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Abstract
Computing via synthetically engineered bacteria is a vibrant and active field with numerous applications in bio-production,
bio-sensing, and medicine. Motivated by the lack of robustness and by resource limitation inside single cells, distributed
approaches with communication among bacteria have recently gained in interest. In this paper, we focus on the problem of
population growth happening concurrently, and possibly interfering,with the desired bio-computation. Specifically, we present
a fast protocol in systems with continuous population growth for the majority consensus problem and prove that it correctly
identifies the initial majority among two inputs with high probability if the initial difference is Ω(

√
n log n) where n is the

total initial population. We also present a fast protocol that correctly computes the Nand of two inputs with high probability.
By combining Nand gates with the majority consensus protocol as an amplifier, it is possible to compute arbitrary Boolean
functions. Finally, we extend the protocols to several biologically relevant settings. We simulate a plausible implementation
of a noisy Nand gate with engineered bacteria. In the context of continuous cultures with a constant outflow and a constant
inflow of fresh media, we demonstrate that majority consensus is achieved only if the flow is slower than the maximum growth
rate. Simulations suggest that flow increases consensus time over a wide parameter range. The proposed protocols help set
the stage for bio-engineered distributed computation that directly addresses continuous stochastic population growth.
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1 Introduction

In the past few decades, synthetic biology has laid consid-
erable focus on the re-programming of cells as computing
machines. They have been engineered to sense a range of
inputs (metabolites [49], light [53], oxygen [3], pH [47]) and
process them to produce desired outputs according to defined
processing codes (primarily digital [37], but occasionally
analog [17]). Some potential applications of the cellular
machines include production of metabolic compounds of
interest [41], bio-remediation of toxic environments [55],
sensing of disease bio-markers [49], and therapeutic inter-
vention by targeted effector delivery [3]. Yet, the ability of
single cells to reliably process multiple inputs is acutely con-
strained by their limited resources.
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Adding toomany processes into one cell leads to resource-
stress and eventually the code is lost due to mutation, a
baseline error mechanism present in all living systems. This
has, in part, encouraged the notion of distributing the com-
putational tasks across multiple cells [43,54], to reduce
resource-stress and improve robustness. The value of the idea
is corroborated by the success of the division of labor seen
in multi-cellular organisms that have naturally evolved from
their unicellular ancestors [30,42]. While task-distribution in
cell populations solves some problems, it immediately leads
to other challenges that must be tackled for the successful
implementation of any complex distributed program. Some
of these challenges include: the orthogonality/specificity of
communication signals, the rate and bandwidth of commu-
nication channels, cellular growth and its effect on signal
amplification or dissipation, and effect of cross-talk between
different signals.

In this work we focus on signal amplification and Boolean
function computation in distributed systems whose agents
are duplicating bacteria. A central problem in this setting
is to maintain a consistent state of circuit values among
the bacteria. The problem of maintaining a consistent state
among agents has been studied in distributed computing for
decades in different contexts [33], e.g., for replicated state
machines [48] andmobile networks [7]. Starting fromamath-
ematical computing model, analysis of a system’s behavior
has led to correctness proofs and performance bounds of
proposed solutions, also shedding light on how protocol
parameters influence the quality of the outcome. In dis-
tributed systems with biological agents, the cellular behavior
is usually expressed in the language of chemical reaction net-
works (CRNs). A CRN is defined by a set of reactions, each
consuming members of one or several species and producing
members of others at a given rate.

The two most commonly used kinetics for CRNs are
deterministic and stochastic approaches. The determinis-
tic approach models the kinetics of a CRN as systems of
ordinary differential equations (ODEs) with continuous real-
valued concentrations of each species, whereas the stochastic
approach models the CRN as a continuous-time Markov
chain with discrete integer-valued counts of each species.
While ODE modeling can capture important behavioral
characteristics, in particular expected-value large-population
limits, some phenomena can only be explained by stochastic-
process kinetics. In particular, ODE kinetics cannot elucidate
the probability of certain population-level events occurring
in a system of two competing species, e.g., the extinc-
tion of one species due to a series of random events. The
stochastic-process kinetics of CRNs are much more com-
mon in distributed computing, in particular in population
protocols [5], where reactions are restricted to two reactants
and two products with constant-size populations and iden-
tical reaction rate constants equal to 1. They are also used

in computability results in general CRNs [50] where non-
constant population sizes are exploited. A model that allows
non-constant population sizes via “split” and “die” reactions,
but otherwise restricts reactions as in population protocols,
was studied by Goldwasser et al. [24]. The presented algo-
rithm with the goal to maintain a stable population size,
however, uses leader election and synchronized phases via
non-constant states per agent, rendering it impractical for
implementations in bacterial cultures.

Computation of Boolean predicates has been extensively
studied both in CRNs and population protocols. Early work
on Boolean computation in CRNs is by Magnasco [34]. Sig-
nal values are encoded with low and high concentrations of
corresponding species. Chen et al. [15] generalized compu-
tation in CRNs to functions on natural numbers. Arguments
are given in terms of input species counts and the computed
value is encoded in the number of output species counts. The
output in population protocols is typically provided by all
agents reaching consensus on a common output state [6].
These works cited above, however, do not include obligatory
duplication reactions as we do.
Consistent cell states by competition among cells. Birth-
death processes track species counts within a populationwith
“birth” and “death” events over time. For each such popula-
tion state there are transitions that move from one population
state to the other with respect to “birth” and “death” events.
Birth-death processes have been used to model competi-
tion, predation, or infection in evolutionary biology, ecology,
genetics, and queueing theory [39,46].

Competition among species naturally lends itself to solv-
ing consensus-type problems. Angluin et al. [5] analyzed a
population protocol with three states: A, B, and blank N .
Encounters of opposing species A and B lead to one of
them becoming blank via the rules (A, B) → (A, N ) and
(B, A) → (B, N ), and blank species that encounter a non-
blank species copy their state via rules (A, N ) → (A, A),
(N , A) → (A, A), (B, N ) → (B, B), and (N , B) →
(B, B). The latter can be viewed as duplication reactions
for A and B. By contrast to our model, with a constant birth
rate per cell and potentially unbounded growth, the model by
Angluin et al. implies bounded population sizes and varying
growth rates per cell.

The population protocol by Angluin et al. [4] alternates
phases of state duplication and cancellation, separated by a
clock signal generated by a dedicated leader species. These
protocols, however, rely on non-varying populations sizes
and the latter on a dedicated leader, and are thus impracti-
cal for implementations in bacteria. More recent works have
developed leaderless phase clocks in population protocols
(e.g., [1]), which can be used to solve the majority problem
[8,10,11,19] in population protocols.

An early mention of problems requiring a stochastic anal-
ysis of two competing species is by Volterra [56] and Feller
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[21] although only the growth of a single species is analyzed
therein. For an overviewof single species birth-deathMarkov
chains, see, e.g., [13]. Extensions for multiples species, with
applications to genetic mutations, are found in the litera-
ture on competition and branching processes [12,29,44]. For
example, Ridler-Rowe [45] considers a stochastic process
between two competing species. However, the process in
that work differs from ours in that death reactions therein
are A + B −→ A and A + B −→ B, leaving a winner after
an encounter between two competing individuals. The paper
presents an approximation for long-term distributions and
bounds the probability that starting from initial A, B sizes,
species A goes extinct. However, the analysis is for initial
population sizes approaching infinity, only, and assumes an
initial gap between species counts that is linear in the popula-
tion size. By contrast our analysis holds for finite population
sizes n, and requires a gap of Ω(

√
n log n), only. A comple-

mentary approach for the same asymmetric process proposed
in [25] is to numerically solve a finite size cut-off of the infi-
nite linear equation systems.
Computation in birth systems. In this work, we introduce and
study protocols for birth systemswhere all species inherently
duplicate. To simplify our model, we do not consider death
reactions as they occur at far lower rates than duplication
reactions in typical bacterial colonies. Suchprotocols are thus
different from population protocols, which have population
sizes that remain constant over the course of an execution.
Further, our protocols do not rely on exact species counts,
they are not leader-based, and they require small and constant
state space per cell, lending themselves readily for future
biological implementation.

For simplicity we assume that all duplication reactions of
our birth systems have the same rate.We leave the question of
natural selection due to differing growth rates to future work.
In particular, we study two protocols within birth systems.

(i) We introduce the Pairwise Annihilation protocol for two
species A and B and show that it solves majority con-
sensus with high probability: If the initial difference Δ

between sizes A and B growsweakly with the population
size n according to Δ = Ω(

√
n log n), then the pro-

tocol identifies the initial majority with high probability.
Since it amplifies the difference between the two species,
we also refer to the Pairwise Annihilation protocol as an
amplifier. Further, we will show that the protocol reaches
consensus in expected constant time. The protocol’s reac-
tions are deceptively simple. Besides the obligatory birth
reactions A −→ 2A and B −→ 2B, it comprises a single
death reaction A + B −→ ∅.

(ii) We demonstrate how to implement the components of
feed-forward Boolean circuits. Each Boolean gate in our
implementation is aNand gate, followed by an amplifier.
Note that while we focus on the universal Nand gate

for the sake of a lighter notation, our construction and
its analysis holds for any arbitrary two-input Boolean
function. The latter will be important for optimization
and follow-up with biological implementations. Signals
between the Nand gates are encoded using two species
each, the difference ofwhich determineswhether a signal
is a logical 0, 1, or neither. A Nand gate is a protocol
that maps two input signals X and Y to an output signal Z
that is the logical Nand of X and Y .

While Nand gates are used to implement the circuit’s
Boolean behavior, the successive amplifiers regenerate the
gate’s output signal by amplifying the difference between the
two output signal species. Repeated, successive invocation
of the Nand protocol followed by the amplifier protocol for
time O(log n), where n is the total initial population, can
finally be used to compute the circuit’s output values layer
by layer.
Organization. The rest of the paper is organized as follows:
In Sect. 2, we define the computational model. In Sect. 3, we
introduce and analyze our protocol for majority consensus,
both analytically and via simulations. In Sect. 4, we define
and analyze the Nand gate protocol. In Sect. 5, we present
simulations of a biologically plausible implementation of the
Nandgatewith amplifiers. In Sect. 6,we consider the context
of continuous cultures and suggest that majority consensus
can become slower in these cultures. Finally, Sect. 7 con-
cludes the paper.

2 Model

WewriteN = {0, 1, . . . },N+ = N\{0}, andR+
0 = [0,∞).

When analyzing our protocols, we employ the term “with
high probability” relative to the total initial population. That
is, event E happens with high probability if there exists some
c > 0 such that P(E) = 1 − O (1/nc), where n is the total
initial population.

2.1 Chemical reaction networks

We use the standard stochastic kinetics for chemical reaction
networks. A reader familiar with the model can safely skip
this subsection.

