
Distributed Computing (2021) 34:349–365
https://doi.org/10.1007/s00446-021-00401-x

Low-congestion shortcut and graph parameters

Naoki Kitamura1 · Hirotaka Kitagawa1 · Yota Otachi2 · Taisuke Izumi3

Received: 22 October 2020 / Accepted: 8 August 2021 / Published online: 28 August 2021
© The Author(s) 2021

Abstract
Distributed graph algorithms in the standard CONGESTmodel often exhibit the time-complexity lower bound of �̃(

√
n+D)

rounds for several global problems, where n denotes the number of nodes and D the diameter of the input graph. Because
such a lower bound is derived from special “hard-core” instances, it does not necessarily apply to specific popular graph
classes such as planar graphs. The concept of low-congestion shortcuts was initiated by Ghaffari and Haeupler [SODA2016]
for addressing the design of CONGEST algorithms running fast in restricted network topologies. In particular, given a graph
class C, an f -round algorithm for constructing shortcuts of quality q for any instance in C results in Õ(q+ f )-round algorithms
for solving several fundamental graph problems such as minimum spanning tree and minimum cut, for C. The main interest
on this line is to identify the graph classes allowing the shortcuts that are efficient in the sense of breaking Õ(

√
n+ D)-round

general lower bounds. In this study, we consider the relationship between the quality of low-congestion shortcuts and the
following four major graph parameters: doubling dimension, chordality, diameter, and clique-width. The key ingredient of the
upper-bound side is a novel shortcut construction technique known as short-hop extension, which might be of independent
interest.

Keywords Distributed graph algorithms · Low-congestion shortcut · k-chordal graph · Clique width · Minimum spanning
tree

1 Introduction

1.1 Background

The CONGEST is one of the standard message-passing
models when considering distributed graph algorithms. It is
defined as a round-based synchronous system with limited
bandwidth, where each link can transfer O(log n)-bit infor-
mation per round (n is the number of nodes in the system).
Because global distributed tasks such as minimum spanning
tree (MST) inherently require each node to access the infor-
mation far apart from itself, the �(D)-round complexity
becomes an universal lower bound applied to any network
topology, where D represents the diameter of the input topol-
ogy. Although D-round computation is sufficiently long to

B Naoki Kitamura
ktmr522@yahoo.co.jp

1 Nagoya Institute of Technology, Gokiso-cho, Syowa-ku,
Nagoya, Aichi, Japan

2 Nagoya University, Huro-cho, Chikusa-ku, Nagoya, Aichi,
Japan

3 Osaka University, 1-5 Yamadaoka, Osaka, Suita-shi, Japan

make some information reach all the nodes in the network,
the constraint of limited bandwidth precludes the centralized
solution that one node collects the information of the entire
network topology. Thus, the round complexity of CON-
GEST algorithms for global tasks is typically represented
in the form of Õ(nc + D) or Õ(ncD) for some constant
0 ≤ c ≤ 21. The main complexity-theoretic question is
the extent to which we can make c small (ideally c = 0,
which matches the universal lower bound). Unfortunately,
achieving such a universal bound is impossible for sev-
eral fundamental problems including MST, which typically
exhibits the lower bound of �̃(

√
n + D) rounds for general

graphs.
Most of the �̃(nc + D)-round lower bounds for some

c > 0 are derived from special “hard-core” instances, and
do not necessarily apply to popular graph classes such as
planar graphs, which evokes the interest of developing effi-
cient distributed graph algorithms for specific graph classes.
In the last few years, the study along this line has rapidly
made progress, where the concepts of partwise aggrega-
tion and low-congestion shortcuts play an important role. In

1 Õ(·) is a notation that ignores polylog(n) factors from O(·).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00401-x&domain=pdf
http://orcid.org/0000-0002-3143-7200


350 N. Kitamura et al.

the partwise aggregation problem, all nodes in the network
are initially partitioned into a number of disjoint-connected
subgraphs known as a part. The goal of this problem is to per-
form a certain type of distributed task independently within
all the parts in parallel. The executable tasks cover several
standard operations, such as broadcast, convergecast, leader
election, and finding minimum. The low-congestion shortcut
is a framework for solving the partwise aggregation prob-
lem, which is initiated by Ghaffari and Haeupler [15]. The
key difficulty of the partwise aggregation problem appears
when the diameter of a part is much larger than the diameter
D of the original graph. Because the diameter of a part can
become �(n) in the worst case scenario, the naive solution
that performs the aggregation task only by in-part commu-
nication causes the expensive �(n)-round running time. A
low-congestion shortcut is defined as the sets of links aug-
mented to each part to accelerate the aggregation task there.
Its efficiency is characterized by the following two quality
parameters: The dilation is the maximum diameter of all the
parts after the augmentation, whereas the congestion is the
maximumedge congestion of all edges e, where the edge con-
gestion of e is defined as the number of parts augmenting e. In
the application of low-congestion shortcuts, the performance
of an algorithm typically relies on the sum of the dilation and
congestion. Hence, we simply refer to the value of dilation
plus congestion as the quality of the shortcut. It is known
that any low-congestion shortcut with quality q and O( f )-
round construction time yields an Õ( f + q)-round solution
for the partwise aggregation problem, and Õ( f + q)-round
partwise aggregation yields the efficient solutions for sev-
eral fundamental graph problems. Precisely, the following
meta-theorem holds:

Theorem 1 (Ghaffari and Haeupler [15], Haeupler and Li
[23]) Let G be a graph class allowing the low-congestion
shortcut with quality O(q) that can be constructed in O( f )
rounds in the CONGEST model. Then, there exist three algo-
rithms solving (1) the MST problem in Õ( f + q) rounds, (2)
the (1+ ε)-approximate minimum cut problem in Õ( f + q)

rounds for any ε = �(1), and (3) O(nO(log log n)/ logβ)-
approximate weighted single-source shortest path problem
in �̃(( f + q)β) rounds for any β = �(polylog(n))2.

Conversely, if we obtain a time-complexity lower bound for
any problem stated above, then it also applies to the partwise
aggregation and low-congestion shortcuts (with respect to
quality plus construction time). In fact, the Õ(

√
n + D)-

round lower bound of shortcuts for general graphs is deduced
from the lower bound of MST. Meanwhile, the existence of
efficient (in the sense of breaking the general lower bound)
low-congestion shortcuts is known for several major graph

2 The statement of the weighted single-source shortest path problem is
slightly simplified. See [23] for details.

classes as well as its construction algorithms [15,17,18,21,
22,24].

1.2 Our result

Herein, we study the relationship between several major
graph parameters and the quality of low-congestion short-
cuts. In particular, we focus on the following four parameters,
that is: (1) doubling dimension, (2) chordality, (3) diameter,
and (4) clique width. The precise statement of our results is
as follows:

– There is an O(1)-round algorithm that constructs a low
congestion shortcut with quality Õ(Dx ) for any doubling
dimension-x graph.

– There is an O(1)-round algorithm that constructs a
low-congestion shortcut with quality O(kD) for any k-
chordal graph. When k = O(1), its quality matches the
�(D)-universal lower bound.

– For k ≤ D and kD ≤ √
n, there exists a k-chordal graph

where the construction of MST requires �̃(kD) rounds,
implying that the quality plus construction time of our
algorithm is nearly optimal up to polylogarithmic factors.

– There exists an algorithm for constructing a low-congestion
shortcut with quality Õ(n1/4) in Õ(n1/4) rounds for
any graph of diameter three. In addition, there exists
an algorithm for constructing a low-congestion shortcut
with quality Õ(n1/3) in Õ(n1/3) rounds for any graph
of diameter four. These results are similar to the long-
standing complexity gap of the MST construction in
graphs with small diameters, which was originally pro-
posed by Lotker et al. [32].

– We present a negative instance certifying that bounded
clique-width does not help in the construction of good-
quality shortcuts. More precisely, we provide an instance
of clique-width six, where the construction of MST is as
expensive as the general case, i.e., �̃(

√
n + D) rounds.

Table 1 summarizes the state-of-the-art upper and lower
bounds for low-congestion shortcuts. Notably, all the param-
eters considered in this study are independent of the other
(known) parameters admitting good shortcuts (e.g., treewidth
and genus) because the graphs of bounded doubling dimen-
sion, chordality, or diameter can contain the clique of an
arbitrary size and thus, are not a subclass of any minor-
excluded graphs. Therefore, any result presented in this paper
is not a corollary of past results.

For proving our upper bounds, we propose a novel scheme
for shortcut construction, known as short-hop extension. The
simplest form of this scheme is 1-hop extension, where each
node in a part assumes all the incident edges to be the shortcut
of its own part. Surprisingly, this very simple construc-
tion admits nearly optimal shortcuts for graphs of bounded

123



Low-congestion shortcut and graph parameters 351

chordality or doubling dimension. For graphs of diameters
of three or four, the 2-hop extension (that is, each node in a
part takes all the two-length paths starting from itself as the
shortcut) clearly yield O(1) dilation, but the second edge in
each path suffers from high congestion. Our algorithm cir-
cumvents this matter through random choice of the second
edges based on hash functions, which is simple though far
from triviality to bound the quality of constructed shortcuts.
The analytic part includes several new ideas and may be of
independent interest.

