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Abstract

We give a distributed algorithm in the CONGEST model for property testing of planarity
with one-sided error in general (unbounded-degree) graphs. Following Censor-Hillel et al. (DISC
2016), who recently initiated the study of property testing in the distributed setting, our algo-
rithm gives the following guarantee: For a graph G = (V,E) and a distance parameter ǫ, if G
is planar, then every node outputs accept, and if G is ǫ-far from being planar (i.e., more than
ǫ · |E| edges need to be removed in order to make G planar), then with probability 1−1/poly(n)
at least one node outputs reject. The algorithm runs in O(log |V | · poly(1/ǫ)) rounds, and we
show that this result is tight in terms of the dependence on |V |.

Our algorithm combines several techniques of graph partitioning and local verification of
planar embeddings. Furthermore, we show how a main subroutine in our algorithm can be
applied to derive additional results for property testing of cycle-freeness and bipartiteness, as
well as the construction of spanners, in minor-free (unweighted) graphs.

1 Introduction

Planarity is an important and well studied property of graphs. In the setting of centralized al-
gorithms, there are several algorithms that run in linear time for deciding whether a graph is
planar (e.g., [36, 33, 4]). In the context of distributed algorithms in the CONGEST [42] (and even
LOCAL [41]) model, the number of rounds must be at least linear in the diameter of the graph
(for any deterministic or randomized one-sided error algorithm). One begging question is whether
there exists an algorithm (in the CONGEST model) for deciding planarity whose round complexity
matches (or is not too far) from this lower bound.1 Another question is whether there exists a
natural relaxation of this decision problem, which allows to obtain round complexity that does not
depend on the diameter.

In this work we address the latter question, by considering the relaxation of property testing
in the distributed setting. In all that follows, unless explicitly stated otherwise, when we refer
to distributed algorithms, we mean in the CONGEST model. Following Censor-Hillel et al. [6],
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1We note that Ghaffari and Haeupler [23] consider a different, but related question of finding a planar embedding

of a planar graph. They give a distributed algorithm for this problem using O(D ·min{log n,D}) rounds (where D
is the diameter and n is the number of nodes).
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who recently initiated the study of distributed property testing, we require the following from the
algorithm. Let G = (V,E) be a graph over n nodes and m edges. If G is planar, then all nodes
should output accept, while if G is ǫ-far from being planar (i.e., more than ǫ · m edges should be
removed in order to make G planar), then at least one node should output reject. The algorithm
is allowed a bounded error probability, where if it errs only on graphs that are ǫ-far from being
planar, then it is said to have one-sided error .2

Our main result is a distributed one-sided error property testing algorithm for planarity that
runs in O(log(n)poly(1/ǫ)) rounds and succeeds with probability 1 − 1/poly(n). We also show
that Ω(log n) rounds are necessary for any such algorithm and constant ǫ (even if the algorithm is
allowed a constant error probability), implying that our result is tight up to the dependence on ǫ.

In the context of (centralized) property testing, there is a line of work on two-sided error testing
of planarity in bounded-degree graphs [3, 32, 40, 35]. The best known algorithm [35] performs
polynomial number of queries in d and ǫ, where d is the degree bound (and succeeds with high
constant probability). The best one-sided error testing algorithm [34], for bounded-degree graphs,
has query complexity n1/2+o(1), which is almost optimal. There is no known sublinear testing
algorithm for unbounded-degree graphs. Note that in contrast, in the distributed setting we are
able to obtain an optimal (in terms of the dependence on n) algorithm that has one-sided error
and works for unbounded-degree graphs.

In addition to our main result, we show that under the promise that G is planar (and more
generally, minor-free3 for any fixed minor), we can use our techniques to obtain other distributed
property testing algorithms as well as an algorithm for the construction of spanners.4

In the next two subsections we discuss our results in more detail.

1.1 A high-level description of our algorithm for testing planarity

The algorithm works in two stages. The goal of the first stage (which is deterministic) is to partition
the nodes of G into parts for which the following holds: (1) Each part is connected and has diameter
poly(1/ǫ); (2) The total number of edges between parts is at most ǫm/2. In the course of this stage,
some node(s) may obtain evidence that the graph is not planar, and output reject. This evidence
is in the form of messages received that are not consistent with the execution of the algorithm
on any planar graph. Conditioned on this stage completing successfully, if G is ǫ-far from being
planar, then the subgraph induced by at least one of the parts in the partition is (ǫ/2)-far from
being planar. The goal of the second stage is to search for evidence in each part to non-planarity,
by exploiting the fact that the diameter of each part is small.

We next give some more details about each stage of the algorithm. Before doing so we recall
several notions and basic facts. A forest decomposition of a graph is a partition of its edges into
forests. The arboricity of a graph is the minimum number of forests into which its edges can
be partitioned. Any planar graph has arboricity at most 3, and if we perform any sequence of
contractions of edges on a planar graph, then we obtain a planar graph.

2Observe that if the algorithm has one-sided error and a constant error probability, then its error probability can
be reduced to δ, for a given parameter δ, at a multiplicative cost of log(1/δ) in the number of rounds. We are able
to obtain error probability 1/poly(n) without this extra cost.

3Recall that a graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained by zero or
more edge contractions on a subgraph of G. We say that a graph G is H-minor free (or excludes H as a minor) if
H is not a minor of G. We say that G is “minor-free” if it is H-minor free for some fixed H of constant size.

4A spanner of a graph G is a (sparse) subgraph of G that maintains distances up to a multiplicative factor, s,
which is called the stretch factor, and the spanner is referred to as an s-spanner.
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The first stage. The first stage consists of t = O(log(1/ǫ)) phases. At the start of phase i,
the nodes are partitioned into ki parts, denoted P 1

i , . . . , P
ki
i where each part is connected and has

diameter at most 4i−1. Let us denote this partition by Pi. In the initial partition, P1, each part
simply consists of a single node. For each phase, let Gi denote the auxiliary weighted graph that
results from contracting each part P j

i into a single node, which we denote by v(P j
i ). The weight of

an edge (v(P j
i ), v(P

j′

i )) is the number of edges in G with one endpoint in P j
i and the other in P j′

i .
Each phase starts by emulating the (deterministic distributed) forest decomposition algorithm

of Barenboim and Elkin [2] on Gi (ignoring the weights). This algorithm works in O(log(n)) rounds
and gives the following guarantee. If Gi has arboricity at most α, then the algorithm provides a
forest decomposition into at most 3α forests. On the other hand, if the algorithm fails in defining
such a decomposition, then at least one node (in Gi and hence in G) has evidence that Gi has
arboricity greater than α.

Following the above forest decomposition step, the algorithm executes a merging step (based on
the clustering method of Czygrinow, Hańćkowiak, and Wawrzyniak [10]). In this step, parts of Pi

are merged, thus creating Pi+1. This merging procedure satisfies the following: (1) The maximum
diameter of the parts in Pi+1 is at most a constant factor larger than the maximum diameter of
the parts in Pi; (2) The number of edges in G between parts in Pi+1 (the total weight of edges in
Gi+1) is a constant fraction of the number of edges between parts in Pi (the total weight of edges
in Gi). The latter crucially relies on the bounded arboricity of Gi, which is ensured by the forest
decomposition step.

Thus, the following central feature of (the first stage of) our algorithm emerges. Though we do
not have a promise that the underlying graph is planar (indeed, it may be far from being planar),
we are able to build on algorithms that work under the promise that the graph is planar. Namely,
in each phase we verify that Gi has bounded arboricity, by running an algorithm that works under
the promise that the underlying graph has bounded arboricity. Failure of this algorithm is detected
by at least one node in the graph. On the other hand, if this algorithm succeeds, then we are
ensured that we shall make the desired progress in the transformation from Gi to Gi+1 (in terms of
the decrease in the total weight of edges).

The second stage. Assume the first stage completed successfully (where this always holds if
G is planar), and let P = (P 1, . . . , P k) be the final partition of the nodes (i.e., P = Pt). Recall
that the subgraph induced by each part is connected, and has diameter poly(1/ǫ). Furthermore,
the first stage ensures the following for each part P j: (1) There is a designated root vertex in P j ,
denoted rj, where each node in P j knows the identity of rj; (2) There is an underlying spanning
tree in P j, rooted at rj, where each node in P j knows which of its incident edges is also incident
to its parent in the tree, and which edges are incident to its children.

