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Abstract
We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions
include:

– A (2 + ε)-approximation for all-pairs shortest paths in O(log2 n/ε) rounds on unweighted undirected graphs. With a
small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor
approximation for APSP in this model.

– A (1 + ε)-approximation for multi-source shortest paths from O(
√
n) sources in O(log2 n/ε) rounds on weighted undi-

rected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial
size.

Our main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication,
which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance
problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source
shortest paths algorithm for weighted undirected graphs in Õ(n1/6) rounds.

Keywords Distributed computing · Congested clique model · All-pairs shortest paths · Matrix multiplication · Hopsets

1 Introduction

Computing distances in a graph is a fundamental task widely
studied in many computational settings. Notable exam-
ples are computation of all-pairs shortest paths (APSP),
single-source shortest paths (SSSP), and computing specific
parameters such as the diameter of a graph. In this work,
we study distance computations in the Congested Clique
model of distributed computing.
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In the Congested Clique model, we have a fully-
connected communication network of n nodes, where nodes
communicate by sending O(log n)-bit messages to each
other node in synchronous rounds. TheCongested Clique
model has been receiving much attention during the past
decade or so, due to both its theoretical interest in focus-
ing on congestion alone as a communication resource, and
its relation to practical settings that use fully connected
overlays [13,14,21,28,29,31–33,36,40–43,47,50–52]. In par-
ticular, there have beenmany recent papers studying distance
problems in Congested Clique [8,13,14,24,36,42,48,52].

1.1 Distance computation in the congested clique

Many state-of-the art results for distance computations in
the Congested Clique model exploit the well-known
connection between computing distances and matrix mul-
tiplication [13,14,42]. Specifically, the nth power of the
adjacency matrix A of a graph G = (V , E), taken over the
min-plus or tropical semiring (see e.g. [13] for details), corre-
spond to shortest-path distances. Hence, iteratively squaring
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a matrix log n times allows computing all the distances
in the graph. This approach gives the best known algo-
rithms for APSP in the Congested Clique, including (1)
an ˜O(n1/3) round algorithm for exact APSP in weighted
directed graphs [13], (2) O(n0.158) round algorithms for
exact APSP in unweighted undirected graphs and (1+o(1))-
approximate APSP in weighted directed graphs [13], as well
as (3) an O(n0.2096) round algorithm for exact APSP in
directed graphs with constant weights [42]. Additionally, in
[14], this connection is used to show an improved APSP
algorithm for sparse graphs.

For approximating the distances, faster approximations
for larger constants can be obtained by computing a k-
spanner, which is a sparse graph that preserves distances
up to a multiplicative factor of k, and having all nodes
learn the entire spanner. Using the Congested Clique
spanner constructions of [52], this approach gives a (2k−1)-
approximation for APSP in ˜O(n1/k) rounds, which is still
polynomial for any constant k.

This raises the following fundamental question:

Question 1 Can we obtain constant-factor approximations
for APSP in sub-polynomial time?

If we restrict our attention to SSSP, sub-polynomial (1 +
ε)-approximation is indeed possible [8,34]; in particular, the
state of the art is a gradient-descent-based algorithm that
obtains a (1+ ε)-approximation in O(ε−3polylog n) rounds
even in the more restricted broadcast version of the Con-
gested Cliquemodel [8]. However, these algorithms from
prior work provide distances only from a single source.

1.2 Our contributions

All-pairs shortest paths As our first main result, we address
the above fundamental question by providing the first poly-
logarithmic constant approximations for APSP in the Con-
gested Cliquemodel. Specifically, we show the following.

Theorem 1 There is a deterministic (2 + ε)-approximation
algorithm for unweighted undirected APSP in the Con-

gested Clique model that takes O(
log2 n

ε
) rounds.

Wealso obtain a nearly (2+ε)-approximation in O(
log2 n

ε
)

rounds in weighted undirected graphs, in the sense that for
any distance estimate d(u, v), there is further additive (1 +
ε)wuv error in the approximation, where wuv is the weight
of the heaviest edge on the shortest u-v path.

Our approximation is almost tight for sub-polynomial
algorithms in the following sense. As noted by [41], a (2 −
ε)-approximate APSP in unweighted undirected graphs is
essentially equivalent to fastmatrixmultiplication, so obtain-
ing a better approximation in complexity below O(n0.158)
would result in a faster algorithm for matrix multiplication in

the Congested Clique. Likewise, a sub-polynomial-time
algorithm with any approximation ratio for directed graphs
would give a faster matrix multiplication algorithm [20], so
our results will likely not extend to directed graphs.

Multi-source shortest paths As our second main result,
we show a fast (1 + ε)-approximation algorithm for the
multi-source shortest paths problem (MSSP), which is poly-
logarithmic as long as the number of sources is ˜O(

√
n).

Specifically, we show the following.

Theorem 2 There is a deterministic (1 + ε)- approximation
algorithm for the weighted undirected MSSP that takes

O

(( |S|2/3
n1/3

+ log n

)

· log n
ε

)

rounds in the Congested Clique, where S is the set of

sources. In particular, the complexity is O(
log2 n

ε
) as long as

|S| ≤ O(
√
n · (log n)3/2).

This is the first sub-polynomial algorithm that obtains
such approximations for a set S of polynomial size. Other
advantages of our approach, compared to the previous (1+ε)-
approximation SSSP algorithm [8], is that it is based on
simple combinatorial techniques. In addition, our complexity
improves upon the complexity of [8].

Exact SSSP and diameter approximation In addition to
the above, our techniques allow us to obtain a near 3/2-

approximation for the diameter in O(
log2 n

ε
) rounds as well

as an ˜O(n1/6)-round algorithm for exact weighted SSSP,
improving the previous ˜O(n1/3)-round algorithm [13]. All
our algorithms are deterministic.

1.3 Our techniques

The main technical tools we develop for our distance com-
putation algorithms are a new sparse matrix multiplication
algorithm, extending the recent result of [14], and a new
deterministic hopset construction algorithm for the Con-
gested Clique.

Distance products We start from the basic idea of using
matrixmultiplication to compute distances in graphs. Specif-
ically, if A is theweighted adjacencymatrix of a graphG, it is
well known that distances in G can be computed by iterating
the distance product A�A, defined as

(A�A)[i, j] = min
k

(

A[i, k] + A[k, j]) ,

that is, the matrix multiplication over the min-plus semiring.
A simple idea is to apply the recent sparse matrix multi-

plication algorithm of [14], with running time that depends
on the density of the input matrices. In particular, this allows
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us to multiply two sparse matrices with O(n3/2) non-zero
entries in O(1) rounds; note that for the distance product,
the zero element is ∞. However, using this algorithm for
computing distances directly is inefficient, as A�A can be
dense even if A is sparse (e.g. a star graph), and hence itera-
tive squaring is not guaranteed to be efficient. Moreover, our
goal is to compute distances in general graphs, not only in
sparse graphs. Nevertheless, we show that while using [14]
directly may not be efficient, we can use sparse matrix multi-
plication as a basic building block for distance computation
in the Congested Clique.

Our distance tools The key observation is that many building
blocks for distance computation are actually based on com-
putations in sparse graphs or only consider a limited number
of nodes. Concrete examples of such tasks include:

– k- nearest problem Compute distances for each node to
the k closest nodes in the graph.

– (S, d, k)- source detection problem Given a set of
sources S, compute the distances for each node to the k
nearest sources using paths of at most d hops.

– distance through sets problem Given a set of nodes
S and distances to all nodes in S, compute the distances
between all nodes using paths through nodes in S.

For all of these problems, there is a degree of sparsity we
can hope to exploit if k or |S| are small enough. For exam-
ple, the (S, d, k)- source detection problem, requires the
multiplication of a dense adjacency matrix and a possibly
sparse matrix, depending on the size of S. However, for any
S of polynomial size the algorithm in [14] is polynomial.
An interesting property in this problem, though, is that the
output matrix is also sparse. If we look at the k- nearest
problem, both input matrices are sparse, hence we can use
the previous sparse matrix multiplication algorithm. How-
ever, this does not exploit the sparsity of this problem to the
end: in this problem we are interested only in computing the
k nearest nodes to each node, hence there is no need to com-
pute the full output matrix. The challenge in this case is that
we do not know the identity of the k closest nodes before the
computation. To exploit this sparsity we design new matrix
multiplication algorithms, that in particular have the ability
to sparsify the matrix throughout the computation, and get
a complexity that depends only on the size of the output we
are interested in.

Sparse matrix multiplication To compute the above, we
design new sparse matrix multiplication algorithms, which
differ from [14] by taking into account also the sparsity of
the output matrix. For matrix M , let ρM denote the density of
M , that is, the average number of non-zero entries on a row.
Specifically, for distance product computation P = S�T , we
obtain two variants:

– One variant assumes that the sparsity of the output matrix
is known.

– The other sparsifies the output matrix on the fly, keeping
only the ρP smallest entries for each row.

For these two scenarios, we obtain running times of

O

(

(ρSρT ρP )1/3

n2/3
+ 1

)

and

O

(

(ρSρT ρP )1/3

n2/3
+ log n

)

rounds, respectively, improving the running time of the prior
sparse matrix multiplication for ρP = o(n).

This allows us to obtain faster distance tools, by taking
into account the sparsity of the output:

– We can solve the k- nearest problem in

O

((

k

n2/3
+ log n

)

log k

)

rounds.
– We can solve the (S, d, k)- source detection problem

in

O

((

m1/3|S|2/3
n

+ 1

)

d

)

rounds, where m is the number of edges in the input
graph; note that dependence on d becomes linear in order
to exploit the sparsity.

In concrete terms, with these output-sensitive distance tools
we still get subpolynomial running times even when the
parameters are polynomial. For example, we can get the dis-
tances to the ˜O(n2/3) closest nodes in ˜O(1) rounds. Note
that though our final results are only for undirected graphs,
these distance tools work for directed weighted graphs.

Hopsets An issue with our (S, d, k)- source detection
algorithm is that in order to exploit the sparsity of the matri-
ces, we must perform d multiplications to learn the distances
of all the nodes at hop-distance at most d from S. Hence, to
learn the distances of all the nodes from S, we need to do
n multiplications, which is no longer efficient. To overcome
this challenge, we use hopsets, which are a central building
block in many distance computations in the distributed set-
ting [22–24,34,48]. A (β, ε)-hopset H is a sparse graph such
that theβ-hop distances inG∪H give (1+ε)-approximations
of the distances in G. Since it is enough to look only at β-
hop distances inG∪H , using our source detection algorithm
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together with a hopset allows getting an efficient algorithm
for approximating distances, as long as β is small enough.

However, the time complexity of all current hopset con-
structions depends on the size of the hopset [23,24,34], in
the following way. The complexity of building a hopset of
size nρ is at least �(ρ). This is a major obstacle for efficient
shortest paths algorithms, since based on recent existential
results there are no hopsets where both β and ρ are poly-
logarithmic [1] (see Sect. 1.4). Nevertheless, we show that
our new distance tools allow to build hopsets in a time that
does not depend on the hopset size. In particular, we show
how to implement a variant of the recent hopset construction

of Elkin and Neiman [24] in O(
log2 n

ε
) rounds. The size of

our hopset is ˜O(n3/2), hence constructing it using previous
algorithms requires at least ˜�(

√
n) rounds.

Applying the distance tools As a direct application of our
source detection and hopset algorithms, we obtain a multi-
source shortest paths (MSSP) algorithm, allowing to compute
(1+ε)-approximate distances to ˜O(

√
n) sources in polylog-

arithmic time. Our MSSP algorithm, in turn, forms the basis
of a near 3/2-approximation for the diameter in unweighted
graphs, and a (3+ ε)-approximation for weighted APSP. To
obtain a (2 + ε)-approximation for unweighted APSP, the
high-level idea is to deal separately with paths that contain a
high-degree node and paths with only low-degree nodes. A
crucial ingredient in the algorithm is showing that in sparser
graphs, we can actually compute distances to a larger set of
sources S efficiently, which is useful for obtaining a better
approximation. Our exact SSSP algorithm uses our algo-
rithm for finding distances to the k-nearest nodes, which
allows constructing efficiently the k-shortcut graph described
in [22,48].

1.4 Additional related work

Distance computation in the congested clique APSP and
SSSP are fundamental problems that are studied extensively
in various computation models. Apart from the matrix mul-
tiplication based algorithms in the Congested Clique
[13,14,42], previous results include also ˜O(

√
n)-round algo-

rithms for exact SSSP and (2 + o(1))-approximation for
APSP [48]. Other distance problems studied in the Con-
gested Clique are construction of hopsets [23,24,34] and
spanners [52].

Matrix multiplication in the congested clique As shown
by [13], matrix multiplication can be done in Congested
Clique in O(n1/3) rounds over semirings, and in O(n1−2/ω)

rounds over rings, where ω < 2.3728639 is the exponent
of the matrix multiplication [27]. For rectangular matrix
multiplication, [42] gives faster algorithms. The first sparse
matrix multiplication algorithms for Congested Clique
were given by [14], as discussed above.