1.3 Related work

The MST problem is one of the most fundamental prob-
lems in distributed graph algorithms. As well as its own
importance, MST has several applications for solving other
graph problems in distributed settings (e.g., detecting con-
nected components and minimum cut). Several studies have
addressed the design of efficient MST algorithms in the
CONGEST model [11,12,16,19,20,25,29,35,36], and the
round-complexity of MST construction is a central topic in
distributed complexity theory [8,9,32,33,37,38]. The inher-
ent difficulty of MST construction is solving the partwise
aggregation (minimum) problem efficiently. This viewpoint
was first identified by Ghaffari and Haeupler [15] explicitly,
aswell as an efficient algorithm for solvingMSTconstruction
in planar graphs. The concept of low-congestion shortcuts is
newly invented herein for encapsulating the difficulty of part-
wise aggregation. Recently, several follow-up papers have
been published to extend the applicability of low-congestion
shortcuts, which break the known general lower bounds of
MST and its applications in specific graph classes: This line
covers bounded-genus graphs [15,22], bounded-treewidth
graphs [22], graphs with excluded minors [24], and expander
graphs [17,18] (see Table 1). All the shortcuts stated here
belong to the class of tree-restricted shortcuts, where the
shortcut edges augmented to each part are a subgraph of a
precomputed spanning tree (typically a breadth first search
(BFS) tree). It is shown that there exists a universal algo-
rithm for computing tree-restricted shortcuts [21]. To the best
of our knowledge, the upper bounds presented in this paper
are the first to exhibit non-trivial shortcuts not belonging to
the tree-restricted class. The application of low-congestion
shortcuts is not limited to MST. As stated in Theorem 1,
low-congestion shortcuts also admits efficient solutions for
an approximate minimum cut, and a single-source shortest
path. In addition, a few algorithms utilize low-congestion
shortcuts as an important building block, e.g., the depth first
search in planar graphs [23], approximate tree decomposi-
tion [30], along with diameter and distance labeling scheme
in planar graphs [31]. Haeupler et al. [20] show a message-
reduction scheme of shortcut-based algorithms, which drops
the total number of messages exchanged by the algorithm

into Õ(m), where m denotes the number of links in the
network. On the negative side, it is known that the hard-
ness of (approximate) a diameter cannot be encapsulated by
low-congestion shortcuts. Abboud et al. [1] showed a hard-
core family of unweighted graphs with O(log n) treewidth,
where any diameter computation in the CONGEST model
requires �̃(n) rounds. Because any graph with O(log n)

treewidth admits a low-congestion shortcut of quality Õ(D),
this result implies that it is not possible to compute the
diameter of graphs efficiently by using only the property of
low-congestion shortcuts.

Although our results exhibit a tight upper bound for graphs
of diameter three or four, a more generalized lower bound is
known for small-diameter graphs. [38]. For any log n ≥ D ≥
3, it is proved that there exists a network topology that incurs
the �̃

(
n(D−2)/(2D−2)

)
-round time complexity for any MST

algorithm. In more restricted cases of D = 1 and D = 2,
Jurdzinski et al. [25] and Lotker et al. [32] showed O(1)- and
O(log n)-round MST algorithms, respectively.

1.4 Outline of the paper

The paper is organized as follows. In Sect. 2, we introduce
the formal definitions of the CONGEST model, partwise
aggregation, and low-congestion shortcuts, and other miscel-
laneous terminologies and notations. In Sect. 3, we present a
shortcut construction for graphs of bounded doubling dimen-
sions. In Sect. 4, we show the upper and lower bounds for
shortcuts and MST in k-chordal graphs. Section 5 provides
the shortcut algorithms for graphs of diameters of three or
four. In Sect. 6, we prove the hardness result for bounded
clique-width graphs. The paper is concluded in Sect. 7.

2 Preliminaries

2.1 CONGESTmodel

Throughout this paper, we denote [a, b] as the set of integers
at least a and at most b. A distributed system is represented
by a simple undirected connected graph G = (V , E), where
V denotes the set of nodes and E the set of edges. Let n and
m be the numbers of nodes and edges, respectively, and D
be the diameter of G. Each node has an ID from N (which is
represented by O(log n) bits. In the CONGEST model, the
computation follows a round-based synchrony. In one round,
each node sendsmessages to its neighbors, receivesmessages
from its neighbors, and executes the local computation. It is
guaranteed that every message sent in a round is delivered to
the destination within the same round. Each link can trans-
fer O(log n)-bit information (bidirectionally) per round, and
each node can inject different messages to its incident links.
Each node has no prior knowledge of the network topology.

123



352 N. Kitamura et al.

Table 1 Quality bounds of low-congestion shortcuts for specific graph classes

Graph family Quality Construction time Lower bound

General Õ(
√
n + D) [29] Õ(

√
n + D) [29] �(

√
n + D) [37]

Planar Õ(D) [15] Õ(D) [15] �̃(D) [15]

Genus-g Õ(
√
gD) [22] Õ(

√
gD) [22] �̃(

√
gD) [22]

Treewidth-k Õ(kD) [22] Õ(kD) [22] �(kD) [22]

Clique-width-6 – – �̃(
√
n + D) (this paper)

Expander Õ
(
τ2O(

√
log n)

)
[18]∗ Õ

(
τ2O(

√
log n)

)
[18] –

Doubling dimension-x Õ(Dx ) (this study ) O(1) (this paper) –

k-Chordal O(kD) (this paper) O(1) (this study ) �̃(kD) (this paper)

Minor Õ(D2) [24] Õ(D2) [24] –

D = 3 Õ(n1/4) (this paper) Õ(n1/4) (this paper) �(n1/4) [32,38]

D = 4 Õ(n1/3) (this paper) Õ(n1/3) (this paper) �(n1/3) [32,38]

5 ≤ D ≤ log n – – �̃
(
n(D−2)/(2D−2)

)
[38]

∗ τ is the mixing time of network graph G

except for its neighbor IDs. Given a graph H for which the
node and link sets are not explicitly specified,we denote them
by VH and EH , respectively. Let N (v) be the set of nodes
that are adjacent to v in G, and let N+(v) = N (v)∪ {v}. We
define N (S) = ∪s∈SN (s), and N+(S) = ∪s∈SN+(s), for
any S ⊆ V . For two node subsets X ,Y ⊆ V , we also define
E(X ,Y ) = {(u, v) ∈ E | u ∈ X , v ∈ Y }. If X (resp. Y ) is a
singleton X = {w}, (resp. Y = {w}), we describe E(X ,Y )

as E(w,Y ) (resp. E(X , w)). The distance (that is, the num-
ber of edges in the shortest path) between two nodes u and v

in G is denoted by distG(u, v), and we let U be a path in G.
With a small abuse of notations, we treat U as the sequence
of nodes or edges representing the path, as the set of nodes
or edges in the path, or the subgraph of G forming the path.
A pathU = {s0, s1, . . . , s�} is referred to as chordless if and
only if for any two nodes si , s j ∈ U and |i − j | ≥ 2, it holds
that (si , s j ) /∈ EG

2.2 Partwise aggregation

The partwise aggregation is a communication abstraction
defined over a set P = {P1, P2, . . . , PN } of mutually dis-
joint and connected subgraphs known as parts, and provides
simultaneous fast group communication among the nodes in
each Pi . It is formally defined as follows:

Definition 1 (Partwise Aggregation (PA)) Let P =
{P1, P2, . . . , PN } be the set of connected mutually-disjoint
subgraphs of G, and each node v ∈ VPi maintains variable
biv storing an input value x

i
v ∈ X . The output of the partwise

aggregation problem is to assign ⊕w∈Pi x
i
w with biv for any

v ∈ VPi , where⊕ is an arbitrary associative and commutative
binary operation over X .

The straightforward solution of the partwise aggregation
problem in the CONGEST model is to perform the con-
vergecast and broadcast in each part Pi independently. In
particular, we construct a BFS tree for each part Pi (after the
selection of the root by any leader election algorithm). The
time complexity is proportional to the diameter of each part
Pi , which can be large (�(n) in theworst case) independently
of the diameter of G.

2.3 (d, c)-shortcut

Aswe stated in the introduction, the notion of low-congestion
shortcuts is introduced for quickly solving the partwise
aggregation problem (for some specific graph classes). For-
mal definition of (d, c)-shortcuts is provided as follows:

Definition 2 (Ghaffari and Haeupler [15]) Given a graph
G = (V , E) and partition P = {P1, P2, . . . , PN }, of G
into node-disjoint and connected subgraphs, we define a
(d, c)-shortcut of G and P as a set of subgraphs H =
{H1, H2, . . . , HN } of G such that;

1. For each i , the diameter of Pi + Hi is at most d (d-
dilation).

2. For each edge e ∈ E , the number of subgraphs Pi + Hi

containing e is at most c (c-congestion).

The values of d and c for a (d, c)-shortcutH are known as the
dilation and congestionofH.As a general statement, a (d, c)-
shortcut that is constructed in f rounds admits the solution
of the partwise aggregation problem in Õ(d + c+ f ) rounds
[14,15]. Because the parameter d + c asymptotically affects
the performance of the application, we refer to the value of

123



Low-congestion shortcut and graph parameters 353

d + c as the quality of (d, c)-shortcuts. A low-congestion
shortcut with quality q is simply known as a q-shortcut.

2.4 Lower-bound framework

To prove the lower bound of MST, we introduce a simpli-
fied version of the framework by Das Sarma et al. [38]. In
this framework, we consider the graph class G(n, b, �, c) that
is defined below. A vertex set X ⊆ V is known as connected
if the subgraph induced by X is connected.

Definition 3 For n, b, c ≥ 0 and � ≥ 3, the graph class
G(n, b, �, c) is defined as the set of n-vertex graphs G =
(V , E) satisfying the following conditions:

– (C1) The vertex set V is partitioned into � disjoint vertex
sets X = {X1, X2, . . . , X�}, such that X1 and X�, are
singletons (let X1 = {s} and X� = {r}).

– (C2) The vertex set V \{s, r} is partitioned into b dis-
joint connected sets Q = {Q1, . . . , Qb} such that
|E(X1, Qi )| ≥ 1 and |E(Xl , Qi )| ≥ 1 hold for any
1 ≤ i ≤ b.

– (C3) Let Ri = ⋃
i+1≤ j≤� X j and Li = ⋃

0≤ j≤�−i X j .
For 2 ≤ i ≤ �/2 − 1, |E(Ri , N (Ri ) \ Ri−1)| ≤ c, and
|E(Li , N (Li ) \ Li−1)| ≤ c.