The second stage consists of two steps. In the first step, the (deterministic distributed) planar
embedding algorithm of Ghaffari and Haeupler [23] is emulated on the subgraph induced by each
part P j, denoted Gj . The planar embedding algorithm works under the promise that Gj is planar,
and when it completes, each node in Gj has a circular ordering over its incident edges that corre-
sponds to a planar embedding (what is known as a combinatorial embedding). Since the diameter of
each part is poly(1/ǫ), the number of rounds performed by this algorithm is poly(1/ǫ). If this step
fails in determining an ordering for all nodes (in the aforementioned number of rounds), then this
constitutes evidence that Gj is not planar. However, it is possible that an ordering is determined
though Gj is not planar.
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Hence, the second step in this stage is aimed at detecting non-planarity of some Gj given the
ordering provided by the [23] algorithm.5 More precisely, as noted previously, if G is ǫ-far from
being planar, then at least one Gj is (ǫ/2)-far from being planar. Using the ordering of edges
incident to each node in Gj together with a BFS tree rooted at rj, denoted T j

B (which can be
constructed in poly(1/ǫ) rounds), we define a certain condition on each of the non-tree edges of
T j
B . We show that if Gj is far from being planar, then there are relatively many non-tree edges in

Gj that violate this condition, while if Gj is planar, then no non-tree edge violates this condition.
Furthermore, given a violating edge, it is possible to detect violation in poly(1/ǫ) rounds.6 Hence,
by sampling Θ(log(n)/ǫ) non-tree edges in each Gj and running the detection procedure on each,
a violation is detected with probability 1− 1/poly(1/n).

We note that, as shown in [14, 13], the algorithm of Elkin and Neiman [12] can be adapted
to obtain with high probability a partition of the nodes into parts of diameter O(log(n)/ǫ) such
that the number of edges between parts is at most ǫm. Replacing Stage I in our algorithm with
this procedure (and running Stage II on each part), results in a testing algorithm that runs in
O(log2(n)poly(1/ǫ)) (while our algorithm runs in O(log(n)poly(1/ǫ)) rounds).

1.2 Implications and applications for minor-free graphs

Suppose we have a promise that G is planar, or more generally, minor-free for any constant size
minor. In such a case, the first stage of our algorithm always ensures that the nodes of G are
partitioned into parts with diameter poly(1/ǫ) such that the number of edges between parts is
at most ǫm/2. Such a partition can be used for testing properties such as cycle-freeness and bi-
partiteness (and more generally, hereditary properties that can be tested in a number of rounds
that is linear (or even polynomial) in the diameter). Thus, for cycle-freeness and bipartiteness we
obtain a deterministic testing algorithm that runs in O(log(n)poly(1/ǫ)) rounds. Such a parti-
tion can also be used to obtain poly(1/ǫ)-spanners (for unweighted graphs) (deterministically) in
O(log(n)poly(1/ǫ)) rounds.

We also show how to modify the partition algorithm so as to obtain a tradeoff between the
round-complexity and the success probability of the algorithm. More precisely, with probability
at least 1 − δ, the modified algorithm gives the same guarantee as above for the partition in
O(log(1/ǫ)(log∗(n) + log(1/δ))) rounds. The complexity of the testing algorithms and spanner
construction algorithm are improved accordingly (see Corollaries 20 and 21, respectively). Finally,
if constant success probability suffices, then it is possibly to remove the dependence on n completely.

The testing results can be compared with the Ω(log n) lower bound of Censor-Hillel et al. [6] for
distributed testing of these properties on general (bounded-degree) graphs (with constant success
probability). The spanner result can be compared to the recent result of Elkin and Neiman [12].
They provide a k-round distributed algorithm for general (unweighted) graphs that with probabil-
ity 1− δ constructs a (2k − 1)-spanner with O(n1+1/k/δ) edges. In order to obtain an ultra-sparse
spanner, namely, a spanner of size n(1 + o(1)) (with probability 1 − o(1)), it is necessary to set
k = ω(log n). In our context, of minor-free graphs, we can obtain an ultra-sparse spanner deter-

5It was communicated to us by one of the authors of [23] that their algorithm can be modified so as to detect
if the underlying graph is not planar [28]. For the sake of a self-contained presentation, we rely on version of the
algorithm as provided in [23] (which works under the promise that the graph is planar), and check that the ordering
computed by [23] is consistent with a planar embedding.

6We note that a previous version of the definition of this condition, given in the conference version of this paper [39],
contained an error, which is fixed in the current version.

4



ministically for any ǫ = o(1), which allows to construct ultra-sparse spanners with stretch s for any
s = ω(1).

1.3 Related work

Distributed Property Testing. As noted previously, the study of distributed property test-
ing was initiated by Censor-Hillel et al. [6]. In particular, they designed and analyzed distributed
property testing algorithms for: triangle-freeness, cycle-freeness, and bipartiteness. As noted pre-
viously, they also proved a logarithmic lower bound for the latter two properties. Fraigniaud et
al. [22] studied distributed property testing of excluded subgraphs of size 4 and 5.

Since the appearance of the above papers, there was a fruitful line of research in distributed
property testing for various properties, mainly focusing on properties of whether a graph excludes
a sub-graph, e.g., triangle-freeness, cycle-freeness, subgraphs of constant size, tree-freeness, clique
freeness [21, 19, 20, 14, 13, 18]. In [17] the problem of testing the conductance of the input graph
was studied, and a two-sided error tester is given.

Brakerski and Patt-Shamir [5] considered a related problem in the distributed setting. They
show how to find a subset of vertices that is ǫ-close to being a clique if there is a subset that is
ǫ3-close to being a clique.

Distributed Algorithms with a promise in the CONGEST model. There is a large variety
of distributed algorithms that work under a promise that the graph is planar (similarly, excludes a
fixed minor, has bounded arboricity, and more). See e.g. [2, 38, 37, 1, 23, 24, 29, 30, 25, 26, 31].

Centralized Property Testing. Most works in property testing on H-minor freeness (and re-
lated properties) focus on two-sided error testers. The problem of testing general H-minor freeness
was studied by Benjamini, Schramm and Shapira in [3]. They showed that every minor-closed
property of bounded degree graphs is testable with two-sided error with query complexity which
is independent of the size of the graph. Subsequent work [32, 40] improved the dependence on the
proximity parameter, ǫ. Yoshida and Ito [43] provided a tester with two-sided error for outerpla-
narity whose query complexity is poly(1/ǫ). Eden et al. [11] studied tolerant testing of bounded
arboricity in the general graph model and showed almost tight bounds in terms of the dependence
on n and m.

Czumaj et al. [8] studied property testing of H-minor freeness with one-sided error. They
proved that for H which is a forest, H-minor freeness can be tested in query complexity which is
independent on n. For any H that contains a cycle they showed a lower bound of Ω(

√
n) queries.

They also provided almost matching upper bounds for any H which is a simple cycle. Recently,
Fichtenberger et al. [16] provided a Õ(n2/3)-query tester for outerplanarity, and other properties
that can be characterized by forbidden minors, with one-sided error.

Czumaj et al. [9] studied testing bipartitness under the promise the input graph is planar.
While in general, the query complexity of testing bipartitness is Ω(

√
n), even for bounded degree

graphs, they showed that under the promise of planarity, bipartiteness can be tested in time which
is independent of n, even if the maximum degree is unbounded.

2 The algorithm for testing planarity

In this section we establish the following theorem.
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Theorem 1 There exists a distributed one-sided error property testing algorithm for planarity that
runs in O(log(n) · poly(1/ǫ)) rounds in the CONGEST model.

As noted in the introduction (Section 1.1), our algorithm works in two stages: a Partition stage
and a Planarity testing stage. In what follows we describe and analyze each in detail, where we
refer to the first as Stage I and the second as Stage II.

2.1 A detailed description and analysis of Stage I

Recall from the description in the introduction (Section 1.1) that Stage I consists of t = O(log(1/ǫ))
phases. Each phase is associated with a partition of the nodes, where in the initial partition each
node is a singleton part, and in general, each part is connected. We denote by Pi = (P 1

i , . . . , P
ki
i )

the partition associated with Phase i. Each partition Pi defines an auxiliary weighted graph,
denoted Gi. Each part P j

i corresponds to a node in Gi, denoted v(P j
i ), and the weight of an edge

(v(P j
i ), v(P

j′

i )) is the number of edges with one endpoint in P j
i and the other in P j′

i . Each part in
Pi+1 is a union of several parts in Pi.

Each phase consists of two steps: A forest decomposition step and a merging step. We first
describe these steps in terms of the auxiliary graphs {Gi}t+1

i=1 (so that each part P j
i is viewed as a

single node, which may be denoted by v or u rather than v(P j
i )). We then explain how they are

emulated on G.

