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Abstract

In the graph exploration problem, a team of mobile computational entities, called agents, arbitrarily
positioned at some nodes of a graph, must cooperate so that each node is eventually visited by at least
one agent. In the literature, the main focus has been on graphs that are static; that is, the topology is
either invariant in time or subject to localized changes.

The few studies on exploration of dynamic graphs have been almost all limited to the centralized case
(i.e., assuming complete a priori knowledge of the changes and the times of their occurrence).

We investigate the decentralized exploration of dynamic graphs (i.e., when the agents are unaware of
the location and timing of the changes) focusing, in this paper, on dynamic systems whose underlying
graph is a ring.

We first consider the fully-synchronous systems traditionally assumed in the literature; i.e., all agents
are active at each time step. We then introduce the notion of semi-synchronous systems, where only a
subset of agents might be active at each time step (the choice of the subset is made by an adversary); this
model is common in the context of mobile agents in continuous spaces but has never been studied before
for agents moving in graphs. Our main focus is on the impact that the level of synchrony as well as other
factors such as anonymity, knowledge of the size of the ring, and chirality (i.e., common orientation) have
on the solvability of the problem, focusing on the minimum number of agents necessary.

We draw an extensive map of feasibility, and of complexity in terms of minimum number of agent
movements. All our sufficiency proofs are constructive, and almost all our solution protocols are
asymptotically optimal.

1 Introduction

1.1 Framework

1.1.1 Graph Exploration

The problem of graph exploration requires a team of mobile computational entities, usually called agents or
robots, located at the nodes of a graph and capable of moving from node to neighbouring node, to explore
the graph, with the requirement that each node is eventually visited by at least one agent.

This classical problem has been extensively investigated, starting from the pioneering work of Shannon [44].
In the vast literature on the subject (e.g., see [1,17,18,23,28,32,43]), a wide spectrum of different assumptions
have been made and examined e.g. with regard to: the computational power of the agent(s); the structure
of the graph and its properties; the level of topological knowledge available to the agents; whether or not
the network is anonymous (i.e., the nodes lack distinct identifiers); whether the nodes can be marked (e.g.,
by leaving a pebble); the level of synchronization. In case of multiple agents, different types of means of
communication have been considered, including: face-to-face, where agents communicate when they are on
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the same node; wireless, where the agents are able to communicate even when they are on different nodes;
with whiteboard, where the agents communicate by writing on and reading from whiteboards present in each
node.

Regardless of their differences, all these investigations share the common assumption that the graph
is static: its topological structure does not change during the exploration. This is true also for those
investigations that consider faulty nodes and/or faulty links (e.g., see [6, 16,24,25]).

1.1.2 Dynamic Graphs

In distributed computing, researchers recently started to investigate highly dynamic graphs, that is graphs
where the topological changes are not localized and sporadic; on the contrary, the topology changes continuously
and at unpredictable locations. These investigations have been motivated by the development of highly
dynamic networks, where changes are not anomalies (e.g., faults) but rather integral part of the nature of the
system. These highly dynamic networks are modelled in a natural way in terms of time-varying graphs, a
model formally defined in [13], where main classes of systems studied in the literature and their computational
relationship were identified. If time is discrete (e.g., changes occur in rounds), the evolution of these systems
can be equivalently described as a sequence of static graphs, called evolving graph, a model suggested in [34]
and formalized in [27].

The study of distributed computations in highly dynamic graphs has focused mainly on problems of
information diffusion and reachability, such as broadcast, routing, etc. (e.g., see [5,7,9–12,15,33]), and on
problems of coordination and agreement, such as election, consensus, etc. (e.g., see [2,3,8,20,38,39]). Clearly,
all these studies make strong assumptions in order to restrict the universe of the possible topological changes
and their temporal occurrence. One such restriction is that topological changes are periodic (Class 8 of [13]),
such as in carrier graphs (e.g., see [9, 29,30,36,40]). A popular restriction is by assuming that the network
is always connected (Class 9 of [13]): at each time instant, there is a connected spanning subgraph; further
assuming that such connected spanning subgraph persists for T ≥ 1 time units defines the extensively studied
sub-class of T-interval-connected systems (e.g., see [19,38,39,42]).

1.1.3 Exploration of Dynamic Graphs

Returning to the exploration problem, very little is known in the case of dynamic graphs. On the probabilistic
side, there is an early seminal work on random walks [4]. On the deterministic side there are: the study of the
complexity of computing a foremost exploration schedule under the 1-interval-connectivity assumption [41],
generalized and extended in [26]; the computation of an exploration schedule for rings under the T-interval-
connectivity assumption [37]; and the computation of an exploration schedule for cactuses under the 1-interval-
connected assumption [35]. All these studies are however mainly centralized (or off-line, post-mortem); that
is, they assume that the exploring agents have complete a priori knowledge of the topological changes and
the times of their occurrence.

Very little is known on the distributed (or on-line, live) case, i.e. when the location and timing of the
changes are unknown to the agents. Exploration of carrier networks, a periodic class of time varying graphs,
by a synchronous agent, has been studied in [30], where the feasibility of the problem is investigated depending
on the knowledge available to the agent (size of the network or upper bound, length of the period) and where
optimal solutions are proposed. Under a slightly different model, similar results can be found also in [36].
Exploration has also been examined assuming that the dynamic graph is δ-recurrent (i.e., each edge appears
at least once every δ rounds) [37]. Apart from these results, to the best of our knowledge, nothing is known.

1.2 Contributions

In this paper, we investigate the distributed exploration of dynamic rings under the 1-interval connectivity
assumption by mobile agents without explicit means of communication.

We consider three different termination requirements once the ring has been explored: Explicit Termination,
where, within finite time, all agents must explicitly terminate and stop moving; Explicit Partial Termination,
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N. Agents Assumptions Even if Result

2 No knolwedge on n, No Landmark Non-anonymous agents, Chirality Partial Termination Impossible
(Th. 1)

Any No knolwedge on n, No Landmark,
Anonymous agents

Chirality Partial Termination Impossible
(Th. 2)

Table 1: Impossibility results for FSYNC model.

N. Agents Assumptions Exploration with Termination

2 Known bound N Explicit Termination in time 3N − 6 (Th. 3)

2 Chirality, Landmark Explicit Termination in time O(n) (Th. 6)
2 Landmark Explicit Termination in time O(n log(n)) (Th. 8)

Table 2: Possibility results for FSYNC model.

where, within finite time, at least one agent explicitly terminates and stops moving; Unconscious Exploration,
where the agents are not required to stop.

We first consider the fully-synchronous systems (Section 3) traditionally assumed in the literature; i.e., all
agents are active at every time step. We then introduce the notion of semi-synchronous systems (Section 4),
where at each time step only a subset of the agents might be active (the choice of the subset is made by an
adversary). The semi-synchronous model is common in the context of mobile agents in continuous spaces
(e.g., [31]) but has never been studied before for agents moving in graphs. Our main focus is on the impact
that the level of synchrony as well as other factors such as knowledge of the size of the ring, chirality (i.e.,
common sense of orientation), and anonymity, have on the solvability of the problem.

We start by examining the exploration problem in fully synchronous systems (FSYNC), with two agents,
after showing that it is unsolvable with only one.

For anonymous rings, we first show that, without any additional knowledge on the ring size (e.g., an
upperbound), two non-anonymous agents cannot explore and partially terminate. If the agents are anonymous,
the same impossibility holds for any number of agents. On the other hand, unconscious exploration is possible
using two anonymous agents and no additional knowledge.

If there is knowledge of an upper bound N on the ring size, we show that two anonymous agents can
explore and they can both terminate in 3N − 6 rounds. This can be done even if agents do not have a
common chirality.

For non-anonymous rings, we show that the presence of a single observably different node (landmark)
allows two anonymous agents to solve the exploration problem with explicit termination. This can be done
without the need of any additional information. We provide an algorithm that terminates in O(n) rounds
when there is chirality, and an O(n log(n)) algorithm for the case without chirality. For the case of no chirality
we do not know if O(n log(n)) rounds are necessay.

A summary of these results is shown in Tables 1 and 2. All the sufficiency proofs of FSYNC are
constructive and, apart for the algorithm for the case of non-anonymous ring and no chirality, all the proposed
algorithms are asymptotically optimal.

We then examine the problem in semi-synchronous systems (SSYNC). In these systems it is possible
that an agent a waiting to traverse a missing link e is inactive in the round the edge reappears. Depending
on what happens to that agent, we consider and analyze three different transportation models (described in
details later in the paper) and establish feasibility and complexity results:

- No Simultaneity (NS) model : a is not allowed to move while inactive. This is the weakest of the
models that we consider. In this case, exploration is impossible with any number of agents, even with exact
knowledge of the ring size, nodes with distinct IDs, and common chirality.

- Passive Transport model (PT): a is transported on e. In this case, we show that, without chirality,
two anonymous robots are not sufficient to explore the ring; the result holds even if there is a distinguished
landmark node and the exact network size is known. On the other hand, with chirality, two agents can
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Model N. Agents Assumptions Even if Result

(NS) Any None
Chirality, Known n, Landmark, Non-
anonymous Agents

Exploration impossible (Th. 9)

(PT)
2

No Chirality,
Anonymous
Agents

Known n, Landmark Exploration impossible (Th. 10)

2 None Chirality, Known n, Landmark Explicit Termination impossible (Th.
11)

( ET) Any Unknown n
Known bound N , Chirality, Landmark,
Non-anonymous Agents

Partial Termination impossible (Th.
19)

Table 3: Impossibility results in SSYNC models.

Model N. Agents Assumptions Exploration and Termination

(PT)
2

Chirality, Known bound N Partial Termination in O(N2) moves (Th. 12)
Chirality, Landmark Partial Termination in O(n2) moves (Th. 14)

3
Known bound N Partial Termination in O(N2) moves (Th. 16)
Landmark Partial Termination in O(n2) moves (Th. 17)

(ET)
2 Chirality Unconscious Exploration possible (Th. 18)
3 Known n Partial Termination possible (Th. 20)

Table 4: Possibility results for SSYNC models.

perform the exploration if there is a known upper bound on the ring size or there is a landmark node. As for
termination, we show that it is impossible to guarantee explicit termination of both agents (even if exact
knowledge of the size, chirality and landmark are available). On the other hand, we prove that it is always
possible for at least one of the agents to terminate. Interestingly, presence of chirality allows to solve the
problem with only 2 agents; without chirality 3 agents are necessary. The PT model is the strongest of the
SSYNC models.

- Eventual Transport (ET) model: a is not allowed to move while inactive but, should the edge be present
for an infinite number of rounds, a is guaranteed to be eventually active at a round when the edge is present.
In this case, we show that exploration with partial termination of all agents is impossible, regardless of the
number of agents, even if an upper bound on the ring size is known, nodes have distinct IDs, and agree on
chirality. On the other hand, with exact knowledge of the ring size, we prove that exploration is possible
with three anonymous agents even without chirality, and at least one agent explicitly terminates.

The results are summarized in Tables 3 and 4. Also for SSYNC, all the sufficiency proofs are constructive,
and almost all the proposed algorithms are asymptotically optimal.

2 Model and Basic Limitations

2.1 Model and Terminology

Let R = (v0, . . . vn−1) be a synchronous ring where, at any time step t ∈ N , one of its edges might not be
present; the choice on which link is missing (if any) is made by an adversary. Such a dynamic network is
known in the literature as a 1-interval connected ring.

Each node vi is connected to its two neighbours vi−1 and vi+1 via distinctly labeled ports qi− and qi+,
respectively (all operations on the indices are modulo n); the labeling of the ports may not be globally
consistent, thus might not provide an orientation, and the label may not be comparable [14]. The ring is said
to be anonymous if the nodes have no distinguishable identifiers, and with landmark if there is a node (the
landmark) which is different from all others.

Operating in R is a set A = {a0, . . . , am−1} of agents, each provided with memory and computational
capabilities. The agents are anonymous and all execute the same protocol. Any number of agents can reside
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at a node at the same time. Initially located at arbitrary nodes, not necessarily distinct, they do not have
any explicit communication mechanism, nor can leave marks on the nodes. The agents are mobile, that is
they can move from node to neighboring node. To move, an agent has to position itself on the port from
which it wants to leave. Access to ports is done in mutual exclusion: an agent will not succeed to gain an
already occupied port; when several agents try to position themselves on the same port, only one of them
succeeds. Two agents moving in opposite directions on the same edge in the same round might not be able to
detect each other.