A chemical reaction network is described by a set S of
species and a set of reactions. A reaction is a triple (r,p, α)

where r,p ∈ N
S and α ∈ R+

0 . The species with positive
count in r are called the reaction’s reactants and this with
positive count in p are called its products. The parameter
α is called the reaction’s rate constant. A configuration of
a CRN is simply an element of NS . A reaction (r,p, α) is
applicable to configuration c if r(S) ≤ c(S) for all S ∈ S.
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We write r
α−→ p to denote a reaction (r,p, α). For

instance, the reaction ({A, B}, {2B,C}, α) will simply be
denoted A + B

α−→ 2B + C . Here, we used the short-
hand notations {A, B} and {2B,C} for functions S → N.
For instance, the notation {2B,C} represents the function
p : S → N defined by p(B) = 2, p(C) = 1, and p(S) = 0
for all other species S /∈ {B,C}.

The stochastic kinetics of a CRN are a continuous-time
Markov chain (see a textbook [13] for auxiliary definitions).
Given some volume v ∈ R+

0 , whichwewill normalize to v =
1 for most of the paper, the propensity of a reaction (r,p, α)

in configuration c is equal to α
v

∏
S∈S

(c(S)
r(S)

)
, where

(c(S)
r(S)

)

denotes the binomial coefficient of c(S) and r(S). The bino-
mial coefficient is 1 if r(S) = 0, i.e., if the species S is not a
reactant of the reaction. It is 0 if r(S) > c(S). The propen-
sity of a non-applicable reaction is thus 0. For example, the
propensity of reaction A+ B

α−→ 2B+C in configuration c

is equal to α
v

· c(A) · c(B). The propensity of A
γ−→ 2A is

equal to γ
v

· c(A). The new configuration after an applicable
reaction is equal to c′ = c − r + p.

We will use the notation Q(x, y) for the propensity of
the transition from state x to state y in a continuous-time
Markov chain. To each continuous-time Markov chain cor-
responds a discrete-time Markov chain that only keeps track
of the sequence of state changes, but not of their timing.
We use P(x, y) for the transition probability from state x to
state y in the discrete-time chain. We have the formula

P(x, y) = Q(x, y)/
∑

z

Q(x, z) .

2.2 Birth systems

A protocol for a birth system, or protocol, with input species
I and output species O, for finite, not necessarily disjoint,
sets I andO is a CRN specified as follows. Its set of species
S comprises input/output species I ∪ O and a finite set of
internal species L. Further, the protocol defines the initial
species counts X0 for internal and output species X ∈ L ∪
O and a finite set of reactions R on the species in S. For
each species X ∈ S, there is a duplication reaction of the

form X
γ−→ 2X . All duplication reactions have the same rate

constant γ > 0.
Given a protocol and an initial species count for its inputs,

an execution of the protocol is given by the stochastic process
of the CRNwith speciesS, reactionsR, and respective initial
species counts.

3 Majority consensus

The Pairwise Annihilation protocol is defined for two
species, A and B, both of which are inputs and outputs. It

contains, apart from the obligatory duplication reactions, the
single reaction of A and B eliminating each other with rate
constant δ > 0. The complete list of reactions of the Pairwise
Annihilation protocol is thus:

A
γ−→ 2A

B
γ−→ 2B

A + B
δ−→ ∅

We say that consensus is reached if one of the two species
becomes extinct. If the initial population counts differ, we say
that majority consensus is reached if consensus is reached
and the species that was initially in majority is not extinct.
If the initial counts of both species are equal, then majority
consensus is reached when one species is extinct and the
other is not.

We show that the Pairwise Annihilation protocol reaches
consensus in constant time andmajority consensus with high
probability.

Theorem 1 For initial population n = A(0) + B(0) and
initial gap Δ = |A(0) − B(0)|, the Pairwise Annihilation
protocol reaches consensus in expected time O(1) and in time
O(log n)with high probability. It reachesmajority consensus
with probability 1 − e−Ω(Δ2/n).

From Theorem 1 we immediately obtain a bound on the
initial gap sufficient for majority consensus with high prob-
ability.

Corollary 2 Foran initial populationn andan initial gapΔ, if
Δ = Ω

(√
n log n

)
, then the Pairwise Annihilation protocol

reaches majority consensus with high probability.

Without duplication reactions, it is obvious that the
Pairwise Annihilation protocol reaches consensus and that
majority consensus is always reached if the two species
have different initial population counts. We are thus not
only able to show that we can achieve majority consensus
in spite of continual population growth via duplication reac-
tions of all species, but also that a sub-linear gap in the
initial population counts suffices. The required initial gap
of Ω(

√
n log n) matches that of the best protocols with-

out obligatory duplications [2,5,16]. The time complexity
of our protocol is different to population protocols, however:
in the O(n) expected transitions that it takes the Pairwise
Annihilation protocol to achieve consensus, asymptotically
almost surely, there are agents that never interacted once in a
population protocol of the same size. This is not a contradic-
tion: In contrast to population protocols, the population size
decreases during the initial stages of the Pairwise Annihila-
tion protocol.
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We will prove Theorem 1 in the following sections; first
the time upper bound, then correctness with high probability.

3.1 Markov-Chainmodel

The evolution of the Pairwise Annihilation protocol is
described by a continuous-time Markov chain with state
space S = N2. Its state-transition rates are:

Q
(
(A, B) , (A + 1, B)

) = γ A

Q
(
(A, B) , (A, B + 1)

) = γ B

Q
(
(A, B) , (A − 1, B − 1)

) = δAB

Note that the death transition (A, B) → (A − 1, B − 1) has
rate zero if A = 0 or B = 0. Both axes {0} ×N andN× {0}
are absorbing, and so is the state (A, B) = (0, 0). This chain
is regular, i.e., its sequence of transition times is unbounded
with probability 1. Indeed, as we will show, the discrete-time
chain reaches consensus with probability 1, from which time
on the chain is equal to a linear pure-birth process, which is
regular.

The corresponding discrete-time jump chain has the same
state space S = N2 and the state-transition probabilities

P
(
(A, B) , (A + 1, B)

) = γ A

γ (A + B) + δAB

P
(
(A, B) , (A, B + 1)

) = γ B

γ (A + B) + δAB

P
(
(A, B) , (A − 1, B − 1)

) = δAB

γ (A + B) + δAB

if A > 0 or B > 0. The axes as well as state (A, B) = (0, 0)
is absorbing, as in the continuous-time chain.

As a convention, we will write X(t) for the state of the
continuous-time process X at time t , and Xk for the state
of the discrete-time jump process after k state transitions.
The time to reach consensus is the earliest time T such that
A(T ) = 0 or B(T ) = 0.

3.2 Time to reach consensus

In this section we prove the first part of Theorem 1, i.e., the
bounds on the time to reach consensus, both in expected time
andwith high probability. For that, wewill employ a coupling
of the Pairwise Annihilation protocol Markov chain with a
single-species birth-death process.We show that the Pairwise
Annihilation protocol reaches consensus when the single-
species process reaches its extinction state and then bound
this time in the single-species process. Figure 1 visualizes
the idea.

We denote the single-species process byM(t). It is a birth-
death chain with state space S = N and transition rates

Q(M, M + 1) = γ M and Q(M, M − 1) = δM2. State 0
is absorbing. Note that the death rate δM2 depends quadrat-
ically on the current population M , and not linearly like the
birth rate γ M . The reason is that we want M(t) to bound the
minimum of the populations A(t) and B(t) and that the death
transition in the Pairwise Annihilation protocol is quadratic
in this minimum.

We will crucially use the fact that P
(
M(t) = 0

)≤
P
(
A(t) = 0∨ B(t) = 0

)
for all times t . This, together with a

bound on the time until M(t) = 0, then gives a bound on the
time until consensus in the Pairwise Annihilation protocol
chain.
Continuous-time coupling. The coupling is defined as fol-
lows. For sequences (ξk)k≥1 of i.i.d. (independent and
identically distributed) uniform random variables in the
unit interval [0, 1) and (ηk)k≥1 of i.i.d. exponential ran-
dom variables with normalized rate 1, we define the coupled
process (A(t), B(t), M(t)) as follows. Initially, M(0) =
min{A(0), B(0)}. For k ≥ 0, the (k + 1)th transition hap-
pens after time ηk/Λ(Ak, Bk, Mk) where Λ(A, B, M) =
max{λ(A, B), λ(M)} is the maximum of the sums of tran-
sition rates of the individual chains in states (A, B) and M ,
respectively, i.e., λ(A, B) = γ (A+ B) + δAB and λ(M) =
γ M + δM2. The new state (Ak+1, Bk+1, Mk+1) of the cou-
pled chain is then determined by the following update rules.
The state (0, 0, 0) is absorbing. Otherwise, if Ak ≤ Bk , then:
(Ak+1, Bk+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ak + 1, Bk)

if ξk+1 ∈
[
0 ,

γ Ak
Λ(Ak ,Bk ,Mk )

)

(Ak, Bk + 1)

if ξk+1 ∈
[

γ Ak
Λ(Ak ,Bk ,Mk )

,
γ Ak+γ Bk

Λ(Ak ,Bk ,Mk )

)

(Ak − 1, Bk − 1)

if ξk+1 ∈
[
1 − δAk Bk

Λ(Ak ,Bk ,Mk )
, 1
)

(Ak, Bk) otherwise

(1)

If Ak > Bk then the roles of Ak and Bk in (1) are
exchanged. The update rule for Mk+1 is:

Mk+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mk + 1 if ξk+1 ∈
[
0 ,

γ Mk
Λ(Ak ,Bk ,Mk )

)

Mk − 1 if ξk+1 ∈
[

1 − δM2
k

Λ(Ak ,Bk ,Mk )
, 1

)

Mk otherwise

(2)

Analysis for time until consensus. Note that in the coupling
“stuttering steps” for (Ak, Bk) or Mk are possible in the
definition of the coupled process, making the underlying
discrete-time jump chains of, e.g., chain (A(t), B(t)) and
the Pairwise Annihilation protocol, potentially differ.

Indeed, the event (Ak+1, Bk+1) = (Ak, Bk) is possi-
ble with positive probability if λ(Ak, Bk) < λ(Mk), and
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t
0 min{A(t), B(t)} M(t)

M(0) =

min{A(0), B(0)}

Lemma 4

Lemma 6

Lemma 3

Fig. 1 Idea of the proof: Construction of a continuous-time coupling
of the Pairwise Annihilation protocol and the single species birth–death
M chain. Stuttering steps are mapped to effective steps (Lemma 3). An
execution of the coupling process fulfills the deterministic guarantee

min{A(t), B(t)} ≤ M(t) for all times t ≥ 0 (Lemma 4). From the
coupling it follows that P

(
M(t) = 0

)≤ P
(
A(t) = 0 ∨ B(t) = 0

)
for

the uncoupled processes (Corollary 5). The time until consensus then
follows from the time until extinction in the M chain (Lemma 6)

case λ(Ak, Bk) > λ(Mk):

PA chain
0 1

γAk/Λ γBk/Λ δAkBk/Λ

Ak + 1 Bk + 1
Ak − 1,
Bk − 1

M chain
0 1

γMk/Λ δM2
k/Λ

Mk + 1 Mk − 1

case λ(Ak, Bk) < λ(Mk):

0 1

γAk/Λ γBk/Λ δAkBk/Λ

Ak + 1 Bk + 1
Ak − 1,
Bk − 1

0 1

γMk/Λ δM2
k/Λ

Mk + 1 Mk − 1

Fig. 2 Continuous-time coupling of the Pairwise Annihilation (PA)
chain and the single-species birth-death M-chain, given that Ak ≤ Bk ,
with Λ = Λ(Ak , Bk , Mk). The intervals for the cases of ξk+1 and their
effect on the Pairwise Annihilation chain and the M-chain are shown
in green and orange, respectively. Cases that lead to stuttering steps
are shown in blue. The dotted relation between intervals is proven in
Lemma 4 (color figure online)

Mk+1 = Mk has positive probability if λ(Mk) < λ(Ak, Bk);
see Fig. 2. The following Lemma 3, however, shows that the
continuous-time chain (A(t), B(t)) and the Pairwise Anni-
hilation protocol chain have identical transition rates, and are
thus identically distributed. Its proof is folklore and given in
the appendix.

