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Abstract
In this paper we give sublinear-time distributed algorithms in the CONGEST model for subgraph
detection for two classes of graphs: cliques and even-length cycles. We show for the first time that
all copies of 4-cliques and 5-cliques in the network graph can be listed in sublinear time, O(n5/6+o(1))
rounds and O(n21/22+o(1)) rounds, respectively. Prior to our work, it was not known whether it was
possible to even check if the network contains a 4-clique or a 5-clique in sublinear time.

For even-length cycles, C2k, we give an improved sublinear-time algorithm, which exploits a new
connection to extremal combinatorics. For example, for 6-cycles we improve the running time from
Õ(n5/6) to Õ(n3/4) rounds. We also show two obstacles on proving lower bounds for C2k-freeness:
First, we use the new connection to extremal combinatorics to show that the current lower bound of
Ω̃(

√
n) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party

communication complexity, the technique by which all known lower bounds on subgraph detection
have been proven to date. Second, we show that there is some fixed constant δ ∈ (0, 1/2) such that
for any k, a Ω(n1/2+δ) lower bound on C2k-freeness implies new lower bounds in circuit complexity.

For general subgraphs, it was shown in [14] that for any fixed k, there exists a subgraph H of
size k such that H-freeness requires Ω̃(n2−Θ(1/k)) rounds. It was left as an open problem whether
this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We
show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in
O(n2−Θ(1/k)) rounds, nearly matching the lower bound of [14].
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1 Introduction

In the subgraph-freeness problem, a network must decide whether its communication graph
contains a copy of some fixed subgraph H or not. If the network is H-free, then all nodes
should accept, but if the graph contains a copy of H, then at least one node should reject.
The subgraph-freeness problem has received significant attention in the sequential world,
and recently also in the distributed community. Other than being a fundamental graph
problem, it has many application in other scientific fields such as biology and social sciences
(e.g [27, 28, 25]).

From the theoretical perspective, distributed subgraph freeness is especially interesting
because it is an extremely local problem: to solve H-freeness for a graph H of size k, each
node only needs to examine its own k-hop neighborhood. However, it is known that in
bandwidth-constrained networks (the CONGEST model), subgraph freeness cannot always
be solved efficiently [11, 10, 23, 19, 21, 14]. In fact, it is not even known which classes of
subgraphs H admit a sublinear-round distributed algorithm for H-freeness: some simple
subgraphs, like odd-length cycles, are known to require linear time [11], and some subgraphs
even require nearly-quadratic time [14]. In contrast, for triangles [5] and for even-length
cycles [14], sublinear-time algorithms are known.

We seek to improve our understanding of sublinear-time algorithms for two classes of
subgraphs: cliques and even-length cycles. We also show that any constant-sized subgraph
can be detected in sub-quadratic time.

Small cliques. We show for the first time that 4-cliques and 5-cliques can be detected in
sublinear time; previously, no non-trivial algorithm for K4-freeness or listing was known,
and the same is true for K5 (the trivial solution is simply to have each node send its entire
neighborhood to all its neighbors, which requires Θ(n) rounds). In fact, our algorithm is
even able to list all copies of K4,K5:

I Theorem 1. The problem of enumerating all 4-cliques in the graph can be solved in
Õ(n5/6+o(1)) rounds in CONGEST, and all 5-cliques can be enumerated in Õ(n21/22+o(1))
rounds.

Our algorithm builds on a recent approach of [5], which decomposes the graph into
well-connected clusters and a sparse set of edges, and uses this to give an elegant algorithm
that enumerates all triangles. A triangle that has two or three edges in the sparse part of the
graph can be found using the sparsity of this edge set, while a triangle that has two edges
in a well-connected cluster can be found by the cluster nodes. Unlike triangles, however, a
4-clique could be “split” between two clusters, with one edge in one cluster, another edge in
another cluster, and the remaining edges crossing between the two clusters in the sparse part
of the graph. With a 5-clique the situation becomes even more complex. Thus, listing all
4-cliques and 5-cliques requires significant effort and new ideas beyond [5].