Figure 1 shows the vertex partition X and Q for the hard-
core instances presented in the original proof by Das Sarma
et al. [38]. This graph belongs to G(O(�b), b, �, O(log n)).
For class G(n, b, �, c), the following theorem holds, which
is just a corollary of the result by Das Sarma et al. [38]:

Theorem 2 (Das Sarma et al. [38]) For any graph G ∈
G(n, b, �, c) and any MST algorithm A, there exists an edge-
weight function wA,G : E → N such that the execution of A
in G requires �̃(min{b/c, �/2−1}) rounds. This bound holds
with high probability even if A is a randomized algorithm.

2.5 1-hop extension scheme

Throughout this study we utilize the 1-hop extension scheme
for shortcut construction, which is stated as follows:

For any VPi ⊆ V , node v ∈ VPi adds each incident
edge (v, u) to Hi and informs u of (v, u) ∈ Hi .

It is trivial to implement this scheme using only one round
in the CONGEST model. Because each node belongs to one
part, the congestion of each edge is at most two. Hence, the
technical challenge of this scheme is bound dilation. For the
proof, we introduce the concept of (a, b)-path dominating
set, which characterizes the graphs allowing good shortcuts
through 1-hop extension.

Definition 4 Given a path U ⊆ G, a (a, b)-path dominating
set S ⊆ VG of U is a node subset satisfying the following
two conditions:

– For any u ∈ VU , there exists s ∈ N+(S) such that
distU (u, s) ≤ a holds.

– |S| ≤ b.

It is easy to check that if S is a (a, b)-path dominating set
of U , S ∩ N+(U ) is also a (a, b)-path dominating set of U .
Thus, in the following argument, we assume that any (a, b)-
path dominating set for U is a subset of N+(U ) without
loss of generality. We say that G is (a, b)-path dominating
if and only if any chordless path U ⊆ G has a (a, b)-path
dominating set. By definition, any graph having a dominating
set of size b is (0, b)-path dominating.

Lemma 1 The 1-hop extension constructs an O((a + 1)b)-
shortcut for any (a, b)-path dominating graph.

Proof Because the congestion bound is trivial, we focus
on bounding dilation. Let G be any (a, b)-path dominating
graph, Pi be any part of G, and Hi is the shortcut through
1-hop extension for part Pi . Let U = (s0, s1, . . . , s�) be any
shortest path in Pi . Because U is the shortest, it is chord-
less, and thus it has a (a, b)-path dominating set SU of size
b′ ≤ b. Let ZU = (VZU , EZU ) be the subgraph of G such
that VZU = U ∪ SU and EZU = E(U ,U ) ∪ E(U , SU )

holds. Because SU ⊆ N+(U ) ⊆ N+(Pi ), every edge in
E(U , SU ) is a shortcut for Hi . Thus, to prove the lemma,
it suffices to show that distZU (s0, s�) = O((a + 1)b′), for
any U . The proof is by the induction on b′, that is, we show
that every chordless path in Pi having (a, b′)-path domi-
nating set SU of size b′ ≤ b satisfying distZU (si , s j ) is
at most (2a + 3)b′ for all b′ ≤ b. (Basis) The case of
b′ = 1: Let w be the unique node in SU , i be the minimum
index such that si ∈ N+(w) holds, and j be the maximum
index such that s j ∈ N+(w) holds. Because SU = {w}
is a (a, 1)-path dominating set, we obtain distZU (s0, s�) ≤
distZU (s0, si )+distZU (s j , s�)+2 ≤ 2a+2. (Inductive Step)
Suppose as the induction hypothesis that any chordless path
U ′ = (s′

0, s
′
1, . . . s

′
�′) in Pi having (a, b′′)-path dominating

set of size b′′ < b′ satisfies distZU ′ (s
′
0, s

′
�′) ≤ (2a + 3)b′′.

Let i be the minimum index such that si ∈ N+(SU ) holds,
w is any node in SU ∩ N+(si ), and j be the maximum index
such that s j ∈ N+(w) (see Fig. 2). If � − j ≤ a, we obtain
distZU (s0, s�) ≤ distZU (s0, si )+distZU (s j , s�)+2 ≤ 2a+2.
In the case of � − j > a, any node sh for j + a + 1 ≤ h ≤ �

has no node sh′ such that sh′ ∈ N+(w) and |h′ − h| ≤ a
hold. Hence, the vertex set SU\{w} is a (a, b∗)-path dom-
inating set of (chordless) subpath U∗ = (s j+a+1, . . . , s�).
Because b∗ < b′ holds, by the induction hypothesis,
we obtain distZU (s j+a+1, s�) ≤ distZU∗ (s j+a+1, s�) ≤
(2a + 3)b∗. It follows that distZU (s0, s�) ≤ distZU (u, si ) +

123



354 N. Kitamura et al.

Fig. 1 Example of
G(O(lb), b, l, O(log n))

distZU (s j , s j+a+1)+distZU (s j+a+1, s�)+2 ≤ a+(a+1)+
(2a + 3)b∗ + 2 ≤ (2a + 3)b′. The lemma holds. 
�

3 Low-congestion shortcut for constant
doubling dimension graphs

A pair of a set V and the associated function dist : V ×V →
R is known as ametric space if and only if the following three
conditions hold: (1) dist(u, v) = 0 if and only if v = u, (2)
dist(u, v) = dist(v, u) for all u, v ∈ V , and (3) dist(u, v) ≤
dist(u, w) + dist(w, v) for all u, v, w ∈ V . The doubling
dimension of a metric space V is the smallest positive integer
x such that it is possible to cover the ball B(v, r) = {u |
dist(v, u) < r} of radius r with the union of at most 2x balls
of radius r/2 for any v ∈ V and r > 0. A graph G = (V , E)

has a doubling dimension x if (V , distG) is a metric space of
the doubling dimension x . The graphs of bounded doubling
dimensions can be assumed to be a generalization of unit disk
graphs, and are often considered in the context of distributed
computing [7,10,27,28]. The main results of this section are
that the graphs of bounded doubling dimensions allow a good
shortcut. We have the following theorem:

Theorem 3 Let x be the doubling dimension of the graph
G. Then, there is an O(1)-round algorithm that constructs
low-congestion shortcuts with quality Õ(Dx ).

The theorem is obtained by combining the following lemma
with Lemma 1. Recall that any graph having a dominating
set of size Õ(Dx ) is (0, Õ(Dx ))-path dominating.

Lemma 2 Let G be any graph of the doubling dimension x.
There is a dominating set of size Õ(Dx ) in graph G.

Proof We show that G is covered by at most 2i x balls with
radius (D/2i ) for any 1 ≤ i ≤ log D. The lemma is obtained
by setting i = log D. The proof follows the induction on i .
(Basis) The case of i = 1 is obtained from the definition
of the doubling dimension. (Inductive step) Suppose as the
induction hypothesis that there exists at most 2i x balls with
radius D/2i that cover the graph G. By the definition of
the doubling dimension, each ball with radius D/2i can be
covered at most by 2x balls with radius D/2i+1. Therefore,
there exist atmost 2(i+1)x balls with radius D/2i+1 that cover
the graph G. The lemma is proved. 
�

4 Low-congestion shortcut for k-Chordal
graphs

4.1 k-Chordal graph

A graph G is k-chordal if and only if every cycle of length
larger than k has a chord (equivalently,G contains no induced
cycle of length larger than k). In particular, 3-chordal graphs
are simply known as chordal graphs, which are known to be
related to various intersection graph families such as inter-

123



Low-congestion shortcut and graph parameters 355

Fig. 2 Proof of Lemma 1

val graphs [13,34]. The main results of this section are the
following two theorems:

Theorem 4 There is an O(1)-round algorithm that con-
structs an O(kD)-shortcut for any k-chordal graph.

Theorem 5 For k ≤ D and kD ≤ √
n, there exists an

unweighted k-chordal graph G = (V , E)where for anyMST
algorithm A, there exists an edge-weight functionwA : E →
N such that the running time of A becomes �̃(kD) rounds.

4.2 Proof of Theorem 4

The Theorem 4 is deduced from the following lemma and
Lemma 1.

Lemma 3 Any k-chordal graph is (k, D + 1)-path dominat-
ing.

Proof Let U = {u = s′
0, s

′
1, . . . , s

′
�′ = v} be any chordless

path, and let SU = {u = s′
0, s

′
1, . . . , s

′
�′ = v} be the shortest

path fromu tov.We show that SU is a (k, D)-path dominating
set for U . Because the diameter of graph G is D, |SU | ≤ D
holds. Thus, it suffices to show that for any v ∈ VU , there
exists v′ ∈ N+(U ) such that distU (v, v′) ≤ k holds. Suppose
that there exists a vertex si that satisfies |i − j | > k for any
s j ∈ N+(SU ) ∩ U . Let li be the maximum index satisfying
sli ∈ N+(SU ) ∩U and li ≤ i , and ri be the minimum index
that satisfies sri ∈ N+(SU ) ∩ U and i ≤ ri . Because s0 and
s� are included in N+(SU ), sli and sri always exist.

First, we consider the case in which there exists w ∈
N+(sli ) ∩ N+(sri ) ∩ SU . Let C be the cycle consisting of
{sli , . . . , sri , w}. Because the length of C is at least k, C has
a chord, but the subpath {sli , . . . , sri } is chordless; thus, there
are no edges (s j , sh) ∈ EG for any li ≤ j < h ≤ r j and
h − j ≥ 2. By the definition of li and ri , for any li < j < ri ,
the node s j is not included in N+(w); that is,C has no chord,
but this is a contradiction.

Next, we consider the case in which there are no w ∈
N+(sli ) ∩ N+(sri ) ∩ SU . We choose y and y′ satisfying the
following conditions (see Fig. 3):

– s′
y ∈ N+(sli ) and s′

y′ ∈ N+(sri ).