Lemma 3 Let T1, T2, . . . be a sequence of i.i.d. exponen-
tial random variables with rate parameter λ and let k be an

independent geometric random variable with success proba-
bility p. Then T = T1 +· · ·+ Tk is exponentially distributed
with rate parameter pλ.

By construction of the coupled process, the single-species
birth-death process M(t) indeed dominates the minimum of
the population counts A(t) and B(t) in the following way:

Lemma 4 In the coupled process, min{A(t), B(t)} ≤ M(t)
for all times t ≥ 0.

Proof Let K be the step number of the discrete-time coupled
process such that tK ≤ t < tK+1, where tk is the time of the
kth step.We showby induction thatmin{Ak, Bk} ≤ Mk for all
k ∈ N. The inequality holds initially, for k = 0, by definition
of the coupled process.Nowassume thatmin{Ak, Bk} ≤ Mk .
Without loss of generality, by symmetry, assume that Ak ≤
Bk , so that Ak = min{Ak, Bk} ≤ Mk . Then γ Ak ≤ γ Mk and
thus Ak+1 = Ak+1 impliesMk+1 = Mk+1 by the definition
of the coupling in (1) and (2); see Fig. 2. We distinguish the
two cases Ak < Mk and Ak = Mk .

If Ak < Mk , then the only way to have Ak+1 > Mk+1 is
to have Ak+1 = Ak + 1 and Mk+1 = Mk − 1. But this is
impossible since Ak+1 = Ak + 1 implies Mk+1 = Mk + 1.

Otherwise, Ak = Mk . The case is shown in Fig. 3. We
have, δM2

k = δA2
k ≤ δAk Bk . Thus, as easily verified by the

alignment of the intervals in Fig. 3, Mk+1 = Mk − 1 implies
Ak+1 = Ak − 1 and Bk+1 = Bk − 1. Hence, combined with
the above implication which remains true, we have Ak+1 ≤
Mk+1 in all possible cases for ξk+1. �


Lemma 4 allows to compare the probabilities of extinction
in the single-species chain and of consensus in the Pairwise
Annihilation protocol chain:

Corollary 5 P(M(t) = 0) ≤ P(A(t) = 0 ∨ B(t) = 0) for
all times t ≥ 0.

It thus suffices to prove bounds on the time until the pop-
ulation goes extinct in the single-species M chain. For that,
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since λ(Ak, Bk) > λ(Mk):

PA chain
0 1

γAk/Λ γBk/Λ δAkBk/Λ

Ak + 1 Bk + 1
Ak − 1,
Bk − 1

M chain
0 1

γMk/Λ δM2
k/Λ

Mk + 1 Mk − 1

Fig. 3 The case Ak = Mk in the proof of Lemma 4, with Λ =
Λ(Ak , Bk , Mk). The case’s assumption implies that λ(Ak , Bk) >

λ(Mk). The dotted relation between intervals is shown in the proof

we leverage known results on birth-death processes, which
are not applicable to the two-species Pairwise Annihilation
protocol chain.

Lemma 6 If T denotes the time until extinction in the single-
species process M(t), then E T = O(1).

Proof The birth rate in state M(t) = i is equal to α(i) = iγ
and the death rate is equal toβ(i) = i2δ. Fromknowngeneral
results on birth-death process (Theorem 25 in the appendix)
we obtain, when starting from initial population M(0) = M ,
that

E T =
M∑

j=1

∞∑

k= j−1

α( j) · · · α(k)

β( j) · · · β(k)
· 1

β(k + 1)

=
M∑

j=1

∞∑

k= j−1

γ k− j+1

δk− j+1k!/( j − 1)! · 1

(k + 1)2δ

Setting α = γ /δ, we have

E T = 1

δ

M∑

j=1

∞∑

k= j−1

αk− j+1 ( j − 1)!
(k + 1)!(k + 1)

= 1

δ

M∑

j=1

( j − 1)!
α j

∞∑

k= j

αk

k!k

= 1

δ

M∑

j=1

( j − 1)!
α j

· α j

j ! j
∞∑

k= j

αk− j

k!/ j ! · k/ j

≤ 1

δ

M∑

j=1

( j − 1)!
α j

· α j

j ! j
∞∑

k= j

αk− j

(k − j)!

since for k ≥ j ≥ 1, it is k!/ j ! ≥ (k − j)! and k/ j ≥ 1.
Thus,

E T ≤ 1

δ

M∑

j=1

( j − 1)!
α j

· α j

j ! j · eα

= eα

δ

M∑

j=1

1

j2

≤ eαπ2

6δ
= O(1) .

This concludes the proof. �

DenotingwithTAB the earliest time t such that A(t) = 0or

B(t) = 0, andwith TM the earliest time t such thatM(t) = 0,
Corollary 5 is equivalent to the inequality P(TM ≤ t) ≤
P(TAB ≤ t), which, in turn, is equivalent to the inequality
P(TM > t) ≥ P(TAB > t). Using the formula E T =∫∞
0 P(T > t) dt , we further have

E TM =
∫ ∞

0
P(TM > t) dt

≥
∫ ∞

0
P(TAB > t) dt = E TAB .

Combining this with Lemma 6, shows that the expected
time until consensus in the Pairwise Annihilation protocol
is also O(1). For the high-probability result in the first part
of Theorem 1, we simply make Θ(log n) consecutive tries to
achieve extinction in an interval of constant time:

Lemma 7 If T denotes the time until extinction in the singles-
species process M(t), then there exists a constant C such that
P(T ≤ C log2 n) = 1 − O(1/n).

Proof Let C1 be the O(1) constant from Lemma 6 and set
C = max{2C1, 2}. Then, by Markov’s inequality, we have
P(T > C) ≤ C1/C ≤ 1/2. Thus, the probability of the
event T > C log2 n is dominated by the probability of failing
log2 n consecutive tries with a Bernoulli random variable
with parameter p = 1/2. But this probability is 2− log2 n =
1/n. �


A simple combination of Corollary 5 and 7 completes the
proof of the first part of Theorem 1.

3.3 Probability of reachingmajority consensus

Wenow turn to the proof of the second part of Theorem1, i.e.,
the bound on the probability to achieve majority consensus.
Weuse a couplingof thePairwiseAnnihilationprotocol chain
with a different process than for the time bound. Namely we
couple it with two parallel independent Yule processes. A
Yule process, also known as a pure birth process, has this
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single state-transition rule X → X + 1 with linear transition
rate γ X . Since we already showed the upper bound on the
time until consensus, it suffices to look at the discrete-time
jumpprocess. In particular, the couplingwedefine is discrete-
time.
Discrete-time coupling. For an i.i.d. sequence (ξk)k≥1 of uni-
formly distributed randomvariables in the unit interval [0, 1),
we define the coupling as the process (Ak, Bk, Xk,Yk) with
A0 = X0, B0 = Y0 such that (Ak+1, Bk+1) is equal to

– (Ak − 1, Bk − 1) if ξk+1 <
δAk Bk

γ (Ak+Bk )+δAk Bk

– (Ak + 1, Bk) if ξk+1 ≥ δAk Bk
γ (Ak+Bk )+δAk Bk

and ξk+1 <

1 − γ Bk
γ (Ak+Bk )+δAk Bk

– (Ak, Bk + 1) if ξk+1 ≥ 1 − γ Bk
γ (Ak+Bk )+δAk Bk

and (Xk+1,Yk+1) is equal to

– (Xk,Yk) if ξk+1 <
δAk Bk

γ (Ak+Bk )+δAk Bk

– (Xk + 1,Yk) if ξk+1 ≥ δAk Bk
γ (Ak+Bk )+δAk Bk

and ξk+1 < 1 −
γ (Ak+Bk )

γ (Ak+Bk )+δAk Bk
· Yk
Xk+Yk

– (Xk,Yk + 1) if ξk+1 ≥ 1 − γ (Ak+Bk )
γ (Ak+Bk )+δAk Bk

· Yk
Xk+Yk

if max{Ak, Bk} > 0 and max{Xk,Yk} > 0. Otherwise the
process remains constant. Figure 4 visualizes the construc-
tion.
Analysis for probability of reaching majority consensus.We
start with two simple technical lemmas that we will use for
the comparison of the coupled processes.

Lemma 8 Let a, b, x, y ∈ R+
0 with max{a, b} > 0 and

max{x, y} > 0. Then b
a+b ≤ y

x+y if and only if bx ≤ ay.

Proof Multiplying both sides by (a + b) · (x + y), we see
that the first inequality is equivalent to bx + by ≤ ay + by,
which is in turn equivalent to bx ≤ ay. �

Lemma 9 Let a, b, x, y,m ∈ R+

0 with max{a, b} > 0,
max{x, y} > 0, and x ≥ y. If x ≤ a + m and y ≥ b + m,
then b

a+b ≤ y
x+y .

Proof By Lemma 8 it suffices to prove bx ≤ ay. From the
inequality chain a + m ≥ x ≥ y ≥ b + m we get a ≥ b.
We thus have bx ≤ b(a + m) = ab + bm ≤ ab + am =
a(b + m) ≤ ay. �


The crucial property of this coupling is that the initial
minority in the Pairwise Annihilation process cannot over-
take the initial majority before the initial minority overtakes
the initial majority in the parallel Yule processes. We now
prove that our construction indeed has this property.

Lemma 10 If X0 = A0 ≥ B0 = Y0 and Xk ≥ Yk for all
0 ≤ k ≤ K, then Xk − Yk ≤ Ak − Bk for all 0 ≤ k ≤ K.

Proof We first show by induction on k that Xk ≤ Ak + mk

andYk ≥ Bk+mk for all 0 ≤ k ≤ K , wheremk is the number
of death reactions up to step k. In the base case k = 0 we
even have equality. For the induction step k �→ k + 1, we
distinguish four cases; see Fig. 4.