Even-length cycles. Turning our attention to even-length cycles, C2k for constant k, we
give an improved sublinear-time algorithm for C2k-freeness (it is known that odd-length
cycles require linear time [11]). Our improved algorithm exploits a new connection to
extremal combinatorics: we show that the Zarankiewitz number of the cycle C2k, which is
the maximum number of edges in a bipartite graph that does not contain C2k, plays a role in
testing C2k-freeness, even for non-bipartite graphs. This allows us to modify the algorithm
from [14] and improve its running time:
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I Theorem 2. C2k-freeness can be solved in at most Õk(n1−2/(k2−k+2)) rounds for odd
k ≥ 3, and at most Õk(n1−2/(k2−2k+4)) rounds for even k ≥ 4.

For example, for 6-cycles we improve the running time from Õ(n5/6) (in [14]) to Õ(n3/4)
rounds.

We remark that while our K4 and K5 algorithms list all copies of K4,K5 in the graph,
our algorithm for even-length cycles is only able to check if the graph contains a copy of C4.
In general, cliques seem like a more “local” type of subgraph than cycles: the presence of a
clique implies that all its nodes can communicate with each other, which is obviously not
true for cycles. We formalize this intuition by showing that short cycles really are different
from small cliques – it is not possible to enumerate all of them in sublinear time:

I Theorem 3. Enumerating all C4 in the graph requires Θ̃(n) rounds.

Obstacles on proving lower bounds for even-length cycles. For any k ≥ 2, the lower
bound for C2k-freeness has been “stuck” at Ω(

√
n) for a long time [11, 21]. We give two

reasons for why improving this lower bound might be hard.
First, using the same connection to Zarankiewicz numbers, we show that reductions to

two-party communication complexity, of the type used to prove all known lower bounds on
H-freeness for any subgraph H [11, 14, 21, 8], cannot be used to give a lower bound better
than Ω̃(

√
n) on C6-freeness. Following [8], which showed a similar result for cliques, we show:

I Theorem 4. Let (VA, VB) be a partition of the vertices V of the graph between two players,
and assume that each player initially knows the edges adjacent to any node on its side of the
graph (VA or VB, respectively). If the cut (VA, VB) contains s edges, then there is a two-party
protocol that communicates Õ(

√
n · s) bits and solves C6-freeness.

Our protocol uses different ideas from the two-party protocol of [8]; to bound the number of
edges the players need to send each other, we rely on results from extremal combinatorics.

Next, we show that lower bounds on C2k are related to circuit lower bounds, in the
following sense:

I Theorem 5 (Informal). There exists an absolute constant c < 1 such that for any k ≥ 3,
proving a lower bound of Ω(n1−c) on C2k-hardness would imply new lower bounds on high-
depth circuits with constant fan-in and fan-out.

We show this by extending a connection shown in [11] between lower bounds for the Congested
Clique and circuit complexity to high-conductance components.

General subgraphs. It was shown in [14] that some subgraphs are very hard to detect: for
any k ≥ 4, there exists a graph on k vertices that requires Ω̃(n2−Θ(1/k)) rounds to detect.
It was left open whether this bound is tight, or whether the loss of 1/k in the exponent is
an artifact of the proof: the lower bound of [14] is shown by a reduction from two-party
communication complexity, where the graph is partitioned into two parts, with a cut of size
Θ(n1/k) between them. This causes the lower bound to “lose” a factor of n1/k.

DISC 2019
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We show that, surprisingly, the factor n1/k is not just an artifact of the proof:

I Theorem 6. For any constant k and subgraph H of size k, the H-freeness problem can be
solved in O(n2−2/(3k+1)+o(1)) rounds in CONGEST.

Thus, subgraph-freeness is not “maximally hard” in CONGEST: it does not require truly
quadratic time.

1.1 Related Work
The problems of subgraph-freeness and listing have been extensively studied in both the
centralized and the distributed settings; for lack of space, we mention here the most directly
related results. In [5, 6] randomized algorithms based on expander decompositions for listing
all triangles were shown, culminating in an Õ(n1/3) round algorithm in the CONGEST model.
This improved the previous algorithm of [20]. The algorithms of [5, 6] finds a conductance
decomposition of the graph, and then uses a routing result of [17, 18] to quickly find all
triangles contained or adjacent to some cluster in the decomposition. OurK4-listing algorithm
uses the decomposition from [5], albeit in a somewhat different manner from the way it is used
in [5]. We also use the Ks-listing algorithm for the Congested Clique of [10] as a subroutine;
[10] shows that all copies of Ks can be found in O(n1−2/s) in the Congested Clique. To our
knowledge, prior to our work, no sublinear-time Ks-freeness algorithm was known for any
s ≥ 4. However, in [1], it is shown that if the network contains an ε-near-clique of linear
size, then an ε3-near clique of linear size can be found in constant time. For 4-cycles, C4, a
nearly-tight bound of Θ̃(