Sending message up and down trees. Both in G and in the auxiliary graphs {Gi}t+1
i=1, we

consider distributing information on trees (where each node knows which of its incident edges is
incident to its parent in the tree and which of these edges are incident to its children). For such a
tree T , let r(T ) denote its root. When we say that r(T ) sends a message down the tree, we mean
that r(T ) sends the message to its children in T and they send it to their children, and so on, until
the message reaches all nodes in T . In some cases the message may be augmented/modifed as it
goes down the tree. When we say that the a node v ∈ T sends a message up the tree, we mean
that v sends the message to its parent in T , which in turn send it to its parent, and so on, until it
reaches the root r(T ). Here too a message may be modified as it goes up the tree. In particular, if
several nodes simultaneously send different messages up the tree, then this may cause congestion,
and we explain how this is addressed whenever it arises.

2.1.1 The forest decomposition step on Gi

This step correspond to the forest decomposition algorithm of Barenboim and Elkin [2]. Their
algorithm works under the promise that the underlying graph Gi has arboricity at most α where
in our case α is set to 3 (the bound on the arboricity of planar graphs). The algorithm ignores
the weights on the edges of Gi, and proceeds as follows. Initially all nodes in Gi are active. For
s = Θ(log n) rounds, each active node u does the following. If u has at most 3α active neighbors
(in the current round), then u sends a message to all its neighbors that it becomes inactive in the
next round. As shown in [2] (and is not hard to verify), if Gi has arboricity at most α, then in each
round a constant fraction of the nodes become inactive. Since the number of rounds is Θ(log n)
(and the number of nodes in Gi is at most n), if Gi has arboricity at most α, all the nodes are
inactive by the termination of the algorithm. In other words, if some node remains active after s
rounds, then this serves as evidence that Gi has arboricity larger than α.
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If the process terminates successfully (i.e., all nodes become inactive), then it is possible to
define a forest decomposition into at most 3α forests. That is, it is possible to orient the edges of
Gi so that each node in Gi has at most 3α outgoing edges, one to each of its parents in the different
forests (where no cycles are formed). Specifically, consider a node u that becomes inactive in round
ℓ, and let v1, . . . , vd, for d ≤ 3α, be its active neighbors at the start of round ℓ. For each vq such
that vq remains active in round ℓ+1, we orient the edge {u, vq} from u to vq. For each vq such that
vq also becomes inactive in round ℓ, we orient the edge {u, vq} from the node with the smaller id to
the node with the larger id (so that no directed cycles are formed). We emphasize that each node
knows the orientation of its incident edges.

2.1.2 The merging step: from Gi to Gi+1

Assuming the forest decomposition step completed successfully (and hence each node in Gi has
at most 3α outgoing edges pointing to its parents in the forest decomposition), the merging step
consists of the following sub-steps. Sub-step 2 is as in [10].

1. Each node u in Gi selects its outgoing edge (u, v) that has the highest weight. Let Fi denote
the forest induced by the selected edges.

2. Select a set of “shallow” subtrees of Fi, denoted Ti, as follows:

(a) Obtain a coloring χ of Fi using colors in {1, 2, 3} by running the distributed algorithm
of Cole and Vishkin [7], and Goldberg, Plotkin and Shannon [27].

(b) Mark the edges of Fi according to the rules defined next (where if a node marks an
incident edge, it notifies the other endpoint).

• For each node u such that χ(u) = 1, u marks its outgoing edge (assuming such
exists) if the weight of this edge is greater or equal to the sum of the weights of all
its incoming edges. Otherwise, u marks all its incoming edges.

• For each node u such that χ(u) = 2, u marks its outgoing edge if the other endpoint
is colored 3 and the weight of this edge is greater or equal to the sum of the weights
of all its incoming edges whose other endpoint is colored 3. Otherwise it marks all
these incoming edges.

(c) Let Ti be the set of subtrees induced by the marked edges.

3. For each subtree T ∈ Ti, let w0(T ) denote the total weight of edges that go from an even level
in T up to an odd level (referred to as “even edges”), and let w1(T ) denote the total weight of
the remaining edges in T (referred to as “odd edges”). The root of T , denoted r(T ), obtains
w0(T ) and w1(T ) (by sending a message down the tree so that each node learns its level,
and receiving message sent up the tree in which weights of even/odd edges are summed). If
w0(T ) ≥ w1(T ), then r(T ) sends the message ‘0’ down the tree, and otherwise it sends ‘1’.

4. If the message sent down the tree is ‘0’, then all even edges are contracted, and otherwise all
odd edges are contracted.

Observe that each node in Gi+1 corresponds to a star subgraph in Gi.

Let w(Gi) denote the total weight of edges in Gi (and similarly define w(Fi) and w(Ti)).

7



Claim 1 The merging step runs in O(log∗ n) rounds (on Gi) and w(Gi+1) ≤
(
1− 1

12α

)
· w(Gi).

Proof: First observe that by the definition of Fi (in Sub-step 1), w(Fi) ≥ w(Gi)/3α. By [7],
the number of rounds performed in Sub-step 2a is O(log∗ n) (and hence O(log∗ n) bounds the
number of rounds performed in all of Sub-step 2). By the analysis presented in [10, Section 2],
w(Ti) ≥ w(Fi)/2, and the height of each tree T in Ti is at most 10. Therefore, Sub-step 3 runs in
a constant number of rounds (and the same is true of Sub-step 4). Finally, by the choice of which
edges to contract (in Sub-step 3), the weight of the contracted edges is at least w(Ti)/2. The claim
follows.

2.1.3 Successful completion of Stage I

Before turning to the emulation of Stage I on G, we introduce one definition and two claims, whose
correctness does not depends on the details of the emulation.

Definition 2 We say that Stage I completes successfully if the forest decomposition step in each
phase terminates with no remaining active node.

Claim 3 If G is planar, then Stage I always completes successfully. If G is ǫ-far from being planar,
then either Stage I does not complete successfully, or w(Gt+1) ≤ ǫm/2.

Proof: The first part of the claim follows immediately from the fact that the arboricity of
planar graphs is at most 3 and that any minor of a planar graph is planar. The second part of
the claim follows from the fact that w(G1) = m, Claim 1, and the setting of the number of phases
t = Θ(log(1/ǫ)).

Claim 4 For each phase i and part P j
i , the subgraph induced by P j

i is connected and has diameter
at most 4i.

Proof: We prove the claim by induction on i. The claim trivially holds for i = 1. To establish the
induction step, consider a single merging step in which the nodes v(P j1

i ), . . . , v(P js
i ) in Gi all merge

with v(P j0
i ) (that is, the edges

{(
v(P

jq
i ), v(P j0

i )
)}s

q=1
were contracted). Clearly, the subgraph

induced by
⋃s

q=0 P
jq
i (which corresponds to a part in Pi+1) is connected. As for the diameter of

this subgraph, by the induction hypothesis, it is at most 3 · 4i + 2 ≤ 4i+1.

Conditioned on Stage I completing successfully, let P = (P 1, . . . , P k) denote the final partition
(i.e., P = Pt+1). For each j ∈ [k], let Gj = G(P j) denote the subgraph induced by P j. As a
corollary of Claim 4 we get:

Corollary 5 Each Gj is connected and has diameter poly(1/ǫ).

2.1.4 Preliminaries for the emulation

For each phase i ∈ [t] and part P j
i ∈ Pi, let G

j
i denote the subgraph induced by P j

i . We say that a

node u ∈ P j
i is a boundary node, if at least one of its neighbors belongs to a part P j′

i for j′ 6= j.
In Section 2.1.6 we establish the following lemma.
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Lemma 6 For every i ∈ [t] and every P j
i ∈ Pi, there is a unique root node rji ∈ P j

i , such that each

node in P j
i knows the identity of rji . Furthermore, there is a spanning tree of Gj

i , rooted at rji and

denoted T j
i , for which the following holds. Each node u in Gj

i knows which of its incident edges is

incident to its parent in T j
i and which of these edges is incident to its children.

2.1.5 Emulating the forest decomposition step

We assume that at the start of each phase i, the conditions in Lemma 6 hold. We refer to each
round in the forest decomposition algorithm described in Section 2.1.1 (on Gi) as a super-round .
In the forest decomposition step of each phase i, we have s = O(log n) super-rounds in which each
active node v(P j

i ) in Gi needs to determine if it is still active in the next super-round and to send
a corresponding message to its neighbors. Each super-round is emulated by several rounds (on G),
as described next.

The root of P j
i , r

j
i , plays the role of v(P j

i ) as follows. For each super-round ℓ, at the start of

which v(P j
i ) is active, if r

j
i determines in the course of this super-round that v(P j

i ) should remain

active in the next super-round (ℓ+1), then it sends a message (‘Active’, rji ) down the tree T j
i . Each

boundary node in P j
i also sends this message to its neighbors outside of P j

i . The process by which

rji determines in super-round ℓ whether v(P j
i ) remains active or not is defined as follows (where this

process is also executed one super-round after v(P j
i ) becomes inactive so that rji can learn which

neighbors of v(P j
i ) also became inactive in super-round ℓ).