– Letting ymax = max(y, y′) and ymin = min(y, y′), for
any ymin < j < ymax , there is no s′

j that satisfies s
′
j ∈

N+(sli ) ∪ N+(sri ).

We consider the cycle C consisting of {s′
y′
min

, . . . , s′
y′
max

},
(s′

y′, sri ), {sli , . . . , sri }, and (sli , s
′
y′). Because the length of

C is at least k, C has a chord. Notably, any shortest paths
are chordless paths. Thus, there are no edges (s′

j , s
′
h) ∈

EG for any ymin ≤ j < h ≤ ymax and h − j ≥ 2.
Because the subpath {sli , . . . , sri } is chordless, there are
no edges (s j , sh) ∈ EG for any li ≤ j < h ≤ r j and
h − j ≥ 2. By the definition of li , ri , y, and y′, we obtain
E({sli , . . . , sri }, {s′

y′
min

, . . . , s′
y′
max

}) = {(sli , s′
y′), (s′

y′ , sri )}.
Consequently, we can conclude that C has no chord. It is
a contradiction; thus, the lemma is proved. 
�

4.3 Proof of Theorem 5

We first introduce the instance mentioned in Theorem 5.
Because it has two additional parameters x ≥ 0 and N ≥ 2
as well as k, we refer to this instance as G(k, x, N ) =
(V (k, x, N ), E(k, x, N )) in the following argument: The
parameters x and N are adjusted later to obtain the claimed
lower bound. Let K = k/2 − 1 be short. The vertex set and
edge set of G(k, x, N ) is defined as follows:

– V (k, x, N ) = {v1, j | 0 ≤ j ≤ x} ∪ {vi, j |2 ≤ i ≤
N , 0 ≤ j ≤ xK }.

– E(k, x, N ) = E1 ∪ E2 ∪ E3 ∪ E4 such that E1 =
{{v1, j , v1, j+1} | 0 ≤ j ≤ x − 1}, E2 = {{vi, j , vi, j+1} |
2 ≤ i ≤ N , 0 ≤ j ≤ xK − 1}, E3 = {{v1, j , vi,h} | 2 ≤
i ≤ N , 0 ≤ j ≤ x, h = j K }, and E4 = {{vi,h, v j,h} |
2 ≤ i, j ≤ N , i �= j, h mod K = 0}.

Figure 4 illustrates the graph G(k, x, N ).
It is cumbersome to checkwhether this graph is k-chordal,

but straightforward. One can show the following lemma.

Lemma 4 For x ≥ 0 and N ≥ 2, G(k, x, N ) is the k-chordal.

Proof For simplicity, we give some of the vertices a name
v′
xy as follows:

123



356 N. Kitamura et al.

Fig. 3 Proof of Lemma 3

Fig. 4 Example of k-chordal
graph G(k, x, N )

– v′
1, j = v1, j (0 ≤ j ≤ x)

– v′
i, j = vi,h(2 ≤ i ≤ N , 0 ≤ j ≤ x, h = j K ).

We define a subset of vertices known as row and column.
The i-th row Ri is defined as Ri = {v′

i, j |0 ≤ j ≤ x}, and
the i-th column Ci is defined as Ci = {v′

j,i |1 ≤ j ≤ N }.
First, we consider the diameter of G(k, x, N ). For 2 ≤ i ≤
N and 0 ≤ j ≤ xK , we have min0≤k≤x dist(v′

1,k, vi, j ) =
min0≤k≤x dist(v′

i,k, vi, j ) + 1 ≤ K/2 + 1. For 0 ≤ i ≤ x
and 0 ≤ j ≤ x , dist(v′

1,i , v1, j ) ≤ x − 1, holds; thus, the
diameter of G(k, x, N ) is at most K + 1+ x . We consider a
cycle X inG(k, x, N ). Let l and r be theminimum/maximum
indices of the rows X intersect, Similarly, let t and b be
the minimum/maximum indices of the columns X intersect.
Let m be the index such that |Cm ∩ X | maximizes, and let
am = |Cm ∩ X | for short. Any cycle X applies to one of the
following four cases:

1. r − l ≥ 2 holds.
2. am ≥ 3 and r − l �= 0 hold.
3. r − l = 0 holds.
14. r − l = 1 and am = 2 hold.

We show that Lemma 4 holds for all the cases (Fig. 5 almost
states the proof).

1. The case of r − l ≥ 2: Through the construction of
G(k, x, N ), l-r path intersects (l + 1)-column at least
twice. Let u and v be the intersection of the X and (l+1)-
column. Because Cl+1 is clique, u and v are adjacent.
Thus the edge (u, v) is a chord of X .

2. The case of am ≥ 3 and r − l �= 0: There exists two
vertices in Cm , which are not adjacent in X . Because Cm

is a clique, there exists an edge between them, and this
edge is a chord of X .

3. The case of r − l = 0: The cycle X is a clique in graph
G and the lemma holds clearly.

4. The case of r − l = 1 and am = 2: The cycle consists
of four vertices v′

t,l ,v
′
t,r ,v

′
b,l , v

′
b,r and two paths, that is;

the paths connecting v′
t,l with v′

t,r , and v′
b,l with v′

b,r . It
follows dist(v′

t,l , v
′
t,r ) ≤ K = k/2−1, dist(v′

b,l , v
′
b,r ) =

K = k/2 − 1, and dist(v′
t,l , v

′
b,l) = dist(v′

t,r , v
′
b,r ) = 1.

Thus, the length of X is at most k.

The lemma is proved. 
�

The proof of Theorem 5 follows the framework of Das
Sarma et al. [38]. It suffices to prove the following lemma.
Theorem 5 is obtained by combining this lemma with Theo-
rem 2.

Lemma 5 For any D > 2K and N ≥ 2kD, G(k, D −
K , N ) ∈ G(n, N , (D − K )K + 3, 1), holds.

123



Low-congestion shortcut and graph parameters 357

Fig. 5 Proof of Lemma 4

Proof We define X = {X1, X2, . . . , X(D−K )K+3} for
G(k, D − K , N ) as follows:

– Xi = {v1,0} (i = 1).
– Xi = {v j,0 | 2 ≤ j ≤ N } (i = 2).
– Xi = {v j,i−2 | 2 ≤ j ≤ N } ∪ {v(i−2)/K ,1} (3 ≤ i ≤

(D − K )K , i mod K = 2).
– Xi = {v j,i−2 | 2 ≤ j ≤ N } (3 ≤ i ≤ (D − K )K , i mod

K �= 2).
– Xi = {v j,(D−K )K−1 | 2 ≤ j ≤ N } (i = (D−K )K +2).
– Xi = {v1,(D−K )} (i = (D − K )K + 3)

We define Q = {Q1, Q2, . . . , QN } for G(k, D − K , N ) as
follows:

– Qi = {v1, j | 1 ≤ j ≤ (D − K ) − 1} (i = 1).
– Qi = {vi, j | 0 ≤ j ≤ (D − K )K } (2 ≤ i ≤ N )

It is easy to check that (C1) and (C2) are satisfied. Thus, we
only show that (C3) is satisfied.Wehave E(Ri , N (Ri )\Ri−1)

and E(Li , N (Li )\Li ) as follows:

– E(Ri , N (Ri )\Ri−1) = {v1,0} (i = 2).
– E(Ri , N (Ri )\Ri−1) = {v1,�(i−1)/K � (3 ≤ i ≤ ((D −

K )K )/2, i mod K �= 2).
– E(Ri , N (Ri )\Ri−1) = ∅ (3 ≤ i ≤ ((D −

K )K )/2, i mod K = 2).
– E(Li , N (Li )\Li−1) = {v1,D−K } (i = 2).
– E(Li , N (Li )\Li−1) = v1,D−K−�(i−2)/K �} (3 ≤ i ≤

((D − K )K )/2, i mod K �= 2).

– E(Li , N (Li )\Li−1) = ∅ (3 ≤ i ≤ ((D −
K )K )/2, i mod K = 2).

Thus, we have |E(Ri , N (Ri )\Ri−1)| ≤ 1, and
|E(Li , N (Li )\Li−1)| ≤ 1. Therefore, we can prove
that the graph G(k, D − K , N ) is included in
G(n, N , (D − K )K + 3, 1). 
�

5 Low-congestion shortcut for small
diameter graphs

Let κD = n(D−2)/(2D−2). Note that κ3 = n1/4, and κ4 = n1/3

hold. Themain result in this section is the following theorem:

Theorem 6 For any graph of diameter D ∈ {3, 4}, there
exists an algorithm for constructing low-congestion short-
cuts with quality Õ(κD) in Õ(κD) rounds.

5.1 Centralized construction

In the following argument, we use terminology “whp.” (with
high probability) to mean that the event considered occurs
with probability 1 − n−ω(1) (or equivalently 1 − e−ω(log n)).
For simplicity of the proof,we treat anywhp. event as if it nec-
essarily occurs. (i.e., with P=1). Because the analysis below
handles only a polynomially bounded number ofwhp. events,
the standard union-bound argument guarantees that every-
thing simultaneously occurs whp; that is, any consequence
yielded by the analysis also occurs whp. Because the proof
is constructive, we first present the algorithms for D = 3

123



358 N. Kitamura et al.

and 4. They are described as a (unified) centralized algo-
rithm, and the distributed implementation is explained later.
Let N ′ be the number of parts whose diameter is greater than
12κD log3 n (say large part). Assume that P1, P2, . . . , PN ′
are large without loss of generality. Because each part Pi
(1 ≤ i ≤ N ′) contains at least κD nodes, N ′ ≤ n/κD
holds clearly. Our technical challenge is to reduce the dila-
tion of the large part. To this end, we separate the large part
into the subparts whose diameters are Õ(κD), and shows
that the shortcut edges establish at least one length-D path
between any two subparts. Note that this separation scheme
is introduced only for the analysis, and the algorithm does not
actually construct it. The detailed explanation of the scheme
is explained later. First, each large part computes 1-hop exten-
sion. As shown in the previous section, the 1-hop extension
only increases the congestion by O(1). Therefore, it suffices
to show that at least one shortcut path of length D − 2 is
established between any two extended subparts. For the case
of D = 3, the independent sampling of each edge with prob-
ability 1/n1/2 guarantees the construction of such paths (of
length D − 2 = 1). For the case of D = 4, we introduce
a new edge sampling scheme based on hash functions of
limited independence, which positively correlates two edges
incident to a common vertex, and thus amplifies the probabil-
ity of establishing length-2 shortcut paths without too much
increase of congestion. The precise description of the algo-
rithms is stated below. It is applied to each large part Pi for
the construction of Hi .

