vertices of P that can fully see each
other, as shown in Fig. 9. Note that this is made possible by
the presence of isosceles trapezoids, because a symmetric
branch may not have a symmetric triangulation.

Let us cut each branch along its axis of symmetry, obtain-
ing two sub-branches. Let us add cuts along symmetric edges
of the partition constructed before until we obtain a simply
connected augmented polygon ˜P . As in Sect. 3.2, the dual
graph of the resulting partition of ˜P is a tree rooted in the
central polygon Q. We then define a j -tour as the tour of the
pieces of the partition whose depth in the tree is at most j ;
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Fig. 9 Symmetric partition of a
branch with a 5-tour and part of
a perimeter tour

such a tour must never cross the edges of ˜P , with one excep-
tion. Let � be the axis of symmetry of a branch.When the tour
is in that branch and it is supposed to follow a sub-segment of
� that splits a triangle or a trapezoid in two symmetric parts,
the j-tour includes both parts. This construction is illustrated
in Fig. 9. Our new j-tours have the required axes of symme-
try and only turn at vertices of P . Note that a j-tour may now
self-overlap and touch some vertices of P multiple times, but
this is not going to be a problem.

These new j-tours have the relevant property that was
required by Lemma 2: if a piece T of the partition is included
in the ( j + 1)-tour but not in the j-tour, then an edge e
of T is part of the j-tour. Since T is either a triangle or
a trapezoid, it is convex. Therefore, a searcher performing
a j-tour completely sees T when it touches e. Due to this
property, the proof ofLemma2goes through even for our new
j-tours. The same holds for Lemma 1, which only requires
the convexity of the pieces.

It remains to explain how the new j-tours can be approx-
imated by oblivious searchers without losing the aforemen-
tioned properties. We view a j-tour as a closed polygonal
chain enclosing some pieces of the partition. The key idea is
to make a searcher perform a j-tour by following this polyg-
onal chain without ever properly crossing it. This way, the
searcher never enters pieces of the partition where it is not
supposed to go, yet. Also, when the j-tour covers an edge
e as defined above, the searcher makes sure to effectively
touch e (without crossing it), so to see any searcher that may
be in T . Note that the searcher cannot explicitly compute a
point on e based on its implicit collective snapshot. However,
by approaching one endpoint of e, it eventually gets to see
the other one, as well (because the endpoints fully see each

other). When both endpoints are visible, and hence readable
in explicit form from the current snapshot, a precise move on
e is possible.

Other than this, j-tours are approximated as with basic
patrolling, i.e., remaining within implicitly defined thin-
enough bands around them. All these features combined
enforce the properties that make Lemmas 1 and 2 valid for
approximated j-tours.We still have to guarantee that any dis-
crepancy between P and the collective snapshot of a searcher
s will be detected during a perimeter tour. This is done aswith
basic patrolling, by making s stop on the angle bisector of
each vertex v (and close enough to v). This may not be pos-
sible right away, because when s reaches v for the first time
it may be forced to remain within a piece of the partition that
does not contain the angle bisector of v. However, since the
perimeter tour encloses all pieces of the partition, eventually
s will reach v again and will be allowed to stop on the angle
bisector.

This concludes the proof that Theorem 3 can be extended
to oblivious searchers.

Theorem 5 There is an algorithm that solves the Meeting
problemwith two oblivious searchers in every polygonwhose
barycenter does not lie in a hole. If the polygon’s vertices are
algebraic points, the algorithm is implementable on a real
random-access machine that can compute basic arithmetic
operations and extract square roots. ��
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5 Conclusions and further work

Summary We have minimized the number of searchers that
are required to solve the Meeting problem in an unknown
polygon as a function of its symmetricity. Additionally, we
showed that two searchers are sufficient in all but a small class
of polygons (namely, the rotationally symmetric ones with
center in a hole). We have done so even if the searchers are
anonymous, asynchronous, memoryless, and can be initially
located anywhere in the polygon. Moreover, if the vertices
of the polygon are algebraic points in a global coordinate
system, the searchers only have to compute basic arithmetic
operations and square roots. As a main tool, we have used
a self-stabilizing map construction algorithm of independent
interest.

Termination detectionAn interesting question is whether two
searchers can realize when they have becomemutually aware
and actually terminate the execution of the Meeting algo-
rithm. This is not a trivial problem, because searchers are
asynchronous: a searcher s1 that sees another searcher s2
cannot in general be sure that s2 is not going to disappear
behind a corner, because s2 may currently be in the middle
of a movement. So, s1 may have to wait indefinitely to find
out. However, we can show that termination is possible if
the searchers execute a slightly modified version of Algo-
rithm 1, provided that the polygon has no holes. On the other
hand, the termination problem remains open with regard to
Algorithm 2 and polygons with holes.

Limited visibility We may wonder if the Meeting problem
can be solved if searchers have limited visibility, i.e., they
can only see up to a fixed distance, which is the same for all
searchers. If the searchers have memory, we can adapt our
algorithms of Sect. 3 by making each searcher take small-
enough steps and also explore the interior of the polygon, as
opposed to just its boundary, in order to detect hidden holes.
The improved PATROLphaseworks by splitting each branch
into thin-enough sub-branches and then finely triangulating
each sub-branch. If searchers are memoryless, our algorithm
with basic patrolling can also be adapted, provided that the
polygon has no holes, and that data is encoded as the dis-
tance from the boundary of the polygon (as opposed to the
distance from the closest vertex). In all other cases, theMeet-
ing problem for memoryless searchers with limited visibility
is open.

Non-rigid movements Our algorithms for searchers with
memory also work in the non-rigid setting, i.e., when a
searcher can be stopped by the scheduler during each Move
phase before reaching its destination point, but not before
having moved by at least a constant δ (for details on this
model, refer to [19]). However, since our oblivious searchers
have to make precise movements to implicitly encode mem-

ory, we cannot extend our memoryless algorithms to this
model.

Optimizing movements An interesting optimization problem
is to improve our algorithms so that the total distance traveled
by the searchers or the number of steps they take is mini-
mized. In the EXPLORE phase we could visit the visibility
graph of the polygon in depth-first order, which would yield
a linear number of steps with respect to the number of ver-
tices of the polygon. Our basic PATROL phase is worst-case
optimal, because the searchers must visit the entire boundary
of the polygon (due to their possibly incorrect initial mem-
ory states), and they indeed meet after a constant number
of tours. Our improved PATROL phase could be optimized,
because we chose to perform many more perimeter stages
than needed. In fact, we could reduce this number from
quadratic to linear in the number of vertices of the polygon.
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