1. The case ξk+1 <
δAk Bk

γ (Ak+Bk )+δAk Bk
: Thenmk+1 = mk +1,

Ak+1 = Ak−1, Bk+1 = Bk−1, Xk+1 = Xk , andYk+1 =
Yk . Hence, Xk+1 = Xk ≤ Ak+mk = (Ak+1+1)+mk =
Ak+1 + mk+1 and Yk+1 = Yk ≥ Bk + mk = (Bk+1 +
1) + mk = Bk+1 + mk+1 by the induction hypothesis.

2. The case ξk+1 ≥ δAk Bk
γ (Ak+Bk )+δAk Bk

and ξk+1 < 1 −
γ (Ak+Bk )

γ (Ak+Bk )+δAk Bk
· Yk
Xk+Yk

: In particular we have

ξk+1 ≤ 1 − γ (Ak + Bk)

γ (Ak + Bk) + δAk Bk
· Yk
Xk + Yk

≤ 1 − γ (Ak + Bk)

γ (Ak + Bk) + δAk Bk
· Bk

Ak + Bk

= 1 − γ Bk

γ (Ak + Bk) + δAk Bk

by the induction hypothesis and Lemma 9. This implies
the interval relation indicated in Fig. 4.
Hence, mk+1 = mk , Ak+1 = Ak + 1, Bk+1 = Bk ,
Xk+1 = Xk +1, and Yk+1 = Yk . But this means Xk+1 =
Xk +1 ≤ Ak +mk +1 = (Ak +1)+mk = Ak+1+mk+1

and Yk+1 = Yk ≥ Bk +mk = Bk+1+mk+1 by the induc-
tion hypothesis.

3. The case ξk+1 ≥ 1− γ (Ak+Bk )
γ (Ak+Bk )+δAk Bk

· Yk
Xk+Yk

and ξk+1 <

1 − γ Bk
γ (Ak+Bk )+δAk Bk

: We have mk+1 = mk , Ak+1 =
Ak + 1, Bk+1 = Bk , Xk+1 = Xk , and Yk+1 = Yk + 1.
But this means Xk+1 = Xk < Xk + 1 ≤ Ak +mk + 1 =
(Ak+1)+mk = Ak+1+mk+1 andYk+1 = Yk+1 > Yk ≥
Bk + mk = Bk+1 + mk+1 by the induction hypothesis.
Xk+1 = Xk < Xk+1 ≤ Ak+mk+1 = (Ak+1)+mk =
Ak+1 + mk+1 Yk+1 = Yk + 1 > Yk ≥ Bk + mk =
Bk+1 + mk+1

4. The case ξk+1 ≥ 1 − γ Bk
γ (Ak+Bk )+δAk Bk

: In particular we
have

ξk+1 ≥ 1 − γ Bk

γ (Ak + Bk) + δAk Bk

= 1 − γ (Ak + Bk)

γ (Ak + Bk) + δAk Bk
· Bk

Ak + Bk

≥ 1 − γ (Ak + Bk)

γ (Ak + Bk) + δAk Bk
· Yk
Xk + Yk

by the induction hypothesis and Lemma 9. Hence
mk+1 = mk , Ak+1 = Ak , Bk+1 = Bk + 1, Xk+1 = Xk ,
and Yk+1 = Yk + 1. But this means Xk+1 = Xk ≤
Ak + mk = Ak+1 + mk+1 and Yk+1 = Yk + 1 ≥
Bk + mk + 1 = (Bk + 1) + mk = Bk+1 + mk+1 by
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Fig. 4 Discrete-time coupling
of Pairwise Annihilation (PA)
chain and two Yule processes X
and Y with λ(Ak , Bk) =
γ (Ak + Bk) + δAk Bk . Cases for
ξk+1 that lead to stuttering steps
are shown in blue. The interval
relations indicated by the dotted
lines are proven by induction in
Lemma 10. The four cases for
the induction step are indicated
(color figure online)

PA chain
0 1

δAkBk/λ(Ak, Bk) γAk/λ(Ak, Bk) γBk/λ(Ak, Bk)

Ak − 1,
Bk − 1 Ak + 1 Bk + 1,

Yule processes X, Y
0 1

δAkBk/λ(Ak, Bk) (1− δAkBk/λ(Ak, Bk)) · Xk
Xk+Yk

(1− δAkBk/λ(Ak, Bk)) · Yk
Xk+Yk

Xk + 1 Yk + 1

Cases in proof
of Lemma 10 (1) (2) (3) (4)

the induction hypothesis.
The lemma now follows via Xk − Yk ≤ (Ak + mk) −
(Bk + mk) = Ak − Bk .

�

Corollary 11 If A0 = X0 and B0 = Y0, then

P(∃k : Ak = Bk) ≤ P(∃k : Xk = Yk).

Proof By Lemma 10, if k is minimal such that Ak = Bk ,
then Xk = Yk . �


As defined in the coupling the parallel Yule processes
(Xk,Yk) can have stuttering steps where

(Xk+1,Yk+1) = (Xk,Yk).

However, this happens only finitely often almost surely. This
allows us to analyze a version of the process (Xk,Yk)without
stuttering steps in the rest of the proof.

Lemma 12 If (X̃k, Ỹk) is the product of two independent
pure-birth processes with X̃0 = X0 and Ỹ0 = Y0, then
P(∃k : X̃k = Ỹk) = P(∃k : Xk = Yk).

Proof Lemma 6 implies that there are only finitely many
deaths in the coupled chain almost surely. There are hence
only finitely many stuttering steps in (Xk,Yk) almost surely.

�

Because of Lemma 12, by slight abuse of notation, wewill

use (Xk,Yk) to refer to the parallel Yule processes without
any stuttering steps.

Two parallel independent Yule processes are known to be
related to a beta distribution, which we will use below. The
regularized incomplete beta function Iz(α, β) is defined as

Iz(α, β) =
∫ z

0
tα−1(1 − t)β−1 dt

/∫ 1

0
tα−1(1 − t)β−1 dt .

Lemma 13 If X0 > Y0, then

P (∃k : Xk = Yk) = 2 · I1/2(X0,Y0) .

Proof The sequence of ratios Xk
Xk+Yk

converges with prob-
ability 1 and the limit is distributed according to a beta
distribution with parameters α = X0 and β = Y0 (Theo-
rem 26 in the appendix). In particular, the probability that
the limit is less than 1/2 is equal to the beta distribution’s
cumulative distribution function evaluated at 1/2, i.e., equal
to I1/2(X0,Y0). Because initially we have X0 > Y0, the law
of total probability gives:

I1/2(X0,Y0) = P

(

lim
k→∞

Xk

Xk + Yk
<

1

2

)

= P

(

lim
k→∞

Xk

Xk + Yk
<

1

2

∣
∣
∣∃k : Xk = Yk

)

· P (∃k : Xk = Yk)

+ P

(

lim
k→∞

Xk

Xk + Yk
<

1

2
∧ ∀k : Xk > Yk

)

(3)

Now, if ∀k : Xk > Yk , then limk
Xk

Xk+Yk
≥ 1/2, which shows

that the second term in the sum in (3) is zero. Further, under
the condition ∃k : Xk = Yk , it is equiprobable for the limit
of Xk

Xk+Yk
to be larger or smaller than 1/2 by symmetry and

the strong Markov property. This shows that the right-hand
side of (3) is equal to 1

2 ·P (∃k : Xk = Yk), which concludes
the proof. �


We define the event “B wins” as A eventually becoming
extinct. Then, we have:

Lemma 14 If A0 > B0, then P (∃k : Ak = Bk) = 2 ·
P(B wins).

Proof Similarly to the proof of Lemma 13, by the law of total
probability, we have:

P (B wins) = P (B wins | ∃k : Ak = Bk)

·P (∃k : Ak = Bk) + P (B wins ∧ ∀k : Ak > Bk) (4)

If ∀k : Ak > Bk , then B cannot win, i.e., the second term in
the right-hand side of (4) is zero. Also, by symmetry and the
strong Markov property, it is

P (B wins | ∃k : Ak = Bk) = 1/2 .
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Fig. 5 The probability that
species A survives while species
B goes extinct is sharply
dependent on their initial
difference in population count
A0 − B0. The sharpness of the
transition is inversely
proportional to initial population
size A0 + B0

A simple algebraic manipulation now concludes the proof. �

Combining the previous two lemmas with the coupling,

we get an upper bound on the probability that the Pairwise
Annihilation protocol fails to reach majority consensus. This
upper bound is in terms of the regularized incomplete beta
function.

Lemma 15 If A0 ≥ B0, then the Pairwise Annihilation pro-
tocol fails to reach majority consensus with probability at
most I1/2(A0, B0).

Proof Setting X0 = A0 and Y0 = B0, and combining Corol-
lary 11 and Lemmas 13 and 14 , we get P(B wins) =
1
2 ·P(∃k : Ak = Bk) ≤ 1

2 ·P(∃k : Xk = Yk) = I1/2(A0, B0).
�


Due to Lemma 15, it only remains to upper-bound the
term I1/2(α, β). Lemma 16 provides such a bound. Its proof
is given in the appendix.

Lemma 16 For m,Δ ∈ N, it holds that

I1/2(m + Δ,m) = exp

(

−Ω

(
Δ2

m

))

.

Combining the above lemmas proves the second part of
Theorem 1.

3.4 Simulation of the Pairwise Annihilation protocol

Stochastic simulations [22,26] of the Pairwise Annihilation
protocol are shown in Fig. 5 for the probability that species A
survives, while species B goes extinct. The birth and death
rates, γ and δ, are both set to 1. The probability that the
protocol converges on A surviving and B going extinct is
primarily dependent on the difference in initial population

size A0 − B0. Larger populations are only slightly less sen-
sitive to the difference: Fig. 5 demonstrates that the total
population size across two orders of magnitude has a small
effect compared to the difference between species. Indeed,
this behavior qualitatively matches the bound in Theorem 1
with −Ω(Δ2/n) in the exponent.

The dependence of expected convergence time for the
Pairwise Annihilation protocol is explored using stochastic
simulation over its reaction rate constants and initial condi-
tions in Fig. 6. Exponential changes in rate constants yield
exponential changes in convergence time. As expected, the
convergence time is more strongly dependent on the death
rate constant δ than the birth rate constant γ . Convergence
time sharply increases if the initial concentrations of the two
species A and B are closer to each other. The off-diagonal ini-
tial concentrations converge faster for larger population sizes
since the absolute difference in concentrations is larger.

4 Boolean gates

In terms of circuit design, the Pairwise Annihilation protocol
can be viewed as a differential signal amplifier; see also the
sharp S-shaped curve in Fig. 5 that is typical for an ampli-
fier. Differential signaling has applications in systems that
require high resilience to noise, and thus an application for
our inherently growing systems is natural.