Each agent aj has a consistent private orientation of the ring; that is, it has a function λj which designates
each port either left or right and λj(qi−) = λj(qk−), for all 0 ≤ i, k < n. The orientations of the agents might
not be the same. If all agents agree on the same orientation and are aware of it, we say that there is chirality.

The system operates in synchronous time steps, called rounds. Initially, all agents are inactive. Each time
step t ∈ N starts with a non-empty subset A(t) ⊆ A of the agents becoming active. Upon activation, agent
aj ∈ A(t) at node vi performs a sequence of operations: Look, Compute, and (possibly) Move.

1. Look: The agent determines its own position within the node (i.e., whether or not it is on a port, and if
so on which one), and the position of the other agents (if any) at that node. We call this information a
snapshot.

2. Compute: Based on the snapshot and the content of its local memory, the agent executes its protocol
(the same for all agents) to determine whether or not to move and, if so, in what direction; the result
will be direction ∈ {left, right, nil}, where left and right are with respect to its own local orientation.
If direction = nil, the agent becomes inactive. If direction 6= nil, aj attempts to access the appropriate
port (if not already there); if it gains access, it positions itself on the port, otherwise it sets private
variable moved = false and becomes inactive.

3. Move: Let the agent be positioned on port qi− (resp., qi+) after computing. If the link between vi and
vi−1 (resp., vi+1) is present in this round, then agent aj will move to vi−1 (resp., vi+1), reach it, set
private variable moved = true, and become inactive. If the link between vi and vi−1 (resp., vi+1) is not
present, then agent aj will remain in the port, set moved = false, and become inactive. In either case,
access to port qi− (resp., qi+) continues to be denied to any other requesting agent during this round.

By definition, the delays are such that all active agents have become inactive by the end of round t; the
system then starts the new round t+ 1.

Notice that, since access to a port is in mutual exclusion, in the same round at most one agent will move
in each direction on the same edge. Recall that two agents moving in opposite directions on the same edge in
the same round might not be able to detect each other.

A major computational factor is the nature of the activation schedule of the agents. If A(t) = A for
all t ∈ N , that is all agents are activated at every time step, the system is said to be fully synchronous
(FSYNC). Otherwise the system is said to be semi-synchronous (SSYNC); the agents that are not activated
in a round are said to be sleeping or passive in that round; the choice of which agent is active in a round
is made under an adversarial scheduler, where every agent is activated infinitely often. When an agent is
activated, it does not know whether or not it was active in the previous round. Observe that in SSYNC it is
possible for an agent to be sleeping on a port. This is indeed the case when an agent a gains access to a port
q when the link is not there (thus, it remains on q), and a is not activated in the next round. What may
happen to an agent sleeping on a port gives raise to different models, described in the following:

• No Simultaneity (NS): A sleeping agent cannot move. There is no guarantee of simultaneity for an
agent sleeping on a port.

• Passive Transport (PT): If an agent is sleeping on a port at round t and the corresponding edge is
present in that round, the agent is moved to the other endpoint of the edge in round t.

• Eventual Transport (ET): A sleeping agent cannot move. If an agent is sleeping on a port at round t
and the corresponding edge is present infinitely many times, then the agent will eventually become
active at a round t′ > t when the corresponding edge is present (simultaneity condition).
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The algorithm executed by the agents solves the exploration problem if, within finite time, every node of
the ring is visited by at least one agent. The exploration is said to be with explicit termination if every agent
executing the algorithm within finite time enters a terminal state and no longer moves. The terminal state
has to be entered only after the exploration of the ring. The exploration is said to be with explicit partial
termination (or just partial termination) if at least one agent executing the algorithm enters a terminal state
within finite time and no longer moves. Finally, it is said to be unconscious if the agents are not required to
stop nor to be aware that the ring has been visited.

2.2 Basic Limitations

We begin our study by showing simple impossibility results.

Observation 1. The adversary can prevent an agent from leaving the initial node v0, by always removing
the edge over which the agent wants to leave v0.

From this Observation, we immediately get:

Corollary 1. A single agent is not able to explore the ring.

Hence, at least two agents are needed. However, the adversary can prevent their cooperation:

Observation 2. The adversary can prevent two agents starting at different locations from meeting each
other even if they have unlimited memory, common chirality and distinct known IDs. This result holds even
if the scheduler is FSYNC and never blocks both agents at the same round.

Proof. The adversary will never remove an edge, except in the case when that would lead to agents meeting
in the next step. There are two possible cases how the agents can meet in the next step.
Case 1: One agent is waiting at a node and the other agent, at a neighbouring node, decides to traverse the
edge e connecting the two nodes. In this case, the adversary removes edge e.
Case 2:Both agents decide to traverse different edges e and e′ leading to the same vertex. Again, it is sufficient
for the adversary to remove one of the two edges to prevent rendezvous.

Theorem 1. There does not exist any partially terminating deterministic exploration algorithm of anonymous
rings of unknown size by two agents, even with distinct IDs, common chirality, and when the scheduler is
FSYNC.

Proof. By contradiction, assume that there exists a terminating exploration algorithm A. Let us consider an
execution E of A on a dynamic ring of size n, where agents a and b start in two distinct locations and where
the adversary always prevents the meeting of the agents, never blocking the agents at the same round. By
Observation 2 this run exists.

Let us assume, without loss of generality, that in such an execution agent a is the first one terminating at
round r(E). Let us now consider an execution E′ of A on a dynamic ring of size n′ = 8r(E), where the agents
start at two distinct locations at distance 4r(E). The execution E′ is constructed in such a way that, until
round r(E) neither agent can distinguish this execution from E. This is possible since in E the adversary
never blocks the two agents at the same time and they do not meet.

Since the size of the ring is 8r(E) and the agents started 4r(E) apart, at round r(E) (when agent a
terminates) the distance between the two agents is at least 2r(E) and there are at least 6r(E) unexplored
nodes. The execution E′ is completed by the adversary blocking agent b at round r(E) and afterwards,
preventing it from exploring the unexplored nodes. Therefore, in this execution, the partial termination of
algorithm A is incorrect.

Observe now that for anonymous agents the impossibility of explicit termination holds regardless of their
number. This is because, in the setting when there is orientation and no edge is removed, all the agents will
act in the same way at each time step. If one were to decide to terminate after t time steps, they all would
do so at the same time; however, since they do not know the ring size, they would do the same also in a
ring of size n multiple of t, terminating without having completed the exploration. Indeed, with the same
reasoning, it is immediate that even the weaker partial termination is impossible.
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Theorem 2. There does not exist any partially terminating deterministic exploration algorithm of anonymous
rings of unknown size by anonymous agents, regardless of their number. The result holds even if agents have
common chirality, and the scheduler is FSYNC.

Summarizing, without some knowledge of the size of the ring or without the asymmetry introduced by a
landmark node, exploration with partial termination is impossible even in the fully synchronous model by
two agents with IDs, or by any number of anonymous agents. Notice that Theorems 1 and 2 would hold even
if the agents were equipped with wireless communication.

As for the amount of time required for exploration, there exists the following lower bound due to [26]:

Observation 3. [26] Exploration of an anonymous ring by two anonymous agents requires at least 2n− 3
time in the worst case, even if there is chirality and the scheduler is FSYNC.

3 Ring Exploration in FSYNC
In this section, we consider exploration when the system is fully synchronous, presenting and analyzing
protocols that solve the problem under different assumptions on knowledge of the ring size, anonymity of the
nodes, and presence of chirality. All these solutions do not require the agents to be able to communicate
explicitly.

Our algorithms use as a building block procedure Explore (dir | p1 : s1; p2 : s2; . . . ; pk : sk), where dir
is either left or right , pi is a predicate, and si is a state. In Procedure Explore, the agent performs Look,
then evaluates the predicates p1, . . . , pk in order; as soon as a predicate is satisfied, say pi, the procedure
exits and the agent does a transition to the specified state, say si. If no predicate is satisfied, the agent tries
to Move in the specified direction dir and the procedure is executed again in the next round.

Furthermore, the following variables are maintained by the algorithms:

• Ttime, Tsteps: the total number of rounds and edge traversals, respectively, since the beginning of the
execution of the algorithm.

• Etime, Esteps: the total number of rounds and edge traversals, respectively, since the last call of
procedure Explore.

• Btime: the number of consecutive rounds the agent has been currently waiting in a port.

In particular, the following predicates are used:

• meeting : both agents are in the node.

• catches: the agent observes the other agent on the port corresponding to its moving direction.

• caught: the agent is on the port after a failed move, the other agent is observed in the node.

Observe that, in a fully synchronous system, when predicate catches holds for an agent, then caught holds
for the other agent. In the following, we say that the agents catch each other if both predicates hold.

3.1 Known Upper Bound on Ring Size

In this section we study the simple case of exploring the ring when the agents know an upper-bound N ≥ n
on the ring size, and we show how to solve the problem in asymptotically optimal time, even without chirality.

The directions left and right now refer to the local orientation of the individual agent. The algorithm is
shown in Figure 1. We use the predicate failed, that is verified when an agent tries to enter a port and it fails
to do so.

The algorithm works as follows. At the beginning, each agent goes left; recall that the left direction could
be different for the two agents. An agent keeps going left unless: i) it catches the other agent in the first
2N − 4 rounds; or ii) 2N − 4 rounds have passed and the agent has been blocked for N − 1 rounds; or iii) it
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States: {Init, Bounce, Forward, Terminate}.
In state Init:

Explore(left | (Ttime ≥ 2N − 4 ∧ Btime = N − 1) ∨ failed: Bounce; catches: Bounce; caught:
Forward; Ttime ≥ 2N − 4: Forward)
In state Bounce:

Explore(right | Ttime ≥ 3N − 6: Terminate)
In state Forward:

Explore(left | Ttime ≥ 3N − 6: Terminate)

Figure 1: Algorithm KnownNNoChirality

is in a node and it fails to enter a port. In all these cases, the agent changes state to Bounce and it goes right
until termination, at round 3N − 6.

If instead an agent is caught in the first 2N − 4 rounds, then it enters in state Forward and it keeps the
left direction until termination, at round 3N − 6.

Theorem 3. Algorithm KnownNNoChirality allows two anonymous agents without chirality to explore a
1-interval connected ring and to explicitly terminate in time 3N − 6, where N is a known upper-bound on the
ring size.

Proof. The termination by round 3N − 6 is trivial for the condition Ttime ≥ 3N − 6. It is sufficient to show
that the ring has been explored when Ttime = 3N − 6. Let a, b be the two agents.

• We first examine the case where a, b start on the same node v.

If they have different agreements on the left direction then no agent can change direction in the first
2N − 4 rounds. It is trivial to see that after at most N − 1 rounds the agents have explored the ring,
and hence the Theorem holds.

Let us consider then the case in which the agents agree on the same left direction, and hence try to
traverse the same edge e. Since the access to a port is done in mutual exclusion, only one of them will
enter the port, while the other will fail. If e is not missing at round 1, then at the beginning of round 2
the two agents will be in different nodes; otherwise they will be on the same node. In either case, for
one of the two agents the predicate failed is true; notice that the failed predicate will not be verified in
any other case. This implies that the two agents will have different directions, and they will not change
such directions in the first 2N − 4 rounds; thus in the next N − 1 rounds the ring will be explored.
Hence the Theorem holds.

• We now consider when a and b start on different nodes.

Let us examine the case when they disagree on the left direction. After N − 3 rounds, they either (i) are
at distance 2, or (ii) are at distance 1, or (iii) crossed each other, where the distance is the number of
edges in the portion of the ring pointed by the left directions of the agents. (i) If the distance between
the agents is 2, then they were initially on two neighbouring nodes; therefore, in the next round, at
time N − 2, the ring will be explored. (ii) If they are at distance 1 and the edge between them is not
missing for the successive N − 1 rounds, then they will cross each other and the ring will be explored
by at most round 3N − 6. If the edge between them is missing for the successive N − 1 rounds, then at
round 2N − 4 they will switch direction and the ring will be explored in the next N − 2 rounds. (iii) If
they cross each other on edge e, they will not change direction for the successive N − 1 rounds, thus
they will explore the ring. That is, in all three cases the Theorem holds.

Finally, let us consider the case when they agree on the left direction.