√
n) was shown in [11]. The lower bound was extended to an Ω̃(

√
n)

lower bound for any even-length cycle C2k in [21]. In the Congested Clique, an O(n0.158)
round algorithm for Ck-detection was shown by [4] based on algebraic methods. The first
sublinear-time algorithm for C2k-freeness for k ≥ 3 was given in [14], and we improve this
algorithm here. It is known that odd-length cycles require nearly-linear time to detect [11].
It is shown in [14] that some subgraphs of size O(k) require Ω̃(n2− 1

k ) rounds to detect (for
any constant k ≥ 4). There are algorithms for clique-freeness and cycle-freeness in related
models, e.g., [4, 10, 3, 16, 13, 15], but they are not directly relevant to our work, except as
mentioned above.

2 Preliminaries

The CONGEST model. The CONGEST model is a synchronous network model, where
computation proceeds in rounds. The network is modeled as a graph, G = (V,E). Each
graph node v ∈ V initially knows its own neighborhood, denoted N(v). It is assumed that
nodes have unique identifiers, which we conflate with V . In each round, each node of the
network may send O(logn) bits on each of its edges, and these messages are received by
neighbors in the current round.

Some of our algorithms rely on results from the Congested Clique model. As in CONGEST,
we have an input graph G = (V,E), where each vertex V is a separate computing node,
which initially knows its neighborhood. However, unlike CONGEST, in the Congested Clique,
all the nodes can talk directly to each other: in each round, each node can send O(logn)
bits to every other node in V , even if the edge between them is not in E. The Congested
Clique admits very efficient algorithms for many distributed tasks, and our algorithms build
on a clique detection algorithm for this model [10] by simulating it in regular CONGEST.
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The main problem we are concerned with in this paper is the following:

I Definition 7 (Subgraph freeness and enumeration). Fix a constant-sized graph H.
In the H-freeness problem, the goal is to determine whether the input graph G contains

a copy of H as a subgraph or not. If G is H-free, then all nodes should accept, but if G
contains H as a subgraph, then at least one node should reject.

In the H-enumeration (or listing) problem, each node outputs a (possibly empty) set of
copies of H in G, such that together the nodes output all copies of H in G.

For a graph G, we let V (G) denote the vertex set of G, and E(G) denote the edges of G.
The arboricity of the graph is defined as the minimum number of edge-disjoint forests

required to cover the graph edges. A graph with m edges has arboricity at most O(
√
m) [7].

3 Enumerating All 4-Cliques in Sublinear Time

In this section we show how to find all copies of K4 in the network graph in O(n5/6+o(1))
rounds. Throughout the section, we will use two parameters: ε = 1/2, δ = 5/6. Since some
parts of the algorithm will be re-used in later sections with different values for ε, δ, we leave
our results parameterized.

On a very high level, the algorithm works as follows: first, we decompose the edges E of
the graph into two sets, Es and Em, by recursively applying a graph decomposition from [5].
The set Es has the property that every node v has at most nδ edges in Es; therefore, cliques
contained entirely in Es are easy to find, by simply having all nodes announce to all their
neighbors all their edges in Es.

The set Em is the edge-disjoint union of O(n1−δ) “very well-connected” clusters of nodes.
On each such cluster, we can fairly efficiently simulate the Congested Clique algorithm for
finding 4-cliques of [10]. However, we need to find all 4-cliques that have at least one edge
in Em. This includes cliques {u0, u1, u2, u3} such that {u0, u1} ∈ Em, so that nodes u0, u1
are together in some cluster C, but nodes u2, u3 are outside cluster C; while nodes u0, u1
together know about almost all edges of the clique, the edge {u2, u3} is not necessarily known
to any node of C. If we want to find such cliques by simulating a Congested Clique algorithm
on C, we must first “bring in” edges from outside C, so that the cluster nodes know about
them and can use them in the simulation.