In this section we study a protocol for computing the log-
ical Nand of two signals, despite a loss of signal quality at
the output. ThePairwiseAnnihilation protocol is then applied
to regenerate the signal, obtaining a clear 0 or 1 with high
probability. Note that the Nand gate protocol is easily gen-
eralized to arbitrary two-input Boolean functions, and so is
its analysis.
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Fig. 6 Log-scaled expected convergence time (in min) of the Pairwise
Annihilation protocol is represented by color. Corresponding values are
shownon the adjacent vertical bar.Top: birth rate coefficient γ and death
rate coefficient δwith A0 = B0 = 100.Bottom: initial populations sizes
with γ = 0.01 and δ = 1 (color figure online)

4.1 Dual-rail signals

Westart with some notation.A signal is from afinite alphabet
Σ = {X ,Y , . . . }. At each time t ≥ 0, a signal X ∈ Σ has a
value x(t) ∈ {0, 1,⊥}. Following a technique from clockless
circuit design [38,51] we encode the value of a signal as a
dual-rail signal in the followingway. For each signal X , there
are two species X0 and X1. Intuitively, for v ∈ {0, 1}, a large
count of Xv(t) and a low count of X¬v(t) encodes for x(t) =
v. In fact, we will ask for a minimum gap in species counts
between Xv(t) and X¬v(t). If the signal is neither 0 nor 1, we
will say that it has value ⊥. We will make the assumptions
on the input signals precise and discuss guarantees on output
signals when specifying the gate input/output behavior.

amplify
Y 0

Y 1

A0

A1

B0

B1

Z0

Z1

Fig. 7 Dual-railNand gate with input signals A and B an output signal
Y . Successive amplification of Y to signal Z shown in gray

Let X0, X1 be species of a dual-rail encoding of signal
X . For convenience we write X(t) for X0(t) + X1(t). For
n,Δ ∈ N, we say signal X is initially (n,Δ)-correct with
value x ∈ {0, 1} if

X(0) ≥ n and X¬x (0) ≤ n − Δ

2
. (5)

The initial gap Xx (0)− X¬x (0) of signal X is thus bounded
by

Xx (0) − X¬x (0) = Xx (0) + X¬x (0) − 2X¬x (0) ≥ Δ .

4.2 Dual-railNAND gate

Adual-rail implementation of aNand gatewith input signals
A, B and output signal Y , the so called Nand gate protocol,
is as a protocol with input species I = {A0, A1, B0, B1},
output speciesO = {Y 0,Y 1}, and no internal species. Initial
counts for outputs that are not inputs areY 0(0) = Y 1(0) = 0.
Further, for all a, b ∈ {0, 1} and y = ¬(a ∧ b), the protocol
contains a reaction

Aa + Bb α−→ Aa + Bb + Y y ,

where α > 0 is the gate’s rate constant. Since all species
are permanently replicating, we further have the obliga-

tory duplication reactions Ai γ−→ 2Ai , Bi γ−→ 2Bi , and

Y i γ−→ 2Y i for i ∈ {0, 1}. Figure 7 depicts the Nand gate
with the subsequent amplification protocol.

In Sect. 4.3 we will show that the Nand gate ensures the
following input-output specification:

Theorem 17 Assume that theNandgate’s input signals A, B
are dual-rail encoded signals, and that they are initially
(n,Δ)-correct with values a, b ∈ {0, 1}, respectively, where

n ∈ N+ and

Δ ≥ 0.62 · max {A(0), B(0)} .

Then with high probability, there exists some time t = O(1)
such that Y (t) = n and Y y(t) − Y¬y(t) = Ω(n) for the
output signal Y where y = ¬(a ∧ b) is the correct Nand
output based on the initial values a, b of signals A and B,
respectively.
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4.3 Gate correctness and performance

To show the correct of the dual-rail two-input gate, we pro-
ceed as follows. Startingwith technical lemmas,wefirst show
that the initial value of a single dual-rail input signal is not
lost due to growth of the input species (Lemma 20). Making
use of independence of growth of the species encoding the
rails of the two input signals, we then bound the probability
that both input signals remain correct (Lemma22).Wefinally
show that the gate’s dual-rail output is correct in two steps:
We first assume a simplifiedmodel where gate output species
are produced by the gate but cannot duplicate (Lemma 23).
The lemma bounds the number of incorrect output species
that are produced by the gate, showing that its output signal
has the correct value. In a second step, we prove that dupli-
cation of the output species, as required by our model, does
not invalidate the output correct value (Lemma 24).

We now turn to the proof of Theorem 17. For our analysis
we need a bound on the regularized incomplete beta func-
tion I3/4. The proofs of the next two lemmas are given in the
appendix.

Lemma 18 For X ≥ Y , it holds that I3/4(X ,Y ) ≤ 1
2 exp

(

−
(X−Y+1)2

4(Y−1) + (X + Y − 1) log 3
2

)

. If m,Δ ≥ 0,

I3/4(m + Δ,m) ≤ 1

2
exp

(

− (Δ + 1)2

4(m − 1)
+ 2m + Δ

2

)

.

The following lemma shows that for z = 3/4, the func-
tion (x, y) �→ Iz(x, y) is non-decreasing in (x, y) along the
discretized line with slope 1/3.

Lemma 19 If X ≥ 3Y ≥ 0, then

I3/4(X ,Y ) ≤ I3/4(X + 3,Y + 1).

We are now in the position to show a lower bound on the
probability for a discrete time Yule process with two species
X andY , that lim

k→∞ Xk/(Xk+Yk) < 3/4, given that the initial

values fulfill X0/(X0 + Y0) > 3/4 and that there is a step �

with X�/(X� + Y�) ≤ 3/4.

Lemma 20 Let X and Y be species from a Yule process.
Assume that X0/(X0 + Y0) > 3/4 for the initial values.
Then

P

(

lim
k→∞

Xk

Xk + Yk
<

3

4

∣
∣
∣ ∃� : X�

X� + Y�

≤ 3

4

)

≥ ω
(
X0,Y0

)
,

where ω
(
X0,Y0

)
equals to

inf
{
I3/4(x, y)

∣
∣ x ≥ X0 ∧ y ≥ Y0 + 1

∧ x ∈ 3y − {0, 1, 2} } .

Moreover, ω
(
X0,Y0

)
> 0.444

Proof By assumption X0/(X0 + Y0) > 3/4. Let � ≥ 1 be
minimal such that X�/(X� +Y�) ≤ 3/4. By assumption such
an � exists. By minimality of �, we have

X� ≤ 3Y� and X�−1 > 3Y�−1 .

From the fact that X ,Y follow a Yule process, this can only
be the case if Y has increased from step � − 1 to �, i.e.,

X� = X�−1 ≥ X0 (6)

Y� = Y�−1 + 1 ≥ Y0 + 1 . (7)

Thus, X� > 3Y� − 3 from which X� ≥ 3Y� − 3 and further,

X� ∈ 3Y� − {0, 1, 2} . (8)

For aYule processwith species X ′ andY ′, and arbitrary initial
counts X ′

0 = x and Y ′
0 = y, we have

P

(

lim
k→∞

X ′
k

X ′
k + Y ′

k
<

3

4

)

= I3/4(x, y) . (9)

The first inequality of the lemma now follows from (6), (7),
(8), and (9).

We next show the second inequality of the lemma. For that
purpose, we remark that any (x, y) in

S = {x ≥ X0 ∧ y ≥ Y0 + 1 ∧ x ∈ 3y − {0, 1, 2}}

with X0 ≥ 1 and Y0 ≥ 1 is of the form

s0 + m · (3, 1) , (10)

where s0 ∈ {(4, 2), (5, 2), (6, 2)} and m ∈ N.
Assume x = 3y − Δ with Δ ∈ {0, 1, 2}. Choosing s0 =

(6 − Δ, 2) and m = y − 2 ≥ 0, and applying (10) yields

(6 − Δ, 2) + (y − 2) · (3, 1) = (3y − Δ, y) = (x, y) ,

from which the claim follows.
By repeatedly applying Lemma 19 to an element (x, y) in

S, we have from (10) that

ω(X0,Y0) ≥ min{I3/4(4, 2), I3/4(5, 2), I3/4(6, 2)}
= I3/4(6, 2) > 0.444 .

The lemma follows. �
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Making use of Lemma 20, we next prove an upper bound
on the probability that the two-species discrete-time Yule
process X ,Y , with an initial large majority of X , eventually
hits a step where its relative population size drops to 3

4 or
below. We will later on use this result, instantiating it with
species X0, X1 of a dual-rail encoding of a signal X , to make
sure both rails remain separated and the signal X maintains
its initial value.

Lemma 21 Let X and Y be species from a Yule process.
Assume that X0

X0+Y0
> 3

4 . Then

P

(

∃k : Xk

Xk + Yk
≤ 3

4

)

<
I3/4 (X0,Y0)

0.444
.

Proof By assumption X0 > 3Y0. Further, we have

I3/4(X0,Y0) = P

(

lim
k→∞

Xk

Xk + Yk
<

3

4

)

= P

(

lim
k→∞

Xk

Xk + Yk
<

3

4

∣
∣
∣ ∃k : Xk

Xk + Yk
≤ 3

4

)

· P
(

∃k : Xk

Xk + Yk
≤ 3

4

)

+ P

(

lim
k→∞

Xk

Xk + Yk
<

3

4
∧ ∀k : Xk

Xk + Yk
>

3

4

)

Lemma 20
> 0.444 · P

(

∃k : Xk

Xk + Yk
≤ 3

4

)

.

The lemma follows. �

While Lemma 20 dealt with the correctness of a single

dual-rail signal, the following lemma provides a lower bound
on the probability that the dual-rail encoding of signals A
and B, that are both initially (n,Δ)-correct, for Δ > n/2,
remains separated as their species grow.We will make use of
this result in Boolean gates with two dual-rail inputs, making
sure that the inputs of the gate remain their correct signal
value.

Lemma 22 Let A0, A1 aswell as B0, B1 be species of a dual-
rail encoding of signals A and B. Assume that each species
follows a Yule processes. If signals A and B are initially
(n,Δ)-correct with n,Δ ∈ N with Δ > n

2 for some a, b ∈
{0, 1}, then

P

(

∀t ≥ 0 : Aa(t)

A(t)
>

3

4
∧ Bb(t)

B(t)
>

3

4

)

≥
(

1

− 1

2 · 0.444 exp

(
1

2

(

− Δ2

(n − Δ)
+ max{A(0), B(0)}

)))2

(11)

Proof By Independence of the two Yule processes, we have

P

(

∀t ≥ 0 : Aa(t)

A(t)
>

3

4
∧ Bb(t)

B(t)
>

3

4

)

= P

(

∀t ≥ 0 : Aa(t)

A(t)
>

3

4

)

· P
(

∀t ≥ 0 : Bb(t)

B(t)
>

3

4

)

.

(12)

Further, since A is (n,Δ)-correct with Δ > n
2 ,

A(0) = 2Aa(0) − (Aa(0) − A¬a(0)) ⇒
Aa(0) ≥ A(0) + Δ

2
⇒

Aa(0)

A(0)
≥ n + Δ

2n
>

3

4
.