At the beginning of each super-round ℓ, each boundary node u in P j
i that received in the previous

super-round messages of the form (‘Active’, rj
′

i ) for j′ 6= j, does the following. If u received more
than 3α such messages with distinct root ids, then it sends a message ‘Active’ up the tree (meaning
that v(P j

i ) should remain active since it has more than 3α active neighbors). Otherwise, for each

rj
′

i such that u received a message (‘Active’, rj
′

i ), u sends a message (‘Active’, rj
′

i , x) to its parent,

where x indicates how many messages (‘Active’, rj
′

i ) it received. These messages go up the tree,
where if a node u receives the message ‘Active’, then this is the single message it passes on. If u

did not receive ‘Active’ but it received more than 3α messages (‘Active’, rj
′

i , x) with distinct root

ids, then it also sends ‘Active’ up the tree. Otherwise, for each rj
′

i , let the messages u received

with this root id be (‘Active’, rj
′

i , x1), . . . , (‘Active’, r
j′

i , xq). Then u sends its parent a message(
‘Active’, rj

′

i ,
∑q

p=1 xp

)
. Finally, if rji received the message ‘Active’ or if it received more than 3α

messages with distinct root ids, then rji determines that v(P j
i ) remains active in the next super-

round. Otherwise, it determines that v(P j
i ) becomes inactive. In the latter case, not only that the

out-edges of v(P j
i ) can be determined by rji , their weights can be determined as well (this is the

role of the third parameter in the messages going up the tree).

The total number of rounds (on G) sufficient for emulating a single super-round on Gi is hence
upper bounded by the maximum diameter of parts in Pi, which by Claim 4 is poly(1/ǫ) (times 3α,
which is a constant).

If after all O(log(n)) super rounds there is some rji such that v(P j
i ) is still active, then rji outputs

reject (implying that Stage I did not complete successfully).
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2.1.6 Emulating the merging step

In this subsection we explain how to emulate all sub-steps in the merging step, and establish
Lemma 6 by induction on i. The base of the induction, i = 1 is trivial, since in P1 each node
belongs to a singleton part, and in one round each node learns the identity of all its neighbors.

Determining the heaviest out-edge (Sub-step 1). For a part P j
i , consider the super-round

ℓ in the forest decomposition algorithm in which v(P j
i ) becomes inactive. By the end of this super-

round, rji obtained the ids of the roots, r
j′1
i , . . . , r

j′q
i where q ≤ 3α, such that v(P

j′1
i ), . . . , v(P

j′q
i ) are

the active neighbors of v(P j
i ) in Gi at the start of super-round ℓ. Furthermore, for each of the

corresponding parts P
j′p
i , the root rji obtained the number of edges between P j

i and P
j′p
i , so that it

knows the weight of (v(P j
i ), v(P

j′p
i )) in Gi.

It remains to determine which of these edges is an outgoing edge of v(P j
i ). If ℓ is not the final

round, then in the next round, rji learns which of nodes v(P
j′
1

i ), . . . , v(P
j′q
i ) remained active in round

ℓ + 1. For each such node v(P
j′p
i ), the edge (v(P j

i ), v(P
j′p
i )) is an outgoing edge of v(P j

i ), and for

each v(P
j′p
i ) that also became inactive in super-round ℓ, the direction of the edge is determined by

the ids of rji and r
j′p
i . If ℓ is the last round, then either some node in Gi remained active, causing the

corresponding root node in G to reject, or all nodes in Gi became inactive, so that edge directions
are determined by root ids.

For the sake of the following sub-steps, it will be convenient to designate, for each selected

outgoing edge (v(P j
i ), v(P

j′

i )), a single edge (u, v) in G such that u ∈ P j
i and v ∈ P j′

i . To this end,

let (v(P j
i ), v(P

h(i,j)
i )) be the heaviest outgoing edge of v(P j

i ). The root, r
j
i send a message with the

id of r
h(i,j)
i down the tree. Each node u ∈ P j

i that has a neighbor in P
h(i,j)
i ) sends its id up the

tree, where if a node receives more than one “candidate” node id from its children, then it sends
the minimum id among them. In this manner, rji obtains the id of a single node uji ∈ P j

i that has

a neighbor, vji , in P
h(i,j)
i , and it can notify uji that it “in charge” of of the outgoing edge of P j

i (by
sending an appropriate message down the tree).

Selecting (marking) shallow subtrees (Sub-step 2). In order to emulate this sub-step it is
first necessary to emulate the coloring algorithm of Cole and Vishkin [7], and Goldberg, Plotkin
and Shannon [27]. The important observation is that in this algorithm, whenever a node v(P j

i ) in
Fi sends a message to its children in Fi (where a message is always of size O(log n) bits), it sends
the same message. Hence, this can be emulated by simply sending (broadcasting) this message
from rji down the tree T j

i . Once the message reaches the boundary nodes of P j
i they also send it

to their neighbors in G, and the message can go up the trees of the parts corresponding to the
children of v(P j

i ). Sending a message from v(P j
i ) to its parent in Fi is similar (and even simpler,

since there is a single parent).
In order to emulate the marking of edges, each root rji needs to gather information regarding

the number of edges between P j
i and parts P j′

i such that j = h(i, j′), for the different color classes.
This information can be easily gathered by sending appropriate messages up the tree, and summing
edge counts that correspond to the same color.
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Deciding if to contract even or odd edges in each tree (Sub-step 3). The emulation of
this part is also simple. For each tree T ∈ Ti, first messages should be sent down T , so that each
v(P j

i ) can learn its level. Each such message from v(P j
i ) to its children in T , v(P j1

i ), . . . , v(P
jq
i ) is

emulated by sending a message down T j
i from rji , and then up the trees T

jp
i . In a similar manner

messages are sent up the tree T , summing up the weights of even and odd edges, and then the bit
‘0’ or ‘1’ is sent down T .

Contracting edges (Sub-step 4). Once a root rji corresponding to a node v(P j
i ) learns that

the edge (v(P j
i ), v(P

h(i,j)
i )) should be contracted, it sends a message down the tree T j

i notifying all

nodes that r
h(i,j)
i is their new root. When this message reaches uji (the node in charge of the edge

(v(P j
i ), v(P

h(i,j)
i ))), it makes vji (its neighbor in P

h(i,j)
i ) its parent, and sends a message up T j

i that

each edge on the path to rji should flip its orientation. The induction step for Lemma 6, follows.

Emulation cost. The total number of rounds (on G) sufficient for emulating the merging step
(from Gi to Gi+1) is hence upper bounded by O(log∗(n)) (by Claim 1) times the maximum diameter
of parts in Pi, which by Claim 4 is poly(1/ǫ).

2.2 A detailed description and analysis of Stage II

Assume Stage I completes successfully. By Claim 3, this always holds when G is planar, and by
the definition of planarity, each subgraph Gj is planar. On the other hand, if G is ǫ-far from being
planar, then by Claim 3, at least one subgraph Gj∗ is (ǫ/2)-far from being planar. That is, if for
each j ∈ [k] we let m(Gj) denote the number of edges in Gj , then the number of edges that need
to be removed from Gj∗ in order to make it planar is at least (ǫ/2)m(Gj∗).

2.2.1 Preliminary preprocessing rounds

Stage II begins with several preliminary rounds of basic information gathering, where we build on
Corollary 5 and Lemma 6. Specifically, we use the fact that each Gj is connected, has diameter
poly(1/ǫ) and has a designated root node, rj, that is known to all nodes in Gj .

• In the first poly(1/ǫ) rounds, for each j ∈ [k], the nodes in each Gj construct a BFS tree,
rooted at rj and denoted T j

B . This is done simply as follows. The root rj sends a message
(rj , rj, 0) to all its neighbors (indicating that it belongs to level 0 in the BFS tree rooted at
rj). Once a node u in Gj receives a message (rj, v, s) from a neighbor v, u notifies v that it
is v’s child in the tree, and sends a message (rj, u, s+1) to all its neighbors (this is of course
done only once, upon receiving this first such message). When this process terminates, each
node in Gj knows which of its incident edges is incident to its parent in T j

B , which edges are

incident to its children in T j
B , and which are edges in Gj that do not belong to T j

B (which we
refer to as non-tree edges). Each edge in Gj is assigned to its higher-level endpoint (breaking
ties by ids in the case of edges with both endpoints in the same level).