There can be Θ(n2) edges outside of C, and we cannot afford to have all of them sent
to nodes of C, because this would require too much time. We resolve this difficulty by
considering two types of “external nodes”. If u2, u3 do not have many neighbors in C, then
we can use this fact to efficiently find all cliques containing u2, u3 and two nodes from C.
On the other hand, if either u2 or u3 does have many neighbors in C, they can quickly send
their entire neighborhood to the nodes of C, by splitting their neighborhood and sending
each part of it on a different edge to C. Then, the cluster nodes, having learned about
the external edges, will use them in their simulation of the Congested Clique, and find any
4-clique containing u2, u3.

We now describe our algorithm in more detail. We begin by showing how we apply the
conductance decomposition from [5] in a slightly different manner than [5] uses it, and then
how we find 4-cliques on the resulting decomposed graph.

3.1 Conductance Decomposition
A main ingredient in the algorithm is the conductance decomposition developed in [5], which
partitions the edges E of the graph into three sets, Em, Es, Er, such that Em induces a
set of “well-connected clusters”, Es induces a low-degree graph, and |Er| ≤ |E|/6. The
well-connected clusters in Em each satisfy the following:

DISC 2019
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I Definition 8 (nδ-cluster). A subset G′ = (V ′, E′) of G is called an nδ-cluster (or simply
“cluster” for short) if it satisfies the following conditions:
1. It has O(polylog(n)) mixing time,
2. End each vertex v ∈ V ′ has degree Ω(nδ) in E′.
The mixing time of a graph is the time required for a random walk on the graph to approach
its stationary distribution; the precise definition is not needed for our purposes here, because
as in [5], we use the mixing-time guarantee to apply a routing result from [17] as a black box.

In [5], the algorithm finds triangles by (a) decomposing the edge-set, (b) finding triangles
that include an edge in Es or Em, and then (c) recursing on Er. (Edges are sometimes
moved from Em to Er, but not too many.) In contrast, for our purposes here, we must first
eliminate all the edges of Er: we have no guarantee on these edges other than the fact that
there are not too many of them, and to find a 4-clique touching Em or Es that may include
edges from Er, this is not sufficient. By recursively applying the decomposition from [5], we
obtain the following decomposition of the graph.

I Lemma 9. Fix a graph G = (V,E) with |V | = n and diameter D. We can find, w.h.p.,
in Õ(n1−δ + D) rounds, a decomposition of E to E = Em ∪ Es satisfying the following
conditions:
(a) Em is the union of at most s = O(logn) sets, Em =

⋃s
i=1E

i
m, where each Eim is the

vertex-disjoint union of O(n1−δ) nδ-clusters, C1
i , . . . , C

ki
i .

The set Eim is called the i-th level of the decomposition. We say that a node u belongs
to cluster Cji if at least one of u’s edges is in Cji .

(b) Each level-i cluster Cji has a unique identifier, which is a pair of the form (i, x) where
x ∈ [n1−δ], and a unique leader node, which is some node in the cluster.
Each node u knows the identifiers of all the clusters Cji to which u belongs, the leaders
for those clusters, and it knows which of its edges belong to which clusters.

(c) Es =
⋃
v∈V Es,v, where Es,v is a subset of edges incident to v and |Es,v| ≤ nδ logn.

Each vertex v knows Es,v.
To assign the clusters unique identifiers and leaders, we rely on our “diameter reduction”
technique, which allows us to assume w.l.o.g. that the diameter of the network is D =
O(polylog(n)) (See full version for details [12]). Thus, in Õ(n1−δ) rounds, we can select
the smallest node in each cluster, and disseminate the IDs of these nodes throughout the
network.

In the sequel we abuse notation slightly, by thinking of a cluster Cji as both a set of edges
and the set of nodes that belong to the cluster.

3.2 Finding 4-Cliques
In the remainder of the section we describe our 4-clique listing algorithm; the runtime analysis
and correctness proof appear in the full version of the paper [12].

We begin by computing the decomposition from Lemma 9. Next, we look for cliques
entirely contained in Es, the “low-degree” part of the graph. Then we turn to the harder task,
finding cliques that include at least one edge of Em (i.e., a cluster edge). As we explained
above, we divide these cliques into two types: those that have two nodes external to the
cluster with few neighbors in the cluster, and those that do not.