8



the ringvi+1

r1 = n� 3

r2 = 2n� 5

r3 = 3n� 6

v0
vn�1vi�2

a b

rounds

vi

Figure 2: Schedule where Algorithm KnownNNoChirality takes 3n− 6 rounds to explore.

If they catch each other before round 2N − 4, then the ring will be explored in the next N − 1 rounds
terminating the exploration by round 3N − 6.

If they do not catch each other, then at each round at least one of them will traverse an edge, since
they cannot be blocked at the same time. Let us suppose that a traverses N − k edges with k < 2; then
b traversed at least N − 4 + k ≥ N − 1 edges, exploring the ring. So the last remaining case is when
agent a traverses exactly N − 2 edges; but this implies that also b has traversed at least N − 2 edges
and, since they start from different nodes, the ring has been explored also in this case.

Notice that there exists a schedule in which the exploration takes 3n − 6 rounds, so the cost is tight for
N = n. The schedule is reported in the Figure 2: the agents start on distinct nodes, a on vi and b on vi+1,
and there is chirality. Agent a is blocked for the first n− 3 rounds; in the meanwhile agent b reaches node
vi−2. At this point, b is blocked on node vi−2 until round r2 = 2n − 5; during this time a moves until it
catches b; this happens exactly at round r2. In the next n− 1 rounds, b is still blocked while a reaches node
vi−1, exploring the ring.

The algorithm is asymptotically optimal, as shown by the following theorem, even with the lesser
requirement of partial termination.

Theorem 4. Exploration with partial termination of an anonymous ring by two anonymous agents with
knowledge of an upper bound N on the ring size requires at least N − 1 time in the worst case, even with
chirality.

Proof. By contradiction, let A be a correct exploration algorithm that allows partial termination with
knowledge of an upper bound N in at most N − 2 time unit. Let Ri be an anonymous ring of size i, and
for N > 5 let R(N) = {Ri : 3 ≤ i ≤ N}. Consider now the simultaneous execution of A in R(N) started by
initially placing in each R ∈ R(N) two agents with chirality at two neighbouring nodes, and then making no
edge ever disappear.

Clearly, at each time step, all the agents in all rings of R(N) have the same view, perform exactly the
same movement in the same direction; furthermore, in each ring they are unaware of each other, and keep
their distance to 1. By symmetry, if one of the agents terminates in a ring at time t, then they all do in all
the rings at the same time. By assumption, the execution of A terminates at a time t ≤ N − 2; this means
that in RN , when both agents terminate, at least one node is still unexplored at that time, contradicting the
correctness of A.
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States: {Init, Bounce, Reverse, Forward, Keep}.
In state Init:

G← 2, dir ← left
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches: Bounce,

caught:Forward)
In state Reverse:

F ← 2 ·G, dir ← opposite(dir)
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches: Bounce,

caught:Forward)
In state Keep:

G← 2 ·G
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches: Bounce,

caught:Forward)
In state Bounce:

Explore(opposite(dir))
In state Forward:

Explore(dir)

Figure 3: Algorithm Unconscious Exploration

3.2 No Known Bounds On Ring Size

We now consider exploring the ring when no upper-bound on its size is available to the agents. Under this
condition, by Theorem 1, it is impossible for two agents to explore an anonymous ring with termination, even
if the agents have unique IDs. Hence, for exploration to occur, either termination must not be required or
the ring must not be anonymous. In the following we consider precisely those two cases. We first show how
unconscious exploration can be performed without any other condition even if the agents are anonymous. We
then consider a ring in which there is a special node, called landmark, different from the others and visible to
the agents; we prove that exploration can be performed with termination, even if the agents are anonymous,
in time O(n) if there is chirality, O(n log n) otherwise.

3.2.1 Unconscious Exploration

We present a protocol, Unconscious Exploration, that allows two anonymous agents to perform exploration
without knowing any bound on the ring size. The basic idea of the algorithm is for each agent to guess the
size of the ring with an initial estimate G and move in one direction for a time equal to twice the estimate;
the agent will then double the size estimate. It changes direction if it has been blocked for a time that is
equal to the previous estimate and it will keep direction otherwise. This process is repeated with the new
guess. The algorithm is shown in Figure 3.

Theorem 5. Algorithm Unconscious Exploration allows two anonymous agents without chirality to
explore, without terminating, an 1-interval connected ring; the exploration is completed in O(n) time.

Proof. If the agents catch each other, then they start moving in opposite directions and, in the subsequent
n− 1 moves (unknown to them), they will explore the whole ring, proving the Theorem.

Consider now the case when the agents never catch each other. Let a phase be the period of time when
the guess remains the same. Since G is always doubled after 2G time steps, at time tn ≤ 4n, G ≥ n. Let r be
the first round of the phase P in which G ≥ n.

If, at r, the agents are moving in the same direction, since they do not catch each other and in each time
step at least one of them makes progress, in the next 2G time steps the ring will be explored.
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Consider now the case when agents are moving in opposite directions: If at time r + 2G− 1 neither of
them is blocked on an edge, then by the next phase P + 1 starting at round r + 2G, they must have crossed
each other and they keep different directions; thus, the ring will be explored by the end of phase P + 1.
Otherwise, at time r + 2G− 1 at least one of them has to be blocked on an edge e. At the beginning of the
next phase, round r + 2G, three cases are possible:

• Only one agent changes direction; in this case, they will have the same direction in phase P + 1, thus
exploring in O(n) rounds.

• Both agents reverse direction; this happens only if both have been blocked for the last G rounds of
phase P , thus they will change directions from two different endpoints of the same edge e, and the ring
is explored by time r + 2G+ 4G.

• No one changes direction; this implies that by the next n rounds, i.e. by round r+ 2G+ 2G, they either
crossed each other, and thus they will explore the ring by the end of phase P + 1, or they are blocked
on the endpoints of the same edge e′. In the latter case, if the edge e′ is removed for the last 2G rounds
of phase P + 1, then at round r + 2G+ 4G they both change directions moving from the two endpoints
of e′, and thus exploring the ring by the end of phase P + 2. Otherwise, if the edge is present for one
round in the the last 2G rounds of phase P + 1, then they will cross each other and continue in the
same direction for the phase P + 2, exploring the ring.

3.2.2 Termination: Landmark and Chirality

We now focus on solutions with termination. By Theorem 1, in absence of bounds on the ring size, the ring
cannot be anonymous. Hence, we assume that there is a special node, called landmark, different from the
others and visible to the visiting agents. in this subsection we consider chirality, but no other additional
knowledge, and we show that two anonymous agents can explore the ring and terminate in optimal time
O(n).

Let v∗ be the landmark, identifiable by the agents: when performing a Look operation at some node
v, a flag IsLandmark is set to true if and only if v = v∗. The basic idea is to explore the ring using the
landmark to compute the size and allow termination. In order to coordinate termination, the agents implicitly
“communicate” when they catch each other (by waiting at the node if not sure whether to terminate, and by
leaving it if they already know that the ring is explored). When the agents catch each other for the first time,
they break symmetry and assume different roles.

We assign to them logical names: F for the agent being caught, and B for the one that caught F . These
names do not change afterwards, even though it is possible for F to catch B later on.

Procedure LExplore is very similar to Explore with the following additions:

• Each agent keeps track of whether it is crossing the landmark and in which direction; furthermore, it
tracks its distance from the landmark (since encountering it for the first time). In this way, it can detect
whether it made a full loop around the ring. When it does so for the first time, variable size is set to
the ring size n (size is initialized to infinity, all the tests using it while it has this initial value will fail).

• An additional variable Ntime is maintained, tracking the total number of rounds since the agent learned
n.

The complete pseudocode is shown in Figure 4. Both agents start going left. If they never meet, they
terminate (see Lemma 1). If they catch each other, the naming is done. After naming, agent F keeps going
left. Agent B moves right until either it completes a loop of the ring or it is blocked for a number of rounds
larger than the number of edges it has traversed so far, i.e. predicate “Etime > 2Esteps”. When one of
these conditions is satisfied, agent B goes left, and it tries to catch up with F .
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States: {Init, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state Init:

LExplore(left | Ntime > 2 size: Terminate; catches: Bounce; caught: Forward)
In state Bounce:

LExplore(right | meeting: Terminate; Etime > 2Esteps ∨Ntime > 0: Return, catches: BComm)
In state Return:

bounceSteps ← Esteps
LExplore(left | Ntime > 3 size ∨ caught: Terminate; catches: BComm)

In state Forward:
LExplore(left | Ntime ≥ 7 size ∨meeting ∨ catches: Terminate; caught: FComm)

In state BComm:
returnSteps ← Esteps
if returnSteps ≤ 2 · bounceSteps then . both must have waited on the same edge

Move (right) . signal the need to terminate
Terminate in the next round

else if you know that the ring is explored (n is known) then
Move (right) . signal the need to terminate
Terminate in the next round

else
Stay for one round in the node
if agent F is in the node then . agent F waited to learn whether to terminate

change state to Bounce and process it (in the same round)
else . agent F left, or tried to leave and is on the port – signalling to terminate

Terminate
In state FComm:

if you know that the ring is explored (n is known) then
Move (left) . signal to B that F knows n
Terminate in the next round

else
Move from the port to the node . i.e. staying at the same node
if agent B is in the node then . this happens next round

Change state to Forward and process it (in the same round)
else . B has left or is on the port

Terminate

Figure 4: Algorithm LandmarkWithChirality
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If they catch up and F has done less than Esteps steps to the left from its old position, then B and F
have waited on the same edge, and hence the ring has been explored; B can detect this, and it “communicates”
the end of exploration to F .

If they catch up but F has done at least Esteps steps to the left from its old position (B can detect this),
they both keep executing the algorithm. Note that F has made progress towards completing a ring loop, a
condition that can be detected because of the landmark. Should such an event occur, then both F and B
will eventually terminate.

If they do not catch up for a certain number of rounds, then they will both know that the ring is explored
and they can terminate independently (see Lemma 2).

Lemma 1. In Algorithm LandmarkWithChirality, if the agents do not catch each other and stay in the
Init state, then they will explore the ring and explicitly terminate by round 7n− 1.

Proof. Let the agents do not catch each other and stay in the Init state.
We first show that two agents starting on different nodes will explore the ring and explicitly terminate

by round 7n− 2. Since the agents are moving in the same direction but they start from different nodes, in
each round at least one of them makes progress. Since they do not catch each other, the difference between
the number of successful moves by the agents is at most n− 1. Therefore, if by round 5n− 2 no agent has
terminated, then both agents have crossed at least 2n−1 edges and hence they both know n. By construction,
in additional 2n steps, the agents will terminate. If an agent has terminated at round r < 5n− 2, this means
that at time r − 2n this agent knew n, i.e. it has entered the landmark for the second time. As the agents
did not catch each other, the other agent must have already entered the landmark. Since in the subsequent
2n steps the agents do not catch each other and together made progress at least 2n times, by round r the
other agent will enter the landmark for the second time, and by round r + 2n it will terminate as well.

We examine now the case of the agents starting at the same node; since the agents are going in the same
direction, at the first round they will both try to enter the same port. Since access to a port is granted in
mutual exclusion, only one agent will succeed. If the edge e corresponding to that port is missing then, at
the beginning of next round, one agent sees the other inside the port after the failed move, and the agent in
the port sees the other in the node. That is, the agents catch each other, contradicting the hypothesis.

Therefore, edge e has to be present; this means that at the beginning of the next round the two agents
will be in two different nodes.

But this is the same to consider as the agent are starting on a different nodes, hence we just have to add
an additional round to the bound shown for the case of agents starting from distinct nodes.

Lemma 2. In Algorithm LandmarkWithChirality, if an agent terminates, then the ring has been explored
and the other agent will terminate as well.

Proof. We prove the lemma by case analysis on how the agents terminate. In the proof we assume that the
left direction corresponds to a counter-clockwise direction. Consider first the case when the agents terminate
at the same time. According to the algorithm, this happens only in the four cases considered below; in each
case, we show that the ring has been explored:

1. Agent F , in state Forward, catches agent B in state Return at node w (see Figure 5): Consider the node
v where B caught F and changed state to Bounce the last time. The counter-clockwise segment from
v to w has been explored by F , that never changed its direction. Consider now the node z where B
changed state to Return the last time; it is not difficult to see that z must be in the counter-clockwise
segment from v to w; this in turn implies that B has explored the clockwise segment from v to w. Thus
the entire ring has been explored.