• In the next poly(1/ǫ) rounds, for each j ∈ [k], the root rj obtains the number of nodes n(Gj)
in Gj and the number of edges, m(Gj). This is done simply by sending the corresponding
information up the tree T j

B . Namely, to obtain n(Gj), each node sends its parent the number
of nodes in its subtree (once it obtains the number of nodes in the subtrees of its children).
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Similarly, to obtain m(Gj), each node sends its parent the number of edges assigned to nodes
in its subtree. Once n(Gj) and m(Gj) are computed by rj, it can broadcast them (down T j

B)
to all nodes in Gj (in another poly(1/ǫ) rounds).

2.2.2 Planarity testing within each Gj

If m(Gj) > 3n(Gj) − 6, then rj rejects. Otherwise, the distributed planar embedding algorithm
of Ghaffari and Haeupler [23] is executed on Gj . Recall that if Gj is planar, then this algorithm
computes for each node a circular ordering of its incident edges (known as a combinatorial em-
bedding), such that there exists a planar (geometric) embedding of Gj that is consistent with all
edge orderings. If some node v does not obtain an ordering of its incident edges in Gj (within the
allotted number of rounds: O(D(Gj) + min(log(n(Gj)),D(Gj)) where D(Gj) is the diameter of
Gj)), then it rejects.

As noted in the introduction, it was communicated to us by one of the authors of [23] that
their algorithm can be modified so as to detect if any Gj is not planar [28]. For the sake of a
self-contained presentation, we rely on version of the algorithm as provided in [23] (which works
under the promise that Gj is planar). Therefore, it remains to show how to verify (efficiently) that
the ordering of edges incident to each node is indeed consistent with a planar embedding. To this
end, we first introduce several notations and definitions.

Let τ = {τu}u∈V denote the ordering of edges in Gj (as computed by the algorithm of Ghaffari
and Haeupler [23]), which is with respect to the clockwise order of the embedding, and let τ̃ be
the same ordering of edges as τ but with respect to the counter-clockwise order. In particular for
each u ∈ V , and for every three edges (u, v1), (u, v2), (u, v3), τ̃u indicates whether (u, v2) is between
(u, v1) and (u, v3) in counter-clockwise order.7

Using the ordering τ̃ , together with the BFS tree T j
B, each node in Gj associates a label with

each of its incident edges (and in particular those incident to its children in T j
B). Specifically, rj

arbitrarily labels one of its incident edges e by ‘1’, and the remaining edges are labeled consecutively
according to their order with respect to e. For each other node u in the tree, if the circular counter-
clockwise order of its incident edges is (u, v1), (u, v2), . . . , (u, vk) where v1 is its parent in the BFS
tree, then u labels (u, vj) by j, and we denote this by ℓ(u, vj) = j (indeed each edge has two labels,
one from each of its endpoint, so that ℓ(vj , u) may differ from ℓ(u, vj)).

8

This labeling of edges is then used to induce a labeling on the nodes of Gj in the natural manner:
the label of a node u, denoted ℓ(u) is the concatenation of the labels of the edges on the path in
T j
B from rj down to the node, where for each edge we use the label associated by the parent node.

This labeling can be computed in poly(1/ǫ) rounds, by distributing the label information down the
tree, starting from rj. This labeling of nodes defines a lexicographic order on the nodes.9

We next introduce several notions regarding cycles and violating edges. See Figure 1a for an
illustration of the notions introduced in Definitions 7 and 8.

7Note that for any subgraph H of Gj , the ordering τ̃ defines a combinatorial embedding of H as well.
8The reason that we use the counter-clockwise order rather than the clockwise order is so that the edges in the

tree will be in the standard, left-to-right order.
9That is, for two (different) nodes u and v, let ℓ(u) = σ1, . . . , σp and ℓ(v) = σ′

1, . . . , σ
′
q , where without loss of

generality, p ≤ q (and for u = rj we have p = 0). Let i be the maximum index such that σ1, . . . , σi = σ′
1, . . . , σ

′
i,

where if no such index exists, then i = 0. If i = p, then ℓ(u) < ℓ(v). Otherwise, ℓ(u) < ℓ(v) if σi+1 < σ′
i+1, and

ℓ(u) > ℓ(v) otherwise.

12



y

x1

u v

w1

z1

w2

z2x2

u
0 v

0

(a)

y

x2

u v
w3

z3

x3

w2

z2

w1

z1

x1

x5

z5

x4
z4

w4

w5

(b)
y

x1

u v

x2

(c)

y

u v

u
0

v
0

(d)

Figure 1: In all subfigures, the BFS tree edges are depicted as black edges. The non-tree edge (u, v)
is depicted by a gray edge - forming the simple cycle C(u, v). The vertices of C(u, v) are ordered
as depicted by the red arrows, i.e., (y, . . . , w1, . . . , u, v, . . . , y).
Two cases are considered in Sub-figure 1a: (1) x1 is inside, and (2) x2 is outside. Moreover, the
edge (u′, v′) is also inside C(u, v) w.r.t. u′ and v′. The shortest paths from C(u, v) to these x’s are
along the BFS tree.
In Sub-figure 1b we give examples of nodes xi that are inside C(u, v): (1) x1 satisfies: ℓ(u) < ℓ(x1) <
ℓ(v) and x1 is not a descendant of u (similarly for x2 and x5); (2) x3 satisfies: (a) ℓ(u) < ℓ(x3) < ℓ(v),
(b) it is a descendant of u and (c) ℓ(u, z3) > ℓ(u, v); (3) x4 is a descendant of v and ℓ(v, z4) < ℓ(v, u).
In Sub-figures 1c and 1d we give examples of violating edges: (1) in Sub-figure 1c, x1 ∈ I(u, v)
while x2 ∈ O(u, v), hence the edge (x1, x2) is a violating edge. In Sub-figure 1d the edge (u′, v′) is
inside C(u, v) w.r.t. u′ but is outside C(u, v) w.r.t. v′, hence it is a violating edge.
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Definition 7 Let H be a subgraph of Gj , and let C be a cycle in H, where we consider a fixed
ordering of the vertices on the cycle: C = (x1, . . . , xk, x1). For a vertex xi on the cycle and an
edge (xi, y), we say that (xi, y) is inside C with respect to xi (and τ̃), if (xi, y) is between (xi, xi+1)
and (xi, xi−1) in the (counter-clockwise) ordering of edges incident to xi as defined by τ̃ (where for
i = 1, xi−1 = xk and similarly for i = k, xi+1 = x1). Otherwise, (xi, y) is outside C (with respect
to xi and τ̃).

Definition 8 Let (u, v) be a non-tree edge in Gj (with respect to the BFS tree T j
B) where ℓ(u) <

ℓ(v). Let y be the least common ancestor of u and v in T j
B, and let C(u, v) be the simple cycle

consisting of (in this order), the path from y to u in T j
B, the edge (u, v), and the path from v to y

in T j
B.
Let x be a node that does not belong to C(u, v), and consider the node on C, w, for which the

length of the path from u to w in T j
B in minimized. We say that x is inside C(u, v) if the first edge

(w, z) on this path is inside C(u, v) with respect to w and τ̃ (as defined in Definition 7). Otherwise
x is outside C(u, v).

Observe that by Definition 8 and the definition of the labeling ℓ, a node x is inside C(u, v) if
and only if one of the following conditions holds (see Figure 1b).

• ℓ(u) < ℓ(x) < ℓ(v) and x is not a descendant of u;

• ℓ(u) < ℓ(x) < ℓ(v), x is a descendant of u and ℓ(u, z) > ℓ(u, v) where z is the ancestor of x
that is a child of u.

• x is a descendant of v and ℓ(v, z) < ℓ(v, u) where z is the ancestor of x that is a child of v.

Using Definitions 7 and 8 we define violations between edges.

Definition 9 Let (u, v) and (u′, v′) be two non-tree edges in Gj (with respect to the BFS tree T j
B).

We say that (u′, v′) is in violation with respect to (u, v) if one of the following conditions hold.

• u′ and v′ are both on C(u, v), and the edge (u′, v′) is on different sides of C(u, v) with respect
to its two endpoints (see Figure 1d).

• u′ is inside C(u, v) and v′ is outside of C(u, v) (see Figure 1c).

• u′ is inside (outside) of C(u, v), v′ is on C(u, v), and the edge (u′, v′) is outside (respectively,
inside) C(u, v). (An illustration for this case is very similar to that shown in Figure 1c, and
is hence omitted.)

We say that (u, v) is a violating edge, if there exists at least one non-tree edge (u′, v′) that is violating
with respect to (u, v).

Claim 10 If Gj is planar, then there are no violating edges in Gj .