By analogous arguments, Bb(0)
B(0) > 3

4 . We may thus apply
Lemma 21 twice to (12), obtaining

P

(

∀t ≥ 0 : Aa(t)

A(t)
>

3

4
∧ Bb(t)

B(t)
>

3

4

)

>

(

1 − I3/4
(
Aa(0), A¬a(0)

)

0.444

)

·
(

1 − I3/4
(
Bb(0), B¬b(0)

)

0.444

)

.

We can now apply Lemma 18 twice: for X = Aa(0) and
Y = A¬a(0), and for X = Bb(0) and Y = B¬b(0). For Aa

and A¬a , we further have

−
(
Aa(0) − A¬a(0) + 1

)2

4(A¬a(0) − 1)
+ A(0)

2

≤ −
(
Aa(0) − A¬a(0)

)2

4A¬a(0)
+ A(0)

2
(5)≤ − Δ2

4 n−Δ
2

+ A(0)

2

= 1

2

(

− Δ2

(n − Δ)
+ A(0)

)

.

By analogous arguments for Bb and B¬b, the bound in (11)
follows. �


We next show in Lemma 23 that when theNand gates has
produced n output species Y 0 and Y 1, a certain gap Δ > 0
is guaranteed with a probability that depends on n and Δ.
However, instead of showing this for the originalNand gate,
we first prove that the bound holds for an adapted version
where Y 0 and Y 1 do not duplicate. We later extend the result
to the original Nand gate in Lemma 24.

Lemma 23 Consider an adapted version of the Nand gate
with dual-rail encoded input signals A, B and output signal
Y . In the adapted version, species Y 0 andY 1 donot duplicate.
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Further, assume that for some a, b ∈ {0, 1},

∀t ≥ 0 : Aa(t)

A(t)
>

3

4
∧ Bb(t)

B(t)
>

3

4
.

Then, with y = ¬(a ∧ b) being the correct Boolean output
of the gate, for any t ≥ 0 and Δ, n ∈ N with Δ ≤ n/8,

P

(
Y y(t) − Y¬y(t) > Δ

∣
∣ Y (t) = n

)
≥

1 − exp

(

−
( n
8 − Δ

)2

2n

)

.

Proof From the assumption on the inputs, we have that the
probability of the Nand gate to chose species Aa and Bb

when producing an output species, is at least p = ( 3
4

)2
.

Likewise awrong output is producedwith probability atmost
1 − p.

Consider the discrete random walk on Z, starting at posi-
tion D0 = 0, and at step i ≥ 1, incrementing Di−1 by one
with probability p, and decrementing by one with proba-
bility 1 − p. It is easy to construct a coupling such that
Dn ≤ Y y(t) − Y¬y(t), given that Y (t) = n.

Let Ii , i ≥ 1, be a sequence of i.i.d. Bernoulli trials with
success probability p, and Rn = ∑n

i=1 Ii . Then Rn follows
a Binomial distribution and 2Rn −n is identically distributed
to Dn . Thus,

P (Dn > Δ) = 1 − P

(

Rn ≤ Δ + n

2

)

= 1 −
Δ+n
2∑

i=0

(
n

i

)

pi (1 − p)n−i .

Applying Chernoff’s inequality for sums of Bernoulli trials,
we obtain for Δ ≤ (2p − 1)n = n

8 ,

k∑

i=0

(
n

i

)

pi (1 − p)n−i ≤ exp

(

−2
(np − k)2

n

)

where k = Δ+n
2 . Thus,

P (Dn > Δ) ≥ 1 − exp

(

−2

(
np − Δ+n

2

)2

n

)

= 1 − exp

(

−
( n
8 − Δ

)2

2n

)

.

The lemma follows. �

Lemma 24 Consider the Nand gate with dual-rail encoded
input signals A, B and output signal Y . If for some a, b ∈

{0, 1},

∀t ≥ 0 : Aa(t)

A(t)
>

3

4
∧ Bb(t)

B(t)
>

3

4
,

A(0) ≥ n, and B(0) ≥ n then, letting y = ¬(a ∧ b) be
the correct Boolean output of the gate, with high probability
there exists a t = O(1) such that Y y(t) − Y¬y(t) = Ω(n)

and Y (t) = n.

Proof We first consider the variant of the Nand gate from
Lemma 23 where Y 0 and Y 1 do not duplicate. Let T > 0 be
the earliest time t when Y (t) = n.

By assumption, for all t ′ ≥ 0, A(t ′) ≥ n and B(t ′) ≥ n.
Thus the gate’s production rate of Y species is at least n2α.
It follows that with high probability T ≤ log n

αn .
Wewill next upper bound the count of speciesY thatwould

have been produced if duplication were in place during time
[0, T ]. For that purpose, assume that all Y species generated
by the gate during [0, T ] are alreadyproduced at time0.Then,
the count of species Y generated by duplication, let us call
them Ŷ , follows a single species Yule process with initial
count Ŷ (0) = n. Thus, Ŷ (T ) follows a negative binomial
distribution with success probability p = 1 − e−γ T and
r = Ŷ (0), i.e.,

P
(
Ŷ (T ) = k

)

=
(

k − 1

Ŷ (0) − 1

)

e−γ T Ŷ (0)
(
1 − e−γ T

)k−Ŷ (0)
.

Further, for the expected count of species generated by dupli-
cation, minus the initial Ŷ (0) that were generated by the gate,
we have,

E
(
Ŷ (T ) − Ŷ (0)

)
= r

1 − p
− r

= Ŷ (0)(eγ T − 1) ≤ n
(
e

γ
α

log n
n − 1

)
.

We next show that,

E
(
Ŷ (T ) − Ŷ (0)

)
= O(log n) . (13)

Setting g = γ /α, and lettingC = geg , Eq. (13) follows from
the fact that for all n > 0,

n
(
e
g log n

n − 1
)

≤ C log n ⇔

e
g log n

n ≤ C
log n

n
+ 1 .

Substituting z = log n/n, the latter follows from

∀z ∈ [0, 1] : egz ≤ Cz + 1 . (14)
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Inequality (14), follows by observing that it holds for z = 0,
and that, by taking the z-derivative on both sides, we obtain
gegz ≤ C which is true for z ∈ [0, 1] by choice of C = geg;
Eq. (13) follows.

Noting that the variance σ 2 = Var
(
Ŷ (T ) − Ŷ (0)

)
of a

negative binomial distribution, with r and p as above, is

σ 2 =
E
(
Ŷ (T ) − Ŷ (0)

)

1 − p
,

and settingμ = E(Ŷ (T )−Ŷ (0)), we next applyChebyshev’s
bound P (|X − μ| ≥ ε) ≤ σ 2

ε2
.

In particular, the fact that with high probability less than
μ+ε species of Y are generated by duplication, follows from

P
(
Ŷ (T ) − Ŷ (0) ≥ μ + ε

)
≤ σ 2

ε2
≤ 1/n . (15)

Solving for ε gives,

σ 2

ε2
≤ 1/n

⇔ ε ≥ σ
√
n

⇔ ε ≥
√

nE
(
Ŷ (T ) − Ŷ (0)

)
eγ T .

Further, observing that eγ T = e
g log n

n = O(1), and using
(13), we obtain the existence of a function h(·), such that, if
we choose

ε ≥ h(n) = O
(√

n log n
)

,

Inequality (15) is fulfilled.
Thus, together with (13), one obtains that with high prob-

ability Ŷ (T ) − Ŷ (0) is at most

E
(
Ŷ (T ) − Ŷ (0)

)
+ ε = O

(√
n log n

)
. (16)

Applying Lemma 23 for Y (T ) = n, we obtain a bound on
the gap Δ = Y y(T ) − Y¬y(T ), excluding those generated
by duplication, that holds with high probability. Choosing

Δ = n

8
−√

2n log n ,

we apply Lemma 23 for n and Δ ≤ n
8 , and obtain

P

(
Y y(t) − Y¬y(t) > Δ

∣
∣ Y (t) = n

)

≥ 1 − exp

(

−
( n
8 − Δ

)2

2n

)

. (17)

By choice of Δ,

Δ ≤ n

8
−√

2n log n ⇒
(n

8
− Δ

)2 ≥ 2n log n ⇒

exp

(

−
( n
8 − Δ

)2

2n

)

≥ 1

n
⇒

1 − exp

(

−
( n
8 − Δ

)2

2n

)

≥ 1 − 1

n

Together with (17), we have

P

(
Y y(t) − Y¬y(t) > Δ

∣
∣ Y (t) = n

)
≥ 1 − 1

n
.

Additionally accounting for the Y species that have been
generated by duplication until time T , by using (16), we
obtain that the gap Y y(T ) − Y¬y(T ) between correct output
species Y y and incorrect output species Y¬y at time T in a
gate with duplication, with high probability, fulfills

Y y(T ) − Y¬y(T ) ≥ Δ −
(
Ŷ (T ) − Ŷ (0)

)
= Ω (n) .

The lemma follows. �

We are now in the position to prove Theorem 17, showing

the correctness of the Nand gate if each of the two dual-rail
input signals has a sufficiently large gap between its rails.

Proof of Theorem 17 The theorem follows from Lemma 24
if its assumption holds with high probability. The lat-
ter, however, follows from Lemma 22 if the exponent
1
2

(
− Δ2

(n−Δ)
+ max{A(0), B(0)}

)
holds to be in

Ω (−max{A(0), B(0)}). We next show that this is the case.
Let M = max{A(0), B(0)}. From Δ ≥ μM with μ =

0.62 we have,

− Δ2

n − Δ
+ M ≤ − μ2M2

M − μM
+ M

≤ M

(

1 − μ2

(1 − μ)

)

.

It thus remains to show that
(
1 − μ2

(1−μ)

)
< 0. By algebraic

manipulation, this is the case if μ ∈
(
1
2 (

√
5 − 1), 1

)
, which

is true by assumption. The theorem follows. �


5 In silico biological implementation

While the studied model is a simplification, it represents core
functions that constitute collective decision-making among
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biological species, and is readily adaptable for specific bio-
logical applications. If reactions are modified such that one
of the two reactants does not change, the model could rep-
resent one-way messaging equivalent to a conjugation event
between a sender and receiver bacterial cell [36]. Similarly,
if the messages A and B are coded as free species diffusible
between senders and receivers, it could represent communi-
cation between bacterial cells using bacteriophage particles
as messages [40].

In this section, we discuss a plausible biological imple-
mentation with E. coli bacteria that use conjugation to
communicate. Conjugation is a method of genetic commu-
nication in which circular DNA plasmids are transferred
from a sender cell to a receiver cell. An F plasmid allows
a cell to be a sender during conjugation. The receiver can be
engineered to express a logical function using the received
plasmid and its existing DNA, although the internal imple-
mentation is not detailed for this simulation. A conjugation
reaction with a sender S and a receiver R is described by

R+ S
δ−→ f (R, S)+ S, where δ is the conjugation rate con-

stant, and f is a function to the species. Both, the amplifier
and the Nand gate follow this scheme. For the amplifier,
f (R, S) = ∅ and for the Nand gate f (R, S) = Y , where Y
is the gate’s corresponding output species. While with wild-
type F plasmids,E. coli are either senders (with F plasmid) or
receivers (without F plasmid), there exist engineered systems
that allow the same cell (with F plasmid) to be both a sender
and a receiver [18,36]. Note that a single cell still cannot act
as both the sender and the receiver during a single reaction.