Step 1: Finding cliques contained in Es. To find 4-cliques contained entirely in Es, we
simply have each node v send all of Es,v to all its neighbors. As |Es,v| ≤ nδ, this can be
done in nδ rounds. Any node that sees a copy of K4 outputs it. It is easy to verify that any
4-clique whose edges are all in Es will be detected by all four of its vertices.
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Step 2: Finding cliques containing an edge from Em. Next, we search for copies of K4
that have at least one edge in some cluster. We divide these cliques into two types.

Let ε ∈ (0, 1) be a parameter (as we said above, in this section we will use ε = 1/2, but
the next section re-uses some of the machinery we develop here with a different ε). Given
a cluster C, we say that a node v is C-light if v 6∈ C and v has at most nε neighbors in C
(that is, |N(v) ∩ C| ≤ nε). If v is not C-light, then we say that v is C-heavy.

Now let H be a copy of K4 that has at least one edge in Em (that is, in some cluster).
We say that H is light if H contains at least two nodes that are C-light for some cluster C.
Otherwise, we say that H is heavy.

Step 2(a): Finding light cliques. To find cliques containing at least two nodes that are light
with respect to some cluster, we iterate through the clusters sequentially, in lexicographic
order of their cluster IDs.

For each C, all nodes that belong to C (i.e., have at least one edge in C) announce this
fact to their neighbors. Let MC(v) = N(v) ∩C denote the neighbors of vertex v that belong
to C.

Next, each node v that is C-light sends MC(v) to all its neighbors; this requires O(nε)
rounds, as v is C-light. Upon receiving MC(u) from each C-light neighbor u ∈ N(u), node v
forms a list of “candidates” – triplets of nodes that may complete a K4 with v:

Lv = {{u, c1, c2} | u ∈ N(v) is C-light, c1, c2 ∈ C, and c1, c2 ∈MC(u) ∩MC(v)} .

For each candidate {u, c1, c2}, node v already knows that all edges of the 4-clique on
{v, u, c1, c2} are present, except for edge {c1, c2}, which may or may not be present. To
check, node v goes through its candidates, and sends each cluster neighbor c1 ∈ C a list of
“edge queries”,

Qv,c1 = {{c1, c2} | ∃u ∈ N(v) : {u, c1, c2} ∈ Lv} ,

the list of potential edges of c1 that, if present, would complete a 4-clique. There are at
most nε such edges: by definition of Lv, if {c1, c2} is sent to c1, then c2 ∈ MC(v), but
|MC(v)| ≤ nε (as v is C-light). Node c1 responds with the subset ({c1} ×N(c1)) ∩Qv,c1 of
edges that are actually present, and node v outputs the 4-cliques it has found.

Step 2(b): Finding heavy cliques. Finally, we look for 4-cliques where at least one edge is
in a cluster, and the other two nodes are not light w.r.t. that cluster; they might be in the
cluster, or they might be outside it but have many neighbors in the cluster.

Let F (C) = {{u, v} | u ∈ C or u is C-heavy} be the set of all edges adjacent to C or to
some C-heavy node. We iterate through the levels i = 1, . . . , s of the decomposition; our
goal is to find 4-cliques contained entirely in F (Cji ), in parallel for all the step-i clusters,
C1
i , . . . , C

ki
i . To do this, we have the cluster nodes simulate the execution of the Congested

Clique algorithm for K4 enumeration from [10] on the n-vertex graph (V, F (C)). This part
of the algorithm is carried out in four steps:

I. Pull: the nodes of the cluster C “pull” the edges of F (C) from nodes outside C, such
that every edge of F (C) is learned by at least one node in C.

II. Partition: in this step, we compute a partition {Vc}c∈C of V , which is roughly balanced
(i.e., |Vc1 | ≈ |Vc2 | for each c1, c2 ∈ C). Each node c ∈ C will be responsible for simulating
the nodes in Vc.

DISC 2019
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III. Shuffle: the cluster nodes shuffle the edges of F (C) between themselves, so that each
node c ∈ C learns the F (C)-neighborhood NF (C)(v) for each node v ∈ Vc it needs to
simulate. This is carried out by using the routing algorithm from [17].