Proof: Consider a planar embedding of Gj that is consistent with the ordering τ̃ . Recall that
τ̃ is the output of the algorithm of Ghaffari and Haeupler [23], and that by the correctness of
the algorithm, such an embedding exists. For each non-tree edge (u, v) consider the cycle C(u, v)
as defined in Definition 8. Let u′ and v′ be two nodes in Gj . If u′ and v′ are both on C(u, v)
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and there is an edge between them, then either (u′, v′) is inside C(u, v) both with respect to u′

and with respect to v′ or it is outside C(u, v) with respect to both. Otherwise there is no planar
embedding of C(u, v) + (u′, v′) that is consistent with τ̃ . Similarly, if neither u′ nor v′ belongs to
C(u, v), suppose that u′ is defined to be inside C(u, v) according to Definition 8 and v′ is defined
to be outside, or vice versa. Since the planar embedding is consistent with τ̃ , the nodes u′ and v′

must be embedded on different sides of C(u, v), and hence there cannot be an edge between u′ and
v′. Similar arguments hold for the case that one of the two nodes is on C(u, v) and the other is
inside/outside C(u, v).

Recall that T j
B is a BFS tree defined over Gj and that violations are defined with respect to a

labeling ℓ that is induced by τ̃ . For a subgraph H of Gj , we say that H is connected by T j
B if for

every two nodes u and v in H, there is a path in H consisting only of edges belonging to T j
B . We

shall use the following notation in our proof that if Gj does not contain any violating edges, then
it is planar (Claim 13).

Definition 11 Let H be a subgraph of Gj that is connected by T j
B. For any edge (u, v) in H that

does not belong to the tree T j
B where ℓ(u) < ℓ(v), let IH(u, v) and OH(u, v) denote the subset of

nodes in H that are inside and outside C(u, v), respectively (according to Definition 8).

• Let EI
H(u, v) denote the set of edges that are either incident to IH(u, v) or edges for which

both endpoints are on C(u, v) and are inside C(u, v) with respect to both endpoints.

• Similarly, let EO
H(u, v) denote the set of edges that are either incident to OH(u, v) or edges for

which both endpoints are on C(u, v) and are outside C(u, v) with respect to both endpoints.

• Let SI
H(u, v) denote the subgraph consisting of C(u, v) and EI(u, v).

• Similarly, let SO
H(u, v) denote the subgraph consisting of C(u, v) and EO(u, v).

We will also use the following lemma. In order to prove the lemma we apply a slight variant of
Lemma 7.2 and Corollary 7.1 in [15]. Since the details are very similar to those appearing in [15],
they are deferred to the appendix.

Lemma 12 Let C(u, v) be a cycle in H as defined in Definition 8. If both SI
H(u, v) and SO

H(u, v)
(see Definition 11) are planar and have a planar embedding that is consistent with τ̃ , then H is
planar and has a planar embedding that is consistent with τ̃ as well.

We are now ready to prove Claim 13, stated next.

Claim 13 If Gj does not contain any violating edges, then it is planar.

Proof: We show that for any subgraph H of Gj that is connected by T j
B, if there are no violating

edges in H, then there exists a planar embedding of H that is consistent with τ̃ .
We prove this claim by induction on the pair (t, h), where t is the number of non-tree edges in

H, and h is the total number of edges. The base cases are t = 0 and t = 1 (for any h), for which it
is easy to see that H is always planar. (Observe that if h ≤ 3, then t ≤ 1.)

For the induction step, consider a subgraph H (connected by the edges of T j
B) with t ≥ 2

non-tree edges and h edges. Note that for any non-tree edge (u, v), H is the union of SI
H(u, v) and

SO
H(u, v), since there are no edges between nodes in IH(u, v) and OH(u, v). We consider two cases.
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The first case is that there exists a non-tree edge, (u, v), such that both EI(u, v) and EO(u, v)
are non-empty. Observe that both SI

H(u, v) and SO
H(u, v) are connected by edges of T j

B . Since
there are no violating edges in H, there are also no violating edges in each of these two subgraphs.
We can therefore apply the induction hypothesis (since the number of edges in each subgraph is
strictly smaller than in H), and infer that both SI

H(u, v) and SO
H(u, v) have planar embeddings, and

furthermore, that each of these embeddings is consistent with τ̃ . By Lemma 12, the claim follows.
The second case is that there exists a non-tree edge, (u, v), such that EI(u, v) is empty. In this

case we remove (u, v) and consider a planar embedding that is consistent with τ̃ of the resulting
graph H ′. By the induction hypothesis such an embedding of H ′ exists. Now, we claim that it is
possible to add (u, v) to this embedding and obtain a planar embedding of H that is consistent
with τ̃ . To verify this, observe that the inside of C(u, v) with respect to τ̃ is empty and therefore
it is possible to add the edge (u, v), in a manner that is consistent with τ̃ , without crossing any
edges of H ′.

If both cases do not occur, then it is implied that either there are no cycles (namely, t = 0)
or that for all non-tree edge, (u, v), EO(u, v) is empty. The latter implies that there is a single
non-tree edge in the graph (i.e., t = 1). This completes the proof of the claim.

As a corollary of Claim 13 we get:

Corollary 14 If Gj is γ-far from planarity, then there exist at least γ · m(Gj) violating edges in
Gj .

Given Claims 13 and 10, the algorithm proceeds as follows. First rj broadcasts the labels
of s = Θ(log n/ǫ) non-tree edges of Gj that are selected uniformly, independently, at random.
Such a selection can be performed in log n · poly(1/ǫ) rounds. In particular, each node can decide
independently for each of the non-tree edges assigned to it whether it is selected (by flipping a
coin with bias Θ((log n/ǫ)/m̃j) for each of these edges, where m̃j is the total number of non-tree
edges in Gj). The selected edges (i.e., pairs of node labels) are sent up the tree, where if the
number of selected edges is significantly larger than the expected number, then the algorithm fails
(this happens with probability 1/poly(n)). Once rj obtaines such a sample of non-tree edges, it
broadcasts the labels of these edges to all nodes in the tree. Each node in the tree can now check
whether any of the non-tree edges assigned to it is in violation with any one of the sampled edges,
and reject based on such a violation.

We have thus completed establishing Theorem 1.

3 A lower bound

Recall that for a fixed graph H, H is a minor of a graph G if H is isomorphic to a graph that can be
obtained by zero or more edge contractions on a subgraph of G. We say that a graph G is H-minor
free (or excludes H as a minor) if H is not a minor of G. For a family H of (constant-size) graphs,
we say that a graph G is H-minor free if it is H-minor free for every H ∈ H. In particular, planar
graphs are {K3,3,K5}-minor free.

In this section we establish the following theorem, which extends a result of Censor-Hillel et
al. [6, Theorem 7.3] for K3-minor freeness (cycle-freeness).10

10To be precise, the graphs in the lower-bound construction of Censor-Hillel have a constant degree, while the
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Theorem 2 Let H be a fixed family of constant-size graphs where at least one H ∈ H contains a
cycle. Any distributed one-sided error algorithm for testing H-minor freeness must run in Ω(log n)
rounds (for constant ǫ).

Our proof of Theorem 2 is very similar to the proof of Theorem 7.3 in [6]. We also build on a lower
bound proof of Czumaj et al. [8] for one-sided error testing of minor-freeness. Similarly to [6], we
use the probabilistic method to establish that for any constant k and any number of nodes n, there
exist graphs G over n nodes for which the following hold: (1) G is ǫ-far from being Kk-minor free
for ǫ = ǫ(k); (2) G contains no cycles of length log(n)/c for a sufficiently large constant c = c(k).
Theorem 2 directly follows by setting k to be the minimum size of H ∈ H that contains a cycle
and observing that for any one-sided error algorithm that runs in less than log(n)/c rounds, when
executed on G, all nodes must accept.

In order to construct such graphs, we first select a graph G̃ distributed according to G(n, p) for
p = Θ(1/n), and prove that it is far from being Kk-free with high probability. We then show that
by removing a relatively small number of edges, the resulting graph, G, has no short cycles, and
remains far from being Kk-free.

Claim 15 Let G̃ be a graph selected according to G(n, p) for p = 1000k2/n. With probability
1 − 2Ω(n), the graph G̃ has at most 2000k2n edges and is ǫ-far from Kk-minor freeness for ǫ =
1/(50k2).

Proof: Since the expected number of edges in G̃, denoted m(G), is p ·
(n
2

)
< pn2 = 1000k2n, by a

multiplicative Chernoff bound, the probability that m(G) > 2000k2n is at most e−pn2/3 = 2−Ω(n).
From this point on we condition on the event that m(G) ≤ 2000k2n.