2. The agents, F in state Forward and B in state Bounce, moving in opposite direction meet at a node:
The entire ring has clearly been explored.

3. Agent F , in state FComm, knows n and signals B to terminate: By construction.
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Figure 5: Agent F , in state Forward, catches agent B in state Return at node w.
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Figure 6: Agent B signals F to terminate, after checking that returnSteps ≤ 2 · bounceSteps. This implies
that both agents were waiting on two endpoints of the same edge, in this case edge (v, v′).

4. Agent B, in state BComm, signals F to terminate: According to the algorithm when this occurs either
B knows n, or returnSteps ≤ 2 · bounceSteps. If B knows n the lemma trivially holds. Consider the
second condition. When agent B changes its direction, it has been blocked (not necessarily on the same
edge) more than bounceSteps times. Satisfying the test returnSteps ≤ 2 · bounceSteps means F has
either made progress of at most bounceSteps , or it has made one or more whole loops and then at most
bounceSteps. In the first case F has been blocked during one of the rounds when B has been blocked;
this can only happen if they had been blocked on the same edge, i.e. the ring has been explored (see
Figure 6 for an example). In the latter case, the ring has obviously been explored.

Consider now the cases when one agent terminates first (the case of agents never meeting is handled by
Lemma 1); we have two situations, in both we prove that the ring has been explored:

1. Agent B terminates due to timeout Ntime > 3n. As the agents are moving in the same direction,
the number of successful moves differs by at most n− 1. Since in each time step at least one of them
advances, in less than 3n time steps from the moment when B learned n, F will also learn n and
eventually terminate.

2. Agent F terminates due to timeout Ntime ≥ 7.

Let r be the round when F learned n.

If B entered state Bounce at round r′ ≤ r, since the agents did not cross each other (satisfying the
meeting predicate), agent B switches to state Return at most 4n− 2 rounds from round r, as we now
show. In fact, at round r + 4n− 2, we have Etime ≥ 4n− 2. If Esteps < 2n− 1, B satisfies predicate
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Figure 7: Agent F terminates due to timeout Ntime ≥ 7n: in this Figure we can see agent F learning n at
round r, and agents B switching state to Return after 4n− 2 steps.

“Etime > 2Esteps” and thus enters state Return. On the other hand, if Esteps ≥ 2n− 1, then B has
done at least a loop around the landmark v∗; therefore “Ntime > 0” and thus B enters state Return,
(see Figure 7 for an example). Now the analogous argument as for case 1 applies, both agents have the
same direction and if B catches F it terminates. Therefore, if B does not catch F , then it will learn n
with at most 3n additional steps, and eventually terminate.

Notice that, if agent B enters state Bounce after round r, B will catch F that would signal B to
terminate, proving the lemma. Otherwise, if B does not catch F , that means that B keeps staying
in state Return after round r, then it will learn n with at most 3n additional steps, and eventually
terminate.

Theorem 6. Algorithm LandmarkWithChirality allows two anonymous agents with chirality to explore
a 1-interval connected ring with a landmark and to explicitly terminate in O(n) time.

Proof. If the agents do not catch each other, the proof follows from Lemma 1. Consider now the case that
the agents catch each other at least once. Also by Lemma 1, we know that the meeting will happen no later
than in round 7n− 2. The crucial observation is that, either the time between two consecutive meetings is
linear in the progress made by agent F , or the agents terminate following the catch.

Let pTimei denote the time between i-th and i+ 1-th catch and let forwdStepsi be the progress made in
that time by agent F . We have:

returnStepsi = bounceStepsi + forwdStepsi

Furthermore,
pTimei ≤ 2 · bounceStepsi + 1 + returnStepsi + forwdStepsi

Where, 2 · bounceStepsi + 1 is an upper bound on the time needed by agent B to switch state from Bounce
to Return given by the predicate “Etime > 2Esteps”. The quantity returnStepsi + forwdStepsi is an upper
bound on the time needed for B to catch again agent F . Substituting returnSteps into the latter yields

pTimei ≤ 3 · bounceStepsi + 2 · forwdStepsi + 1

If the agents do not terminate after this catch, it must be forwdStepsi > bounceStepsi, hence pTimei ≤
6 · forwdStepsi. This means that by time 12n at the latest since the first catch, agent F will know n and will
terminate in 7n further rounds (if it does not terminate earlier due to some other terminating condition).
The correctness now follows from Lemma 2, and optimality is obvious.
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States: {InitL, Happy, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state InitL:

dir ← left, k1 ← 0, k2 ← 0, k3 ← 0
LExplore(dir | n is known: Happy; Btime > 0: FirstBlockL; catches: Bounce; caught: Forward)

In state Happy:
LExplore(dir | Ttime ≥ 32((3dlog(n)e+ 3)5 · n) + 1: Terminate; catches: Bounce; caught: Forward)

In state FirstBlockL:
dir ← right, k1 ← Ttime− 1
LExplore(dir | n is known: Happy, isLandmark: AtLandmarkL; Btime > 0: Ready; catches: Bounce; caught:

Forward)
In state AtLandmarkL:

k3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

Terminate
LExplore(dir | n is known: Happy, Btime > 0: Ready; catches: Bounce; caught: Forward)

In state Ready:
k2 ← Etime
Compute your ID by interleaving bits of the bit-strings representation of k1, k2 and k3. Each ki string of bits is

padded by a prefix 0 until its length is equal to the biggest of the three.
set(ID)
Change to state Reverse and process it

In state Reverse:
dir ←direction(Ttime)
if n is known then

LExplore(dir | Ttime ≥ 32((3dlog(n)e+ 3)5 · n): Terminate; catches: Bounce; caught: Forward)
else

LExplore(dir | switch(Ttime): Reverse; catches: Bounce; caught: Forward)

In state Bounce, Return, Forward, BComm, FComm:
The same as in Algorithm LandmarkWithChirality.

Figure 8: Algorithm StartFromLandmarkNoChirality
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(r1)a = 2

(r2)a = 4 (r1)b = 3

(r2)b = 7

Bitstrings and ID of a
(k1)a = 010

(k3)a = 000

(k1)b = 011 (k2)b = 100

(k3)b = 000

(ID)b = 010100100 = (164)10

(r3)b = 0(r3)a = 0

(k2)a = 010

(ID)a = 110000 = (48)10

Figure 9: Example of a run where different IDs are assigned to agents. In this case the round r3 is 0 for both
agents; no one visits the landmark between r1 and r2.

Bitstrings and ID of b

ba
v⇤landmarkthe ringv0 vn�1

(r1)a = 2

Bitstrings and ID of a

(k3)b = 000

(r2)a = 5(r1)b = 6

(r2)b = 8

(k3)a = 10

(k1)a = 10 (k2)a = 01 (k1)b = 110 (k2)b = 010

(ID)b = 100110000 = (304)10(ID)a = 101010 = (42)10

(r3)b = 0

(r3)a = 4

Figure 10: Example of a run where different IDs are assigned to agents. In this case r3 6= 0 for agent a.

3.2.3 Termination: Landmark without Chirality

In this subsection we consider the case of a landmark when there is no chirality, and we prove that exploration
with termination can still be performed in time O(n log n).

We first consider and solve the problem when both agents start from the landmark; we then adapt the
algorithm to work when agents start in arbitrary positions.

Starting from the Landmark. The pseudocode of Algorithm StartFromLandmarkNoChirality is
in Figure 8. The main difficulty lies in the case when the agents start in opposite directions and never break
the symmetry. Our approach to solve this case is to add an initial phase in which the agents use the event of
waiting on a missing edge to break symmetry, obtain different IDs (of size O(log n)) and then use these IDs
to ensure that, if the agents do not catch each other (or outright explore the ring), then they eventually move
in the same direction for a sufficiently long time so that Algorithm LandmarkWithChirality succeeds.

Let us remark that, if the agents somehow catch each other, they establish chirality, and then they can
use Algorithm LandmarkWithChirality which leads to exploration and termination. Therefore, if at
any point the agents catch each other, they enter states Forward and Bounce and proceed with Algorithm
LandmarkWithChirality.

Computing the ID: Each agent tries to compute its ID according to the procedure described below. If an
agent does not succeed in computing its ID, then it has explored the ring and it is aware of that.

If an agent does not know the ring size, the first two times it waits in a port it immediately changes
direction. We indicate these rounds with r1 and r2, respectively. Let r3 be the round when the agent entered
the landmark for the first time between times r1 and r2 (r3 is set to 0 if the agent does not traverse the
landmark between rounds r1 and r2). Let k2 = (r2 −max(r1, r3)) and k3 = max(0, (r3 − r1)); note that
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Figure 11: Directions for an agent with ID = 1 , a round with value 0/1 corresponds to left/right direction.

these values are provided by variable Etime in the algorithm (see Figure 8). The computed ID of this agent
consists of the interleaved bits of the numbers k1 = r1, k2 and k3, where each bitstring is padded with a
prefix of 0’s until its length is equal to that of the longest of the three. Note that two IDs are equal if and
only if their ki’s are equal. In Figure 9 there is a detailed example on how the IDs are computed; notice that
since both IDs start with 0, this bit is ignored when the numerical value in base 10 is obtained. In Figure 10
there is an example of a run where r3 6= 0 for agent a.

Moreover, notice that if a round r1 or r2 does not exist, because the agent encountered a missing edge
less than two times, then that agent has looped around the landmark; in this case it enters in the Happy
State (cf. pseudocode). So it knows the ring size and it can compute an upper bound on the termination
time of the other agent.

Using the IDs to decide the direction: The following procedure is used when an agent has computed its ID.
Agents agree on a predetermined subdivision of rounds in phases. Round r belongs to phase j, r ∈ phase(j),
iff 2j ≤ r < 2j+1. Given the ID, an agent computes a string of bits S(ID) = 10 ◦ (b(ID)) ◦ 0, where ◦ is
the string concatenation and b(ID) is the minimal binary representation of ID. Given a string S we use

(S)i to denote the i− th character of S. Let us define as j the minimum value for which 2j ≥ len(S(ID))

and S(ID) = (0)2
j−len(S(ID)) ◦ S(ID), where len(S) is the length of the string S. For each phase j ≥ j we

associate the binary string d(ID, j) = Dup(S(ID), 2(j−j)), where Dup(S, k) is the string obtained from S by
repeating each character k times, e.g. Dup(1010, 2) = 11001100.

For each round r ∈ phase(j), with j > j, the direction of the agent is equal to left if (d(ID, j))r−2j = 0,
otherwise it is right. For a round r ∈ phase(j) with j ≤ j the direction of an agent is fixed to left .

In Figure 11 there is an example of the bit sequences generated by an agent with ID = 1.
In our algorithm this procedure is implemented using three functions:

• set(ID): This function takes as parameter the ID of the agent, and it initializes the aforementioned
procedure.

• direction(Ttime): This function takes as parameter the current round and it returns the direction
according to the aforementioned procedure.

• switch(Ttime): This function takes as parameter the current round and it returns true if direction(Ttime)
6= direction(Ttime− 1).

Lemma 3. Let us consider two agents with different IDs:{ID, ID′}, with len(ID) ≥ len(ID′). For any
constant c > 0, by round r < 32((len(ID) + 3)c · n) + 1 there has been a sequence of c · n rounds in which the
agents had the same direction. Moreover, by round r, each agent has moved in both directions for a sequence
of rounds of length at least c · n.

Proof. By definition j = dlog(len(ID) + 3)e. Phase j starts at round r < 2log(len(ID)+3)+2 < 4(len(ID) + 3).
Consider d(ID, j) and d(ID′, j). We now show that there exist two indices x, y such that (d(ID, j))x

6= (d(ID′, j))x and (d(ID, j))y = (d(ID′, j))y. It is easy to verify that y = len(d(ID, j)), by construction
since d(.) always terminate with 0. For the index x we consider two cases:

• d(ID′, j) = S(ID′): If len(S(ID)) > len(S(ID′)) then x is the index of the first bit of ds(ID, j)
different from zero. If len(S(ID)) = len(S(ID′)), since by assumption ID 6= ID′ index x exists.
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Figure 12: Termination from state AtLandmark.