IV. Simulate: the nodes of C simulate an n-vertex Congested Clique, and run the K4-
enumeration algorithm of [10] on the graph (V, F (C)) to list all the 4-cliques in F (C).

I Remark 10. It is worth noting that [5] gives an extension of the Congested Clique algorithm
of [10] to any graph with a low mixing time. This is unfortunately unsuited for our purposes,
because in our case we do not run the algorithm only on edges adjacent to cluster nodes, but
instead on a potentially much larger set, F (C). In addition, we simulate an Congested Clique
of size n on a nδ-cluster, while in [5] the clusters do not need to simulate any external nodes.

As we said, these four steps are carried out in parallel for all the level-i clusters. Other
than the first step, the remaining steps involve only intra-cluster communication (i.e.,
communication between nodes of the same cluster over the edges belonging to the cluster).
Because the level-i clusters are vertex-disjoint components, we incur no extra congestion
from simulating all level-i clusters in parallel.

We elaborate on each step below.

Pull. For each level-i cluster C in parallel, the nodes do the following. For a node v, let
S(v) = {{v, u} | u ∈ N(v) ∧ v < u} be the edges adjacent to v in which v has the smaller ID.

Each C-heavy node v that is not in C partitions its edges S(v) into |MC(v)| sets, each of
size at most |S(v)|/|MC(v)| ≤ n/nε = n1−ε, and sends each set to a different neighbor in C,
in O(n1−ε) rounds.

Following this step, each edge in F (C) is known to exactly one node in C; we define the
initial load of node c ∈ C to be the number of F (C)-edges it knows (including its own edges).

I Observation 11. Since each C-heavy node partitions its edges into at least nε sets, and
c ∈ C has at most n neighbors that are C-heavy, the initial load of c is at most n ·n1−ε = n2−ε.

Partition. The nodes of C must now partition all the graph nodes V among themselves, in
a roughly-balanced way, quickly and without a lot of communication. Every cluster node
needs to learn the entire partition, not just its own part, so that it knows which node of V
will be simulated by whom.

Ideally, we would assign each node of V to a uniformly random node in C, but this
would require a lot of communication. Instead, we use a family of O(logn)-wise independent
hash functions to ensure a relatively balanced partition, allowing us to represent the entire
partition using only O(log2 n) bits.

For convenience, we use only nδ nodes, which we call the active nodes, to carry out the
simulation; the cluster leader selects these nodes by choosing nδ of its neighbors, u1, . . . , unδ .
The leader also selects an `-wise independent hash function f : U → [nδ], where ` = O(logn),
and U is the domain from which IDs for the graph are drawn. Then the leader disseminates
the assignment of active nodes, {(i, ui)}i=1,...,nδ , and the O(log2 n)-bit representation of f
to all the cluster nodes. Using pipelining, this requires Õ(nδ) rounds. (We note that since
the cluster has polylogarithmic mixing time, it also has polylogarithmic diameter.)

Now let Vui = {v | f(v) = i} be the set of nodes that active node ui will simulate. Using
a concentration result from [24], for O(logn)-wise independent random variables, we obtain:

I Lemma 12. Let ` = 4 logn, and assume that f is `-wise independent. Then with probability
at least 1− 1/n, we have |Vui | ≤ 2n1−δ for each active node ui.
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Shuffle and Simulate. Next, we must route the edges of F (C), from the cluster nodes
that know them initially to the nodes that need them for the simulation. Then we run a
simulation of the algorithm of [10], where each node in C simulates at most O(n1−δ) nodes
of G. For both purposes we use the routing scheme of [17], which allows us to deliver roughly
nδ messages from each cluster node to other cluster nodes in no(1) rounds.

There are some technical details involved in the simulation, because we must ensure that
nodes do not try to send or receive too many messages at once. These details are deferred to
the full version of the paper. Ultimately, we show the following result:

I Lemma 13. For a constant 0 < ε ≤ 1, suppose an edge set E′ is partitioned between the
nodes of C, so that each node u ∈ C initially knows a subset E′u of size at most O(n2−ε).
Then a simulation of t rounds of the Congested Clique on G′ = (V,E′) can be performed in
O((n2−δ−ε + t · n2−2δ) · no(1)) rounds, with success probability 1− 1

n2 .