We say that G̃ is well connected if for every two disjoint subsets C1 and C2 of nodes such that
|C1|, |C2| ≥ n/3k, the number of edges with one endpoint in C1 and the other in C2 is greater
than ǫm. We next establish the following subclaim: With probability 1 − 2Ω(n), the graph G̃ is
well connected. For any two subsets C1 and C2 of nodes such that |C1|, |C2| ≥ n/3k, the expected
number of edges between them is at least p(n/3k)2 ≥ 100n. Once again by a multiplicative Chernoff
bound, the probability that there are less than 50n edges between the two sets is at most e−5n. The
number of such pairs of subsets is upper bounded by 3n, and so the probability that for some such
pair of subsets there are less than 50n edges between them, is upper bounded by 2−Ω(n). Setting
ǫ = 1/(50k2), the subclaim follows. From this point we also condition on the event that G̃ is well
connected.

The remainder of the argument follows [8, Proof of Claim 6.2]. Consider an arbitrary partition
of the nodes in G̃ into k equal size subsets, U1, . . . , Uk, and let G̃i be the subgraph induced by
Ui. We claim that each G̃i contains a connected component of size at least n/3k. To verify this,
let W 1

i , . . . ,W
t
i be the connected components of G̃i. Assume, contrary to the claim, that each

connected component contains less than n/3k nodes. But this means that there exists a subset of
indices J ⊂ [t] such that both Wi =

⋃
j∈J W

j
i and W ′

i =
⋃

j∈[t]\J W
j
i contain at least n/3k nodes

each. But since G̃ is well connected, there must be an edge between some node in Wi and some
node in W ′

i , and we get a contradiction. We thus have, for each part Ui, a connected component,

W
j(i)
i of size at least n/3k. Using once again the assumption that G̃ is well connected, we get that

graphs in our lower bound construction do not necessarily have a constant degree. However, we can easily modify
the construction so that the graphs have a constant degree, in the same manner as in [6, Theorem 7.3].
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for each pair (W
j(i)
i ,W

j(i′)
i′ ), there are more than ǫm edges between W

j(i)
i and W

j(i′)
i′ . This implies

that G̃ is ǫ-far from being Kk-minor free.
The next claim uses the same argument as in [6, Lemma 7.7].

Claim 16 Let G̃ be as defined in Claim 15 and let G be a graph resulting from G̃ by removing a
single edge from each cycle in G̃ whose length is less than log(n)/c(k), where c(k) = Θ(log k). With
probability at least 1/2− 2−Ω(n), the graph G is ǫ-far from Kk-minor freeness for ǫ = 1/(100k2).

Proof: Let S be a fixed set of ℓ nodes. The probability (over the choice of G) that there is
a cycle over S is at most ℓ! · pℓ. Therefore, the expected number of cycles of length at most ℓ is
upper bounded by

(
n
ℓ

)
· ℓ! · pℓ < (1000k2)ℓ, and with probability at least 1/2 it is at most twice

this number. If we set ℓ = log(n)/ log(1000k2) then by Claim 15 and a union bound over all “bad”
events, Claim 16 follows.

4 A partitioning algorithm for minor-free graphs and applications

In what follows, when we use the term “a distributed partitioning algorithm”, we mean an algorithm
that gives the following guarantee. Upon completion, there is a partition P = (P 1, . . . , P k) of the
nodes such that for each j ∈ [k], the subgraph induced by P j is connected, and there is a designated
node rj ∈ P j such that all nodes in P j know the id of rj. We first note that Stage I of our testing
algorithm (described in Section 2.1) implies the next theorem.

Theorem 3 There exists a deterministic distributed partitioning algorithm in the CONGEST model
for which the following holds. For an edge-cut parameter ǫ ∈ (0, 1), the algorithm runs in
O(poly(1/ǫ) log n) rounds, the diameter of each part is poly(1/ǫ), and if G is minor-free, then
the total number of edges between parts is at most ǫn.

We show that by modifying the algorithm referred to in Theorem 3, we obtain a tradeoff between
the round complexity and the success probability, as stated next.

Theorem 4 There exists a distributed partitioning algorithm in the CONGEST model for which
the following holds. For an edge-cut parameter ǫ ∈ (0, 1) and a confidence parameter δ ∈ (0, 1), the
algorithm runs in O(poly(1/ǫ)(log(1/δ) + log∗ n)) rounds, the diameter of each part is poly(1/ǫ),
and if G is minor-free, then with probability at least 1− δ, the total number of edges between parts
is at most ǫn.

Remark 1 If one is willing to settle for constant success probability (i.e., constant δ), then the
round complexity of Theorem 4 can be improved to be only poly(1/ǫ).

In what follows we prove Theorem 4.
Recall that in the algorithm for testing planarity described in Section 2, the source of the

dependence on log(n) in the round complexity was due to the forest decomposition step in each
phase of the partition stage. This step served to verify that each Gi has constant arboricity, as
well as to allow for each node in Gi to select its heaviest outgoing edge in the corresponding forest
decomposition (when the arboricity is bounded as required).

If however, there is a promise that G is H-minor free, for any fixed H of constant size h, then
the arboricity of every Gi is upper bounded by a constant c(h). Therefore, there is no need to
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perform this arboricity verification step. Furthermore, as we show below, instead of selecting the
heaviest outgoing edge in a forest decomposition, it suffices to select a random incident edge, where
the probability to select an edge is a function of its weight.

As discussed above, the algorithm referred to in Theorem 4 is a modified version of Stage I of
the planarity testing algorithm. It too runs in log(1/ǫ) phases, where in Phase i it coarsens the
partition Pi and obtains the partition Pi+1 (initially, P1 is the partition into singleton parts). The
first difference is that the forest decomposition step is not executed. The second difference is in the
choice of an incident edge for each node in Gi. We next describe how the choice of an incident edge
is performed as well as the merge decision. In Section 4.1 we explain how this choice and decision
are emulated on G. Once a decision to merge is made, the emulation of the merge is performed as
described in Section 2.1.6.

Recall that the algorithm in Section 2.1.2, which runs on Gi, consists of 4 Sub-steps. Sub-step 1
is the only sub-step that is modified: Instead of selecting the heaviest out-going edge, each node
in Gi randomly selects an edge as described next. The resulting graph, i.e., the graph induced on
the selected edges, is guaranteed to be a directed pseudo-forest: the edge selected by each node is
its only out-edge, and if an edge is selected by both endpoints then it is oriented as the out-edge
of the node of lower id. We note that for Sub-steps 2a and 2b we only rely on the fact that Fi is a
directed pseudo-forest. In order to show that the marking process in Sub-step 2b results in a graph
which is a forest we prove Claim 19. This claim is required for the correctness of Sub-step 3 of the
algorithm.

Edge Selection. Let α be the arboricity of Gi (which is a constant since G is minor-free). Each
node in Gi draws one of its incident edges with probability that is proportional to its weight.
Namely, for a node u ∈ Gi and an edge (u, v), the probability that u draws (u, v) is w(u,v)

w(v) where

w(v) =
∑

(y,v)∈E(Gi)
w(y, v). This is repeated s = Θ(log(1/δ)) times, and then each node selects the

edge of maximum weight over the s trials. We call this weighted-edge selection.

We prove the following lemma.

Lemma 17 With probability at least 1 − δ, the total weight of the edges selected in Gi is at least
w(Gi)
16α .

Proof: Consider a forest decomposition of Gi into α forests. Orient the edges from children to
parents so that the out-degree of each node is at most α. Let wout(v) denote the weight of the
out-going edges incident to v. Observe that w(Gi) =

∑
v∈V (Gi)

wout(v) =
1
2

∑
v∈V (Gi)

w(v). Let U
denote the set of nodes, v, such that wout(v) ≥ w(v)/4. Then,

∑

v∈U

wout(v) =
∑

v∈V

wout(v)−
∑

v/∈U

wout(v) ≥ w(Gi)−
∑

v/∈U

w(v)/4 ≥ w(Gi)/2 . (1)

Let v ∈ U and i ∈ [s]. Define w(v, i) to be the weight of the edge that v drew in trial i. Then
Ex[w(v, i)] ≥ wout(v)/(4α). To verify this, observe that with probability at least 1/4, v draws one of
its out-edges, and conditioned on that, with probability at least 1/α, the heaviest out-edge is drawn.
By linearity of expectation and Equation (1), for each trial i ∈ [s], Ex

[∑
v∈U w(v, i)

]
≥ w(Gi)/(8α).