1. Each node v ∈ VPi adds its incident edges to Hi (i.e.,
compute the 1-hop extension).

2. This step adopts two different strategies according to the
value of D. (D = 3) Each node u ∈ N+(VPi ) adds
each incident edge (u, v) to Hi with probability 1/n1/2.
(D = 4). Let Y = [1, n1/3/ log n]. We first prepare an
(n1/3 log3 n)-wise independent hash function h : [0, N−
1]×V → Y , 3. At node u ∈ V , each incident edge (u, v)

satisfying v ∈ N+(VPi ) is independently sampled with
probability 1/h(u, i). All the sampled edges are added to
Hi .

We show that this algorithm provides a low-congestion
shortcut of quality Õ(κD). First, we observe the bound for
congestion. Let H1

i be the set of the edges added to Hi in
the first step, and H2

i be those added in the second step.
Because the congestion of the 1-hop extension is negligibly
small, it suffices to consider the congestion incurred by step

3 Let X and Y , be two finite sets. For any integer k ≥ 1, a family of hash
functionsH = {h1, h2, . . . , h p}, where each hi is a function from X to
Y , is known as k-wise independent if for any distinct x1, x2, . . . , xk ∈ X
and any y1, y2, . . . yk ∈ Y , a function h sampled from H uniformly at
random satisfies Pr[∧1≤i≤k h(xi ) = yi ] = 1/|Y |k .

2. Intuitively, we can believe the congestion of Õ(κD) as
the expected congestion of each edge is Õ(κD): Because the
total number of large parts is at most n/κD , the expected con-
gestion of each edge incurred in step 2 is n/κD · (1/n1/2) =
O(n1/4) for D = 3, and (n/κD)

∑
y∈Y (1/y) · (1/|Y|) ≤

(n/κD) · (log n/|Y|) = Õ(n1/3) for D = 4.

Lemma 6 The congestion of the constructed shortcut is
Õ(κD) whp.

Proof It suffices to show that the congestion of any edge
e = (u, v) ∈ E is Õ(κD), whp. For simplicity of proof,
we observe an undirected edge e = (u, v) as two (directed)
edges (u, v) and (v, u), and distinguish the events by adding
(u, v) to shortcuts by u and that by v; that is, the former is
recognized as adding (u, v), whereas the latter is recognized
by adding (v, u). Clearly, the asymptotic bound holding for
directed edge (u, v) also holds for the corresponding undi-
rected edge (u, v) actually existing in G (which is at most
twice of the directed bound). Because the first step of the
algorithm increases the congestion of each directed edge at
most by one, it suffices to show that the congestion incurred
by the second step is at most Õ(κD).

Let Xi be the indicator random variable for event (u, v) ∈
H2
i , and X = ∑

i Xi . The goal of the proof is to show that
X = Õ(κD) holds whp. The cases of D = 3 and D = 4 are
proved separately. (D = 3) Because at most n/κ3 large parts
exist, we have that E[X ] ≤ (n/κ3) · (1/n1/2) = n1/4 = κ3.

The straightforward application of the Chernoff bound to X
allows us to bound the congestion of e by at most 2κ3 with
probability 1 − e−�(n1/4). (D = 4) Let P ′ be the subset of
all large parts Pj such that u ∈ N+(Pj ) holds. Consider an
arbitrary partition of P ′ into several groups with a size of
at least (n1/3 log3 n)/2 and at most n1/3 log3 n. Let q be the
number of groups. Each group was identified by a number
� ∈ [1, q]. We refer to the �-th group as P�. Fixing �, we
bound the number of parts in P� using e = (u, v) as the
shortcut edge. Let Yi be the value of h(u, i). For Pi ∈ P�,
the probability that Xi = 1 is

Pr[Xi = 1] =
∑

y∈Y
Pr[Yi = y] 1

y

= Har (|Y|)
|Y| ,

where Har(x) is the harmonic number of x , i.e.,∑
1≤i≤x i

−1. Letting X� = ∑
j∈P� X j , we have E[X�] =

(|P�|Har(|Y|))/|Y|. Because Har(x) ≥ 1, we have
E[X�] ≥ |P�|/|Y| = (log4 n)/2. As the hash function h
is (n1/3 log3 n)-wise independent, it is easy to check that
X1, X2, . . . , X p� are independent.We apply Chernoff bound

to X� and obtain Pr[X� ≤ 2E[X�]] ≥ 1 − e−�(E[X�]) =
1 − e−�(log4 n). It implies that for any �, at most 2E[X�]

123



Low-congestion shortcut and graph parameters 359

groups use (u, v) as their shortcut edges. The total congestion
of (u, v) is obtained by summing up 2E[X�] for all � ∈ [1, q],
which results in the following:

∑

�

2E[X�] ≤
∑

�

2|P�| log n
|Y|

= 2|P ′| log n
|Y|

= Õ(n1/3).

The lemma is proved. 
�
For bounding dilation, we first introduce several preliminary
notions and terminologies. Given a graph G = (V , E), a
subset S ⊂ V is known as an (α, β)-ruling set if it satisfies
the following: (1) for any u, v ∈ S, distG(u, v) ≥ α holds,
and (2) for any node v ∈ V , there exists u ∈ S such that
distG(v, u) ≤ β holds. It is known that there exists an (α, α+
1)-ruling set for any graphG [2]. Let P̂i = Pi +H1

i for short.
For the analysis of Pi ’s dilation, it suffices to consider the case
where the diameter of P̂i is greater than 12κD log3 n. We first
consider an (α, α + 1)-ruling set of P̂i for α = 12κD log3 n,
which is denoted by S = {s0, s1, . . . , sz}. Note that this ruling
set is introduced only for the analysis, and the algorithm
does not actually construct it. The key observation of the
proof is that for any s j (1 ≤ j ≤ z) Hi contains a path
of length Õ(κD) from s0 to s j whp. It follows that any two
nodes u, v ∈ VP̂i

are connected by a path of length Õ(κD)

in Pi + Hi because any node in VP̂i
has at least one ruling

set node within distance α + 1 in Pi + H1
i .

To prove the above-mentioned claim, we further introduce
the notion of terminal sets. A terminal set Tj ⊆ VPi associ-
ated with s j ∈ S (0 ≤ j ≤ z) is the subset of VPi satisfying
(1) |Tj | ≥ κD log3 n, (2) distPi+Hi (s j , x) ≤ 6κD log3 n for
any x ∈ Tj , and (3) N+(x) ∩ N+(y) = ∅ for any x, y ∈ Tj

(note that N+(·) is the set of neighbors inG, not in Pi +H1
i ).

We can show that such a set always exists.

Lemma 7 Let S = {s0, s1, . . . , sz} be any (α, α + 1)-ruling
set of P̂i for α = 14κD log3 n, there always exists a family of
the terminal sets T = {T0, T1, . . . , Tz} associated with S.

Proof The proof is constructive. Let c = 6κD log3 n.We take
an arbitrary shortest path Q = (s j = u0, u1, u2, . . . , uc)
of length c in Pi + H1

i , starting from s j ∈ S. Because
no two nodes in N+(VPi ) \ VPi are adjacent in Pi + H1

i ,
Q contains no two consecutive nodes, which are both in
N+(VPi ) \ VPi ; implying that at least half of the nodes in
Q belong to VPi . Let q

′ = (u′
0, u

′
1, . . . u

′
c′) be the sub-

sequence of Q consisting of the nodes in VPi . Then, we
define Tj = {u′

0, u
′
3, . . . , u

′
3�c′/3�}, which satisfies the three

properties of terminal sets: It is easy to check that the first
and second properties hold. In addition, one can show that

distG(u′
x , u

′
x+a) ≥ 3 (which is equivalent to N+(u′

x ) ∩
N+(u′

x+a) = ∅) holds for any a ≥ 3, and x ∈ [1, c′ − a]:
Suppose that distG(u′

x , u
′
x+a) ≤ 2 holds for some a ≥ 3 and

x ∈ [1, c′ − a], the distance between u′
x and u′

x+a implies
N+(u′

x ) ∩ N+(u′
x+a) �= ∅, and thus dist P̂i (u

′
x , u

′
x+a) ≤ 2

holds. Then, bypassing the subpath from u′
x to u′

x+a in Q
through a distance-two path, we obtain a path from s j to uc
shorter than Q. This contradicts the fact that Q is the shortest
path. 
�

The second property of terminal sets and the following
lemma deduces that distPi+Hi (s0, s j ) = Õ(κD) holds for
any j ∈ [0, z].
Lemma 8 Let S = {s0, s1, . . . , sz} be any (α, α + 1)-ruling
set of P̂i for α = 14κD log3 n, and T = {T0, T1, . . . , Tz} be a
family of terminal sets associated with S. For any j ∈ [0, z],
there exist u ∈ T0 and v ∈ Tj such that distPi+Hi (u, v) =
O(1) holds.