• d(ID′, j) 6= S(ID′): By construction, ds(ID
′, j) is composed by sequences of equal bits of length at

least two. Also by construction, the first three bits of S(ID) are 101. This means that the substring
101 cannot be contained in d(ID′, j), and it is contained in d(ID, j); this implies that index x exists.

If the agents agree on the direction, they will have the same direction in the round corresponding to index y,
otherwise they will have the same direction in the round corresponding to index x.

In phase j > j, by construction, we have a sequence of rounds where agents have the same direction of
length at least 2j−j . We have 2j−j > c ·n when j > log(len(ID) + 3) + log(c ·n) + 3. We reach the end round

of this phase by r =
∑log(len(ID)+3)+log(c·n)+4

i=0 2i ≤ 32((len(ID) + 3)c · n). The last statement of the lemma
derives directly by the presence of 1 and 0 in each possible S(ID).

Theorem 7. Algorithm StartFromLandmarkNoChirality allows two anonymous agents without chirality
starting from the landmark to explore a 1-interval connected ring with a landmark and to explicitly terminate
in O(n log(n)) time.

Proof. First note that if the agents catch each other, as shown in the proof of Theorem 6, they will explore
the ring and terminate in O(n) time after the moment they catch; hence, in the remainder of the proof,
we deal with the case when the agents never catch each other. Next note that, if the agents meet at the
landmark and terminate in state AtLandmark, they must have bounced from the same edge and the ring has
been explored; this is because they started from the landmark and returned at the same time while both were
blocked exactly once; see Figure 12. However, when two agents meet in the landmark and one terminates, to
ensure that the other is in state AtLandmark the following synchronization step is needed: when an agent
enters state AtLandmark and sees also the other agent, it waits one round more in the node without moving.
If the other agent does the same they both terminate. This obviously happens in the aforementioned case, i.e.
when the agents bounced on the same edge and reach the landmark at the same time, entering both in the
same round in state AtLandmark, thus correctly identifying the exploration of the ring. The same cannot
happen if one of the agents is not in the AtLandmark state; in this case only one of the agent will wait and
the other will either leave the node, or it will enter a port, thus preventing a possible incorrect termination.

Third, observe that, by time 3n− 1, either an agent knows n (and terminates in O(n log(n)) time from
Happy state, or it knows its own ID. Note that IDs are bounded from above by n3, since each ki is at most n,
which implies len(ID) ≤ 3dlog(n)e.

Consider now the case that at time 3n− 1 an agent (say a) does not know its ID (and hence since time
3n− 1 knows n), while the other (b) knows its ID but does not know n. Agent b therefore repeatedly switches
its direction in state Reverse, while agent a moves in the same direction. Note that by Lemma 3, by time
32((3dlog(n)e+ 3)5 · n) + 1, agent b has moved to the left and right direction for a sequence of rounds of
length at least 5n, in one of the two both a and b move in the same direction. As at least one agent makes
progress in each of those time steps, while (by assumption) they don’t catch each other, b must have moved
for at least 2n time units. This means that b learns n and eventually terminates as well.

The final case to consider is when both agents know their IDs, but do not know n. Note that if the agents
have the same values of k1 and k2, they must have covered the whole ring and at least one of them will have
k3 6= 0. This means that the agents necessarily have different IDs, since if they had the same values of k1 and
k3 6= 0, they would have terminated in AtLandmark state, see Figure 12.
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States: {Init, AtLandmark, InitL, FirstBlock, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Terminate,
BComm, FComm}.
In state Init:

dir ← left, k1 ← 0, k2 ← 0, k3 ← 0
LExplore(dir | n is known: Happy; Btime > 0: FirstBlock; catches: Bounce; caught: Forward;)

In state FirstBlock:
dir ← right, k1 ← Ttime
LExplore(dir | n is known: Happy; isLandmark: AtLandmark; Btime > 0: Ready; catches: Bounce; caught: Forward)

In state AtLandmark:
k3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

go to state InitL

LExplore(dir | n is known: Happy; Btime > 0: Ready; catches: Bounce; caught: Forward)
In state S 6∈ {Init, FirstBlock, AtLandmark}:

The same as in Algorithm StartAtLandmarkNoChirality.

Figure 13: Algorithm LandmarkNoChirality

Since the IDs are different, by Lemma 3, by round 32((3dlog(n)e + 3)5 · n) + 1 there has been a time
segment of length 5n in which both agents were moving in the same direction. Thus, either they catch each
other, or both learnt n and terminated thereafter.

Arbitrary initial positions. Algorithm StartAtLandmarkNoChirality almost works also in the
case of agents starting in arbitrary position. The only failure would be due to the fact that, when the agents
meet in the landmark while establishing k1 and k2, it does not necessarily mean that they have already
explored the ring. The modification to introduce is not to terminate in this case, but to reset and start a new
instance in state InitL, executing algorithm StartAtLandmarkNoChirality, as now the agents are indeed
starting at the landmark. If the agents do not meet at the landmark, then their values of k3 are different and
the algorithm works using the same arguments. The complete pseudocode is in Figure 13. Since this adds at
most O(n) to the overall time, we obtain the following theorem.

Theorem 8. Algorithm LandmarkNoChirality allows two anonymous agents without chirality to explore
a 1-interval connected ring with a landmark and to explicitly terminate in O(n log(n)) time.

4 Ring exploration in SSYNC
In this section we investigate the exploration problem when the system is semi-synchronous. The complexity
measure we consider in this case is the total number of edges traversed by the agents. As in Section 3,
Esteps denotes the total number of successful moves performed by the agent since procedure Explore has
been called, Tnodes denote the total number of nodes that the agent perceived to have explored since the
beginning of the protocol, Btime denotes the number of consecutive rounds the agent has been currently
waiting in a port, and catches is the predicate denoting that the agent is in the node and the other agent is
observed on a port (in the moving direction of the first agent). These definitions hold for all the algorithms
of the SSYNC section.

4.1 Impossibility of Exploration in NS

Let us begin by showing an intuitive result for the NS model:
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Theorem 9. In the NS model, exploring the ring is impossible with any number of agents, even if the ring
and the agents are not anonymous and there is chirality.

Proof. Consider a non-anonymous ring where k > 1 non-anonymous agents are located at arbitrary nodes,
with at least a node without agents; and let A be an arbitrary exploration algorithm. Starting with t = 0, let
A(t) denote the set of agents that, according to A, if active at time t would want to move to a neighbouring
node; let P (t) denote the set of agents that instead would not move; and let first(t) ∈ A(t) be the agent in
A(t) that has not been active the longest, where ties are arbitrarily broken.

Consider now the following agents and link activation scheduler: at time t it activates only P (t) and
first(t), and it removes the edge on which first(t) would move. Hence, no agent will move at time t. By
repeating this process and by observing that this scheduler is indeed fair (it activates every agent infinitey
often), the nodes initially without an agent will never be visited.

Notice that Theorem 9 would hold even if the agents were equipped with wireless communication.
Motivated by this impossibility result, we now examine the other SSYNC models.

4.2 Exploration in PT

4.2.1 PT: Impossibility of Exploration by Two Agents Without Chirality

We begin our investigation of the PT Model by showing that, without chirality, two agents cannot explore
the ring, even with precise knowledge of the network size and with the presence of a landmark.

Theorem 10. In the PT model without chirality two anonymous agents are not sufficient to explore a ring
of size n ≥ 5. The result holds even if there is a distinguished landmark node and the exact network size is
known to the agents.

Proof. By contradiction, let A be a solution algorithm. Let a and b be the two agents. Assume that: agent a
starts at node u and, according to A, it would move towards u′; b starts at node v and would move towards
v′; and u, u′, v, v′ and the landmark are all different.

The algorithm is executed by the agents against an adversary that choses which agent is active in which
round, decides the local orientation of the agents, as well as the topological structure of the ring. In particular,
it does not fix the link relationship between the nodes where a acts (u, u′) and those where b operates (v, v′),
until necessary during the execution of the algorithm A.

The adversary applies the following alternation strategy: It activates only a and keeps it active until a
tries to move to a node other than u and u′. At this point, the adversary blocks that edge and keeps it
blocked until a either switches direction, or decides to permanently wait on this port at node u∗ ∈ {u, u′}.
Notice that one of these two events has to take place. When this happens, the adversary makes a passive,
activates b, and acts with b exactly in the same way as it did with agent a. In other words, it keeps b active
until b tries to move to a node other than v and v′ and then it blocks that edge and keeps it blocked until b
either switches direction, or decides to permanently wait on this port at node v∗ ∈ {v, v′}.

Note that, after the execution of the alternation strategy, since the agents are anonymous and there is no
chirality, whatever decision a made (switch or permanently wait), the same is taken by agent b.

Let us consider first the case when both agents decide to switch direction. In this case, the adversary
will continue, as long as the two agents decide to switch direction, to execute the alternating strategy, never
letting the agents move outside the four nodes u, u′, v, v′. This means that, if they never decide to wait
permanently, the rest of the ring will not be explored, contradicting the correctness of A.

Therefore, within finite time, after some executions of the alternating strategy, they both must decide to
wait permanently, a at node u∗ to go to node u′′, and b at node v∗ to go to node v′′. When this happens, the
adversary fixes the topology of the ring by setting u′′ = v∗ and v′′ = u∗; it then blocks forever edge (u∗, v∗),
and permanently activates both a and b. Thus the rest of the ring will not be explored, contradicting the
correctness of A.
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As a consequence of Theorem 10, any exploration algorithm must either use chirality, or employ more
than two agents. We will consider the two cases in the following subsections.

4.2.2 PT: Two Agents with Chirality

We know (Theorem 10) that two agents need chirality to explore the ring; however chirality does not suffice
for exploration with termination (Theorem 1) unless the agents know an upper bound on the ring size or the
nodes are not anonymous (i.e., there is a landmark).

Interestingly, in the PT model, even with both knowledge of the the ring size and a landmark, explicit
termination of both agents is impossible as shown by the following theorem.

Theorem 11. In the PT model, any exploration algorithm on a ring of size n ≥ 3 with two agents can only
guarantee partial termination. The result holds even if the size of the ring is known, a landmark node is
present and there is chirality.

Proof. By contradiction, let A be a two-agents exploration algorithm for PT, where both agents always
terminate in every execution. Let a, b be the two agents, and let them start at the same location, the landmark
node vs, both initially asleep. First notice that, if only one agent wakes up and the other remains asleep,
eventually the awake agent has to start exploring the ring (otherwise, by alternating the sleeping of a and b,
they will never move).

Let E(a) (resp. E(b)) be the unfair execution of A in which a (resp. b) forever sleeps, b (resp. a) is active
and explores the ring, and no edge is removed. Observe that, since the agents are anonymous, then a does in
E(b) the same moves as b does in E(a).

Let us now examine the four possible situations in which b can find itself in E(a):

1. Agent b terminates in some location vx 6= vs. Consider now the execution E′ coincident with E(a)
until the round when b terminates in vx; then the adversary wakes up a and blocks it on vs; hence a
will never leave vs. Observe that E′ is a fair execution; since, by assumption, both agents explicitly
terminate in every fair execution, then a will terminate in E′ on node vs, say t rounds after becoming
awake.

Consider now an execution E′′ coincident with E(a) until b moves to a node vy 6= vs; when this happens
a is woken up and blocked on node vs, while b is kept asleep. From the local view of a, the executions
E′ and E′′ are not distinguishable; hence a terminates in E′′ on vs t rounds after waking up. When this
happens, the adversary wakes up b and blocks it on node vy. Observe that also E′′ is a fair execution.
As n ≥ 3 and only vs and vy are visited in this execution, the ring will never be explored, contradicting
the correctness of A.

2. Agent b terminates on node vs. Consider now the execution E′ coincident with E(a) until the round
when b terminates in vs; when this happens the adversary wakes up a. Since a does not know that
b has terminated and b’s behaviour is indistinguishable from being asleep, a has to leave vs. When
it reaches a neighbouring node vy, the adversary blocks it there. Notice that E′ is a fair execution.
Consider next the execution E′′ coincident with E(b) (i.e., a is made active while b is asleep) until a
leaves vs; when it reaches a neighbouring node vy, also in this case the adversary blocks it there.

Observe that a cannot distinguish between executions E′ and E′′; hence a will take the same decisions
in both. If it terminates within finite time, then, when that happens, in execution E′′ the adversary
awakes b and perpetually blocks it on vs; hence the ring will never be explored. Since E′′ is a fair
execution, this contradicts the correctness of A. If, on the other hand, a does not terminate, execution
E′ contradicts the assumption that A always guarantees explicit termination.