We claim that for every i ∈ [s], with probability at least 1−1/(16α−1),
∑

v∈U w(v, i) ≥ w(Gi)/(16α).
Assume otherwise and obtain a contradiction:

Ex

[
∑

v∈U

w(v, i)

]
<

w(Gi)

16α − 1
+

(
1− 1

16α − 1

)
w(Gi)

16α
=

w(Gi)

8α
.
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Thus, the probability that in all s trials we get that
∑

v∈U w(v, i) < w(Gi)/(16α) is at most
(1/(16α − 1))s. Since s = Θ(log(1/δ)), we obtain that with probability at least 1 − δ, there exists
a trial i ∈ [s] such that

∑
v∈U w(v, i) ≥ w(Gi)/(16α). From the fact that

∑
v∈U maxi(w(v, i)) ≥

maxi
(∑

v∈U w(v, i)
)
, we obtain the desired result.

Claim 18 With probability at least 1− δ, w(Gi+1) ≤
(
1− 1

64α

)
· w(Gi).

Proof: The proof follows from Lemma 17 and the same analysis as in Claim 1.

Claim 19 For an input graph that is a directed pseudo-forest, the graph resulting from the marking
process in Sub-step 2b is a tree.

Proof: We first note that given a directed pseudo-forest, the only cycle that might exist in the
graph has to be a directed cycle. Assume towards contradiction that there exists a directed cycle
in the marked graph. We claim that it must contain a node that is colored by 1. To verify this,
observe that any vertex that is colored by 2, cannot have a marked outgoing edge and a marked
incoming edge, such that for both edges, the other endpoint is colored by 3. But since every node
that is colored by 1 can only have either out-going edges or in-going edges, we reach a contradiction.

4.1 Emulation of the weighted-edge selection

In what follows, when we say that an edge (u, v) ∈ E(G) is incident to a part P j
i , we mean that

u ∈ P j
i and v ∈ P j′

i for j′ 6= j. In order to draw an edge incident to v(P j
i ) in Gi with probability

proportional to its weight (i.e., emulate the drawing of edges in the weighted-edge selection), we
run a procedure for uniformly selecting an edge in G incident to P j

i . If the selected edge in G is

(u, v) where v ∈ P j′

i , then the corresponding drawn edge in Gi is (v(P
j
i ), v(P

j′

i )).
This uniform selection is implemented as follows. First, each node sends a message to all its

neighbors with the id of the root of its part. Following this round, each node u on the boundary
of P j

i , knows the set of incident edges (u, v) such that v /∈ P j
i . We denote this set by Ei,out(u) and

let di,out(u) = |Ei,out(u)|. Provided with this information, u selects, uniformly at random, one edge

e ∈ Ei,out(u) and sends its parent (in the tree T j
i ) the message (e, di,out(u)). In each consecutive

round, if a node v received the messages (e1, d1), . . . , (es, ds) from its children, then it does the
following. It sets d =

∑s
p=1 dp, and selects one of the edges ep with probability dp/d. It then

sends the message (ep, d) to its parent. For the sake of consistency of the description, rji sends

messages to itself. At the end of this process (after poly(1/ǫ) rounds), rji has a single edge, denoted

eji = (uji , v
j
i ) for uji ∈ P j

i and vji ∈ P j′

i , that is uniformly distributed among the edges incident to

P j
i .

Theorem 4 now follows from Claim 18, and the fact that the total cost of the weighted-edge
selection is linear in the diameter of the parts P j

i , which is poly(1/ǫ), times the number of repetitions
which is O(log(1/δ)).

4.2 Applications of the partitioning algorithm for minor-free graphs

As a corollary of Theorems 3 and 4 we get the following.
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Corollary 20 There is a deterministic algorithm and a randomized algorithm in the CONGEST
model for testing the following properties on minor-free graphs: cycle-freeness and bipartiteness.
The deterministic algorithm runs in O(poly(1/ǫ) log n) rounds. The randomized algorithm has
one-sided error, runs in O(poly(1/ǫ)(log(1/δ + log∗ n)) rounds and has success probability 1− δ.

We note that similar statements can be derived for any hereditary property that can either be
verified or (property) tested in a number of rounds that is polynomial in the diameter.

Proof: For both properties, first the algorithm of Theorem 3 or Theorem 4 is run with the
edge-cut parameter set to slightly below ǫ (the distance parameter for property testing). Let
P = (P 1, . . . , P k) be the resulting partition, and let Gj denote the subgraph induced by P j . By
both theorems, if G is ǫ-far from having the property in question, then (with probability 1 or with
probability 1−δ) at least one subgraph Gj does not have the property (while if G has the property,
then every Gj has the property). Therefore, it suffices to verify the property on each Gj . To this
end, an algorithm for finding a BFS tree is executed on each Gj . If the case of cycle freeness, each
node now checks whether it has any incident non-tree edges in Gj , and in the case of bipartiteness
it checks whether there is any such edge that closes an odd-length cycle.

The proof of the following corollary is similar.

Corollary 21 There is a deterministic algorithm and a randomized algorithm in the CONGEST
model that, given ǫ ∈ (0, 1), construct an O(poly(1/ǫ))-spanner of any unweighted, minor-free
graph. The spanner has (1 + O(ǫ))n edges with probability 1 in the deterministic algorithm, and
with probability 1 − δ in the randomized algorithm. The round complexity of the deterministic
algorithm is O(poly(1/ǫ) log n) and of the randomized algorithm is O(poly(1/ǫ)(log(1/δ)+ log∗ n)).
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A Proof of Lemma 12

In order to prove Lemma 12, we introduce several notions. These notions are very similar to those
defined in [15, Chap. 7], except that that there it was assumed that the graphs in question have
vertex connectivity at least two. Here we do not make this assumption.

Let H be a connected graph and let C be a simple cycle in H. Consider the connected compo-
nents of the graph resulting from removing the nodes in C. For each such connected component
D, let A(D) denote the subset of nodes on C that neighbor nodes in D. We refer to A(D) as the
attachment nodes of D on C. Let B(D) denote the subgraph induced by nodes of D and A(D),
not including edges of C. If |A(D)| ≥ 2, then we refer to B(D) as a bridge, and if |A(D)| = 1, then
it is a half-bridge. We also refer to edges between pairs of nodes on C as bridges. Two bridges B
and B′ are said to interlace if one of the following holds:
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1. There are two attachments of B, x and y, and two attachments of B′, w and z, such that all
four are distinct, and appear on C in the order (say, clockwise) x,w, y, z.

2. There are three attachments common to B and B′. That is, |A(B) ∩A(B′)| ≥ 3.

The next lemma is a slight modification of Lemma 7.2 in [15] (where here the graph H in
question is not assumed to have vertex connectivity at least two).

Lemma 22 Let B1, . . . , Bs be the set of bridges and half-bridges of a graph H with respect to a
simple cycle C. Suppose that C + Bi is planar for every 1 ≤ i ≤ s and that no two bridges in the
set interlace. Then C + B1 + · · · + Bs can be embedded in the plane so that all the bridges and
half-bridges are inside C.

Proof: We prove the claim by induction on the number of nodes in C +B1 + · · ·+Bs. The base
case is three nodes (there is just a cycle C and no bridges). For the induction step, as in the proof
of Lemma 7.2 in [15], since no two bridges interlace, there must be at least one bridge, Bi for which
the following holds. If we consider the attachments of Bi in clockwise order, a1, . . . , ak (for k ≥ 2),
then there is no other bridge Bj with attachments (strictly) after a1 and before ak on C.

As a corollary of Lemma 22 we obtain:

Corollary 23 Let B1, . . . , Bs be the set of bridges and half-bridges of a graph H with respect to a
simple cycle C. Suppose that C +Bi is planar for every 1 ≤ i ≤ s and that the set of bridges can
be partitioned into two subsets, such that within each subset no two bridges interlace. Then H is
planar.

Building on Corollary 23 we are now ready to prove Lemma 12.

Proof of Lemma 12: Consider the bridges of H with respect to C(u, v). They can be partitioned
into two pairwise noninterlacing subsets: one corresponding the bridges inside C(u, v) and one
corresponding to bridges outside C(u, v) (recall that if the bridges interlace then we cannot embed
them in one side of C(u, v)). Therefore H is planar. It remains to show that there exists a planar
embedding of H which is consistent with τ̃ . For each vertex x in C(u, v), we have the circular
order of its edges in the planar embedding of SI

H(u, v) and SO
H(u, v), respectively. We can merge

this pair of orders into a single order that is consistent with τ̃ simply by concatenating them (the
only edges that these orders have in common are the edges on C(u, v), which are the first and last
edges in both orders). Other vertices of H are either in SI

H(u, v) or SO
H(u, v) (but not in both), so

the ordering remains consistent. �
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