Distance computation in the CONGEST model The dis-
tributed CONGEST model is identical to the Congested
Clique model, with the difference that the communication
network is identical to the input graphG, and nodes can com-
municate only with their neighbours in each round. Distance
computation is extensively studied in the CONGEST model.
The study of exact APSP in weighted graphs has been the
focus of many recent papers [3,12,22,38], culminating in a
near tight ˜O(n) algorithm [12]. Such results were previously
known in unweighted graphs [37,46,53] or for approxima-
tion algorithms [45,48]. Approximate and exact algorithms
for SSSP are studied in [8,22,26,30,34,44,48]. While near-
tight algorithms exist for approximating SSSP [8], there is
currently a lot of interest in understanding the complexity
of exact SSSP and directed SSSP [22,26,30]. The source
detection problem is studied in [46], demonstrating the appli-
cability of this tool formany distance problems such asAPSP
and diameter approximation in unweighted graphs.An exten-
sion for the weighted case is studied in [45]. Algorithms and
lower bounds for approximating the diameter are studied in
[2,37,42,46,53].

Distance computation in the sequential setting Among the
rich line of research in the sequential setting, we focus only
on the most related to our work. The pioneering work of
Aingworth et al. [4], inspired much research on approximate
APSP [6,7,10,18,20] and approximate diameter [5,10,16,54],
with the goal of understanding the tradeoffs between the time
complexity and approximation ratio. Many of these papers
use clustering ideas and hitting set arguments as the basis of
their algorithms, and our approximate APSP and diameter
algorithms are inspired by such ideas.

HopsetsHopsets are a central building block in distance com-
putation and are studied extensively in various computing
models [11,17,22–24,34,35,48,55]. The most related to our
work are two recent constructions of Elkin and Neiman [24],
and Huang and Pettie [39], which are based on the emulators
of Thorup and Zwick [56], and are near optimal due to exis-
tential results [1]. Specifically, in [39], there is a construction

of (β, ε)-hopsets of size O(n
1+ 1

2k+1−1 ) with β = O(k/ε)k ,
where recent existential results show that any construction

of (β, ε)-hopsets with worst case size n
1+ 1

2k−1
−δ

must have
β = �k((

1
ε
)k), where k ≥ 1 is an integer and δ > 0. For a

detailed discussion of hopsets see the introduction in [23,24].

1.5 Preliminaries

Notations Except when specified otherwise, we assume our
graphs are undirectedwith non-negative integer edgeweights
at most O(nc) for a constant c. Given a graph G = (V , E)

and u, v ∈ V , we denote by dG(u, v) the distance between u
and v in G, and by dβ

G(u, v) the length of the shortest path of
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hop-distance at most β between u and v in G. If G is clear
from the context, we use the notation d(u, v) for dG(u, v).

Routing and sorting As basic primitives, we use standard
routing and sorting algorithms for the Congested Clique
model. In the routing task, each node holds up to n messages
of O(log n) bits, and we assume that each node is also the
recipient of at most n messages. In the sorting task, each
node has a list of n entries from an ordered set, and we want
to sort these entries so that node i receives the i th batch of
entries according to the global order of all the input entries.
Both of these task can be solved in O(1) rounds [19,43].

Semirings and matrices We assume we are operating over
a semiring (R,+, ·, 0, 1), where 0 is the identity element
for addition and 1 is the identity element for multiplication.
Note that we do not require the multiplication to be commu-
tative. For theCongested Clique algorithms, we generally
assume that the semiring elements can be encoded in mes-
sages of O(log n) bits.

All matrices are assumed to be over the semiring R. For
convenience, we identify [n]with the node set V , and use set
V to index the matrix entries. For matrix S, we denote the
matrix entry at position (v, u)by S[v, u]. For setsU ,W ⊆ V ,
we denote by S[U ,W ] the submatrix obtained by taking rows
and columns restricted to U and W , respectively.

Hitting sets Let Sv ⊆ V be a set of size at least k. We say
that A ⊆ V is a hitting set of {Sv}v∈V if in each subset Sv

there is a node from A.We can construct hitting sets easily by
adding each node to A with probability p = log n

k . This gives

a hitting set of expected size O(
n log n

k ), such that w.h.p there
is a node from A in each subset Sv . The same parameters are
obtained by a recent deterministic construction of hitting sets
in the Congested Clique [52], which gives the following
(see Corollary 17 in [52]).

Lemma 1 Let {Sv ⊆ V }v∈V be a set of subsets of size at least
k, such that Sv is known to v. There exists a deterministic
algorithm in the Congested Clique model that constructs
a hitting set of size O(n log n/k) in O((log log n)3) rounds.

PartitionsWe will use the following lemmas on partitioning
a set of weighted items into equal parts. Note that all the lem-
mas are constructive, that is, they also imply a deterministic
algorithm for constructing the partition in a canonical way.

Lemma 2 ([14]) Let w1, w2, . . . , wn be natural numbers,
and let W ,w and k be natural numbers such that

∑n
i=1 wi =

W,wi ≤ w for all i , and k divides n. Then there is a partition
of [n] into k sets I1, I2, . . . , Ik of size n/k such that

∑

i∈I j
wi ≤ W/k + w for all j .

Lemma 3 Let w1, w2, . . . , wn be natural numbers, and let
W , w and k be natural numbers such that

∑n
i=1 wi = W,

wi ≤ w for all i . Then there is a partition of [n] into k
sets I1, I2, . . . , Ik such that for each j , the set I j consist of
consecutive elements, and

∑

i∈I j
wi ≤ W/k + w .

Proof Construct sets I j in the partition by starting from the
first element, adding new elements to the current set until
∑

i∈I j wi ≥ W/k. Since all weights wi are at most w, we
have

∑

i∈I j wi ≤ W/k + w for all j , and since
∑

i∈I j wi ≥
W/k, this process generates at most k sets. 	

Lemma 4 Letw1, w2, . . . , wn and u1, u2, . . . , un be natural
numbers, and let W , U w, u and k be natural numbers such
that

∑n
i=1 wi = W and

∑n
i=1 ui = U, and we have wi ≤ w

and ui ≤ u and for all i . Then there is a partition of [n] into
k sets I1, I2, . . . , Ik such that for each j , the set I j consist of
consecutive elements, and

∑

i∈I j
wi ≤ 2(W/k + w) and

∑

i∈I j
ui ≤ 2(U/k + u) .

Proof WebeginbyapplyingLemma3 separately to sequences
w1, w2, . . . , wn and u1, u2, . . . , un . That is, by Lemma 3,
there exist the following two partitions of set [n] into sets of
consecutive indices:

– Partition J1, . . . , Jk such that for any j , we have
∑

i∈J j wi ≤ W/k + w.
– Partition K1, . . . , Kk such that for any j , we have

∑

i∈K j
ui ≤ U/k + u.

Let F be amultiset consisting of the last elements of sets from
partitions J1, . . . , Jk and K1, . . . , Kk . Define a sequence
i0, i1, . . . , i2k by setting i0 = 0, and letting i1, . . . , i2k be
the elements of F in increasing order; note that the sequence
may contain duplicates.

Define sets I1, . . . , Ik as I j = {i2 j−2 + 1, . . . , i2 j };
intuitively, this corresponds to taking the fenceposts of the
partitions J1, . . . , Jk and K1, . . . , Kk , and taking every other
fencepost to give a new partition into sets of consecutive
indices. Clearly {I j } form a partition of [n], and since each
I j overlaps at most two sets from J1, . . . , Jk and at most two
sets from K1, . . . , Kk , we have

∑

i∈I j wi ≤ 2(W/k + w)

and
∑

i∈I j ui ≤ 2(U/k + u). 	
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2 Matrix multiplication

2.1 Output-sensitive sparse matrix multiplication

Our first matrix multiplication result is a output-sensitive
variant of sparse matrix multiplication. In the matrix mul-
tiplication problem, we are given two n × n matrices S and
T over semiring R, and the task is to compute the product
matrix P = ST ,

P[u, v] =
∑

w∈V
S[v,w]T [w, u] .

Following [13,42], we assume for concreteness that in the
Congested Clique model, each node receives the row
S[v, V ] and the column T [V , v] as a local input, and we
want to compute the output so that each node locally knows
the row P[v, V ] of the output matrix.

Matrix densitiesFormatrix S,wedenote bynz(S) the number
of non-zero entries in S. Furthermore, we define the density
ρS as the smallest positive integer satisfying nz(S) ≤ ρSn.

When discussing the density of a product matrix P = ST ,
wewould like to simply consider the densityρP ; however, for
technical reasons, we want to ignore zero entries that appear
due to cancellations. Formally, let Ŝ be the binary matrix
defined as

Ŝ[i, j] =
{

1 if S[i, j] �= 0,

0 if S[i, j] = 0,

and define T̂ similarly. Let P̂ = ŜT̂ , where the product is
taken over the Boolean semiring.We define the density of the
product ST , denoted by ρ̂ST , as the smallest positive integer
satisfying nz(P̂) ≤ ρ̂ST n. Note that for most of our applica-
tions, we operate over semirings where no cancellations can
occur in additions, in which case ρ̂ST = ρP .

We also note that while we assume that the input matrices
are n × n, we can also use this framework for rectangular
matrix multiplications, simply by padding the matrices with
zeroes to make them square.

Sparse matrix multiplication algorithm Our main result for
sparse matrix multiplication is the following:

Theorem 3 Matrix multiplication ST = P can be computed
deterministically in

O

(

(ρSρT ρ̂ST )1/3

n2/3
+ 1

)

rounds in Congested Clique, assuming we know ρ̂ST

beforehand.

We note that for all of our applications, the requirement
that we know ρ̂ST beforehand is satisfied. However, the algo-
rithm can be modified to work without knowledge of ρ̂ST

with the additional cost of multiplicative O(log n) factor; we
simply start with estimate ρ̂ST = 2, restarting the algorithm
with doubled estimate if the running time for current estimate
is exceeded.

The rest of this section gives the proof of Theorem 3. We
start by describing the overall structure of the algorithm, and
then detail the different phases of the algorithm individually.

2.1.1 Algorithm description

Algorithm parameters We define the algorithm parameters
a, b and c as

a = (ρT ρ̂ST n)1/3

ρ
2/3
S

, b = (ρS ρ̂ST n)1/3

ρ
2/3
T

,

c = (ρSρT n)1/3

ρ̂
2/3
ST

.

These parameter will control how we split the matrix mul-
tiplication task into independent subtasks. To see why these
parameters are chosen in this particular way, we note that we
will require that abc = n, and the final running time of the
algorithm will be O

(

ρSa/n+ρT b/n+ ρ̂ST c/n+1
)

rounds,
which is optimized by selecting a, b and c as above; this gives
the running time in Theorem 3.

For simplicity, we assume that a, b and c are integers.
If not, taking the smallest greater integer will cause at most
constant overhead.

Algorithm overview Our algorithm follows the basic idea of
the classical 3Dmatrixmultiplication algorithm, as presented
for Congested Clique by [13], and as adapted for sparse
matrix multiplication by [14]. That is, we want to reduce the
matrix multiplication task into n smaller instances of matrix
multiplication, and use a single node for each one of these.
However, due to the fact that we are working with sparse
matrices, we have to make certain considerations in our algo-
rithm:

– Whereas 3D matrix multiplication splits the original
multiplication into n products of n2/3 × n2/3 matrices,
we would ideally like to split into n products of shape
(n/b × n/c) × (n/c × n/a).

– Unlike in the dense case, we also have to make sure that
all of ourn products are equally sparse.Recent distributed
triangle detection algorithms [15,49] use randomizedpar-
titioning techniques to achieve a similar goal, but these do
not immediately give all the properties we need. Instead,
we adopt a deterministic approach to ensure optimal bal-
ancing of the product sparsity.
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Fig. 1 Matrix multiplication decomposed into subtasks using Lemma 5 for a = b = c = 2 and n = 8. The notation follows the proof of Lemma 5

With the above considerations in mind, we now give an
overview of our sparse matrix multiplication algorithm:

1. We compute a partition of the matrix multiplication task
P = ST into n subtasks Pv = SvT v , where v ∈ V ,
so that each Pv is a n/b × n/a matrix, Sv and T v are
submatrices of S and T , respectively, and we have

nz(Sv) = O(ρSn/bc) = O(ρSa) and

nz(T v) = O(ρT n/ac) = O(ρT b)

for all v ∈ V . This step takes O(1) rounds (Sect. 2.1.2).
2. Each node v learns thematrices Sv and T v , and computes

the product Pv = SvT v . Note that after this step, some
of the matrices Pv may be very dense. This step takes
O

(

ρSa/n + ρT b/n + 1
)

rounds (Sect. 2.1.3).
3. We balance the output matrices Pv so that each node

holds O(ρ̂ST n/ab) = O(ρ̂ST c) values that need to be
summed to obtain the final output matrix P . This is
achieved by duplicating those subtasks where the out-
put is too dense. This step takes O

(

ρSa/n+ρT b/n+ 1
)

rounds (Sect. 2.1.4).
4. The intermediate values obtained in Step 3 are summed

together to obtain the output matrix P . This step takes
O

(

ρ̂ST c/n + 1
)

rounds (Sect. 2.1.5).

Note that the total running time of the above algorithm
will be O

(

ρSa/n + ρT b/n + ρ̂ST c/n + 1
)

rounds, which

by the choice of a, b and c is as stated in Theorem 3. Note
that Steps (1) and (2) are essentially streamlined versions of
corresponding tools from [14], while Steps (3) and (4) are
new.

2.1.2 Cube partitioning

We say that a subcube of V 3 is a set of form V1 × V2 × V3,
where V1, V2, V3 ⊆ V . Note that such a subcube corresponds
to a matrix multiplication task S[V1, V2]T [V2, V3]. Thus, a
partition of the cube V 3 into subcubes corresponds to a parti-
tion of the original matrix multiplication into smaller matrix
multiplication tasks, as discussed in the overview; see also
Fig. 1.