The growth of the E. coli is modeled by a logistic model
with a carrying capacity of 109 cells. A limited resource is
consumed when species duplicate and released when they
die. Reaction rate constants for duplication γ = 0.016 and
for conjugation δ = 10−11 have been taken from Dimitriu et
al. [18]. For our implementation, amplification of the gate’s
inputs and outputs was executed in parallel to the gate’s pro-
tocol. The simulations discussed in the following suggest
that sequential execution is not required for correctness and
performance, greatly simplifying the biological design. If
all possible gate reactions were used, inputs that lead to Y 1

would be more susceptible to noise since there are more pos-
sible input pairs leading to Y 1 than Y 0 in a Nand gate. This
was alleviated by selecting a subset of all possible gate reac-
tions in which three reactions lead to Y 1 (see 1–3 below) and
two reactions lead to Y 0 (see 4–5 below).

1. A1 + B0 −→ A1 + Y 0

2. A0 + B1 −→ A0 + Y 0

3. A1 + B1 −→ A1 + Y 0

4. A0 + B0 −→ A0 + Y 1

5. A0 + B0 −→ Y 1 + B0

Simulation of our system for the four possible input
choices are shown in Fig. 8. For performance with many
individuals, simulations are done using the τ -leaping approx-
imation of stochastic simulation, in which multiple reactions
occur during a dynamic time interval of τ , before updating
reaction rates [23,26]. The initial population size is set to
5×108, the carrying capacity to 1×109, and the initial input
error to 10% of wrong input species per input. Despite the
low rate of communication from conjugation, the correct out-
put species rapidly out-competes the incorrect output species
for all input choices.

6 Pairwise annihilation in an open system

Many biological applications require growing cells for pro-
longed periods of time [20,27]. Continuous cultures, also
known as chemostats, can be used to constantly supply fresh
nutrients while maintaining a fixed volume via a respective
outflow. This in- and outflow transforms the system into an
open system. We examined the effect of this setting on the
Pairwise Annihilation protocol. Since outflow contributes to
the basal death rate of each species,we conjectured that it aids
the annihilation process and accelerates consensus. Interest-
ingly, this is not the case. We will show that flow tends to
impede consensus.

The section is structured as follows: first, linear stability
analysis of an ODE model is used to show that the system
converges to majority consensus, assuming that both species
do not die. In this range, the analysis suggests that flow
impedes consensus, except in a narrow parameter range. Sec-
ond, stochastic simulations demonstrate that flow increases
the time until consensus across a wide range of parameters,
including the questionable range isolated by linear analysis.

6.1 ODEmodel

In addition to the species A and B, we use a food species F
to model logistic growth due to depletion of resources like
nutrients. We use the common notation of Ẋ for d

dt X(t) and
X instead of X(t) when no confusion can arise. Let γ > 0
be the growth rate constant within fresh medium, δ > 0 the
annihilation rate constant, and φ > 0 the in- and outflow
rate constant. The fresh medium supplied via the inflow is
assumed to contain F̂ > 0 food per unit volume. As before,
food is consumed by duplication and released by death. We
then obtain the following ODEmodel for the Pairwise Anni-
hilation protocol:

Ȧ =
(

γ F

F̂
− φ

)

A − δAB

Ḃ =
(

γ F

F̂
− φ

)

B − δAB
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Fig. 8 A biologically plausible implementation of a Nand gate with
amplifiers on inputs and outputs. Note that a subset of all possible gate
reactions has been implemented to balance production of Y 0 and Y 1.
Initial population size is 5 × 108, carrying capacity of 109 cells. Reac-
tion rate constants were set to γ = 0.016 and δ = 10−11 [18]. The

output species is shown for each choice of inputs. The initial input error
is 10%. All choices lead to correct, clearly separable outputs within half
an hour. Confidence intervals from 30 sample simulations are smaller
than the width of the lines

Ḟ = −γ F

F̂
(A + B) + 2δAB − φ(F − F̂)

Letting X = A + B, Y = A − B, and Z = A + B + F and
assuming that A(0) ≥ B(0), we have that Y (t) ≥ 0 for all
t ≥ 0, and we may rewrite the system, obtaining:

Ẋ =
(

γ

F̂
(Z − X) − φ

)

X − δ

2

(
X2 − Y 2

)

Ẏ =
(

γ

F̂
(Z − X) − φ

)

Y

Ż = φ
(
F̂ − Z

)

In the following we will analyze this transformed system.

6.2 Linearization at fixed points

Let (X∗,Y ∗, Z∗) be a fixed point of the above system. The
Jacobian J (X∗,Y ∗, Z∗) at this point is a linear approxima-
tion for theODEs in the neighborhood of that fixed point, and
its eigenvalues determine the stability of the point [14,32,52]:
if all real parts of eigenvalues are negative, the point is a sta-
ble sink, while a strictly positive real part shows instability
along the corresponding eigenvector making it an unstable
source or saddle point. The magnitude of the largest real

component of an eigenvalue controls the rate of attraction to
a stable point or rate of repulsion from an unstable point, so
long as the point is not approached precisely along another
eigenvector.

In our case, the Jacobian J (X ,Y , Z) is equal to

J =
⎡

⎢
⎣

γ

F̂
Z − φ − (2 γ

F̂
+ δ)X δY γ

F̂
X

− γ

F̂
Y γ

F̂
(Z − X) − φ

γ

F̂
Y

0 0 −φ

⎤

⎥
⎦

and there exist 3 fixed points:

– The washout point (0, 0, F̂) where A = B = 0.
– The metastable point ((2γ − 2φ)/(2γ + δ), 0, F̂) with

A = B > 0.
– The majority consensus point (F̂(1 − φ/γ ), F̂(1 −

φ/γ ), F̂) with min(A, B) = 0 and max(A, B) > 0.

Only the last point will be referred to as majority consensus,
since it is not desirable in practice to reach consensus if both
species eventually die (as in washout). Next, we show that
irrespective of the parameters, at least one of the fixed points
is stable. In particular, we will show that the metastable point
is always unstable,whereas thewashout andmajority consen-
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sus points exchange stability during a transcritical bifurcation
at γ = φ.

The system will always converge to the only stable point
since the system is bounded without periodic or chaotic
behavior. No periodic behavior occurs since the imaginary
components of all eigenvalues are always zero, as shown
below. The system is bounded since Z approaches a constant
F̂ independently of X and Y , and Y ≤ X ≤ Z by defini-
tion. Finally, chaos does not occur: since Z approaches F̂ ,
the system is 2-dimensional and bounded in the limit, which
cannot exhibit chaos [9,52]. We detail the stability of each
point in the following.
Washout point A = B = 0.At the fixed point where washout
happens, we have

J =
⎡

⎣
γ − φ 0 0

0 γ − φ 0
0 0 −φ

⎤

⎦

with eigenvalues λ1,2 = γ − φ and λ3 = −φ. All eigen-
values are negative if and only if γ < φ, in which case the
washout point is a sink. The rate of attraction near the point
is approximated as γ −φ. Thus, not surprisingly, higher flow
rates φ accelerate washout. Otherwise, if γ > φ, the point
becomes a source with φ impeding escape from its neighbor-
hood whereas γ aids escape.
Metastable point A = B �= 0. In case both species have
identical counts,

J =

⎡

⎢
⎢
⎣

−γ + φ 0 2γ F̂ γ−φ

2γ+F̂δ

0 δ F̂(γ−φ)

2γ+F̂δ
0

0 0 −φ

⎤

⎥
⎥
⎦

with eigenvalues

λ1 = φ − γ ,

λ2 = δ F̂(γ − φ)

2γ + F̂δ
, and

λ3 = −φ .

Observe that λ1 is negative if γ > φ, and λ2 is negative
if γ < φ; hence all eigenvalues are never simultaneously
negative, so this fixed point is always unstable. If γ < φ,
trajectories near themetastable point leave it with a repulsion
rate of φ − γ . Thus a larger flow rate constant φ increases
the rate of repulsion. Otherwise, if γ > φ, trajectories leave

with a rate of δ F̂(γ−φ)

2γ+F̂δ
. Hence a larger flow rate constant φ

decreases the repulsion rate when washout does not occur.
By contrast, the birth and death rate constants γ and δ both
increase the rate of repulsion.

Majority consensus point min(A, B) = 0, max(A, B) > 0.
We have,

J =

⎡

⎢
⎢
⎣

−
(
δ + γ

F̂

)
F̂
(
1 − φ

γ

)
δ F̂
(
1 − φ

γ

)
γ
(
1 − φ

γ

)

−γ
(
1 − φ

γ

)
0 γ

(
1 − φ

γ

)

0 0 −φ

⎤

⎥
⎥
⎦

with eigenvalues

λ1 = φ − γ , λ2 = δ F̂

(
φ

γ
− 1

)

, and λ3 = −φ .

All eigenvalues are negative if and only if γ > φ. In case the
largest eigenvalue is−φ, higherφ increases the rate of attrac-
tion. In otherwordsφ seems to acceleratemajority consensus

where φ < min
(

γ
2 ,

δ F̂γ

γ+δ F̂

)
.

The preceding linear analysis demonstrates that ifwashout
does not occur, majority consensus is achieved, since the
majority consensus point would be the only sink in a bounded
system without periodic or chaotic behavior. This stability
result holds in the nonlinear, deterministic case [14,32,52].
However, the implications of the linear analysis for the attrac-
tion and repulsion rates is an approximation for the overall
system’s behavior. This approximation suggests that γ and
δ accelerate majority consensus by increasing the attraction
rate near majority consensus and the repulsion rate near the
other fixed points. Conversely, φ tends to impede majority

consensus, except possibly where φ < min
(

γ
2 ,

δ F̂γ

γ+δ F̂

)
.

6.3 Simulation of the open system

Next we ran stochastic simulations [22,26] to observe the
overall behavior of the system. Two pairwise parameter
sweeps are performed: δ with φ and γ with φ. The results in
Fig. 9 are mostly in accordance with the observations from
linearization: larger flow rate constants φ are seen to increase
the times until majority consensus as φ approaches the birth
rate constant γ in fresh medium. However, both parameter

sweeps cross φ = min
(

γ
2 ,

δ F̂γ

γ+δ F̂

)
without φ ever reducing

majority consensus time, in contrast to the linear approxima-
tion around the majority consensus point.