Using this simulation, each cluster simulates the K4 enumeration algorithm of [10]. In
the full Congested Clique, this algorithm runs in O(

√
n) rounds, but since we are using

clusters that simulate one round of the Congested Clique in roughly n2−2δ rounds, our
running time will be O(n2−2δ+1/2). This completes our high-level overview of the K4-
enumeration algorithm.

3.3 Listing 5-Cliques
We outline at a high level the changes needed to list all 5-cliques.

The main difficulty in moving from 4-cliques to 5-cliques is that a 5-clique can be
partitioned between clusters, so that (a) each edge of the 5-clique belongs to a different cluster
(recall that the clusters constructed in Lemma 9 are not vertex-disjoint), and furthermore,
(b) no cluster is able to “pull in” all the edges of the 5-clique, because from the perspective
of each cluster, of the three nodes outside the cluster, two are light and one is heavy.

We modify our framework so that it can handle 5-cliques by making two main changes:
(1) We do not call the decomposition from [5] recursively. Instead, we execute only one step

of the decomposition, which yields a partition of the edges E into a set of well-connected,
vertex-disjoint clusters; a sparse set, Es; and the “remainder”, Er, which is of size at
most |Er| ≤ α · |E|.

(2) We change the parameters of the decomposition so that Er, the “remaining edges”,
constitute a sub-constant fraction of the total number of edges (i.e., α = o(1)), see [9].
(We pay for this by an increased mixing time.) This implies that the arboricity of Er is
sublinear, as any graph with m edges has arboricity at most

√
m.

We are then able to overcome the difficulties and find all copies of K5 using the fact that the
edges outside the clusters have sublinear arboricity, and that the clusters are vertex-disjoint;
the resulting running time is O(n21/22+o(1)) rounds.

4 Improved Algorithm for C2k-Freeness

We now turn out attention to even-length cycles, and give an improved algorithm for
C2k-freeness.

Our main technical contribution is to show that, because of a new connection to Za-
rankiewicz numbers, if we have a graph that is C2k-free, then this graph cannot have too
many high-degree nodes. The bound we obtain is tighter than a bound used in [14], and it
yields an improved algorithm for C2k-freeness.

DISC 2019
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I Definition 14 (Zarankiewicz numbers [26]). The Zarankiewicz number z(a, b,H) is defined
as the maximum number of edges in an (a, b)-bipartite graph that does not contain H

as a subgraph.

We rely on the following upper bound:

I Theorem 15 (Zarankiewicz numbers for cycles [26, 22]). For any integers a, b ≥ 0 and
k ≥ 2,

z(a, b, C2k) ≤

(2k − 3)
(

(ab) 1
2 + 1

2k + a+ b
)
, for odd k,

(2k − 3)
(
a
k+2
2k b

1
2 + a+ b

)
, for even k.

Using Theorem 15, we can better bound the number of high-degree vertices in C2k-free
graphs.

I Lemma 16. Let c = c(k) be a large enough constant, and fix a graph G = (V,E). For any
d ≥ cn1/k, let Vd = {v ∈ V | d(v) ≥ d}. If G is C2k-free, then

|Vd| ≤

{
Ok(max(n

k−1
k+1 , (n k+1

2k /d)
2k
k−1 )), for odd k ≥ 3,

Ok(max(n
k
k+2 , (n1/2/d)

2k
k−2 )), for even k ≥ 4.

Here, the notation Ok(·) hides constants that depend on k.
For a graph H and an integer n, let ex(H,n) be the Túran number of H - the maximum

number of edges in an n-vertex H-free graph.
Because the calculations become tedious for general k, we include here a (somewhat

informal) proof for 6-cycles (k = 3), which conveys the general ideas, and defer the general
case to the full version of the paper [12].

Proof of Lemma 16 for k = 3. We need to show that |Vd| ≤ O(max(n1/2, (n2/3/d)3)).
Define the following sets of edges:
Ed = E ∩ (Vd × V ): edges adjacent to some node in Vd.
Eint: the internal edges Eint = E ∩ (Vd × Vd) of Vd.
Eext = Ed \ Eint: the external edges Eext = E ∩ (Vd × (V \ Vd)) adjacent to some node
in Vd.