Lemma 5 There is aCongested Clique algorithm running
in O(1) rounds that produces globally known a partition of
V 3 into n disjoint subcubes Vi such that for each subcube
Vi = V S

i × V P
i × V T

i , we have |V S
i | = n/b, |V T

i | = n/a
and the total number of non-zero entries is

1. O
(

ρSa + n
)

in the submatrix S[V S
i , V P

i ], and
2. O

(

ρT b + n
)

in the submatrix T [V P
i , V T

i ].

Proof We start by partitioning the input matrices into equally
sparse ‘slices’. Specifically, we do the following:
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1. All nodes v broadcast the number of non-zero entries on
row v of S. Based on this information, all nodes deter-
ministically compute the same partition of V into b sets
CS
1 ,CS

2 , . . . ,CS
b of size n/b such that nz(S[CS

i , V ]) =
O(ρSn/b + n); such partition exists by Lemma 2.

2. Using the same procedure as above, the nodes compute
a partition of V into a sets CT

1 ,CT
2 , . . . ,CT

a of size n/a
such that nz(T [V ,CT

i ]) = O(ρT n/a + n).

There are now ab pairs (CS
i ,CT

j ), each corresponding to a

subcube CS
i × V ×CT

j . We now partition each of these sub-
cubes in parallel as follows. First, we partition the nodes into
ab sets of n/ab = c nodes, each such set Bi j corresponding
to a pair of indices (i, j) ∈ [b] × [a]. The final partition is
now computed as follows:

1. Nodes redistribute the input matrices so that node v holds
column v of S and row v of T . This can be done in O(1)
rounds.

2. In parallel for each i and j , node v sends the number of
non-zero elements in S[CS

i , v] and T [v,CT
j ] to all nodes

in Bi j .
3. Nodes in Bi j compute a partition of V into c sets

Ci j
1 ,Ci j

2 , . . . ,Ci j
c of consecutive indices such that the

number of non-zero entries in S[CS
i ,Ci j

k ] is O(

ρSn/bc+
n
)

and the number of non-zero entries in T [Ci j
k ,CT

j ] is
O

(

ρT n/ac + n
)

; such partition exists by Lemma 4.

4. For each Ci j
k , the kth node in Bi j broadcasts the first and

last index of Ci j
k to all other nodes, allowing all nodes to

reconstruct these sets.

The subcubes CS
i ×Ci j

k ×CT
j are now known globally. Fur-

thermore, sincen/bc = a andn/ac = b, the subcubes satisfy
the requirements of the claim by construction. 	


2.1.3 Intermediate products

Balancing Given the cube partitioning of Lemma 5, the next
step is to distribute the matrix entries so that each node can
compute a single subproduct given by a subcube in the par-
tition. We start by giving an auxiliary balancing tool that we
use to ensure that each node has to send a roughly equal
amount of entries, as we will see below.

Concretely, we consider a balancing task where each node
i has n weighted entries with weights wi1, . . . , win ∈ N that
satisfy

∑

i, j

wi j ≤ W , wi j ≤ n ,

and the goal is to re-distribute the entries so that each node
has n entries with total weight O(W/n + n). Concretely,

we assume each weighted entry consists of the weight and
O(log n) bits of data.

Lemma 6 The above balancing task can be solved in O(1)
rounds in Congested Clique.

Proof As a first step, we globally learn the distribution of
different weights, and compute a globally known ordering
for the weighted entries:

1. All nodes send the number of entries with weight exactly
i to node i , with node 1 handling entries with both weight
0 and 1. Node i broadcasts the total to all other nodes.

2. Nodes sort the weighted entries using Lenzen’s sorting
algorithm [43].

Since all nodes know the distribution of theweights, all nodes
can now locally compute what entries other nodes hold. This
gives us a globally consistent numbering for the weighted
entries, which we can use to solve the balancing task:

1. Nodes locally compute a partition of weighted entries
into n sets of size n with total weight O(W/n + n); such
partition exists by Lemma 2.

2. Each set is assigned to a separate node.Nodes redistribute
the entries so that each node receives their assigned set
in O(1) rounds.

All steps clearly take O(1) rounds. 	

Computing intermediate productsWenow showhow to com-
pute the intermediate products given by the cube partition of
Lemma 5. The following lemma is in fact more general; we
will use it as a subroutine in subsequent steps of the algo-
rithm.

Lemma 7 Let V1, V2, . . . , Vn be a partition of V 3 as in
Lemma 5, and letσ : V → [n] be a (not necessarily bijective)
function that is known to all nodes. There is a Congested
Clique algorithm running in O(ρSa/n+ρT b/n+1) rounds
such that after the completion of the algorithm, each node v

locally knows the product

Pσ(v) = S[V S
σ(v), V

P
σ(v)]T [V P

σ(v), V
T
σ(v)] .

Proof For each i, j ∈ V , let

wi j = |{v ∈ V : (i, j) ∈ V S
σ(v) × V P

σ(v)}|

if S[i, j] is non-zero, andwi j = 0 otherwise, that is,wi j is the
number of times S[i, j] appears in matrices S[V S

σ(v), V
P
σ(v)],

or 0 if S[i, j] is a zero entry. Clearly we have wi j ≤ n, and
since the partition satisfies the conditions of Lemma 5, we
have that
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∑

i, j

wi j =
∑

v∈V
nz

(

S[V S
σ(v), V

P
σ(v)]

) = O
(

ρSna + n2
)

.

All nodes can compute the values wi j locally for their own
row, since they depend only on the partition and function σ .

We now distribute the entries of input matrix S so that
each node learns the matrix S[V S

σ(v), V
P
σ(v)]:

1. Using Lemma 6, we balance the input entries so that
each node holds n entries with total weight O(ρSa + n).
Specifically, for each entry a node receives, it receives
the value S[i, j] along with the index (i, j).

2. Since the nodes know the partition and function σ , each
node computes to which nodes it needs to send each of
the entries it received in the first step. Since each entry is
duplicated wi j times, each node needs to send O(ρSa +
n) messages, and dually, each node needs to receive a
submatrix of S with O(ρSa+n) entries. These messages
can be delivered in O(ρSa/n + 1) rounds.

By identical argument, each node v can learn the matrix
T [V P

σ(v), V
T
σ(v)] in O(ρT b/n+1) rounds and compute Pσ(v)

locally. 	


2.1.4 Balanced intermediate products

Wesay that an intermediate value in thematrixmultiplication
is a value

pvWu = S[v,W ]T [W , u] =
∑

w∈W
S[v,w]T [w, u] .

That is, an intermediate value is a partial sum of products for
a single position of the output matrix. For concreteness, we
encode these in the Congested Clique implementation as
tuples (pvWu, v, u).

Lemma 8 There is a Congested Clique algorithm run-
ning in O(ρSa/n + ρT b/n + 1) rounds such that after the
completion of the algorithm,

1. Each node holds O(ρ̂ST n/ab) = O(ρ̂ST c) non-zero
intermediate values, and

2. Each non-zero elementary product S[v,w]T [w, u] in the
matrix multiplication is included in exactly one interme-
diate value held by some node.

Proof As the first part of the algorithm, we compute all the
intermediate product matrices and learn their densities:

1. Compute a partition of V 3 into subcubes {V S
v × V P

v ×
V T

v : v ∈ V } using Lemma 5.

2. Applying Lemma 7 with σ1(v) = v, each node computes
the matrix

Pv = S[V S
v , V P

v ]T [V P
v , V T

v ] .

This takes O(ρSa/n + ρT b/n + 1) rounds.
3. Each node v broadcasts the number of non-zero entries

in Pv to all other nodes.

Next, we want to balance the dense intermediate product
matrices between multiple nodes. We cannot do this directly,
but we can instead duplicate the products:

1. Construct a function σ2 so that for each v with nz(Pv) ≥
ρ̂ST c, there are at least 
 nz(Pv)

ρ̂ST c
� values u ∈ V satisfying

σ2(u) = v. To see that this is possible, we observe that
by the definition of ρ̂ST , there are at most ρ̂ST n positions
where matrices Pv can have non-zero entries and each
such position is duplicated c times in the partition of the
cube V 3, implying that

∑

v∈V nz(Pv) ≤ ρ̂ST nc. Thus,
we have

∑

v∈V

nz(P

v)

ρ̂ST c
� ≤

∑

v∈V

nz(Pv)

ρ̂ST c
= 1

ρ̂ST c

∑

v∈V
nz(Pv)

≤ ρ̂ST nc

ρ̂ST c
= n.

This step can be done locally using information obtained
in the first part of the algorithm.

2. Apply Lemma 7with σ2. This takes O(ρSa/n+ρT b/n+
1) rounds.

3. For each u, each node v with σ1(v) = u or σ2(v) = u
assumes responsibility for O(ρ̂ST c) entries of the matrix
Pu and discards the rest. More specifically, node v deter-
mines i such that v is the i th node responsible for Pu ,
splits the non-zero entries of Pu into � nz(Pu)

ρ̂ST c
� parts and

selects the i th part; if both σ1(v) = u and σ2(v) = u,
then v selects two parts. This step can be done locally
based on information obtained earlier.

After the completion of the algorithm, each node has
O(ρ̂ST c) intermediate values from at most two matrices Pv .
The total running time is O(ρSa/n + ρT b/n + 1) rounds. 	


2.1.5 Balanced summation

Lemma 9 Assume that the non-zero intermediate values of
the matrix multiplication P = ST have been computed as
in Lemma 8. Then there is a Congested Clique algorithm
running in O(ρ̂ST c/n + 1) rounds that computes the output
matrix P.
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Proof We start by initializing each row of the output matrix
to all zero values. Our objective is to accumulate the inter-
mediate values to this initial matrix, with each node v being
responsible for the row v of the output matrix.

All nodes split their intermediate values into O(ρ̂ST c/n)

sets of at most n intermediate values. We then repeat the
algorithm O(ρ̂ST c/n + 1) times, each repetition accumulat-
ing one set of n intermediate values from each node:

1. Nodes sort the n2 intermediate values being processes
globally bymatrix position. This takesO(1) rounds using
Lenzen’s sorting algorithm.

2. Each node locally sums all intermediate products it
received corresponding to the same position.

3. Eachnodebroadcasts theminimumandmaximummatrix
position it currently holds. Nodes use this information to
deduce if the same matrix position occurs in multiple
nodes. If so, all sums corresponding to that position are
sent to the smallest id node having that position; each
node sends at most one sum and receives at most one sum
from each other node, so this step takes O(1) rounds.

4. If a node received new values from other nodes, these are
now added to the appropriate sum.

5. All nodes now hold sums corresponding to at most n
matrix positions. Using Lenzen’s routing algorithm, we
redistribute these so that node v obtains sums correspond-
ing to positions on row v; this takes O(1) rounds. Node
v then accumulates these sums to the output matrix.

Clearly, after completion of all repeats, we have obtained
the output matrix P . Since each repeat of the accumulation
algorithm takes O(1) rounds, and there are O(ρ̂ST c/n + 1)
repeats, the whole process takes O(ρ̂ST c/n + 1) rounds. 	


2.2 Matrix multiplication with sparsification

Our second matrix multiplication result is a variant of sparse
matrix multiplication where we control the density of the
output matrix.

Problem definition In this section, we assume our semiring
(R,+, ·, 0, 1) satisfies the following conditions:

1. There is a total order < on R, and
2. The addition operation + satisfies x + y = min(x, y),

where min is taken in terms of order <.

Let P be a matrix and let 0 ≤ ρ ≤ n be an integer. We
define the ρ-filtered version of P as a matrix P such that
each row of P contains ρ smallest entries of P , that is,

1. Either P[v, u] = 0 or P[v, u] = P[v, u],

2. If row v of P has σ non-zero entries, then row v for P
has min(σ, ρ) non-zero entries, and

3. If P[v, u] = 0 and P[v, u] �= 0, then maxw P[v,w] ≤
P[v, u].

When ρ is clear from the context, we call P a filtered version
of P .

Let S and T be the input matrices over the semiring R
and denote P = ST . In the filtered matrix multiplication
problem, we are given the input matrices S and T along with
an output density parameter ρ, and the task is to compute a
ρ-filtered output matrix P .

Filtered matrix multiplication algorithm We now prove an
analogue of Theorem 3 for the filtered matrix multiplication
problem. Our result is the following:

Theorem 4 Assume we know beforehand a set R′ ⊆ R of
semiring elements that can appear during the computation
of the product ST , and

∣

∣R′∣
∣ = W. Then ρ-filtered matrix

multiplication can be computed in

O

(

(ρSρT ρ)1/3

n2/3
+ logW

)

rounds in the Congested Clique. In particular, when the
underlying semiring is the min-plus semiring and the matrix
entries are integers of absolute value at most O(nc) for a
constant c ≥ 1, the running time is

O

(

(ρSρT ρ)1/3

n2/3
+ log n

)

rounds.

The high-level proof idea is largely the same as for The-
orem 3. However, since we now cannot guarantee that the
outputmatrix, and by extension the results of the subtasks, are
sparse, we will have to perform part of the filtering before we
sum the intermediate results together—in essence, between
Steps (2) and (3) of the sparse matrix multiplication algo-
rithm.