3. Agent b does not terminate, and it visits vs only finitely many times. Hence, there is a round r after
which b does not visit vs (b can be waiting at some node vx 6= vs; it can also be perpetually moving
among a set of nodes not containing vs).
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States: {Init, Bounce, Reverse}.
leftSteps ← ⊥
rightSteps ← ⊥
In state Init:

Explore(left | Tnodes ≥ N : Terminate, catches: Bounce)
In state Bounce:

leftSteps ←Esteps
if (rightSteps 6= ⊥) ∧ (rightSteps ≥ leftSteps) then

Terminate
Explore(right | Tnodes ≥ N : Terminate, Btime > 0: Reverse)

In state Reverse:
rightSteps ←Esteps
Explore(left | Tnodes ≥ N : Terminate, catches: Bounce)

Figure 14: Algorithm PTBoundWithChirality

Consider now the execution E′ coincident with E(a) for the first r rounds; the adversary then wakes a
at round r + 1 and blocks it on vs forever; notice that E′ is fair. By assumption, both agents terminate
in A. In particular, this means that a terminates on E′ without leaving vs.

Consider now an execution E′′ coincident with E′ until the first time b visits a node vy 6= vs. From
that moment on, b becomes asleep in vy, while a is activated and blocked on vs. From the point of view
of a this execution is undistinguishable from E′, therefore a terminates in vs. After the termination of
a, the adversary wakes up b in E′′ but perpetually blocks it; notice that E′′ is fair. As only vs and vy
have been explored in this execution, A fails to explore the ring.

4. Agent b does not terminate, and it visits vs infinitely often, either by reaching it and no longer moving
or by moving inside an interval I of nodes containing vs. Consider now the execution E′ coincident
with E(a) until b returns to vs; the adversary then puts b to sleep and wakes up a until it returns to vs.

Now, the adversary will repeate the whole process, alternating forever the sleep of a and b: wake up
b (resp. a) and put a (resp. b) to sleep, util the next round in which b (resp. a) is at vs (recall that
it might never leave it). Notice that b is unable to distinguish this fair execution E from E(a), and
similarly a is unable to distinguish it from E(b); hence they will never terminate in this execution.

As a consequence, the best that can be achieved is partial termination.
In the rest of this section, we show that the knowledge of an upper bound or the presence of a landmark

is sufficient for the two agents to explore the ring; with respect to termination, we achieve a strong partial
termination, with one agent always explicitly terminating, and the other either terminating or no longer
moving.

A. Chirality and Known Upper Bound
First consider the case when an upper bound N on the ring size is known to the agents. We present an
algorithm, PTBoundWithChirality, shown in Figure 14, for exploration of dynamic ring by two agents
with chirality and knowledge of an upper bound. Both agents start moving left. If an agent finds a blocked
edge with the other agent waiting in the left port, it enters state Bounce, reverses direction and starts moving
right. If the agent in state Bounce finds a missing edge before traversing N edges, it reverses direction
again (becoming Reverse); that agent might be alternating Bounce and Reverse state several times. An agent
terminates upon discovering it has traversed N consecutive edges in a given direction. Additionally, if in
state Reverse the agent catches the other agent at a distance smaller than that in the previous catch, it means
the two agents have crossed and they can safely terminate.
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Figure 15: Run where rightSteps < leftSteps, the δ grows at each bounce-reverse of b.

Theorem 12. Two agents executing Algorithm
PTBoundWithChirality in the PT model with chirality and a known upper bound N on the size of the
ring will explore the ring using at most O(N2) edge traversals. Furthermore, one agent explicitly terminates,
while the other either terminates or it waits perpetually on a port.

Proof. We first prove exploration. Note that, by definition of Tnodes, if it exceeds N , the ring has been
explored. The only non-trivial case to consider is termination due to the condition: rightSteps ≥ leftSteps.

Let us first consider the case when where agent b terminates after it bounces on agent a blocked on edge
e at round r, then changes direction on a missing edge and finally catches a again terminating.

If a stayed in the same port during all this process, then b would have visited the other side of e (otherwise
the PT condition would have ensured passive transport of a). In such a case the ring has been explored.

If a moved after round r, two different scenarios are possible:

• (i) a crosses b while b is in Bounce state, this implies that a and b explored the ring.

• (ii) a bounced on b while b was in Reverse, a traverses e in state Bounce, and a goes back in state
Reverse. It is clear that also in this case the ring has been explored: the portion between e and the
node where a bounced on b has been explored by b, and the other portion by a.

We now have to show that at least one agent terminates. If the adversary keeps an edge perpetually
removed, eventually the algorithm terminates due to condition rightSteps = leftSteps. Moreover, if an agent
is not blocked in its traversal, it will eventually do N steps leading to termination.

The only possibility left to be analyzed is if a is blocked on some edge e, b bounces first on edge e, then
reverses direction on edge e′ and, when b catches on a, rightSteps < leftSteps . Notice that, when this happens,
b has done at least one step further to the left of edge e, otherwise we would have rightSteps ≥ leftSteps
leading to the termination of b.

We have that (1) the adversary cannot keep an agent sleeping, or blocked, forever, (2) the adversary cannot
let an agent do N steps in one direction and (3) an agent switches from state Reverse to Bounce only catching
someone; therefore if the agents do not terminate, then a and b have to catch each other multiple times. As
discussed previously, for each catch the catching agent will do an additional step to the left. Therefore, we
will eventually have Tnodes > N for one of the two. An example is reported in Figure 15; in the figure we
can see that after the first bounce on node v, the area to the left of v explored by b (named δ in the figure)
has to grow at least by one for each sequence of Reverse-Bounce: we must have rightStepsi < leftStepi.

If an agent terminates, the other cannot bounce to the right. Hence, it will either terminate due to
exceeding N left moves, or will be perpetually blocked on a port, and the last part of the theorem holds.

Let us now analyze the complexity of the algorithm. Observe that during one Bounce-Reverse phase an
agent can do O(N) steps. There could be at most N of these Bounce-Reverse phases: in each of them the
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agent has to do an additional step left otherwise the termination condition is satisfied. Since the termination
check bounds the total number of left steps by N , this yields O(N2) complexity of the algorithm.

The complexity of the proposed algorithm, O(N2), depends on the accuracy of the upper bound N . We
will now show that such a dependency is to a certain degree inevitable. In fact we prove that Ω(N · n) are
indeed required by any solution protocol. This also means that the proposed algorithm is optimal, whenever
N = O(n).

Theorem 13. In the PT model with chirality in which the two agents know an upper bound N on the ring
size n ≥ 5, any exploration algorithm with partial termination requires at least Ω(N · n) edge traversals by the
agents in the worst case.

Proof. Let A be a solution algorithm for the PT model with chirality and let N be the known upper bound
on the ring size. The actual size n ≤ N of the ring will be decided by the adversary. The adversary will
operate in logical phases; in phase i, it selects a continuous segment Xi of the ring that includes both agents;
initially X1 has size x ≥ 5. In each phase, the adversary uses the strategy described below. Let Ni denote
the number of distinct nodes that the agents would have explored, under this strategy, at the beginning of
phase i if n = N , i.e. the upper bound was tight. We assume, without loss of generality, that N1 = |X1| = x;
this only makes the lower bound proof stronger. The adversary repeats the same process as long as Ni < N .

In phase i the adversary considers one agent at a time. If that agent, say a, tries to leave Xi, the adversary
will block that edge and keeps it blocked until either a changes direction (i.e., stays within Xi) or also the
other agent tries to leave Xi (from opposite directions).

Eventually both agents must want to leave Xi from opposite directions, otherwise the adversary can
continue to prevent the agents from leaving Xi and since Ni < N , choosing n > Ni would make the algorithm
A fail.

When the adversary determines that also the second agent, say b, would want to leave Xi should it become
active (recall the first agent is currently waiting on a blocked edge), the adversary considers what each agent
would do, according to A, if the edge the agent wants to cross is blocked indefinitely.

Clearly, they cannot both wait indefinitely, otherwise the adversary, by choosing n = Ni and activating
both agents at all times, would make the two agents wait forever at the two endpoints of the same blocked
edge, without either of them terminating (although they have explored the ring).

This means that at least one of the agents, after a finite number of activations, would change direction
and move towards a neighbouring node in Xi. Let c ∈ {a, b} be such an agent, and d be the other. Upon this
determination, if d = b, the adversary activates d (letting it move), and then makes d passive; otherwise, i.e.
d = a, it makes d passive immediately, and let it move passively on the next node. In any case, it also blocks
the edge from which c is trying to leave Xi until c changes direction and moves from its current position u
to the next node u′ in Xi. At this point, the adversary blocks the edge (u, u′) and keeps it blocked until c
performs at least |Xi| − 1 additional moves, possibly reaching d. Note that this will always happen as shown
by the claim below.
Claim 1. If c never reaches d in this phase and it does not wait forever in the port of node u′ trying to reach
node u, it will perform an unbounded number of moves.

Proof. By contradiction, let c satisfy the conditions of the claim, but perform only a bounded number of
moves, without reaching d. Thus, within finite time it will stop in a node indefinitely. When this happens,
the adversary activates d blocking any edge through which it wants to move. Hence no new node will be
explored; since Ni < N , by choosing n = N the adversary would make the algorithm A fail.

Further note that, during this time, agent d moves (if d = b) or is passively moved (if d = a) to a neighbour
v outside Xi.

In Claim 1 we assumed that c does not wait forever in the port of node u′ trying to reach node u. Notice
that if this happens, then we can define the set Xi+1 = (Xi \ {u}) ∪ {v}.
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Figure 16: Run where agents end up waiting on the same edge.

If d is blocked traversing an edge to go outside Xi+1, it cannot wait forever, otherwise the adversary can
create a schedule and a configuration in which both agents are forever blocked on the endpoints of edge
(u, u′), without the possibility of termination.

An example is shown in Figure 16: in this run we have that agent c is blocked until round r0, when it
decides to change direction. When c reaches u′ at round r1, it is forced to sleep and agent d is allowed to
move reaching u. When this happens, agents c is activated again and it tries to traverse edge (u, u′) at round
r2. At round r3, also agent d tries to traverse edge (u, u′), and both agents keep doing that forever without
terminating. Notice, that the agents only know an upper bound N on the ring size.

Therefore, agent d eventually leaves node v to go to the neighbouring node in Xi+1, thus the adversary
can let c visit node u, then it forces c to sleep and it keeps d blocked until d leaves v. At this point we are
again in the situation where both agents are confined in the set of nodes Xi = (Xi+1 \ {v}) ∪ {u}. If the
agents keep behaving in this way, the adversary makes them oscillating forever between the sets Xi and Xi+1.

Therefore, c has to perform |Xi| − 1 steps and eventually has to reach d.
As soon as c performs |Xi| − 1 additional moves, the adversary starts the next phase i + 1, selecting

Xi+1 to be the area currently delimited by the blocked edge on one side and the passive agent on the
other (a “shift” of the former Xi area in the direction of d’s move); that is, Xi+1 = (Xi \ {u}) ∪ {v}; thus,
|Xi| = |Xi+1| = x. Observe that the added node v could have been already visited in a previous round; that
is Ni ≤ Ni+1 ≤ Ni + 1.

The adversary repeats the same process until phase j where Nj = N . Note that termination cannot
occur before the end of this process. In fact, should one agent terminate at any time during the i−th phase,
i < j , then every attempt of the other agent to move would be blocked by the adversary, preventing further
exploration, and the algorithm would fail on rings of size n = N > Ni.

Since the explored part grows of at most one node in each phase i < j, the total number of phases is at
least N − x. Since in each phase at least x moves are performed by the agents, the total number of moves
performed by the agents is at least x(N−x). By choosing x = dn/2e the adversary ensures the claimed bound.

B. Chirality and Landmark
Consider now the case when, instead of knowledge of an upper bound on the ring size, there is a landmark in
the ring.