Proof Because the distances s0 and s j are at least
14κD log3 n, we have N+(T0) ∩ N+(Tj ) = ∅. The proof is
divided into the cases of D = 3 and D = 4. (D = 3) Under
the conditions of N+(T0) ∩ N+(Tj ) = ∅ and D = 3, there
exists a path of length exactly three from any node a ∈ T0 to
any node b ∈ Tj . Letting ea,b be the second edge in that path,
we define F = {ea,b | a ∈ T0, b ∈ Tj }. By the third property
of the terminal sets and because N+(T0) ∩ N+(Tj ) = ∅,
for any two edges (x1, y1), (x2, y2) ∈ F , either x1 �= x2, or
y1 �= y2 holds; that is, ea1,b1 �= ea2,b2 holds for any a1, a2 ∈
T0, b1, b2 ∈ Tj and (a1, b1) �= (a2, b2). The first property
of terminal sets implies that |F | = |T0||Tj | ≥ (κD log3 n)2.
Because each edge in F is added to H2

i , with probability
1/n1/2 = 1/κ2

D , the probability that no edge in F is added to

H2
i is at most (1− 1/κ2

D)(κD log3 n)2 ≤ e−�(log6 n); that is, an
edge ea,b is added to Hi whp. and then distPi+Hi (a, b) ≤ 3
holds. (D = 4) For any node u ∈ T0 and v ∈ Tj , there
exists a path from u to v of length three or four in G. That
path necessarily contains a length-two sub-path P2(u, v) =
(auv, buv, cuv) such that auv ∈ N+(u) and cuv ∈ N+(v)

hold (if P2(u, v) is not uniquely determined, an arbitrary
length-two sub-path is chosen). We refer to (auv, buv) and
(buv, cuv), the first and second edges of P2(u, v), respec-
tively. (See Fig. 6.) Let P2 = {P2(u, v) | u ∈ T0, v ∈ Tj },
G ′ is the union of P2(u, v) for all u ∈ T0 and v ∈ Tj , and
Pe
2 = {P2(u, v) ∈ P2, | e ∈ P2(u, v)} for any e ∈ EG ′ . We

first bound the size of Pe
2 . Assume that e is the first edge of

a path in Pe
2 . Let e = (a, b) and u ∈ T0 be the (unique) node

such that a ∈ N+(u) holds. Because at most |Tj | paths in
P2 can start from a node in N+(u), the number of paths in
P2 using e as their first edges is at most |Tj |. Similarly, if
e is the second edge of some path in Pe

2 , at most |T0| paths
in P2 can contain e as their second edges. Although some
edges may be used as both the first and second edges, the

123



360 N. Kitamura et al.

total number of paths using e is bounded by |T0| + |Tj | =
2κD log3 n, implying that any path P2(u, v) can share edges
with at most 4κD log3 n edges, and thus, P2 contains at least
|T0||Tj |/(4κD log3 n+1) ≥ κD log3 n/5 edge-disjoint paths.
Let P ′

2 ⊆ P2 be the maximum-cardinality subset of P2 such
that any P2(u1, v1), P2(u2, v2) ∈ P ′

2 is edge-disjoint. We
define B = {b | (a, b, c) ∈ P ′

2}. Let 
(b) be the number of
paths in P ′

2, containing b ∈ B as the center. Owing to the
edge disjointness of P ′

2, we have |EG(N+(T0), b)| ≥ 
(b),
and |EG(N+(Tj ), b)| ≥ 
(b) for any b ∈ B. Let Yb be
the value of h(b, i), and Xb be the indicator random vari-
able that takes one if a path in P2, which contains b as the
center, is added to Hi , and zero otherwise. Let X and Y be
the indicator random variables corresponding to the events
of

∨
b∈B(Xb = 1) and

∨
b∈B(Yb ≤ 
(b)/ log2 n) respec-

tively. By the definition of 
(b), the probability of adding
no first edge with b and the node in T0 as the endpoints
to Hi is at most (1 − 1/h(b, i))
(b). Similarly, the proba-
bility of adding no second edge with b and the node in Tj

as the endpoints to Hi is at most (1 − 1/h(b, i))
(b). Then,
we obtain Pr[Xb = 1 | Yb = y] ≥ 1 − (1 − 1/y)
(b) −
(1 − 1/y)
(b) ≥ 1 − 2e−
(b)/y, and thus, Pr[Xb = 1 |
Yb ≤ max{1,
(b)/ log2 n}] ≥ 1 − e−�(log2 n) holds. Note
that, if Yb = 1, then all incident edges of b included in P ′

2
must be added to Hi , so Xb = 1 always holds. Therefore,
Pr[X = 1 | Y = 1] ≥ 1 − e−�(log2 n) holds. Because h is
(n1/3 log3 n)-wise independent, Yb for all b ∈ B are inde-
pendent. Thus, we obtain the following:

Pr[Y = 1] = 1 − Pr[Y = 0]

= 1 − Pr

[
∧

b∈B
Yb > max

{
1,


(b)

log2 n

}]

= 1 −
∏

b∈B,
(b)>2 log2 n

Pr

[
Yb >


(b)

log2 n

]

×
∏

b∈B,
(b)≤2 log2 n

Pr [Yb > 1] ,

= 1 −
∏

b∈B,
(b)>2 log2 n

(

1 −
⌊


(b)

n
1
3 log n

⌋)

×
∏

b∈B,
(b)≤2 log2 n

(
1 − log n

n
1
3

)
,

= 1 −
∏

b∈B,
(b)>2 log2 n

(

1 − 
(b)

2n
1
3 log n

)

×
∏

b∈B,
(b)≤2 log2 n

(

1 − 2 log2 n

2n
1
3 log n

)

,

Fig. 6 Proof of Lemma 8

≥ 1 − exp

⎛

⎝−
∑

b∈B,
(b)>2 log2 n


(b)

2n
1
3 log n

⎞

⎠

× exp

⎛

⎝−
∑

b∈B,
(b)≤2 log2 n

2 log2 n

2n
1
3 log n

⎞

⎠ ,

≥ 1 − exp

⎛

⎝−
∑

b∈B,
(b)>2 log2 n


(b)

2n
1
3 log n

⎞

⎠

× exp

⎛

⎝−
∑

b∈B,
(b)≤2 log2 n


(b)

2n
1
3 log n

⎞

⎠ ,

= 1 − exp

(

−
∑

b∈B


(b)

2n
1
3 log n

)

≥ 1 − exp

(

− |P ′
2|

2n
1
3 log n

)

,

≥ 1 − exp(−�(log2 n)).

Consequently, we have that Pr[X = 1] ≥ Pr[X = 1 ∧ Y =
1]Pr[Y = 1] ≥ (

1 − e−�(log n)
)2

. The lemma is proved. 
�

5.2 Distributed implementation

We explain the above-mentioned implementation details of
the algorithm in the CONGEST model as follows:

– (Preprocessing) In the algorithm stated above, the short-
cut construction is performed only for large parts, which
is crucial to bound the congestion of each edge. Thus, as a
preprocessing task, each node has to know if its own part
is large (i.e., having a diameter larger than κD) or not. The
exact identification of the diameter is usually a hard task;

123



Low-congestion shortcut and graph parameters 361

only an asymptotic identification is sufficient for achiev-
ing the shortcut quality stated above, where the parts of
diameter ω(κD) and diameter o(κD) must be identified
as large and small ones, but those of diameter �(κD) are
arbitrarily identified. This loose identification is easily
implemented through simple distance-bounded aggrega-
tion. The algorithm for part Pi is as follows: (1) In the first
round, each node in Pi sends its ID to all the neighbors,
and (2) in the subsequent rounds, each node forwards the
minimum ID received thus far. The algorithm executes
this message propagation during κD rounds. If the diam-
eter is substantially larger than κD , the minimum ID in Pi
does not reach all the nodes in Pi . Then, there exists an
edge whose endpoints identify different minimum IDs.
The one-more-round propagation allows those endpoints
to know the part is large. Thereafter, they start to broad-
cast the signal “large” using the following κD rounds. If
κD is large, the signal “large” is invoked at several nodes
in Pi , and κD-round propagation guarantees that every
node receives the signal. That is, any node in Pi iden-
tifies that Pi is large. The running time of this task is
O(κD) rounds.

– (Step 1) As we stated, the 1-hop extension is imple-
mented in one round. In this step, each node v ∈ VPi
tells all the neighbors if Pi is large or not. Consequently,
if part Pi is identified as a large one, all the nodes in
N+(Pi ) know it after this step.

– (Step 2) The algorithm for D = 3 is trivial. For D = 4,
there are two non-trivial matters. The first matter is the
preparation of hash function h. We realize it by shar-
ing a random seed of O(n1/3 log3 n log |Y|)-bit length in
advance. A standard construction byWegman and Carter
[39] allows each node to construct the desired h in com-
mon. Sharing the random seed is implemented by the
broadcast of one O(n1/3 log3 n log |Y|)-bit message, i.e.,
taking Õ(κD) rounds. The secondmatter is to address that
u does not know whether Pi is large or not, and/or if v

belongs to N+(Pi ). It makes u difficult to determine if
(u, v) should be added to Hi . Instead, our algorithm sim-
ulates the task of u by the nodes in N (u). More precisely,
each node v ∈ N+(VPi ) adds each incident edge (u, v)

to Hi with probability 1/h(u, i). Because v ∈ N+(Pi ),
v knows if Pi is large or not (informed in step 1), and
v can also compute h(u, i) locally. Thus, the choice of
(u, v) is locally decidable at v. Because this simulation
is completely equivalent to the centralized version, the
analysis of the quality also applies.

It is easy to check that the construction time of the dis-
tributed implementation above is Õ(κD) in total.

6 Low-congestion shortcut for bounded
clique-width graphs

Let G = (V , E) be a graph. A k-graph (k ≥ 1) is a graph
whose vertices are labeled by integers in [1, k]. A k-graph
is naturally defined as a triple (V , E, f ), where f is the
labeling function f : V → [1, k]. The clique width G =
(V , E) is theminimum k such that there exists a k-graphG =
(V , E, f ), which is constructed through repeated application
of the following four operations: (1) introduce: create a graph
of a single node v with label i ∈ [1, k], (2) disjoint union:
take the union G ∪ H of two k-graphs G and H , (3) relabel:
given i, j ∈ [1, k], change all the labels i in the graph to j ,
and (4) join: given i, j ∈ [1, k], connect all vertices labeled
by i , with all vertices labeled by j by edges.