For this first filtering step, we group the nodes into sets
responsible for subsets of intermediate results on the same
rowof the outputmatrix, and performmultiple parallel binary
searches to identify which intermediate results can be safely
filtered out. This allows us to discard all but O(ρnc) interme-
diate entries, which gives us the additive O(logW ) overhead
in the algorithm. After filtering, we follow the same strategy
as in the sparse matrix multiplication algorithm—namely,
Steps (3) and (4)—to sum together the intermediate entries.
Each node will then hold a partially filtered row of the output
matrix P = ST . We can then perform a second filtering step
locally to obtain P .
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Fig. 2 Example of combining
the intermediate product
matrices to form the matrices Pk
for a = b = c = 2 and n = 8
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2.2.1 Algorithm description

Cube partitioning in detail For the filtered version of the
matrix multiplication, we need to keep more detailed track
of the partitioning given by Lemma 5. Specifically, Lemma 5
gives us a partitioning of the cube V 3 into n subcubes of form

CS
i × Ci j

k × CT
j , (i, j, k) ∈ [b] × [a] × [c] ,

which defines the matrix multiplication sub-tasks Pv =
SvT v . In this section, we write the products SvT v instead

as S[CS
i ,Ci j

k ]T [Ci j
k ,CT

j ].
Filtering To precisely formulate our filtering steps, we define
n × n matrices Pk for k ∈ [c] by setting

Pk[CS
i ,CT

j ] = S[CS
i ,Ci j

k ]T [Ci j
k ,CT

j ] .

That is, each Pk is obtained by combining the smaller n/b×
n/a matrices S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ] into an n × n square

matrix; see Fig. 2. In particular, the final unfiltered product
matrix P = ST is obtained by summing the Pk matrices as
P = ∑c

k=1 Pk .
We can obtain the filtered version P of the final output

matrix P by first applying the filtering to the matrices Pk and
then filtering the sum of those matrices again, that is,

Q =
c

∑

k=1

Pk , P = Q .

Moreover, by the definition of filtering, each matrix Pk has
density at most ρ, so the total number of entries in matrices
Pk is O(ρnc). The high-level idea of our algorithm is now
that after computation of the matrix multiplication subtasks
S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ], we identify which intermediate val-

ues are entries of the matrices Pk and discard the rest, which
allows us to complete the summation step within the desired
time budget.

Algorithm overview More precisely, the filtered matrix mul-
tiplication algorithm proceeds in the following steps:

1. We compute a partition of the matrix multiplication task
P = ST into n sparse subtasks

Pk[CS
i ,CT

j ] = S[CS
i ,Ci j

k ]T [Ci j
k ,CT

j ] ,

where S[CS
i ,Ci j

k ] and T [Ci j
k ,CT

j ] are submatrices of S
and T , respectively, and we have

nz(S[CS
i ,Ci j

k ]) = O(ρSa) and

nz(T [Ci j
k ,CT

j ]) = O(ρT b).

This step takes O(1) rounds (Identical to Sect. 2.1).
2. Each node v learns the matrices S[CS

i ,Ci j
k ] and T [Ci j

k ,

CT
j ] for a single (i, j, k) ∈ [b]×[a]×[c], and computes

their product Pk[CS
i ,CT

j ]. This step takes O
(

ρSa/n +
ρT b/n + 1

)

rounds (Identical to Sect. 2.1).
3. For each k ∈ [c] and row 
 of Pk , the nodes that hold

entries from row 
 of Pk perform a distributed binary
search to find the ρth largest value on row 
. This allows
us to identify which intermediate entries will appear
in matrices Pk and to discard the rest. This step takes
O(logW ) rounds (Lemma 10).

4. We balance the entries of matrices Pk so that each
node holds O(ρn/ab) = O(ρc) values that need to
be summed to obtain the matrix Q = ∑

k Pk . This is
achieved by duplicating those subtasks where the output
contains too many entries from matrices Pk . This step
takes O

(

ρSa/n + ρT b/n + 1
)

rounds (Lemma 11).
5. The intermediate values obtained in Step 5 are summed

together to obtain the matrix Q so that each node holds
a single row of Q. This step takes O

(

ρc/n + 1
)

rounds.
(Identical to Sect. 2.1).
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6. Each node discards all but the ρ smallest entries on their
row of Q to obtain final output P . This step requires only
local computation.

2.2.2 Filtering

Nodegrouping for filteringWe identify in an arbitrary fashion
each node v ∈ V with a triple (i, j, k) ∈ [b]×[a]×[c]. This
node v is responsible for computing the intermediate product

S[CS
i ,Ci j

k ]T [Ci j
k ,CT

j ] .

Furthermore, for i ∈ [b] and k ∈ [c], let Bik ⊆ V be the
set of nodes corresponding to triples (i, j, k) for j ∈ [a]. In
particular, for fixed i and k, the nodes in Bik are responsible
for computing the products that give the rows 
 ∈ CS

i of the
matrix Pk . Finally, we observe that |Bik | = a.

Filtering intermediate products Recall that we assume that
weknowa set R′ ⊆ R of sizeW of semiring elements that can
appear during the computation of the product ST . We now
show how the nodes compute the cutoff value for each row of
each matrix Pk . Formally, to define the cutoff value for row

 of matrix Pk , consider the set

{

(Pk[
, i], i) : Pk[
, i] �= 0
}

equipped with the natural ordering, that is, (r , s) < (r ′, s′)
if r < r or if r = r ′ and s < s′. The cutoff value is the ρth
largest element in the set, or the largest if the set has size less
than ρ.

Lemma 10 Assume that each node has computed the cor-
responding product S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ]. Then there is a

Congested Clique algorithm running in O(logW ) rounds
such that after the completion of the algorithm, each node
v ∈ Bik knows the cutoff value for row 
 in Pk for all rows

 ∈ CS

i .

Proof Fix i ∈ [b], k ∈ [c] and a row 
 ∈ CS
i . We use binary

search to find the smallest value r such that there are at least
ρ non-zero entries at most r on row 
 of Pk . We fix a node
u ∈ Bik the coordinator for row 
 of Pk . The binary search
now proceeds as follows:

1. In the first round of the search, all nodes v ∈ Bik send
the number of non-zero entries they have on row 
 to the
coordinator u. If the total number of non-zero entries is
at most ρ, we are done. Otherwise, the coordinator sets
r1 = min R′ and r2 = max R′, and we proceed with the
binary search.

2. In the subsequent rounds, the coordinator selects the
value r ′ ∈ R′ halfway between r1 and r2 and broadcasts
it to all nodes v ∈ Bik . The nodes v ∈ Bik then send the
coordinator the number of values at most r ′ they have on
row 
. If the total number is less than ρ, the coordinator
sets r1 = r ′, and otherwise the coordinator sets r2 = r ′.

We repeat this step until there are no values in R′ between
r1 and r2.

The binary search finishes after O(logW ) iterations. Clearly
r = r2 is the desired value. To obtain the final cutoff value,
all nodes v ∈ Bik tell the coordinator (1) how many values
strictly less than r they have, and (2) how many values equal
to r they have. The coordinator then determines how many
values equal to r should be kept, and determines which node
in Bik holds the entry corresponding to the cutoff value. The
coordinator then queries that node to obtain the final cutoff
value (r , s), and broadcasts it to Bik . The post-processing
after the binary search takes O(1) rounds.

It remains to show that we can execute all the binary
searches in parallel. For each set Bik of a nodes, the nodes
have to execute O(n/b) binary searches, and we assign each
node v ∈ Bik as a leader for O(n/ab) binary searches. Thus,
for each iteration of the binary search, each node v ∈ Bik
needs to send and receive O(an/ab) = O(n/b) = O(n)

messages in the coordinator role. Dually, each node partic-
ipates in O(n/b) binary searches, so it needs to send and
receive O(n/b) = O(n) messages for each iteration of the
binary search in the participant role. Thus, one iteration of
all binary searches can be completed in O(1) rounds. 	


Given the cutoff values computed by Lemma 10, all nodes
can filter their local products to discard all entries that don’t
appear in matrices Pk . However, some nodes may still hold
too many entries from matrices Pk , so we will balance the
entries in a similar way as in Lemma 8:

Lemma 11 Assume that the cutoff values of rows of matrices
Pk are computed as per Lemma 10. Then there is a Con-
gested Clique algorithm running in O(ρSa/n+ρT b/n+
1) rounds such that after the completion of the algorithm,

1. Each node holds O(ρc) non-zero entries from matrices
Pk, and

2. Each non-zero entry of matrices Pk is held by exactly one
node.

Proof For node v ∈ V , let wv be the number of entries
from the matrices Pk the node v holds after the product
S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ] is filtered using Lemma 10. We now

want to apply Lemma 7; to this end, we construct a helper
assignment function σ so that

– For Each v with wv ≥ ρc, there are at least 
wv

ρc � values
u ∈ V satisfying σ(u) = v, and

– For Each v ∈ Bik , all u such that σ(u) = v also satisfy
u ∈ Bik .

To see that this is possible, consider a set Bik ; since these
nodes together hold

∣

∣CS
i

∣

∣ rows of the matrix Pk , we have that
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∑

v∈Bik wv ≤ ρ
∣

∣CS
i

∣

∣ = ρn/b. Thus, we need to assign a
total of

∑

v∈Bi j

wv

ρc
� ≤

∑

v∈Bi j

wv

ρc
= 1

ρc

∑

v∈Bi j
wv

≤ ρn/b

ρc
= n/bc = a

nodes with σ(v) ∈ Bik . Since all nodes v ∈ V can broadcast
wv and the assignments to node sets Bik are known globally,
all nodes can construct the function σ locally.

The rest of the algorithm now proceeds as follows:

1. Apply Lemma 7 with σ . This takes O(ρSa/n+ρT b/n+
1) rounds.

2. For each (i, j, k) ∈ [b]× [a]× [c], each node that either
originally computed the product S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ]

or was assigned it by σ computes which entries in
the product are non-zero entries of Pk ; this is pos-
sible since all nodes that were assigned the product
S[CS

i ,Ci j
k ]T [Ci j

k ,CT
j ] are in Bik , and thus by Lemma 10

know the cutoff values for rows r ∈ CS
i of matrix

Pk . Each of these nodes then assumes responsibility for
O(ρc) entries of Pk from that product and discards the
rest. This step can be done locally based on information
obtained earlier. 	


3 Distance tools

In this section,we use ourmatrixmultiplication algorithms to
construct basic distance computation tools that will be used
for our final distance computation algorithms. Though we
only use the distance tools for undirected graphs, we note
that they work also for directed graphs. As noted before, we
assume the edge weights are non-negative integers at most
O(nc) for a constant c.

3.1 Distance products

Augmented min-plus semiring The general algorithmic idea
for our distance tools is to apply the matrix multiplica-
tion algorithms over the min-plus semiring. However, to
ensure that we get consistent results in terms of hop dis-
tances, a property we require for our distance k- nearest
and (S, d, k)- source detection distance tools, we aug-
ment the basic min-plus semiring to keep track of the number
of hops.

We define the augmented min-plus semiring R to encode
paths in distance computations as follows. The elements of
R are tuples (w, h), where

1. w is either the weight of an edge or a path, or ∞, and
2. h is a non-negative integer or∞, representing the number

of hops.

Let ≺ be the lexicographical order on tuples (w, h), and
define the addition operator min as the minimum over the
total order given by ≺. The multiplication operation + is
defined as (w1, h1) + (w2, h2) = (w1 + w2, h1 + h2). It is
easy to verify that

(

R,min,+, (∞,∞), (0, 0)
)

is a semir-
ing with idempotent addition, that is, min(r , r) = r for all r .
Moreover, the structure satisfies the conditions of Theorem4.

Distance products We call the product of S and T over the
augmented min-plus semiring the augmented distance prod-
uct of S and T , and denote it by S�T . In particular, for a
graph G = (V , E), we define the augmented weight matrix
W by setting

W [u, v] =

⎧

⎪

⎨

⎪

⎩

(0, 0) if u = v,

(w(u, v), 1) if (u, v) ∈ E, and

(∞,∞) otherwise.

As with the regular distance product, the dth augmented dis-
tance product power Wd gives the distances for all pairs of
nodes u, v ∈ V using paths of at most d hops, as well as the
associated number of hops.

Finally, we observe that the augmented distance product
gives a consistent ordering in terms of distance from v, in the
following sense:

Lemma 12 Let s, t ∈ V , and let P be the shortest path of at
most d hops from s to t. Then for every node v on the path
P, we have Wd [s, v] ≺ Wd [s, t].
Proof Let Wd [s, t] = (w, h). Since we assume that weights
are non-negative, the subpath P ′ of P from s to v has weight
at mostw and uses at most h−1 edges. If P ′ is not a shortest
path of at most d hops from s to v, the actual shortest path P∗
of at most d hops has either weight w∗ < w, or has weight
w and uses h∗ < h − 1 hops. Thus we have

Wd [s, v] � (w, h − 1) ≺ (w, h) = Wd [s, t] ,

proving the claim. 	

Recovering pathsWhile we do not explicitly consider recov-
ering the actual shortest paths in our algorithms, we mention
that in addition to computingpowers of the augmentedweight
matrix, the distance product algorithm for computing short-
est path distances can be extended to recover routing tables,
as discussed in [13]. That is, a routing table R corresponding
toWd is an n× n matrix, where each entry R[u, v] is a node
w ∈ N (v) that lies on the shortest path of at most d hops
from u to v, if Wd [u, v] is finite.
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To construct the routing table using distance products, we
require that the matrix multiplication over the augmented
min-plus semiring also produces a witness for each non-zero
entry in a product P = ST ; for any non-zero P[u, v], a
witness is a node wuv ∈ V such that P[u, v] = S[u, wuv] +
T [wuv, v]. Since thematrixmultiplication algorithms explic-
itly compute the non-zero products, they can be modified
to provide witnesses over augmented min-plus semiring by
keeping track of the entry indices during minimum opera-
tions. Given matrices Wd1 and Wd2 , a routing table R for
Wd1 and witnesses for the productWd1�Wd2 , one can easily
verify that a routing table R′ for Wd1+d2 can be obtained by
setting R′[u, v] = R[u, wuv].