The general strategy for two agents with chirality (but without bound on the ring size) is essentially
the same as the one for PTBoundWithChirality, where however an agent cannot use N for termi-
nation, but terminates when it performs a complete loop around the landmark (and thus knows n), or
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States: {Init, Bounce, Reverse}.
leftSteps ← ⊥
rightSteps ← ⊥
In state Init:

Explore(left | n is known: Terminate, catches: Bounce)
In state Bounce:

leftSteps ←Esteps
if (rightSteps 6= ⊥) ∧ (rightSteps ≥ leftSteps) then

Terminate
Explore(right | n is known: Terminate, Btime > 0: Reverse)

In state Reverse:
rightSteps ←Esteps
Explore(left | n is known: Terminate, catches: Bounce)

Figure 17: Algorithm PTLandmarkWithChirality

when it detects that the agents have crossed (like in the previous algorithm). The resulting algorithm
PTLandmarkWithChirality is however more efficient in terms of number of link traversals by the agents.

Theorem 14. Two agents executing Algorithm
PTLandmarkWithChirality in the PT model with chirality will explore a ring with a landmark using at
most O(n2) edge traversals. Furthermore, one agent explicitly terminates, while the other either terminates
or it waits perpetually on a port.

Proof. The correctness proof is analogous to the one of Theorem 12. Regarding complexity, the key observation
is that, in a Bounce-Reverse phase an agent cannot do more than O(n) steps, otherwise it will loop around
the landmark and terminate. Each time rightSteps < leftSteps is verified by an agent, the agent performs an
additional step to the left; if this condition is verified 2n− 1 times, that agent has done a loop around the
landmark. Hence the O(n2) bound trivially follows.

Adapting the proof of Theorem 13, it is possible to show that the algorithm is asymptotically optimal:

Theorem 15. In the PT model, any exploration algorithm for a ring of size n, with n ≥ 5, with a landmark
by two agents with chirality requires Ω(n2) edge traversals in the worst case.

Proof. Let A be a solution algorithm for exploration of a ring with a landmark by two agents with chirality.
Initially the adversary locates both agents at the landmark node and lets them execute the algorithm until
N1 = 5 nodes have been explored. The adversary operates in logical phases; let Xi denote the area of the ring
explored by the agents at the beginning of phase i, and let Ni = |Xi|. In phase i with Ni < n, the adversary
considers one agent at a time. If that agent, say a, tries to leave Xi, the adversary will block that edge and
keeps it blocked until either a changes direction (i.e., stays within Xi) or also the other agent tries to leave Xi

(from opposite directions). Eventually both agents must want to leave Xi from opposite directions: otherwise
the adversary can continue to prevent the agents from leaving Xi and since Ni < n, the algorithm A would
fail.

When the adversary determines that also the second agent, say b, would want to leave Xi should it become
active (recall the first agent is currently waiting on a blocked edge), the adversary considers what each agent
would do, according to A, if the edge the agent wants to cross is blocked indefinitely.

Clearly, they cannot both wait indefinitely, otherwise in the ring where n = Ni, the adversary, activating
both agents at all times, would make the algorithm fail by having the two agents wait forever at the two
endpoints of the same blocked edge, without either of them terminating (although they have explored the
ring). This means that at least one of the agents, after a finite number of activations, must change direction
and move towards a neighbouring node in Xi. Let c ∈ {a, b} be such an agent, and d be the other.
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Upon this determination, if d = b, the adversary activates d (letting it move), and then makes d passive;
otherwise, if d = a, it makes a passive immediately and let it move passively on the next node.

In any case, it also blocks the edge from which c was trying to leave Xi and keeps it blocked until c
performs at least |Xi| moves, possibly reaching d. Note that, as in the case of Algorithm
PTBoundWithChirality, this will always happen as shown by the claim below.
Claim 2. If c never reaches d in this phase and it does not wait forever in the port of node u′ trying to reach
node u, it will perform an unbounded number of moves.

Proof. By contradiction, let c satisfy the conditions of the claim, but perform only a bounded number of
moves, without reaching d. Thus, within finite time it will stop in a node indefinitely. When this happens,
the adversary activates d blocking any edge through which c wants to move. Hence no new node will be
explored; since Ni < n the adversary would make the algorithm A fail.

Further note that, during this time, agent d moves (if d = b) or is passively moved (if d = a) to a neighbour
v outside Xi.

In Claim 2 we assumed that c does not wait forever in the port of node u′ trying to reach node u. Notice
that if this happen, then we can define the set Xi+1 = (Xi \{u})∪{v}, if d is blocked traversing an edge to go
outside Xi+1 it cannot wait forever or the adversary can create a schedule and a configuration in which both
agents are forever blocked on the endpoints of edge (u, u′), without the possibility of termination. Therefore,
agent d eventually leaves node v to go to the neighbour node in Xi+1, thus the adversary can let c visit node
u, it then forces c to sleep and it keeps d blocked until d leaves v. At this point we are again in the situation
where both agents are confined in the set of nodes Xi = (Xi+1 \ {v}) ∪ {u}. If the agents keep behaving in
this way, the adversary makes them oscillating forever between the sets Xi and Xi+1.

Therefore, c has to perform |Xi| − 1 steps and eventually has to reach d.
As soon as c performs |Xi| moves, the adversary starts the next phase i+ 1. Since v is a newly explored

node, Xi+1 is the former Xi area augmented by node v; thus, Ni+1 = Ni + 1.
The adversary repeats the same process until phase j when Ni = n− 1. Note that termination cannot

occur before the end of this process. In fact, should one agent terminate at any time during the i−th phase,
i < j , then every attempt of the other agent to move would be blocked by the adversary, preventing further
exploration, and the algorithm would fail because the ring has not been fully explored yet.

Since the explored part grows of one node in each phase, the total number of edge traversals is
∑n

i=3 i >
n2

2
and the theorem follows.

4.2.3 PT: Without Chirality

Without chirality, we have shown that two agents do not suffice (Theorem 10). We thus consider the presence
of three agents in absence of chirality. Also in this case, we need to assume some other knowledge because
the presence of three agents without additional information is not sufficient (Theorem 2) even for partial
termination.

As in the previous Section, we first assume the agents have knowledge of an upper bound N on the ring
size; the case when there exists a landmark node is considered later.

A. Upper Bound

The algorithm, PTBoundNoChirality, for this case is described in Figure 18. Upon activation, at
least two of the three agents will necessarily agree on the orientation. An agent bounces only when catching
another agent, performing a “zig-zag tour”. There are several ways in which an agent terminates.

More precisely, an agent changes direction if and only if it reaches another agent that is waiting on a
missing edge in the same direction.

Each agent memorizes the distance d that it has traveled between the first time it changed state from
Bounce to Reverse. Each time the agent changes state from Bounce to Reverse (or viceversa) it checks that
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States: {Init, Bounce, Reverse,MeetingR, MeetingB}.
d← 0
In state Init:

Explore(left | Tnodes ≥ N : Terminate, catches: Bounce)
In state Bounce:

CheckD(Esteps)
Explore(right | Tnodes ≥ N : Terminate, meeting: MeetingB, catches: Reverse)

In state Reverse:
if d = 0 then

d←Esteps . First time I change state from Bounce to Reverse
else

CheckD(Esteps)

Explore(left | Tnodes ≥ N : Terminate, meeting: MeetingR, catches: Bounce)
In state MeetingR:

if Esteps ≤ d then
Terminate

ExploreNoResetEsteps(left | Tnodes ≥ N : Terminate, catches: Bounce) . This procedure is the same of
Explore(b)ut it does not reset Esteps
In state MeetingB:

if Esteps ≤ d then
Terminate

ExploreNoResetEsteps(right | Tnodes ≥ N : Terminate, catches: Reverse) . This procedure is the equal of
Explore(b)ut it does not reset Esteps

function CheckD(x)
if d > 0 then

if x ≤ d then
Terminate

else
d← x

Figure 18: Algorithm PTBoundNoChirality

the number of steps done is strictly greater than d, otherwise it terminates. If the distance is greater the
agent memorizes this new distance. If the agent meets an agent on a node (condition MeetingB and MeetingR
of the algorithm) and distance d has been set, it also checks that the distance from the last direction change
is greater than d and updates d, otherwise it terminates. Finally, there is a trivial terminating condition of
doing N steps in the same direction.

Lemma 4. In Algorithm PTBoundNoChirality, if an agent terminates then the ring has been explored.

Proof. The only non trivial part is the termination for Condition [if Esteps ≤ d ]. Let b be the first agent
that terminates by satisfying condition Esteps ≤ d (if there are several such agents, take any of them), at
some round r2. We will show that assuming that there are unexplored nodes in the ring at time r2 leads to
contradiction.

First note that, if there are unexplored nodes at time r2, no agent could have terminated before time r2
by satisfying condition Tnodes ≥ N ; i.e., b is indeed the first agent to terminate.

Let us define rounds r0 and r1 as the last two rounds in which b changed direction, with r0 < r1 (see
Figure 19). Observe that r0 and r1 are well defined: At time r2, b has a positive value of d (otherwise
Esteps ≤ d won’t be satisfied). By construction of the algorithm, the first change of direction does not set
d, only the subsequent ones do; i.e., b must have had at least two changes of direction before satisfying the
termination condition.

Let us define the leftmost and the rightmost agents as follows:

• If at time r0 agent b changes direction from left to right , then agent b becomes the rightmost agent,
while agent a (that b catched and reversed direction on) becomes the leftmost agent. Otherwise, b
becomes the leftmost agent and a becomes the rightmost agent.

29



a1

a0

a2

R
ou

nd
s

r0

r1

r2

Esteps

d

the ring

b

v0 vn�1

Figure 19: PTNoChirality Termination

• The leftmost agent remains so unless it is overtaken by another agent a′ moving left or it bounces on
an agent a′′, in which case the other agent becomes the leftmost agent.

• Similarly, the rightmost agent remains so unless it is overtaken by another agent b′ moving right or it
bounces on an agent b′′, in which case the other agent becomes the rightmost agent.

Let us define as visited (for any round r, r0 ≤ r ≤ r2) the set of nodes which have been visited by the
leftmost or the rightmost agent by round r (included). A node that is not visited at round r is called unvisited
at round r. Hence, if there are no unvisited nodes, the whole ring has been explored. It is easy to show
by induction on the round number, that the set of visited nodes forms a compact set of nodes between the
leftmost and the rightmost agent (it starts as a single node at time r0, and grows only by leftward move
of the leftmost agent and by a rightward move of the rightmost agent; note that the fact that the actual
leftmost/rightmost agents might change over time does not affect this). Hence, the leftmost and the rightmost
visited node are well defined.

From the definition of the leftmost/rightmost agents (in particular, that the leftmost/rightmost agent
never disappears, it can only be replaced by another one) it follows that as long as there are unvisited nodes
(i.e. by assumption up to and including round r2), the leftmost visited node is occupied by the leftmost agent
and the rightmost visited node is occupied by the rightmost agent. As there are three agents altogether, this
means that the internal visited nodes (different from the leftmost and the rightmost one) contain together at
most one agent. As change of direction and/or test Esteps ≤ d are performed only when an agent catches
another agent, as long as there are unvisited nodes, no agent can change direction or terminate due to
Esteps ≤ d in an internal visited node.

Hence, when b changed direction in round r1, it was in the rightmost or leftmost visited node (depending
on its direction in round r0). As b did not terminate in round r1, b set its d in the last line of function
CheckD to be the distance it traveled between r0 and r1. As b changed direction in r1, after traveling less
than d step it is still in an internal visited node and cannot terminate. Hence, b must have terminated in
round r2 by satisfying Esteps = d. However, this means that the leftmost agent did not advance in any
round between r0 and r2. In particular, it did not advance in round r1, which is only possible (due to passive
transport) if both leftmost and rightmost agents were blocked on a single edge. That is, all the nodes have
already been visited in round r1, a contradiction.

Theorem 16. Three agents performing Algorithm
PTBoundNoChirality in the PT model with a known upper bound N on the ring size and no chirality,
explore the ring with O(N2) edge traversals. One agent explicitly terminates, the others either terminate or
wait perpetually on a port.

Proof. The correctness of termination derives from Lemma 4. It remains to prove that eventually at least one
agent terminates. Having three agents, at least two will agree on the same direction. We will consider this
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direction as global left. It is easy to see that if an edge is perpetually removed, then eventually the agents
terminate: two agents will be positioned at the end point of the missing edge and the third agent terminates
detecting Esteps = d. If an agent is not forced to change direction and the edges are not perpetually removed,
then it will terminate since Esteps > N . Therefore, the adversary has to force the agents to bounce on each
other. But let us notice that, as soon as an agent changes state from Bounce to Reverse, it sets a distance d;
if this distance does not increase at each state change, the agent terminates. This implies that eventually we
will have d > N and termination for Esteps > N .