The clique-width is invented first as a parameter to capture
the tractability for an easy subclass of high treewidth graphs
[3,6]; that is, the class of bounded clique-width can contain
several graphs with high treewidths. In centralized settings,
one can often obtain polynomial-time algorithms for sev-
eral non-deterministic-polynomial complete (NP-complete)
problems under the assumption of bounded clique-width.
Courcelle et al. [5] showed that for some fixed k, any prob-
lem that can be expressed in Monadic second-order logic
with quantification over vertices (MSO1) can be solved in
linear time on any class of graphs of clique-width at most k
if we obtain k-expressions that define the input graph. Coud-
ert et al. [4] showed several polynomial dependencies in the
fixedparameter algorithm (P-FPT) in a bounded clique-width
graph. The following negative result, however, states that
bounding clique-width does not admit any good solution for
theMSTproblem (and thus, for the low-congestion shortcut).

Theorem 7 There exists an unweighted n-vertex graph G =
(V , E) of clique-width six, where for any MST algorithm A,
there exists an edge-weight function wA : E → N such that
the running time of A becomes �̃(

√
n + D) rounds.

We introduce the instance stated in this theorem, which
is denoted by G(�, p) (� and p are the parameters fixed
later), using the operations specified in the definition of clique
width; that is, this introduction itself becomes the proof of
clique-width six. LetG(�) be the set of 6-graphs that contains
one node with label 1,� nodes with label 2, and� nodes with
label 3, and all other nodes are labeled by 4. Then, we define
the binary operation⊕ over G(�). For anyG, H ∈ G(�), the
graph G ⊕ H is defined as the graph obtained through the
following operations: (1) Relabel 2 in G with 5 and relabel 3
in H with 6, (2) take the disjoint union G ∪ H , (3) join with
labels 5 and 6, (4) relabel 5 and 6 with 4, and then 1 with 5,
(5) add a node with label 1 through operation introduce, (6)
join with 1 and 5, and (7) relabel 5 with 4. This process is
illustrated in Fig. 7.

123



362 N. Kitamura et al.

Fig. 7 Graph G ⊕ H

Now we are ready to define G(�, p). The construction is
recursive. First, we define G(�, 1) as follows: (1) Prepare
a (2�)-biclique K�,� , where one side has label 2, and the
other side has label 3. Notably, two labels suffice to con-
struct K�,� . (2) Add three nodes with labels 1, 5, and 6
through operation introduce. (3) Join with labels 2 and 5,
and with 3 and 6. (4) Join with label 1 and 5, and with 1
and 6. (5) Relabel 5 and 6 with 4. Thereafter, we define
G(�, p) = G(�, p−1)⊕G(�, p−1). The instance claimed
inTheorem7 isG(

√
n, log n/2), which is illustrated inFig. 8.

This instance is very close to the standard hard-core instance
used in prior work (for example, [37,38]. See Fig. 1). Thus it
is not difficult to observe that �̃(

√
n)-round lower bound for

MST construction also applies toG(
√
n, log n/2). It suffices

to show the subsequent lemma. Combined with Theorem 2,
we obtain Theorem 7.

Lemma 9 G(�, p) ∈ G(O(�(2p + 2)), �, 2p + 2, 3p).

Proof First, let us formally specify the graphG(�, p), which
is defined as follows (vertex IDs introduced below are
described in Fig. 8):

– V (�, p) = T ∪ ⋃
1≤l≤� Vl such that T = {u j

i | 0 ≤ i ≤
2 j − 1, 0 ≤ j ≤ p}, Vl = {vli | 0 ≤ i ≤ 2p − 1}.

– E(�, p) = E1 ∪ E2 ∪ E3 such that E1 = {(u j
i , u

j−1
� i
2 � ) |

0 ≤ i ≤ 2 j − 1, 1 ≤ j ≤ p}. E2 = {(u p
i , v

j
i ) | 0 ≤

i ≤ 2p − 1, 1 ≤ j ≤ �}, E3 = {(v j
i , v

k
i+1) | 0 ≤ i ≤

2p − 2, 1 ≤ j ≤ �, 1 ≤ k ≤ �}.

We define X = {X1, X2, . . . , X2p+2} for graph G(�, p)
as follows:

– Xi = {u p
0 } (i = 1).

– Xi = {v j
0 | 1 ≤ j ≤ �} (i = 2).

– Xi = {v j
i−2 | 2 ≤ j ≤ N } ∪ {u p− j

(i−1)/2 j−1
| 0 ≤ j ≤

p, i − 1 mod 2 j = 0} (3 ≤ i ≤ 2p − 1).
– Xi = {v j

2p−2 | 1 ≤ j ≤ �} ∪ {u p
2p−2} ∪ {u j

2 j−1
| 0 ≤

j ≤ p − 1} (i = 2p).
– Xi = {v j

2p−1 | 1 ≤ j ≤ �} (i = 2p + 1)
– Xi = {u p

2p−1} (i = 2p + 2)

We define Q = {Q1, Q2, . . . , Q�} for graph G(�, p) as
follows:

– Qi = V1 ∪ (T \(s ∪ r)) ((i = 1)).
– Qi = Vi ((2 ≤ i ≤ �)).

It is easy to check that (C1) and (C2) are satisfied.Thus,we
only show that (C3) is satisfied. Let VRi = Ri ∩ ⋃�

j=1 Vj .
For 2 ≤ i ≤ (2p + 2)/2, we have (N (VRi )\Ri−1) = ∅.
For any � and 1 ≤ i ≤ 2p−2, if u p

i is included in R�,
then the neighbors of u p

i are included in R�. For any �,
1 ≤ i ≤ p and 0 ≤ j ≤ 2i − 2, if uij is included in R�,

then uij+1 is included in R�. Let ui (R�) be the leftmost ver-
tex whose level is i of T and included in R�. For any �,
1 ≤ i ≤ p and 0 ≤ j ≤ 2i − 1, if uij �= ui (R�) and uij
are included in R�, then the parent of uij is included in R�.

Thus, |(N (R�)\R�−1)| only includes neighbors of ui (R�)

for 1 ≤ i ≤ p and 2 ≤ � ≤ (2p + 2)/2. Because the
tree T is a binary tree, ui (R�) has at most 3 neighbors in
T . Therefore we have |E ((N (Ri )\Ri−1)) | ≤ 3p. Simi-
larly, we have |E ((N (Li )\Li−1)) | ≤ 3p. Therefore, we
can prove that the graph G(�, p) is included in G(O(�(2p +
2)), �, 2p +2, 3p). By Theorem 2, the lower bound for con-
structing the MST in G(O(�(2p + 2)), �, 2p + 2, 3p) is
�̃((min{�/3p, ((2p + 2) /2 − 1}). When � = �(

√
n) and

2p = �(
√
n), we obtain the �̃(

√
n) lower bound. 
�

123



Low-congestion shortcut and graph parameters 363

Fig. 8 Example of clique-width
6 graph G(�, p)

7 Conclusion

In this study, we have shown the upper and lower bounds for
the round complexity of shortcut construction andMST in k-
chordal graphs, diameter-three or four graphs, and bounded
clique-width graphs. We presented an O(1)-round algo-
rithm, constructing an optimal O(kD)-quality shortcut for
any k-chordal graphs. We also presented the algorithms for
constructing optimal low-congestion shortcuts with quality
Õ(κD) in Õ(κD) rounds for D = 3 and 4, which yields
the optimal algorithms for MST matching the known lower
bounds by Lotker et al. [32]. On the negative side, O(1)-
clique width does not allow us to have good shortcuts. We
conclude this paper by posing three related open problems
as follows: (1) Can we have good shortcuts for D ≥ 5? (2)
Can we have good shortcuts for the k-clique width where
k ≤ 5? (3) While the bounded clique width does not con-
tribute to solvingMST efficiently, it seems to provide several
edge-disjoint paths (not necessarily short). Can we find any
problem that can use the benefit of bounded clique width?

Funding This work was supported by JSPS KAKENHI Grant Num-
bers JP18H04091, JP18K11168, JP18K11169, JP19K11824, and
JP19J22696, and JST SICORP Grant Number JPMJSC1606, Japan.

Availability of data andmaterial Apreliminary conference version [26]
of this paper is published in the 33rd International Symposium on Dis-
tributed Computing.