3.2 k-nearest neighbors

In the k- nearest problem, we are given an integer k, and
the task is to compute for each node v the set of k nearest
nodes and distances to those nodes, breaking ties first by
hop distance and then arbitrarily. More formally, we want
each node to compute a set Nk(v) of k nodes and distances
d(v, u) for all u ∈ Nk(v), such that the values Wn[v, u] for
u ∈ Nk(v) are the k smallest on row v of Wn in terms of the
order ≺ on the augmented min-sum semiring R.

Note that it follows immediately from Lemma 12 that all
nodes u ∈ Nk(v) are at most k hops away from v, and all
nodes on the shortest path from v to u are also in Nk(v).

Theorem 5 The k- nearest problem can be solved in

O

((

k

n2/3
+ log n

)

log k

)

rounds in Congested Clique.

Proof For matrix M , let M denote the matrix obtained by
discarding all but the k smallest values on each row of M .
To solve the k- nearest problem, we compute the filtered
versionWk of the kth power of the augmented weight matrix
W as follows:

1. All nodes v discard all but the k smallest values on row
v to obtain W .

2. We now observe that W 2 = W�W , W 4 = W 2�W 2,

. . . ,Wk = W
k
2 �W

k
2 . Thus, by applying Theorem 4 with

ρ = k iteratively O(log k) times, we can compute the

matrix Wk in O
((

k
n2/3

+ log n
)

log k
)

rounds.

To see that this allows us to recover Nk(v), we first observe
that by Lemma 12, the hop distance from v to any node in
Nk(v) is at most k. Moreover, by a simple induction argu-
ment using Lemma 12, we have that for all non-zero entries
of Wk , we have Wk[u, v] = Wk[u, v]. Thus, the non-zero

entries on row v give us the set Nk(v) and the distances to
those nodes. 	


3.3 Source detection

In the (S, d, k)- source detection problem, we are given
a set of sources S ⊆ V and integers k and d, and the task is to
compute for each node v the set of k nearest sources within
d hops, as well as the distances to those sources using paths
of at most d hops.

Theorem 6 The (S, d, k)- source detection problem can
be solved in

O

((

m1/3k2/3

n
+ log n

)

d

)

or

O

((

m1/3 |S|2/3
n

+ 1

)

d

)

rounds in Congested Clique, where m is the number of
edges in the input graph.

Proof Toobtain the first running time,we solve the (S, d, k)-
source detection problem as follows:

1. All nodes, including nodes in S, select the k lightest
edges to nodes in S, breaking ties arbitrarily. Let W1 be
the augmented weight matrix restricted to these edges;
since a total of at most nk edges were selected, we have
nz(W1) ≤ nk.

2. We now apply Theorem 4 iteratively d −1 times to com-
pute the products W2 = W�W1, W3 = W�W2, . . . ,
Wd = W�Wd−1. We have ρW = m/n and ρWi = k,
and use ρ = k as the output density, so computing all the

products takes O
((

m1/3k2/3
n + log n

)

d
)

rounds.

By a simple induction using Lemma 12, we see that the
non-zero entries on row v of Wi correspond to the k nearest
sources within i hops of v.

For the second running time, we instead compute the d-
hop distances from set S to all other nodes:

1. Let U1 be the n × |S| matrix obtained by restricting the
augmented weight matrix W to edges with at least one
endpoint in S. By padding matrix U1 with zero entries,
we can view it as a square matrix with density |S|.

2. We now apply Theorem 3 iteratively d − 1 times to
compute the products U2 = W�U1, U3 = W�U2, . . . ,
Ud = W�Ud−1, where the density of W is m/n and the
density of all matrices Ui is |S|, giving a total running

time of O
((

m1/3|S|2/3
n + 1

)

d
)

rounds.

123



Fast approximate shortest paths in the congested clique 477

The matrix Ud gives the d-hop distances between nodes in
S and all other nodes, so each node can select the k closest
sources. 	


3.4 Distance through node set

In the distance through sets problem, we assume that
each node v has a set Wv and distance estimates δ(v,w)

and δ(w, v) for all w ∈ Wv . The task is for all nodes v to
compute distance estimatesminw∈Wv∩Wu {δ(v,w)+δ(w, u)}
for all other nodes u ∈ V .

Theorem 7 The distance through sets problem can be
solved

O

(

ρ2/3

n1/3
+ 1

)

rounds in Congested Clique, where ρ = ∑

v∈V |Wv| /n.
Proof Define matrices W1 and W2 as

W1[v,w] =
{

δ(v,w) if w ∈ Wv, and

∞ if w /∈ Wv,

W2[w, v] =
{

δ(w, v) if w ∈ Wvand

∞ if w /∈ Wv.

The distance product W1�W2 over the standard min-sum
semiring clearly gives the desired estimates, and since ρW1 =
ρW2 = ρ, it can be computed in O

(

ρ2/3

n1/3
+ 1

)

rounds byThe-

orem 3 (or by [14]), using n as the density estimate for the
output matrix. 	


4 Hopsets

In this section, we describe a construction of hopsets in poly-
logarithmic time in the Congested Clique model. Given
a graph G = (V , E), a (β, ε)-hopset H = (V , E ′) is a
graph on the same set of nodes such that the β-hop distances
in G ∪ H give (1 + ε)-approximations for the distances in
G. Formally, for any pair of nodes u, v ∈ V it holds that
dG(u, v) ≤ dG∪H (u, v) and

dG(u, v) ≤ dβ
G∪H (u, v) ≤ (1 + ε)dG(u, v).

Usually the goal is to find a sparse hopset with small β.
In our case, we are interested in optimizing both β and the
running time for constructing the hopset, but not necessarily
the hopset size.

Our construction is based on the recent construction of
hopsets in the Congested Clique of Elkin and Neiman
[24]. However, the time complexity in [24] depends on β

and on the hopset size, and is super-polylogarithmic for any
choice of parameters. We show that using our new distance
tools we can implement the same construction in polyloga-
rithmic time, regardless of the hopset size, as long as β is
polylogarithmic. In particular, we focus on a simple variant
with ˜O(n3/2) edgeswhich is enough for all our applications.1

4.1 Construction overview

We follow the hopset construction of [24], which is based
on the emulators of Thorup and Zwick [56]. A similar
construction appears also in [39] without a distributed imple-
mentation. We focus only on a simple variant of [24,39,56],
with slightly different parameters.

Given a graph G = (V , E), let V = A0 ⊇ A1 ⊇ A2 = ∅,
where A1 is a hitting set of size O(

√
n) of all the sets Nk(v)

for k = O(
√
n log n). I.e., for any node v ∈ V , there is a node

from A1 among the closest k nodes to v. We can construct
A1 using Lemma 1.

For a given subset A ⊆ V , we denote by dG(v, A) the
distance from v to the closest node in A. For a node v ∈ V , let
p(v) ∈ A1 be a node of distance dG(v, A1) from v. In general
theremaybemanypossible nodes of distancedG(v, A1) from
v. The node p(v) would be determined by v, as follows.
During our algorithm, each node computes the set Nk(v).
Since A1 is a hitting set there is a node from A1 in the set
Nk(v) computed, and v defines p(v) to be the closest such
node (breaking ties arbitrarily). For a node v ∈ A0\A1, we
define the bunch

B(v) = {u ∈ A0 : dG(v, u) < dG(v, A1)} ∪ p(v),

and for a node v ∈ A1, we define the bunch B(v) = A1.
The hopset is the set of edges H = {{v, u} : v ∈ V , u ∈

B(v)}. We would like to set the length of an edge {v, u} to be
dG(v, u). However,we cannot necessarily compute these val-
ues. During our algorithm we add exactly all the edges in H
to the hopset, but their weights are not necessarily dG(v, u),
but rather an approximation for dG(v, u).

Claim 13 The number of edges in H is O(n3/2 log n).

Proof For every node in A1 we add only edges to nodes
in A1, and the size of A1 is O(

√
n). In addition, for nodes

v ∈ A0\A1 we add edges only to nodes closer than p(v).
Since A1 is a hitting set, p(v) is among the closest k nodes to
v, which means that we add at most k = O(

√
n log n) edges

for each node, and O(n3/2 log n) edges in total. 	


1 Using similar ideas, it is possible to implement also the more general
hopset from [24].
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4.2 Congested clique implementation

Our goal is to build H efficiently in the Congested Clique
model. In [24], the authors suggest an iterative algorithm for
computing H , where in iteration 1 ≤ 
 ≤ log n they com-
pute a 2
-bounded hopset, which approximates the distances
between all pairs of nodes that have a shortest path between
them with at most 2
 edges in G. Given a 2
-bounded hopset
H 
, they show that it is enough to run Bellman-Ford explo-
rations up to hop-distance O(β) in the graph G ∪ H 
 to
compute a 2
+1-hopset H 
+1. For the stretch analysis to carry
on, it is also important to add edges to H 
+1 in a certain order.
First, the edges that correspond to bunches of nodes in A0\A1

are added, and only then the edges that correspond to bunches
of nodes in A1 are added. They show that the total time com-
plexity for implementing all the Bellman-Ford explorations
is proportional to the hopset size. In particular, for our hopset
of size ˜O(n3/2), the complexity required is at least ˜O(

√
n)

rounds.
We follow the general approach from [24], with two

changes. First, we show that using our distance tools we
can compute directly all the bunches of nodes in A0\A1,
which allows simplifying slightly the algorithm and analy-
sis. The second and more significant difference is that we use
our (S, d, k)-algorithm to replace the heavy Bellman-Ford
explorations, which results in a polylogarithmic complexity
instead of a polynomial one. We next describe the algorithm
in detail.

4.2.1 Algorithm description

Computing the bunches We start by computing the bunches
for all the nodes v ∈ A0\A1. This can be done easily using
our algorithm for finding the distances to the k-nearest nodes.
This follows since p(v) is among the k-nearest nodes to v,
hence all the nodes in the bunch of v are among the k-nearest
nodes to v. Note that all the nodes v ∈ A0\A1 learn the exact
distances to all the nodes in their bunch. However, it is not
clear how to compute a bunch for a node v ∈ A1, since v

should learn the distances to all the nodes from A1. Such
nodes may be at hop-distance d = �(n) from v, and our
(S, d, k)-algorithm depends linearly on the hop-distance d.
To overcome this, we follow the approach in [24], and show
how to implement it efficiently using our distance tools.

Bounded hopsets We say that H is a (β, ε, t)-hopset if for
all x, y ∈ G it holds that dG(x, y) ≤ dG∪H (x, y), and for
all pairs of nodes x, y ∈ G that have a shortest path between
them with at most t hops, i.e., dG(x, y) = dtG(x, y), it holds
that

dG(x, y) ≤ dβ
G∪H (x, y) ≤ (1 + ε)dG(x, y).

Note that the empty set is a (1, 0, 1)-hopset, and thus
also a (β, ε, 1)-hopset for any β ≥ 1 and ε > 0. The
algorithm builds hopsets iteratively, where in iteration 
 it
builds a (β, ε
, 2
)-hopset H 
, where ε
 = ε · 
 for some
0 < ε < 1/ log n. The final hopset H is H log n . Let
H0 = {{u, v} : u ∈ A0\A1, v ∈ B(u)}. We already com-
puted the edges H0 and include them as part of the hopset
for all the hopsets H 
.
Building H 
. We define H0 = H0. To construct H 
 for
1 ≤ 
 ≤ log n we work as follows. Let G ′ = G ∪ H 
−1. All
the nodes in A1 compute the distances to all the nodes from
A1 at hop-distance at most 4β in the graph G ′. We imple-
ment it using our (S, d, k′)-algorithm with S = A1, d =
4β, k′ = |A1| = O(

√
n). Each node v ∈ A1, adds to the

hopset H 
 all the edges {v, u} where u ∈ A1 at hop-distance
at most 4β from v inG ′. The weight of the edge is the weight
that v learned during the (S, d, k)-algorithm. The hopset H 


includes all these edges, as well as all the edges of H0. Note
that if v adds an edge {v, u} to the hopset, in the next round
it can let u learn about it, so we can assume that both the
endpoints know about the edge.

This completes the description of the algorithm. We next
analyze the time complexity and prove the correctness of the
algorithm.

4.2.2 Complexity

Claim 14 The complexity of the algorithm is O(β log n +
log2 n) rounds.

Proof From Lemma 1, we can construct deterministically
in O((log log n)3) rounds a hitting set A1 of size O(

√
n)

that hits all the sets Nk(v). For the algorithm, each node
v should learn the set Nk(v) which is computed using our
algorithm for finding the distances to the k-nearest nodes.

From Theorem 5, this takes O
((

k
n2/3

+ log n
)

log k
)

=
O

((√
n·log n
n2/3

+ log n
)

log n
)

= O(log2 n) rounds.

The algorithm for constructing H starts by computing the
bunches of nodes v ∈ A0\A1, this only requires each node v

to learn the distances to the nodes Nk(v), which was already
computed. Next, for log n iterations, we compute for each
node the O(

√
n)-nearest nodes from A1 at hop-distance at

most 4β. Since A1 is of size O(
√
n), by Theorem 6, each

iteration takes O
((

n2/3(
√
n)

2/3

n + 1
)

· β
)

= O(β) rounds.

Overall, all the iterations take O(β log n) rounds. 	