Let us now analyze the complexity of the algorithm. If an agent does not set d, then it performs at most
O(N) steps. If an agent sets d, its value is at most O(N); there are at most O(N) increases of d, therefore an
agent will do at most O(N2) movements. Since the number of agents is constant, the total sum of movements
over all agents is at most O(N2).

B. Landmark

The general strategy for three agents without chirality and without an upper bound on the ring size, Algo-
rithm PTLandmarkNoChirality, is essentially the same as the one for Algorithm PTBoundNoChirality,
where however an agent cannot use N for termination, but terminates when it performs a complete loop
around the landmark (and thus knows n), or when it detects that the agents have crossed (like in the previous
algorithm). Essentially, Algorithm
PTLandmarkNoChirality is obtained by modifying Algorithm PTBoundNoChirality (shown in Figure
18) as follows: the predicate “Tnodes ≥ N” is substituted with “n is known”, that is the agent has done a
loop around the landmark.

Theorem 17. Three agents performing Algorithm
PTLandmarkNoChirality in the PT model with no chirality in presence of a landmark, explore the ring
with O(n2) edge traversals. One agent explicitly terminates, the others either terminate or wait perpetually
on a port.

The proof follows the same lines of the one of Theorem 16, where termination does not happens when
Esteps ≥ N but the first time an agent does a loop around the landmark. It is easy to see that this has to
happen since d increases.

4.3 Exploration in the ET Model

4.3.1 Basic Results

Let us first introduce a simple result on a unconscious exploration:

Theorem 18. In the ET model with chirality, two robots can perform an unconscious exploration of the ring.

Proof. A trivial algorithm in which an agent changes direction only when it catches someone solves the
exploration in ET.

Given the previous results, a natural question is whether there is an algorithm with partial termination, as
we have shown for the PT model. Unfortunately the following theorem shows that, without exact knowledge
of the network size, it is impossible to design such an algorithm.

Theorem 19. Let us consider the ET model where only an upper bound on the ring size is known. Given
any number of agents, there does not exist any exploration algorithm with partial termination. This holds
true even if the ring has a landmark node, the agents have distinct IDs, there is common chirality.

Proof. The proof is by contradiction. Let us assume that there is an exploration algorithm A that always
achieves partial termination under the assumptions of the theorem. Let us consider two different rings
R1 = (V1, E1) and R2 = (V2, E2), with V1 : {v0, . . . , vn−1} and V2 : {v0, . . . , vn′−1} and where n < n′. Let ei
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denote the edge (vi, vi+1), where indices are taken modulo the size of the ring. Finally, let N be the upper
bound on the both ring sizes such that n′ < N .

On ring R1, starting from round 0, the adversary perpetually removes edge e0, and it schedules the
activation of the agents as follows. In rounds where the agents would not traverse e0 or they would traverse
e0 from one endpoint only, the adversary lets all the agents be active. In the busy rounds where there are
agents trying to traverse e0 from both endpoints, say nodes v0 and vn−1, the adversary activates agents on v0
and on vn−1 in alternating fashion, i.e. they are never active in the same round. Notice that e0 is perpetually
removed, so no one will traverse it. Since A is assumed to be correct, it will eventually explore R1. Therefore,
there exists a round r where A decides that R1 has been explored, and at least one agent terminates.

We now consider the following schedule of activations and edges removal for ring R2. On ring R2 the
adversary places all agents in the same positions of ring R1, i.e. they are only in nodes belonging to
{v0, v1 . . . , vn−1}. In rounds when some agent wants to traverse one of edges e0 and en and no agent wants
to traverse the other, the adversary will block that edge. In the busy rounds when there are agents trying to
traverse both e0 and en, it will alternate between making agents waiting on e0 passive and blocking edge en,
and making agents waiting on en passive and blocking e0. Notice that, in the ET model, such a schedule can
be kept for a finite but unbounded amount of rounds, hence this can be kept until round r.

Observe that, until round r, this execution of A on R2 is not distinguishable, from the point of view of
agents, from the execution of A on R1 previously explained. Therefore, the agent that terminates at round r
in the execution of A on R1 also terminates in round r in the execution of A on R2. However, when this
happens ring R2 has not been explored.

Note that the above arguments apply also if the agents have distinct IDs. If there is a landmark, it can
be placed anywhere in R1, and in the corresponding node in R2; R1 and R2 will still look the same to the
agents.

Notice that Theorem 19 would hold even if the agents were equipped with wireless communication.

4.3.2 Exploration Algorithm for ET

Algorithm ETBoundNoChirality is a direct adaptation of Algorithm PTBoundNoChirality, the only
differences are that N is set to n− 1 (since from Theorem 19 we know the size needs to be known precisely),
and the inequality check in CheckD becomes strict: (if Esteps < d). As in the PT model, three agents are
employed, with no chirality assumption.

Theorem 20. Three anonymous agents performing Algorithm ETBoundNoChirality in the ET model
with known ring size and no chirality explore the ring, with one agent explicitly terminating and the other
agents either terminating or waiting perpetually on a port.

Proof. Let us first observe that if an agent terminates, then it terminates correctly. The proof follows the
same steps as the one for Lemma 4. The only difference is that in ET the CheckD requires (if Esteps < d),
thus the part of the proof that uses the PT assumption to handle the case Esteps = d is not needed anymore.

What remains to be shown is that eventually at least one agent terminates. We show this by contradiction.
Let us notice that if an edge is perpetually removed, an agent eventually terminates: two agents will be
positioned at the two ports of the missing edge and the other one will do exactly Esteps = n− 1 steps going
from one endpoint node to the others. If an edge is not perpetually removed then, by construction (the
agents bounce only on other agents, not on timeout on blocked edges) and by the ET condition, an agent
that is waiting on the port of that edge will eventually traverse it. Since the agents terminate if they traverse
n− 1 steps in the same direction, the only possibility left to consider is for the adversary to force the agents
to perpetually catch each other, changing directions without increasing the d value. In such a case there is a
round r∗ after which each agent x reaches a certain stable value dx and it always changes position at the
same points lx and rx; furthermore, there exists a round r ≥ r∗ in which two agents go left and one agent
goes right. In the remainder we assume the execution is in round at least r.
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Figure 20: Left: The agent ranges and events for the case Lac : Rba. Right: the case Lac : Rab.

Let a, b, c be the agents and let Lxy indicate the event: agent x catches agent y at lx (and changes
direction from left to right); the event Rxy is analogous. Let Dxy : D′x′y′ denote the statement that the
event D′x′y′ is the catching event immediately following Dxy.

Note that the Dxy event can only be followed by an Dxz or Dzx events (here and in the remainder, we
implicitly assume x 6= y 6= z), where D ∈ {L,R} and D is the direction opposite to D. This is so because,
after Dxy, agents x and z were moving in the same direction D, y remained moving in direction D, and
only agents that move in the same direction can catch each other. Hence, the possible sequences of direction
changes of a perpetual schedule can be represented by a binary tree rooted at the initial Dxy event (w.l.o.g.
Lab or Lac), with leaves corresponding to agent termination. We call this tree Catch Tree, see Figure 22.
The assumption that the algorithm does not terminate implies that there is an infinite path in this tree. In
the remainder of this proof we will show that there is no such path in the Catch Tree.

First, observe that the agents never meet on a node – that would imply at least one of them performing
the termination check somewhere inside its range, immediately terminating. This means that unlike the
case of Algorithm PTBoundNoChirality we do not have to worry about the agents overtaking each other.
(They can still cross each other without noticing when traveling in opposite direction and crossing the same
edge at the same time.)

Consider now a sequence of events Dxy : Dxz : Dxy. This corresponds to x bouncing off y and z while
those remained stationary. From the ET condition and the fact that y and z are waiting on different edges
(otherwise x would detect d = n− 1 and terminate) we know that eventually either y or z makes progress,
hence this sequence cannot repeat indefinitely and eventually a different event must occur. This can be
represented in the Catch Tree by removing the bottom Dxy (and its whole subtree) and adding an arrow
from its parent to the top Dxy (implying that the same configuration repeats). For a representation of this
see Figure 22.

Let A, B, C be the ranges (sets of nodes an x agent visits between lx and rx) of agents a, b, c, respectively,
and A,B,C be their complements.

Claim 3. If the algorithm does not terminate, we have ∀X,Y ∈ {A,B,C}, X 6= Y : X ∩ Y = ∅.

Proof. The proof is by contradiction. Assume w.l.o.g, A, B such that A ∩B 6= ∅. From this and symmetry,
we may assume la /∈ B. This means Lac is the only way for the agent a to change direction while going left.
Consider the possible next event (consult Figure 20, left). It cannot be Rba: for that rb must be in A, which
combined with la /∈ B implies A ⊂ B. Since from the moment of Lac agent a was moving right, starting
outside B and to the left of it, in order to bounce off b it would need to overtake it, which is impossible.

Hence, Lac must be followed by Rab, which in turn might be followed by Lac or Lca. Lac is the cyclic
case which, as has been discussed above, cannot repeat indefinitely and can therefore be ignored. The only
possible case is Lca, which can only happen if C ⊂ A.
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Figure 22: Catch Trees rooted at Lab and Lac. The red edges denote forbidden sequences, while the dashed
ones depict the loops.

Observe the movement of the agents (see Figure 20, right): From Rab on, b is moving right from ra, while
from Lca on, c is moving right from lc. This means that Rbc is impossible, because c would have had to
overtake b. However, Rcb is also impossible as b cannot get into position at rc without changing direction or
crossing B.

From Claim 3 it remains to consider the case of pairwise disjoint range complements, as shown in Figure 21.

Claim 4 If the algorithm never terminates, and if the agents are named in such a way that the complement
of the ranges are in order A,B,C from left to right (see Figure 21), then Lac cannot be immediately followed
by Rba.

Proof. After event Lac, we have that c is moving left from la. After event Rba, agent b is moving left from
rb. The next event is either Lbc or Lcb. However, Lbc is impossible, as for c to reach lb without changing
direction it would have to cross C. Event Lcb is also impossible, because b would have to overtake c to get
into a position where c could bounce on b.

The following corollary is immediately obtained from Claim 4 by rotation and symmetry:

Claim 5 If the algorithm never terminates, then the following sequences are forbidden Lac : Rba, Lba : Rcb,
Lcb : Rac, Rbc : Lab, Rca : Lbc, Rab : Lca.
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At some point in the perpetual schedule we should have either Lab or Lac. As can be seen in Figure 22,
any branch of a Catch Tree starting from these configuration leads either to a cycle or to a forbidden sequence
of events, leading to a contradiction with the assumption that the algorithm never terminates.

Note that the number of moves performed by the agents before termination is finite but possibly unbounded.
Consider the situation when two agents are blocked going on opposite directions on two different edges, while
the third agent goes back and forth between them; since we are in the ET model, this configuration cannot
be kept forever, but there is no bound on the number of rounds in which it holds.

5 Conclusion

In this paper we started the investigation of the distributed exploration problem for 1-interval-connected
dynamic graphs by focusing on rings in fully synchronous and semi-synchronous environments. We studied the
impact that structural information and knowledge can have on the solvability of the problem. In particular,
we considered such factors as: knowledge of the exact size of the ring or of an upper bound, agreement on
orientation, anonymity.

These results open the investigation of live exploration of dynamic networks and the algorithmic study of
dynamic networks in the semi-synchonous environment.

Among the several open problems, a challenging one is the study of live exploration in a network of
arbitrary topology where, right now, almost nothing is known. In particular, there are no non-trivial bounds
on the number of agents, exploration time and type of knowledge necessary for solvability. Little is also
known in case of dynamic networks with special but relevant underlying topologies, such as meshes, tori,
hypercubes, etc.

A parallel line of research could be to provide formal proofs of that can be automatically verified by
theorem provers. This seems particularly important for the case of distributed algorithms working on dynamic
networks since, besides the inherent difficulties of designing a distributed algorithm, there is the additional
non trivial components of considering all possible dynamic graphs.

Finally, it would be interesting to study distributed solutions to other classical problems for mobile agents
(such as gathering, in this regard see the recent [22], and pattern formation) in dynamic networks.
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