Declarations

Conflict of interest Not applicable

Code availability. Notapplicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower
bounds for distributed distance computations, even in sparse
networks. InProceedings of 30nd International SymposiumonDis-
tributed Computing (DISC), pp. 29–42 (2016). https://doi.org/10.
1007/978-3-662-53426-7_3

2. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Net-
work decomposition and locality in distributed computation. In
Proceedings of 30th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 364–369 (1989). https://doi.org/10.
1109/SFCS.1989.63504

3. Corneil, D.G., Rotics,U.:On the relationship between clique-width
and treewidth. SIAM J. Comput. (2005). https://doi.org/10.1137/
S0097539701385351

4. Coudert,D.,Ducoffe,G., Popa,A.: Fully polynomial fpt algorithms
for some classes of bounded clique-width graphs. In Proceedings
of the 2018 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2765–2784 (2018). https://doi.org/10.1137/1.
9781611975031.176

5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable
optimization problems on graphs of bounded clique-width. Theory
Comput. Syst. (2000). https://doi.org/10.1007/s002249910009

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1137/1.9781611975031.176
https://doi.org/10.1137/1.9781611975031.176
https://doi.org/10.1007/s002249910009


364 N. Kitamura et al.

6. Courcelle, B., Olariu, S.: Upper bounds to the clique width
of graphs. Discret. Appl. Math. (2000). https://doi.org/10.1016/
S0166-218X(99)00184-5

7. Damian, M., Pandit, S., Pemmaraju, S.: Distributed spanner
construction in doubling metric spaces. In Proceedings of the
10th International Conference on Principles of Distributed Sys-
tems (OPODIS), pp. 157–171 (2006). https://doi.org/10.1007/
11945529_12

8. Elkin, M.: Distributed approximation: a survey. ACM SIGACT
News (2004). https://doi.org/10.1145/1054916.1054931

9. Elkin, M.: An unconditional lower bound on the time-
approximation trade-off for the distributed minimum spanning
tree problem. SIAM J. Comput. (2006). https://doi.org/10.1137/
S0097539704441058

10. Elkin, M., Filtser, A., Neiman, O.: Distributed construction of light
networks. arXiv (2019). arXiv:1905.02592

11. Gallager, R.G., Humblet, P.A., Spira, PM.: A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), pp. 66–77, 1983.
https://doi.org/10.1145/357195.357200

12. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM J. Comput.
(1998). https://doi.org/10.1137/S0097539794261118

13. Gavril, F.: The intersection graphs of subtrees in trees are exactly
the chordal graphs. J. Comb. Theory Ser. B (1974). https://doi.org/
10.1016/0095-8956(74)90094-X

14. Ghaffari, M.: Near-optimal scheduling of distributed algorithms.
In Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 3–12 (2015). https://doi.org/10.
1145/2767386.2767417

15. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar
networks II: low-congestion shortcuts, mst, and min-cut. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 202–219 (2016). https://doi.org/
10.1137/1.9781611974331.ch16

16. Ghaffari, M., Kuhn, F.: Distributed MST and broadcast with
fewer messages, and faster gossiping. In Proceedings of 32nd
International Symposium on Distributed Computing (DISC), pp.
30:1–30:12 (2018). https://doi.org/10.4230/LIPIcs.DISC.2018.30

17. Ghaffari, M., Kuhn, F., Su, H-H.: Distributed MST and routing in
almost mixing time. In Proceedings of 31nd International Sym-
posium on Distributed Computing (DISC), pp. 131–140 (2017).
https://doi.org/10.1145/3087801.3087827

18. Ghaffari, M., Li, J.: New distributed algorithms in almost mixing
time via transformations from parallel algorithms. In Proceed-
ings of 32nd International Symposium on Distributed Computing
(DISC), pp. 31:1–31:16 (2018). https://doi.org/10.4230/LIPIcs.
DISC.2018.31

19. Gmyr, R., Pandurangan, G.: Time-message trade-offs in distributed
algorithms. In Proceedings of 32nd International Symposium on
Distributed Computing (DISC), pp. 32:1–32:18 (2018). https://doi.
org/10.4230/LIPIcs.DISC.2018.32

20. Haeupler, B., Hershkowitz, D.E., Wajc, D.: Round- and message-
optimal distributed graph algorithms. In Proceedings of the 2018
ACMSymposium onPrinciples of DistributedComputing (PODC),
pp. 119–128 (2018). https://doi.org/10.1145/3212734.3212737

21. Haeupler, B., Izumi, T., Zuzic, G.: Low-congestion shortcuts with-
out embedding. In Proceedings of the 2016 ACM Symposium on
Principles ofDistributedComputing (PODC), pp. 451–460 (2016).
https://doi.org/10.1145/2933057.2933112

22. Haeupler, B., Izumi, T., Zuzic, G.: Near-optimal low-congestion
shortcuts on bounded parameter graphs. In Proceedings of 30nd
International Symposium on Distributed Computing (DISC), pp.
158–172 (2016). https://doi.org/10.1007/978-3-662-53426-7_12

23. Haeupler, B., Li, J.: Faster distributed shortest path approximations
via shortcuts. In Proceedings of 32nd International Symposium on
Distributed Computing (DISC), pp. 33:1–33:14 (2018). https://doi.
org/10.4230/LIPIcs.DISC.2018.33

24. Haeupler, B., Li, J., Zuzic, G.: Minor excluded network families
admit fast distributed algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing (PODC), pp.
465–474 (2018). https://doi.org/10.1145/3212734.3212776

25. Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of congested
clique. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2620–2632
(2018). https://doi.org/10.1137/1.9781611975031.167

26. Kitamura, N., Kitagawa, H., Otachi, Y., Izumi, T.: Low-congestion
shortcut and graph parameters. In Proccedings of 33rd Interna-
tional Symposium on Distributed Computing (DISC), pp. 25:1–
25:17, 2019. https://doi.org/10.4230/LIPIcs.DISC.2019.25

27. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast
deterministic distributed maximal independent set computation on
growth-bounded graphs. InProccedings of 19th International Sym-
posium on Distributed Computing (DISC), pp. 273–287 (2005).
https://doi.org/10.1007/11561927_21

28. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of
bounded growth. In Proceedings of the 24th annual ACM sym-
posium on Principles of distributed computing (PODC), pp. 60–68
(2005). https://doi.org/10.1145/1073814.1073826

29. Kutten, S., Peleg, D.: Fast distributed construction of small k-
dominating sets and applications. J. Algorith. (1998). https://doi.
org/10.1006/jagm.1998.0929

30. Li, J.: Distributed treewidth computation. arXiv, 2018.
arXiv:1805.10708

31. Li, J., Parter, M.: Planar diameter via metric compression. In Pro-
ceedings of the 51st Annual ACMSIGACTSymposium on Theory of
Computing (STOC), pp. 152–163 (2019). https://doi.org/10.1145/
3313276.3316358

32. Lotker, Z., Patt-Shamir, B., Peleg,D.: DistributedMST for constant
diameter graphs. Distrib. Comput. (2006). https://doi.org/10.1007/
s00446-005-0127-6

33. Ookawa, H., Izumi, T.: Filling logarithmic gaps in distributed com-
plexity for global problems. In Proccedings of 41st International
Conference on Current Trends in Theory and Practice of Informat-
ics (SOFSEM), pp. 377–388 (2015). https://doi.org/10.1007/978-
3-662-46078-8_31

34. Pal, Madhumangal.: Intersection graphs: An introduction. arXiv,
2014. arXiv:1404.5468

35. Pandurangan, G., Robinson, P., Scquizzato, M.: A time- and
message-optimal distributed algorithm for minimum spanning
trees. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pp. 743–756 (2017). https://doi.
org/10.1145/3055399.3055449

36. Pandurangan, G., Robinson, P., Scquizzato, M.: The distributed
minimum spanning tree problem. Bulletin of the European Asso-
ciation for Theoretical Computer Science (EATCS) (2018). URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/538

37. Peleg, D., Rubinovich, V.: A near-tight lower bound on the
time complexity of distributed minimum-weight spanning tree
construction. SIAM J. Comput. (2000). https://doi.org/10.1137/
S0097539700369740

38. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. In Proceedings of
the 43th Annual ACM SIGACT Symposium on Theory of Comput-
ing (STOC), pp. 363–372 (2011). https://doi.org/10.1145/1993636.
1993686

123

https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1007/11945529_12
https://doi.org/10.1007/11945529_12
https://doi.org/10.1145/1054916.1054931
https://doi.org/10.1137/S0097539704441058
https://doi.org/10.1137/S0097539704441058
http://arxiv.org/abs/1905.02592
https://doi.org/10.1145/357195.357200
https://doi.org/10.1137/S0097539794261118
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.4230/LIPIcs.DISC.2018.30
https://doi.org/10.1145/3087801.3087827
https://doi.org/10.4230/LIPIcs.DISC.2018.31
https://doi.org/10.4230/LIPIcs.DISC.2018.31
https://doi.org/10.4230/LIPIcs.DISC.2018.32
https://doi.org/10.4230/LIPIcs.DISC.2018.32
https://doi.org/10.1145/3212734.3212737
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1007/978-3-662-53426-7_12
https://doi.org/10.4230/LIPIcs.DISC.2018.33
https://doi.org/10.4230/LIPIcs.DISC.2018.33
https://doi.org/10.1145/3212734.3212776
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.4230/LIPIcs.DISC.2019.25
https://doi.org/10.1007/11561927_21
https://doi.org/10.1145/1073814.1073826
https://doi.org/10.1006/jagm.1998.0929
https://doi.org/10.1006/jagm.1998.0929
http://arxiv.org/abs/1805.10708
https://doi.org/10.1145/3313276.3316358
https://doi.org/10.1145/3313276.3316358
https://doi.org/10.1007/s00446-005-0127-6
https://doi.org/10.1007/s00446-005-0127-6
https://doi.org/10.1007/978-3-662-46078-8_31
https://doi.org/10.1007/978-3-662-46078-8_31
http://arxiv.org/abs/1404.5468
https://doi.org/10.1145/3055399.3055449
https://doi.org/10.1145/3055399.3055449
http://eatcs.org/beatcs/index.php/beatcs/article/view/538
https://doi.org/10.1137/S0097539700369740
https://doi.org/10.1137/S0097539700369740
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1145/1993636.1993686


Low-congestion shortcut and graph parameters 365

39. Wegman, M.N., Carter, L.: New hash functions and their use in
authentication and set equality. J. Comput. Syst. Sci. (1981). https://
doi.org/10.1016/0022-0000(81)90033-7

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

	Low-congestion shortcut and graph parameters
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our result
	1.3 Related work
	1.4 Outline of the paper

	2 Preliminaries
	2.1 CONGEST model
	2.2 Partwise aggregation
	2.3 (d,c)-shortcut
	2.4 Lower-bound framework
	2.5 1-hop extension scheme

	3 Low-congestion shortcut for constant doubling dimension graphs
	4 Low-congestion shortcut for k-Chordal graphs
	4.1 k-Chordal graph
	4.2 Proof of Theorem 4
	4.3 Proof of Theorem 5

	5 Low-congestion shortcut for small diameter graphs
	5.1 Centralized construction
	5.2 Distributed implementation

	6 Low-congestion shortcut for bounded clique-width graphs
	7 Conclusion
	References