4.2.3 Correctness

We next prove that H 
 is indeed a (β, ε
, 2
)-hopset, the
proof follows the proof in [24], and is included here for com-
pleteness. There are slight changes to adapt it to the specific
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variant we consider. We start with a simple claim regarding
the edges H0.

Claim 15 For any x, y ∈ V , either d1G∪H0
(x, y) = dG(x, y)

or there exists z ∈ A1 such that d1G∪H0
(x, z) ≤ dG(x, y).

Proof If x ∈ A1, the claim clearly holds by setting z =
x . We next focus on x ∈ A0\A1. For each x ∈ A0\A1,
H0 includes the edge {x, p(x)}, as well as all the edges of
the form {x, y} where dG(x, y) < dG(x, p(x)). Hence, if
dG(x, y) < dG(x, p(x)), there is an edge {x, y} in H0 of
weight dG(x, y) and we are done. Otherwise, dG(x, p(x)) ≤
dG(x, y) and the edge {x, p(x)} of weight dG(x, p(x)) is in
H0 where p(x) ∈ A1 which completes the proof. 	


The next lemma shows that H 
 is a (β, ε
, 2
)-hopset.

Lemma 16 Let 0 < ε < 1/ log n. Set δ = ε/4, and β = 3/δ
and let x, y ∈ V be such that dG(x, y) = d2




G (x, y). Then,

dβ

G∪H
 (x, y) ≤ (1 + ε
)dG(x, y) ,

where ε
 = ε · 
.

Proof The proof is by induction on 
. For 
 = 0, the claim
holds since the empty set is a (1, 0, 1)-hopset. Assume it
holds for 
 − 1, and we prove it for 
. Let x, y ∈ V be such
that dG(x, y) = d2




G (x, y), and let π(x, y) be a shortest path
between x and y in G with at most 2
 edges. We partition
π(x, y) into J ≤ 1/δ segments {L j = [u j , v j ]}1≤ j≤J , each
of length at most δ · dG(x, y), and additionally at most 1/δ
edges {v j , u j+1}1≤ j≤J between these segments. This is done
as follows.

Define u1 = x , and walk from u1 on π(x, y) towards y
until the first node u2 such that dG(u1, u2) > δ · dG(x, y), if
such exists or until y. The last node in π(x, y) before u2 is
v1, and from the definition of u2 it holds that dG(u1, v1) ≤
δ · dG(x, y). We continue in the same manner (walk from u2
on π(x, y) towards y to define u3, and so on) and define the
rest of the nodes u j , v j . If we walk from u j towards y and
there is no node u j+1 where dG(u j , u j+1) > δ ·dG(x, y), we
define v j = y, and J = j . Since dG(ui , ui+1) > δ ·dG(x, y),
the number of segments is at most 1/δ.

Now, we use Claim 15 on the pairs {u j , v j }Jj=1. One case

is that for all 1 ≤ j ≤ J , it holds that d1G∪H0
(u j , v j ) =

dG(u j , v j ), which means that the edges {u j , v j } exist in G∪
H0 with weights dG(u j , v j ). This means that in the graph
G∪H0 there is a path of hop-distance at most 2/δ between x
and y that includes all the edges of the form {u j , v j }Jj=1 and
the edges {v j , u j+1} between segments. The total weight of
the path is exactly dG(x, y). Sinceβ = 3/δ > 2/δ, and H0 ⊆
H 
,weget thatdβ

G∪H
 (x, y) = dG(x, y) ≤ (1+ε
)dG(x, y).
We now analyse the case where there is at least one pair

{u j , v j } that does not satisfy d1G∪H0
(u j , v j ) = dG(u j , v j ).

Let i, j be the indexes of the first and last pairs {ui , vi },
{u j , v j } that do not satisfy the above. From Claim 15, there
are nodes zi , z j ∈ A1 such that

d1G∪H0
(ui , zi ) ≤ dG(ui , vi ) ≤ δ · dG(x, y) ,

d1G∪H0
(v j , z j ) ≤ dG(u j , v j ) ≤ δ · dG(x, y) .

In our algorithm, when constructing H 
, the nodes zi , z j
add edges to all the nodes of A1 at hop-distance at most
4β in the graph G ′ = G ∪ H 
−1. We next show that in G ′
there is a path of hop-distance at most 4β between zi , z j
and bound its weight. From the induction hypothesis, H 
−1

is a (β, ε
−1, 2
−1)-hopset. Since ui , v j are in the shortest

path between x and y, it holds that dG(ui , v j ) = d2



G (ui , v j ).
Since any path of hop-distance at most 2
 can be partitioned
to two paths of hop-distance at most 2
−1, it holds that a
(β, ε
−1, 2
−1)-hopset is also a (2β, ε
−1, 2
) hopset. Hence,
there is a path of hop-distance at most 2β between ui and v j

in G ∪ H 
−1 of weight at most (1 + ε
−1)dG(ui , v j ). Since
the edges {ui , zi }, {v j , z j } of weight at most δ · dG(x, y) are
in H0, we get that there is a path of hop-distance at most
2β + 2 between zi and z j in G ′ of total weight at most
(1 + ε
−1)dG(ui , v j ) + 2δ · dG(x, y). Since 2β + 2 ≤ 4β,
zi and z j add an edge between them to H 
, which gives

d1G∪H
 (zi , z j ) ≤ (1 + ε
−1)dG(ui , v j ) + 2δ · dG(x, y).

We next bound dβ

G∪H
 (x, y). From the definition of i, j ,
for any i ′ < i or j < i ′, there is an edge {ui ′ , vi ′ } in
H0 (and hence in H 
) of weight dG(ui ′ , vi ′). These edges
together with the edges in π(x, y) before or after these
segments sum up to at most 2/δ edges. Between ui and
v j we have a 3-hop path {ui , zi , z j , v j } of total weight
at most δ · dG(x, y) + d1

G∪H
 (zi , z j ) + δ · dG(x, y) ≤
(1+ ε
−1)dG(ui , v j ) + 4δ · dG(x, y). To conclude, G ∪ H 


has a path of hop-distance at most 2/δ + 3 ≤ β of total
weight dG(x, ui ) + (1+ ε
−1)dG(ui , v j ) + dG(v j , y) + 4δ ·
dG(x, y) ≤ (1+ε
−1+4δ)dG(x, y). By the choice of param-
eters 4δ = ε, which gives dβ

G∪H
 (x, y) ≤ (1 + ε
)dG(x, y).
This completes the proof. 	


4.2.4 Conclusion

Using Claims 13 and 14 and Lemma 16, we obtain the fol-
lowing:

Theorem 8 Let 0 < ε < 1. There is a deterministic con-
struction of a (β, ε)-hopset with O(n3/2 log n) edges and
β = O

(

(log n)/ε
)

that takes O
(

(log2 n)/ε
)

rounds in the
Congested Clique model.

Proof By Lemma 16, H log n is a (β, εlog n, n)-hopset, and
hence also a (β, εlog n)-hopset. From the choice of parameters
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εlog n = ε log n, where 0 < ε < 1/ log n and β = O(1/ε).

Let ε′ = εlog n = ε log n. Then, ε = ε′
log n . Hence, H

log n is

a (β, ε′)-hopset where 0 < ε′ < 1 and β = O(
log n
ε′ ). By

Claim 14, the time complexity for constructing the hopset is
O(β log n + log2 n). Since β = O(

log n
ε′ ), the complexity is

O(
log2 n

ε′ ) rounds. The number of edges is O(n3/2 log n) by
Claim 13. 	


5 Multi-source shortest paths

As a direct application of our hopsets and source detection
algorithms, we get an efficient (1 + ε)-approximation for
the multi-source shortest paths problem (MSSP) with poly-
logarithmic complexity as long as the number of sources is
˜O(

√
n).

Theorem 2 There is a deterministic (1 + ε)- approximation
algorithm for the weighted undirected MSSP that takes

O

(( |S|2/3
n1/3

+ log n

)

· log n
ε

)

rounds in the Congested Clique, where S is the set of

sources. In particular, the complexity is O(
log2 n

ε
) as long as

|S| ≤ O(
√
n · (log n)3/2).

Proof By Theorem 8, we can construct a (β, ε)-hopset H

with β = O(
log n

ε
) in O(

log2 n
ε

) rounds. By the defini-
tion of hopsets, the β-hop distances in G ∪ H give a
(1 + ε)-approximation to all the distances in G. Hence,
to approximate the distances of all the nodes to the set of
sources S, we run our (S, d, k)-algorithm in the graphG∪H
with d = β = O(

log n
ε

). By Theorem 6, the complexity is

O
((

n2/3|S|2/3
n + 1

)

· β
)

= O
(( |S|2/3

n1/3
+ 1

)

· log n
ε

)

rounds.

The overall complexity is

O

(( |S|2/3
n1/3

+ 1

)

· log n
ε

+ log2 n

ε

)

= O

(( |S|2/3
n1/3

+ log n

)

· log n
ε

)

rounds. 	


6 All-pairs shortest paths

In this section, we use our multi-source shortest paths algo-
rithm from ˜O(

√
n) sources to construct algorithms that

provide constant approximations for all the distances in the
graph in polylogarithmic time. However, the approximation

guarantee increases to (2 + ε) for the unweighted case, and
at most (3 + ε) for the weighted case.

Next, we present our approximation algorithms for the
APSP problem. For simplicity of presentation, we start by
sketching a simple (3+ε)-approximation forweightedAPSP.
Using a more careful analysis we show that a variant of this
algorithmactually obtains a (2+ε, (1+ε)W )-approximation.
Here, we use the notation (2 + ε, (1 + ε)W )-approximation
for an algorithm that for any pair of nodes u, v provides an
estimate of the distance between u and v which is at most
(2 + ε)d(u, v) + (1 + ε)W where W is the weight of the
heaviest edge in a shortest path between u and v. Note that
W is always at most d(u, v), and hence a (2+ ε, (1+ ε)W )-
approximation is always better than a (3+ε′)-approximation
(where ε′ = 2ε). Finally, we extend the algorithm to obtain a
(2 + ε)-approximation for APSP in unweighted graphs. All
our algorithms are deterministic.

6.1 (3+ �)-approximation for weighted APSP

Our algorithm starts by computing a hitting set A of size
˜O(

√
n) that hits all the sets Nk(v) for k = ˜O(

√
n). We

compute for each node v ∈ V , the distances to all the
nodes in Nk(v), and we use our MSSP algorithm to com-
pute (1 + ε)-approximate distances from A to all the nodes.
Since k = ˜O(

√
n) and |A| = ˜O(

√
n) the complexity is poly-

logarithmic. To compute an estimate δ(u, v) of the distance
d(u, v), we work as follows. If v ∈ Nk(u), then u already
computed the value d(u, v) and sends it to v. Otherwise,
let p(u) ∈ Nk(u) ∩ A be a closest node to u. We estimate
d(u, v) with d(u, p(u)) + d(p(u), v). Since v /∈ Nk(u), it
follows that d(u, p(u)) ≤ d(u, v). Hence, using the triangle
inequality, we have

d(u, p(u)) + d(p(u), v)

≤ d(u, p(u)) + d(u, p(u)) + d(u, v) ≤ 3d(u, v).

Since our algorithm computes a (1 + ε)-approximation
for the value d(p(u), v) and computes exactly the value
d(u, p(u)), we get a (3 + ε)-approximation.

6.2 (2+ �, (1+ �)W)-approximation for weighted
APSP

We next describe our (2 + ε, (1 + ε)W )-approximation.
In our (3 + ε)-approximation, we used the fact that if
v /∈ Nk(u), then d(u, p(u)) ≤ d(u, v). To obtain a bet-
ter approximation, we would like to get a better bound on
d(u, p(u)). If, for example, d(u, p(u)) ≤ 1

2d(u, v), the
same analysis shows a (2+ ε)-approximation. We show that
eithermin{d(u, p(u)), d(v, p(v))} ≤ 1

2 (d(u, v)+W )which
proves a (2+ε, (1+ε)W )-approximation, or the shortest path
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between u and v has a node w ∈ Nk(u) ∩ Nk(v). In the lat-
ter case, d(u, w) + d(w, v) = d(u, v), and since |Nk(u)| =
|Nk(v)| = ˜O(

√
n) we can use matrix multiplication to com-

pute the distances through all nodesw ∈ Nk(u)∩Nk(v), and
find the actual distance d(u, v).

6.2.1 Algorithm description

We next describe the algorithm in detail. We start by describ-
ing the general structure of the algorithm, and then explain
how we implement it efficiently. In the algorithm, each node
v ∈ V , maintains an estimate δ(u, v) of the distance d(u, v)

for all u ∈ V . Each time a node updates the estimate δ(u, v)

it takes the minimum value between the previous value of
δ(u, v) and the current estimate computed. Also, if v updates
δ(u, v) it sends the new estimate also to u to update its esti-
mate accordingly. We use the notation w(u, v) to denote the
weight of the edge {u, v} if exists. The distances d(u, v) and
weights w(u, v) are with respect to the input graph G. The
algorithm works as follows.

1. Set δ(u, v) = w(u, v) if {u, v} ∈ E , and δ(u, v) = ∞
otherwise.

2. For each v, compute the distances to the set Nk(v) for
k = √

n, and update the estimates {δ(v, u)}u∈Nk (v)

accordingly.
3. Set δ(u, v) = min{δ(u, v),minw∈Nk (u)∩Nk (v){δ(u, w) +

δ(w, v)}}.
4. Compute a hitting set A of size O(

√
n log n) that hits all

the sets Nk(v).

5. Use theMSSP algorithm to compute (1+ε)-approximate
distances from V to A. For each v ∈ V update the esti-
mates {δ(v, u)}u∈A accordingly.