The same two pairwise parameter sweeps are explored
over a far wider parameter range in Fig. 10 in the appendix.
The results reinforce that φ does not decrease the time until
majority consensus. For all simulations, the measured prob-
ability for majority consensus is always 1 in the parameter
ranges shown, which is consistent with the washout point
being unstable for γ > φ. Note that high flow rate constants
φ could occasionally help knock out the smaller species B
for very small initial B(0). However, in a biological setting,
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Fig. 9 Stochastic simulation of an open system: a limited parameter
sweep emphasizes that higher flow rate constant φ increases majority
consensus time as φ approaches the growth rate constant γ . Log-scaled
expected convergence time (in min) is shown in color from 200 repe-
titions. Corresponding values are shown on the adjacent vertical bars.
A0 = 18, 000, B0 = 2, 000, F0 = F̂ = 20, 000. Top: parameter sweep
over δ and φ, while γ = 1. Bottom: parameter sweep over γ and φ,
while δ = 10−3 (color figure online)

we expect numbers of at least several thousand cells, as used
in the simulation.

The linear analysis and stochastic simulations confirm that
majority consensus is still reachedwithin plausible biological
parameter ranges and sufficiently slow in- and outflow, but
suggest that consensus takes longer to reach.

7 Conclusions

Weconsidered themajority consensus problemwith continu-
ous population growth in a stochastic setting, and established
the Pairwise Annihilation protocol between two compet-

Fig. 10 Stochastic simulation of an open system over wide range of
parameters shows that flow rate constant φ does not decrease consen-
sus time. Color represents log-scaled expected convergence time. All
parameters are identical to Fig. 9, except for the values of the two depen-
dent variables shown on the axis (color figure online)

ing species A and B with birth reactions A −→ 2A and
B −→ 2B, and death reaction A+B −→ ∅. In particular, the
input of the Pairwise Annihilation protocol are two species A
and B with an initial total population size n = A(0) + B(0)
and an initial gap Δ = |A(0) − B(0)|. We showed that
the Pairwise Annihilation protocol reaches majority consen-
sus with high probability if the gap weakly grows with the
population size according to Δ = Ω(

√
n log n). Expected

convergence time until consensus is constant and in O(log n)

with high probability. Simulations show that the qualitative
behavior of our protocols matches the behavior expected
from these asymptotic bounds.
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We further demonstrated how to use dual-rail gates to
implement digital circuits computing two-input Boolean
functions in the example of a Nand gate. As opposed to
thresholds of a single species, dual-rail encoding is particu-
larly useful in our birth systems as the Pairwise Annihilation
protocol allows us to amplify and thus regenerate such sig-
nals.

As a dual-rail gate implementation, we presented the
Nand gate protocol that takes two dual-rail encoded input
signals and produces a corresponding dual-rail output signal.
The protocol is simple, an important criterion for follow up
in real-world biological implementations. We proved that,
given a sufficiently large initial gap between the rails of the
input signals, our gate produces the correct output with high
probability in O(log n) time, where n is a lower bound on the
initial input population size. In particular, our gate guaran-
tees an output signal gap ofΩ(n) if both inputs have a gap of
at least 0.62 times their initial population size. By alternating
execution of theNandgate protocol and thePairwiseAnnihi-
lation protocol, layer by layer, we finally arrive at computing
the circuit’s outputs.

Finally, several biologically motivated extensions of the
Pairwise Annihilation protocol were explored. First, we sim-
ulated a potential biological implementation that is based
on communication by conjugation among engineered E. coli
that computes a noisy Nand gate. Second, a continuous
culture settingwith in- and outflowwas analyzed.Wedemon-
strated that majority consensus is reached with sufficiently
slow in- and outflow and our simulations suggest that it takes
longer to do so in presence of flow. While the studied pro-
tocols are simplifications of biological implementations, we
believe that our results give a signpost for future research
to implement complex distributed systems such as indirect
inter-cellular communication.

A Proof of Lemma 3

By the law of total probability, for every t ≥ 0, we have

P(T ≤ t) =
∞∑

k=0

p(1 − p)kP(T1 + · · · + Tk+1 ≤ t)

=
∞∑

k=0

p(1 − p)ke−λt
∞∑

i=k+1

1

i ! (λt)
i

= e−λt
∞∑

i=0

1

i ! (λt)
i p

i−1∑

k=0

(1 − p)k

= e−λt
∞∑

i=0

1

i ! (λt)
i (1 − (1 − p)i )

= e−λt (eλt − e(1−p)λt ) = 1 − e−pλt ,

which is equal to the cumulative distribution function of an
exponential random variable with parameter pλ.

B Expected absorption time in birth–death
chains

Theorem 25 ([28, p. 149]) Consider a birth and death pro-
cess with birth and death parameters λn and μn, n ≥ 1,
where λ0 = 0 so that 0 is an absorbing state.

Let ρi = (λ1λ2 · · · λi−1)/(μ1μ2 · · · μi ). If
∑∞

i=1 ρi <

∞, then the mean time to absorption into state 0 from the
initial state m is

∞∑

i=1

ρi +
m−1∑

r=1

(
r∏

k=1

μk

λk

) ∞∑

j=r+1

ρ j .

C Urn draws and beta distribution

A Pólya-Eggenberger urn is an urn containing white and
black balls. At each discrete time step, we draw a ball uni-
formly at random from the urn, independently from the other
draws. The color of the drawn ball is observed and the ball,
as well as an additional ball of the same color, is returned to
the urn. We denote by Wn and Bn the number of white and
black balls in the urn after n draws, respectively.

Theorem 26 ([35, Theorem 3.2]) Let W̃n be the number of
white ball draws in a Pólya-Eggenberger urn after n draws.
Then W̃n/n converges in distribution to a beta distribution
with parameters α = W0 and β = B0.

D Regularized incomplete beta function

The regularized incomplete beta function Iz(α, β) is given
as

Iz(α, β) =
∫ z

0
tα−1(1 − t)β−1 dt

/∫ 1

0
tα−1(1 − t)β−1 dt .

The following identities hold:

Iz(α + 1, β) − Iz(α, β) = − zα(1 − z)βΓ (α + β)

Γ (α + 1)Γ (β)
(18)

Iz(α, β + 1) − Iz(α, β) = zα(1 − z)βΓ (α + β)

Γ (α)Γ (β + 1)
(19)
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E Proof of Lemma 16

We have the well-known formula

Iz(a, b) =
a−1∑

j=0

(
a + b − 1

j

)

za+b−1− j (1 − z) j (20)

for a, b ∈ N with a ≥ b. With z = 1/2, a = m + Δ, and
b = m, this implies

I1/2(m + Δ,m) = 1

22m+Δ−1

m+Δ−1∑

j=0

(
2m + Δ − 1

j

)

.

The sum of the first binomial coefficients can be upper-
bounded (e.g., [31, Proof of Theorem 5.3.2]) via

k∑

j=0

(
n

j

)

≤ 2n−1 exp

(

− (n − 2k − 2)2

4n − 4k − 4

)

. (21)

Setting n = 2m + Δ − 1 and k = m + Δ − 1 we get

I1/2(m + Δ,m) ≤ 1

2
exp

(

− (Δ + 1)2

4(m − 1)

)

≤ exp

(

−Ω

(
Δ2

m

))

.

This concludes the proof of the lemma.

F Proof of Lemma 18

Instantiating (20) with z = 3
4 , a = X and b = Y , we have

I3/4(X ,Y ) =
X−1∑

j=0

(
X + Y − 1

j

)(
3

4

)X+Y−1− j(1

4

) j

=
(
3

4

)X+Y−1 X−1∑

j=0

(
X + Y − 1

j

)

3− j

≤
(
3

4

)X+Y−1 X−1∑

j=0

(
X + Y − 1

j

)

and from (21) with n = X + Y − 1 and k = X − 1,

≤ 3X+Y−1
(
1

4

)X+Y−1

exp

(

− (X − Y + 1)2

4(Y − 1)

)

≤ 1

2

(
3

2

)X+Y−1

exp

(

− (X − Y + 1)2

4(Y − 1)

)

= 1

2
exp

(

− (X − Y + 1)2

4(Y − 1)
+ (X + Y − 1) log

3

2

)

.

The lemma’s second inequality follows from setting X =
m + Δ and Y = m in the above inequality. Assuming that
m,Δ ≥ 0, and noting that log 3

2 < 1
2 , we obtain by algebraic

manipulation

− (X − Y + 1)2

4(Y − 1)
+ (X + Y − 1) log

3

2

≤ − (Δ + 1)2

4(m − 1)
+ 2m + Δ

2
;

from which the lemma follows.

G Proof of Lemma 19

We have

I3/4(X + 3,Y + 1) − I3/4(X ,Y )

= I3/4(X + 3,Y + 1) − I3/4(X + 2,Y + 1)

+ I3/4(X + 2,Y + 1) − I3/4(X + 1,Y + 1)

+ I3/4(X + 1,Y + 1) − I3/4(X ,Y + 1)

+ I3/4(X ,Y + 1) − I3/4(X ,Y ) .

Let T =
(
3
4

)X(
1
4

)Y
Γ (X+Y )

Γ (X+3)Γ (Y+1) . Invoking (18), we further have

I3/4(X + 3,Y + 1) − I3/4(X + 2,Y + 1)

= −
( 3
4

)X+2 ( 1
4

)Y+1
Γ (X + Y + 3)

Γ (X + 3)Γ (Y + 1)
=

− T ·
(
3

4

)2 1

4
(X + Y )(X + Y + 1)(X + Y + 2)

Y≤X/3≥

− T ·
(
3

4

)2 1

4

(
4X

3

)(
4X

3
+ 1

)(
4X

3
+ 2

)

Similarly, with (18),

I3/4(X + 2,Y + 1) − I3/4(X + 1,Y + 1)

= −
( 3
4

)X+1 ( 1
4

)Y+1
Γ (X + Y + 2)

Γ (X + 2)Γ (Y + 1)
=

− T · 3
4

· 1
4
(X + Y )(X + Y + 1)(X + 2)

Y≤X/3≥

− T · 3
4

· 1
4

(
4X

3

)(
4X

3
+ 1

)

(X + 2)

and

I3/4(X + 1,Y + 1) − I3/4(X ,Y + 1)
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= −
( 3
4

)X ( 1
4

)Y+1
Γ (X + Y + 1)

Γ (X + 1)Γ (Y + 1)
=

− T · 1
4
(X + Y )(X + 1)(X + 2)

Y≤X/3≥

− T · 1
4

(
4X

3

)

(X + 1)(X + 2)

From (19) we have

I3/4(X ,Y + 1) − I3/4(X ,Y )

=
( 3
4

)X ( 1
4

)Y
Γ (X + Y )

Γ (X)Γ (Y + 1)

= T · X(X + 1)(X + 2)

Collecting all terms, we thus have

I3/4(X + 3,Y + 1) − I3/4(X ,Y ) ≥ T · 1

24
X(8X + 11) ,

which is nonnegative since X ≥ 0 and T ≥ 0.

H Wider sweep of parameters for open
systems

Convergence time in the open system is explored for an
exponentially wider range of parameters than in Fig. 9 to
emphasize that flow never decreases convergence time. This
scale is not visually thrilling, but one can faintly discern that
the flow rate constant φ even increases convergence time as
φ approaches the growth rate constant γ .
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