6. Let p(v) ∈ Nk(v) ∩ A be a node from A closest to v that
is chosen by v. The node v sends p(v) to all the nodes.

7. Set δ(u, v) = min{δ(u, v), δ(u, p(u)) + δ(p(u), v),

δ(v, p(v)) + δ(p(v), u)}.

6.2.2 Complexity

Lemma 17 The complexity of the algorithm is O(
log2 n

ε
)

rounds.

Proof Implementing Line 1 is immediate. We implement

Line 2 using our k-nearest algorithm, which takes O
((

k
n2/3

+
log n

)

log k
)

= O(log2 n) rounds by Theorem 5. We imple-

ment Line 3 with our distance through sets algorithm,
with respect to the sets Nk(v). Since k = √

n, it takes

O
(

k2/3

n1/3
+ 1

)

= O(1) rounds by Theorem 7. We use

Lemma 1 to compute the hitting set A in O((log log n)3)

rounds (note that all the nodes already computed the sets
Nk(v)). Each node updates all the nodes if it is in A which

takes one round.We implement Line 5 using ourMSSP algo-

rithm from Theorem 2, which takes O(
log2 n

ε
) rounds since

|A| = O(
√
n log n). Implementing Line 6 is immediate since

each node v knows Nk(v) and A. Then, all the nodes know
all the values {p(v)}v∈V . Now, each node u sends to each
node v the values {d(u, p(u)), d(u, p(v))}. This allows u
and v to compute the values δ(u, p(u)) + δ(p(u), v) and
δ(v, p(v)) + δ(p(v), u), which allows them to compute the

final estimate δ(u, v). The overall complexity is O(
log2 n

ε
)

rounds. 	


6.2.3 Correctness

Lemma 18 The algorithm gives a (2 + ε, (1 + ε)W )-
approximation for weighted APSP.

Proof Let u, v ∈ V . If v ∈ Nk(u) or u ∈ Nk(v), then after
Line 2, δ(u, v) = d(u, v) and we are done. Otherwise, let
P be a shortest path between u and v. Let u′ be the furthest
node from u in P ∩ Nk(u), and let v′ be the furthest node
from v in P ∩ Nk(v). We divide the analysis to 3 cases. See
Fig. 3 for an illustration.

Case 1: Either u′ ∈ Nk(v) or v′ ∈ Nk(u). In this case,
minw∈Nk (u)∩Nk (v){δ(u, w)+ δ(w, v)} = d(u, v), hence after
Line 3, δ(u, v) = d(u, v) and we are done.

Case 2: There is a node w ∈ P where w /∈ Nk(u) and w /∈
Nk(v). In this case, it follows that d(u, p(u)) ≤ d(u, w) and
d(v, p(v)) ≤ d(v,w). Sincew ∈ P , we also have d(u, v) =
d(u, w) + d(v,w). Hence

min{d(u, p(u)), d(v, p(v))} ≤
min{d(u, w), d(v,w)} ≤ d(u, v)/2.

Assume w.l.o.g that d(u, p(u)) ≤ d(v, p(v)), then d(u,

p(u)) ≤ d(u, v)/2 and d(v, p(u)) ≤ d(v, u)+d(u, p(u))≤
3
2d(u, v), which gives d(u, p(u)) + d(p(u), v) ≤ 2d(u, v).

The value d(u, p(u)) is computed exactly in Line 2, and the
value d(v, p(u)) is approximated within a (1 + ε) factor in
Line 5. Hence, the final estimate is δ(u, v) ≤ (2+ ε′)d(u, v)

for ε′ = 2ε.

Case 3: All the nodes in P are either in Nk(u) or Nk(v), but
Nk(u) ∩ Nk(v) = ∅. In this case, the path P is composed
of a path between u and u′, an edge between u′ and v′ and
a path between v′ and v. Since v′ /∈ Nk(u) and u′ /∈ Nk(v),
we have d(u, p(u)) ≤ d(u, v′) and d(v, p(v)) ≤ d(v, u′).
In addition, since d(u, v) = d(u, u′) + w(u′, v′) + d(v′, v),
we have

d(u, v′) + d(v, u′)
= d(u, u′) + w(u′, v′) + d(v, v′) + w(u′, v′)
= d(u, v) + w(u′, v′).
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( ) ( ) ( )( )( ) ( )

Fig. 3 There are 3 cases, the first is that u′ or v′ are in Nk(u) ∩ Nk(v). The second is that there is a node w ∈ P\(Nk(u) ∪ Nk(v)) and the last
where there is an edge of P between u′ and v′

This implies that

min{d(u, p(u)), d(v, p(v))}
≤ min{d(u, v′), d(v, u′)} ≤ 1

2
(d(u, v) + w(u′, v′)).

Assume w.l.o.g that d(u, p(u)) ≤ d(v, p(v)), then

d(u, p(u)) + d(p(u), v)

≤ d(u, p(u)) + d(u, p(u)) + d(u, v)

≤ 2d(u, v) + w(u′, v′) ≤ 2d(u, v) + W .

Since we compute the value d(u, p(u)) exactly, and approx-
imate the value d(p(u), v) within a (1 + ε) factor, the final
estimate is δ(u, v) ≤ (2+2ε)d(u, v)+ (1+ ε)W . Choosing
ε′ = 2ε completes the proof. 	


6.2.4 Conclusion

From Lemmas 17 and 18, we get the following.

Theorem 9 There is a deterministic (2 + ε, (1 + ε)W )-
approximation algorithm for weighted APSP in the Con-

gested Clique model that takes O(
log2 n

ε
) rounds.

6.3 (2+ �)-approximation for unweighted APSP

In this section, we present our (2 + ε)-approximation for
unweighted APSP.

6.3.1 High-level idea

In our (2+ ε, 1+ ε)-approximation, the only case where we
do not obtain a (2 + ε)-approximation is when the shortest
path between u and v is composed of a path between u and
u′ ∈ Nk(u)\Nk(v), an edge between u′ and a node v′ ∈
Nk(v)\Nk(u) and a path between v′ and v. Note that u knows
the distance to u′, v knows the distance to v′ and both u′ and v′
know about the edge between them. If we add to the graph all
the edges between u and nodes in Nk(u) and between v and
nodes in Nk(v), we have a shortest path of length 3 between
u and v in the new graph. Intuitively, we would like to use
matrix multiplication to learn about this path, but we cannot

do this directly since this graph may be dense. In particular,
we have no bound on the degrees of u′, v′.

To overcome this, we present a new algorithm that takes
care separately of shortest paths that include a high-degree
node, and shortest paths that have only low-degree nodes,
where a node has a high-degree if its degree is ˜O(

√
n). This

is done as follows.We compute a hitting set A of size ˜O(
√
n),

such that each high-degree node has a neighbour in A. Then,
we use the fact that |A| = ˜O(

√
n), to show that we can

compute efficiently (1+ε)-approximations of all the shortest
paths that go through a node in A. Then, if the shortest path
between u and v has a high-degree node, it has a neighbour
w ∈ A, and the shortest path from u to v that goes through
w already gives a good approximation for the shortest u − v

path.
Then, we are left only with paths that do not contain any

high-degree node. The graph induced on low-degree nodes is
sparse, since the degrees are at most ˜O(

√
n), and we would

like to exploit it. However, although we can multiply two
sparse matrices with ˜O(n3/2) elements efficiently, to com-
pute paths of length 3 we need to multiply 3 matrices of this
size, which is no longer efficient. To overcome this, wewould
like to reduce the degrees further. In particular, wewould like
to follow the analysis in Lemma 18, but replace Nk(v) with
Nk′(v) for k′ < k which allows focusing on sparser matri-
ces. The obstacle is that we want to compute a hitting set A′
of the sets {Nk′(v)}v∈V , and then use our MSSP algorithm
to compute distances to all the nodes in A′, but if k′ < k,
we need to compute a larger hitting set A′, and our MSSP
algorithm is efficient only as long as |A′| = ˜O(

√
n).

Nevertheless, since our graph is sparse, we show that we
can actually compute MSSP from a set A′ of size ˜O(n3/4)
which allows us to choose k′ = ˜O(n1/4). To deal with
the problematic case in the proof of Lemma 18, we should
compute paths of length 3 of the form {u, u′, v′, v} where
u′ ∈ Nk′(u), v′ ∈ Nk′(v) and there is an edge between u′
and v′. Since |Nk′(u)| = |Nk′(u)| = ˜O(n1/4) and u′, v′ are
in the sparse graph and have maximum degree ˜O(

√
n), we

can detect paths of this form efficiently, which allows us to
show a (2 + ε)-approximation.
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6.3.2 Algorithm description

We next present a pseudo-code of the algorithm, then we
show how to implement it efficiently and provide a correct-
ness proof. Again, each node v ∈ V , maintains an estimate
δ(u, v) of the distance d(u, v) for all u ∈ V . Each time
a node updates the estimate δ(u, v) it takes the minimum
value between the previous value of δ(u, v) and the current
estimate computed. Also, if v updates δ(u, v) it sends the
new estimate also to u to update its estimate accordingly. Let
N (v) = {u ∈ V |{v, u} ∈ E} ∪ {v}. Our algorithm works as
follows.

1. Set δ(u, v) = w(u, v) if {u, v} ∈ E and δ(u, v) = ∞
otherwise.
First phase - handling shortest paths with a high-degree
node:

2. Let A be a hitting set of size ˜O(
√
n) that hits all

the neighbourhoods N (v) of high-degree nodes with
|N (v)| ≥ k for k = ˜O(

√
n).

3. Use theMSSPalgorithm to compute (1+ε)-approximate
distances from V to A. For each v ∈ V update the esti-
mates {δ(v, u)}u∈A accordingly.

4. Set δ(u, v) = min{δ(u, v),minw∈A{δ(u, w)+δ(w, v)}}.

Secondphase - handling shortest paths that contain only
low-degree nodes:
Let G ′ = (V ′, E ′) be the graph induced on low-degree
nodes with degree at most k, from now on our algorithm
works only in the graph G ′. In particular, the set Nk′(v)

is the set of k′ closest nodes to v in G ′.
5. For each v, compute the distances to the set Nk′(v) for

k′ = ˜O(n1/4), andupdate the estimates {δ(v, u)}u∈Nk′ (v)

accordingly.
6. Set δ(u, v) = min{δ(u, v),minw∈Nk′ (u)∩Nk′ (v) {δ(u, w)

+ δ(w, v)}}.
7. Construct a hitting set A′ of size ˜O(n3/4) that hits all

the sets Nk′(v).
8. Compute (1+ ε)-approximate shortest paths from A′ to

all the nodes in the graph G ′. For each v ∈ V update the
estimates {δ(v, u)}u∈A′ accordingly.

9. Let p′(v) ∈ Nk′(v) ∩ A′ be a node from A′ closest to
v that is chosen by v. The node v sends p′(v) to all the
nodes.

10. Set δ(u, v) = min{δ(u, v), δ(u, p′(u)) + δ(p′(u), v),

δ(v, p′(v)) + δ(p′(v), u)}.
11. Let δ′(u, v) = min{δ(u, u′) + δ(u′, v′) + δ(v′, v)|u′ ∈

Nk′(u), v′ ∈ Nk′(v), {u′, v′} ∈ E ′}.
12. Set δ(u, v) = min{δ(u, v), δ′(u, v)}.

6.3.3 Complexity

Lemma 19 The complexity of the algorithm is O(
log2 n

ε
)

rounds.

Proof Implementing Line 1 is immediate. We choose k =√
n. To implement Line 2, we use Lemma 1 to build A of size

O(n log n/k) = O(
√
n log n) that hits all the sets N (v) for v

with |N (v)| ≥ k. Note that each node v knows the set N (v).
The complexity isO((log log n)3) rounds. Eachnodeupdates
all the nodes if it is in Awhich takes one round.We implement
Line 3 using our MSSP algorithm from Theorem 2, which

takes O(
log2 n

ε
) rounds since |A| = O(

√
n log n). Line 4

is equivalent to computing distances through the set A with
respect to the distances {δ(u, v)}u∈V ,v∈A computed in Line 3.

This takes O
(

(
√
n log n)2/3

n1/3
+ 1

)

= O(log n) rounds by The-

orem 7.
To implement Line 5, we choose k′ = n1/4, and use

Theorem 5 to find the k′-nearest nodes in O
((

k′
n2/3

+
log n

)

log k′
)

= O(log2 n) rounds. To implement Line 6,

we use our distance through sets algorithm, with respect to
the sets Nk′(v). Since k′ = n1/4, the complexity is O(1)
by Theorem 7. To implement Line 7, we use Lemma 1 to
build A′ of size O(n log n/k′) = O(n3/4 log n) that hits all
the sets Nk′(v) for v ∈ G ′. Note that all the nodes already
computed the sets Nk′(v). The complexity is O((log log n)3)

rounds. Each node updates all the nodes if it is in A′ which
takes one round. To implement Line 8, we use a sparse
variant of our MSSP algorithm, as follows. First, we com-
pute a (β, ε)-hopset H of size O(n3/2 log n) for G ′ using
Theorem 8. The complexity is O(

log2 n
ε

) rounds and β =
O(

log n
ε

). Now, the β-hop distances in G ′ ∪ H give (1 + ε)-
approximation for the distances inG ′. Hence, to approximate
the distances of all nodes from A′, we use our (S, d, k′′)-
algorithm in the graph G ′ ∪ H , with S = A′, k′′ = |A′| =
O(n3/4 log n), d = β. InG ′ themaximumdegree is k = √

n,
and H is of size O(n3/2 log n), hence the graph G ′ ∪ H is
of size O(n3/2 log n). Thus, by Theorem 6, the complexity

is O
((

(n3/2 log n)1/3·(n3/4 log n)2/3

n + 1
)

log n
ε

)

= O(
log2 n

ε
).

Implementing Line 9 takes one round since each node
v knows Nk′(v) and A′. To implement Line 10 it is
enough that each node v sends to each node u the val-
ues {δ(v, p′(v)), δ(v, p′(u))}. Finally, we explain how we
implement Line 11. For this we multiply the following 3
matrices. The matrix M1(u, w) = δ(u, w) if w ∈ Nk′(u)

and M1(u, w) = ∞ otherwise. The matrix M3 = MT
1 . I.e.,

M3(w, u) = M1(u, w), and thematrixM2(u, v) = δ(u, v) if
{u, v} ∈ E ′ and M2(u, v) = ∞ otherwise. Note that M1, M3

have O(n5/4) entries which are not ∞, since the sizes of
the sets Nk′(v) are n1/4. Also, from the definition of G ′, the
matrixM2 has O(n3/2) entries which are not∞.Wemultiply
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M1 ·M2 ·M3 in themin-plus semiring. For this, we first multi-
ply M1 ·M2 which takes O(1) rounds based on their sparsity,
by Theorem 3. Then, we multiply the resulting matrix and
M3. Since the maximum degree in M1 is k′ = n1/4 and the
maximum degree in M2 is k = √

n, we get that in M1 · M2

the maximum degree is n3/4. Hence, the matrix M1 · M2 has
at most n7/4 non-∞ elements, and M3 has at most n5/4 non-
∞ elements. Hence multiplying (M1 · M2) · M3 takes O(1)
rounds By Theorem 3 (choosing ρ̂ST = n). Since the multi-
plication is in the min-plus semiring and by the definition of
the matrices, it holds that after the multiplication any pair of
nodes u, v computed the value

min
u′∈Nk′ (u),v′∈Nk′ (v),

{u′,v′}∈E ′

{δ(u, u′) + δ(u′, v′) + δ(v′, v)}.

This completes the proof. 	


6.3.4 Correctness

Lemma 20 By the end of the algorithm, for all u, v ∈ V , it
holds that δ(u, v) ≤ (2 + ε)dG(u, v).

Proof If dG(u, v) = 1, then after Line 1, δ(u, v) = 1 and
we are done. Hence, we assume that dG(u, v) ≥ 2. Let P
be a shortest path between u and v in G. We first consider
the case that P has a high-degree node u′ of degree at least
k = ˜O(

√
n). Then, u′ has a neighbour w ∈ A. For now,

we use the notation d(u, v) for dG(u, v). From the triangle
inequality, d(u, w) ≤ d(u, u′) + d(u′, w) = d(u, u′) + 1
and d(v,w) ≤ d(v, u′)+ 1. Also, since u′ ∈ P , it holds that
d(u, v) = d(u, u′) + d(u′, v). Hence, d(u, w) + d(w, v) ≤
d(u, u′) + 1 + d(u′, v) + 1 ≤ d(u, v) + 2 ≤ 2d(u, v). In
Line 3, we compute (1 + ε)-approximations for the values
d(u, w), d(w, v), hence after Line 4, we have δ(u, v) ≤ (2+
2ε)d(u, v).

We next consider the case that P has only low-degree
nodes, hence it is contained in the graphG ′. From now on we
work with the graph G ′, and use d(u, v) for dG ′(u, v). Since
P is contained in G ′, it holds that dG ′(u, v) = dG(u, v). The
proof is divided into 3 cases, as in the proof of Lemma 18.

Case 1: there is a node w ∈ P ∩ (Nk′(u) ∩ Nk′(v)). Then,
d(u, v) = d(u, w) + d(w, v). Also, u and v computed the
values d(u, w), d(w, v) in Line 5, and δ(u, v) = d(u, w) +
d(w, v) = dG ′(u, v) = dG(u, v) after Line 6.

Case 2: there is a node w ∈ P\(Nk′(u) ∪ Nk′(v)). Since
w ∈ P , p′(u) ∈ Nk′(u) and p′(v) ∈ Nk′(v), we
have d(u, p′(u)) + d(v, p′(v)) ≤ d(u, w) + d(v,w) ≤
d(u, v). Exactly as in the proof of Case 2 in Lemma 18,
we get that min{d(u, p′(u)) + d(p′(u), v), d(v, p′(v)) +
d(p′(v), u)} ≤ 2d(u, v). Since our algorithm computes
d(u, p′(u)), d(v, p′(v)) exactly in Line 5 and approximates

d(u, p′(v)), d(v, p′(u))within (1+ ε) factor in Line 8, after
Line 10 we have δ(u, v) ≤ (2 + 2ε)d(u, v).

Case 3: P is composed of a path between u to a node
u′ ∈ Nk′(u), an edge {u′, v′} ∈ E ′ where v′ ∈ Nk′(v) and
a path between v′ and v. In this case, δ(u, u′) = d(u, u′)
and δ(v′, v) = d(v, v′) after Line 5, and δ(u′, v′) = d(u, v)

after Line 1. Hence, in Line 11 we set δ(u, v) = δ(u, u′) +
δ(u′, v′) + δ(v′, v) = d(u, v).

To conclude, in all cases we have δ(u, v) ≤ (2 +
2ε)dG(u, v) by the end of the algorithm. Choosing ε′ = 2ε
completes the proof. 	


6.3.5 Conclusion

From Lemmas 19 and 20, we get the following.

Theorem 10 There is a deterministic (2+ ε)-approximation
algorithm for unweighted APSP in the Congested Clique

model that takes O(
log2 n

ε
) rounds.

7 Other applications

7.1 Exact single-source shortest paths

Weshow that our distance tools allow to get a faster algorithm
for exact SSSP in undirected weighted graphs, improving
the previous ˜O(n1/3)-round algorithm [13]. The algorithm
is very simple, and is based on ideas used in [22,48,55]. We
start by computing the distances to the nodes in Nk(v) for
all v ∈ V using our k-nearest algorithm. Then, we add to
the graph all the edges {{u, v}|u ∈ V , v ∈ Nk(u)} with the
weightsd(u, v) computed by the algorithm,which results in a
new graph G ′. G ′ is called the k-shortcut graph or k-shortcut
hopset in [22,48], and it is proved in [48] that the shortest
path diameter of G ′ is O(n/k). I.e., for any pair of nodes
u, v there is a shortest path between u and v of hop-distance
at most O(n/k) in G ′.

Lemma 21 (Theorem 3.10 in [48]) The shortest path diam-
eter of G ′ is smaller than 4n/k.

Now, to compute SSSP from a certain node we just run the
classic Bellman-Ford algorithm [9,25] in the graphG ′ which
takes O(n/k) rounds in a graph with shortest path diameter
O(n/k), even in the more restricted CONGEST model (see
e.g., [48]). To optimize the complexity, we choose k = n5/6.
Now, finding the k-nearest takes ˜O(k/n2/3) = ˜O(n1/6)
rounds by Theorem 5, and the Bellman-Ford exploration
takes O(n1/6) rounds, proving the following.

Theorem 11 There is a deterministic algorithm for exact
SSSP in undirected weighted graphs that takes ˜O(n1/6)
rounds in the Congested Clique model.
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7.2 Diameter

We show that using our distance tools we can implement effi-
ciently the algorithm of Roditty andVassilevskaWilliams for
approximating the diameter [54], which is an extension of the
algorithm of Aingworth et al. [4]. We focus on an algorithm
for unweighted graphs, and later discuss an extension to the
weighted case.

The algorithm for approximating the diameter is based on
computing BFS trees from ˜O(

√
n) nodes. A difference in

our case is that we compute (1 + ε)-approximate distances
from the same nodes, and not the exact distances, which
affects slightly the approximation obtained. Also, our algo-
rithm works only for undirected graphs. Another difference
from [54] is that we compute distances to the nodes in Nk(v).
This is useful in our case, since we can compute these dis-
tances exactly which is useful for the analysis, it also allows
us to give a deterministic algorithm. The algorithm works as
follows.

1. Each node v computes the distances to Nk(v) for k = √
n.

2. We compute a hitting set S of size ˜O(
√
n) that hits all

the sets {Nk(v)}v∈V .
3. We compute (1+ ε)-approximate distances from S to all

the nodes.
4. Let p(v) ∈ S ∩ Nk(v) be a closest node to v from S. v

knows the distance to p(v) and sends to all the nodes the
value d(v, p(v)).

5. Letw ∈ V be a node such that d(w, p(w)) ≥ d(v, p(v))

for all v ∈ V , we compute (1+ε)-approximate distances
from the set Nk(w) (including w) to all the nodes.

6. The estimate for the diameter is the maximum distance
found in Line 3 or 5.

Claim 22 The algorithm takes O(
log2 n

ε
) rounds.

Proof Let k = √
n. Computing the distances to the k-nearest

neighbours takes O(log2 n) rounds by Theorem 5. We com-
pute a hitting set A of size O(

√
n log n) that hits the sets

Nk(v) using Lemma 1, and then each node tells all nodes if it
is in S which takes 1 round. Line 3 is implemented using our

MSSP algorithm that takes O(
log2 n

ε
) rounds since A is of size

O(
√
n log n). The distance d(v, p(v)) is already known to v

since p(v) ∈ Nk(v), and sending the values d(v, p(v)) takes
one round. After Line 4, all the nodes can deduce the node
w (breaking ties by ids), since w knows the set Nk(w), it can
update all the nodes in Nk(w) that they are in this set, and in
one additional round all the nodes learn Nk(w). Then, imple-
menting Line 5 is done using our MSSP algorithm which

takes O(
log2 n

ε
) rounds since k = √

n. Computing the max-
imum estimate takes one additional round. To conclude, the

complexity is O(
log2 n

ε
) rounds. 	


Wenext prove that the approximation returned by the algo-
rithm is nearly 3/2, following the proof in [54]. Since we
compute (1+ ε)-approximate distances, we may also get an
estimate that is greater than D by a (1+ ε) factor. If we want
the estimate to be always at most D we can divide by 1+ ε.

Claim 23 Let G = (V , E) be an undirected graphwith diam-
eter D = 3h + z, where h ≥ 0 and z ∈ {0, 1, 2}, and let D′
be the estimate returned by the algorithm. Then, 2h + z ≤
D′ ≤ (1 + ε)D if z ∈ {0, 1}, and 2h + 1 ≤ D′ ≤ (1 + ε)D
if z = 2.

Proof The analysis is based on the analysis in [54] (see
Lemma 4). The difference in our algorithm compared to [54]
is that in some cases we approximate distances instead of
computing exact ones. However, all the distances d(v, p(v))

are computed exactly, which shows that the definition of
w in our algorithm is exactly as in [54]. Let a, b be such
that d(a, b) = D, where D is the diameter of the graph.
The analysis in [54] is divided to cases. In the first case,
d(w, p(w)) ≤ h, and they show that in this case there is
a node at distance at least 2h + z from p(a). Our algorithm
computes (1+ε)-approximate distances to all the nodes p(v),
hence at least one of our estimates is at least 2h + z in this
case.

A second case is that there is a node of distance at least
2h + z from w. Since we compute approximate distances
from w, one of our estimates is at least 2h + z in this case.
The last case to consider is that all the nodes are at distance
smaller than 2h + z from w, and d(w, p(w)) > h. In this
case, they show that there exists a nodew′ ∈ Nk(w) such that
d(a, w′) ≥ 2h + 1. Since we compute (1 + ε)-approximate
distances from all the nodes in Nk(w), our estimate is at
least 2h + 1. In addition, since all the distances computed
are (1 + ε)-approximate distances, our estimate is at most
(1 + ε)D. This completes the proof. 	


Remark As stated in [54], the same analysis works also
for weighted graphs with non-negative weights with a loss of
an additive W term where W is the maximum edge-weight.
I.e., the estimate obtained satisfies 
2D/3 − W� ≤ D′ ≤
(1 + ε)D. The implementation is exactly the same in our
case.

8 Discussion

In this paper, we provide new tools for distance computa-
tions in theCongested Cliquemodel based on sparseMM.
We demonstrate the power of these tools by providing effi-
cient algorithms for many central problems, such as APSP,
SSSP, and diameter approximation. We believe that these
techniques may be useful for many additional tasks in dis-
tance computation in the Congested Clique, and possibly
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also in additional related models. Many intriguing questions
are still open.

First, while we provide constant approximations for many
tasks in polylogarithmic time, the complexity of our exact
SSSP algorithm is still polynomial. It would be interesting to
study whether it is possible to obtain a polylogarithmic algo-
rithm for the exact case. Surprisingly, even for the simple task
of computing a BFS tree there is currently no sub-polynomial
algorithm in the Congested Clique.

Second, while our MM algorithms work also for the
directed case, our hopset construction is only for the undi-
rected case and hence our results are for undirected graphs.
Also, as we explain in Sect. 1.2, obtaining any approxima-
tion for directed APSP in sub-polynomial time would give a
sub-polynomial algorithm formatrixmultiplication. It would
be interesting to study whether it is possible to provide sub-
polynomial algorithms for directed SSSP.

Our unweighted APSP algorithm provides a (2 + ε)-
approximation, whereas in the weighted case there is cur-
rently an additional additive term, and a natural question is
whether we can get a (2 + ε)-approximation for weighted
APSP in polylogarithmic time as well. Another interesting
goal is to obtain additive approximations in sub-polynomial
time.
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