Observe that |Ed| ≥ d · |Vd|/2, since every node in Vd has degree at least d. On the
other hand, since G is C6-free, so is the subgraph Gd induced on G by Vd; therefore,
|Eint| ≤ ex(|Vd|, C6) = O(|Vd|1+1/k), where ex(N,C6) = O(N1+1/3) [2]. Because we required

that d ≥ cn1/k, we have |Eint| = O(|Vd|1+1/k) = O(n1/k|Vd|)
choice of c
≤ (d · |Vd|)/4. Therefore,

|Eext| = |Ed| − |Eint| ≥ d · |Vd|/2− d · |Vd|/4 = Ω(d · |Vd|). (1)

In other words, if Vd is large, then the cut between Vd and V \ Vd is also large. However, to
this cut we can apply Theorem 15: the bipartite graph induced by G on Vd × (V \ Vd) is
C6-free, because all of G is C6-free; by Theorem 15,

|Eext| ≤ z(|Vd|, |V \ Vd|, C6) ≤ z(|Vd|, n, C6) = O((|Vd| · n)2/3 + n). (2)

(We rely on the fact that Zarankiewicz numbers are non-decreasing, because for any a

and b′ > b, an H-free, (a, b)-bipartite graph with e edges is trivially extended to a H-free,
(a, b′)-bipartite graph with e edges by simply adding nodes on the right side that have
no edges.)
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Our bound follows from (2), depending on which of the two terms, (|Vd| · n)2/3 or
n, is larger. If (|Vd| · n)2/3 = O(n), then |Vd| ≤ O(n1/2). Otherwise, from (2) we have
|Eext| = O((|Vd| · n)2/3), and together with (1), we obtain |Vd| = O((n2/3/d)3), completing
the proof. J

The C2k-algorithm from [14] uses the bound on the number of high-degree nodes as
follows. First, we search for a C2k that contains a high-degree node: we go over these nodes
one after the other, and starting a BFS from each one to check if it participates in a copy of
C2k. Subsequently, the high-degree nodes are removed from the graph, together with all their
edges. Next, we rely on an observation already used in [11], which is that a C2k-free graph has
arboricity at most O(n1/k); in particular, its vertices can be quickly partitioned into O(logn)
layers V 1, . . . , V `, ` = Θ(logn), such that the number of edges from any node in layer V i to
all higher layers

⋃
j>i V

j is O(n1/k). Together with the fact that all high-degree nodes have
been removed from the graph, this partition allows us to quickly find any remaining copies
of C2k in the graph.

For an integer d, let Vd = {v | d(v) ≥ d} be the set of vertices with degree at least d.
Putting both parts together, the running time of the C2k algorithm from [14] is given by:

Õk(|Vnδ |+ n(k−2)δ+ 1
k ), (3)

where δ ∈ (0, 1) is a parameter that determines the threshold for what is considered “high
degree”. In [14], the value of δ is chosen fairly naïvely: since a C2k-free graph has at most
O(n1+1/k) edges, for any δ we have |Vnδ | ≤ O(n1+1/k−δ), and balancing the two terms in (3)
yields the result.

Our C2k algorithm retains the framework described above, but uses the bound from
Lemma 16 to bound |Vd|. This allows us to choose a smaller value for δ, lowering the
threshold for what we consider a “high-degree node”. We obtain the following improved
C2k-freeness algorithm. Again, we focus here on the case of 6-cycles, and the full version,
which involves even more calculations, appears in the full version of the paper [12].

I Theorem 17. C6-freeness can be solved in Õ(n3/4) rounds in the CONGEST model.

Proof. Recall from (3) that after choosing a degree threshold nδ, we can eliminate any
potential 6-cycle involving a node of Vnδ in O(|Vnδ |) rounds, and then check the remaining
graph in O(nδ+1/3) rounds. Setting δ = 5/12, we have by Lemma 16 that |Vn5/12 | = O(n3/4)
and also nδ+1/3 = n3/4, yielding the desired running time. J

5 Subquadratic Algorithm for Subgraph-Freeness for Any Subgraph

In [14], it was shown that for any k ≥ 1, there is a subgraph Hk of size |Hk| = O(k) such
that randomized Hk-freeness requires Ω̃k(n2− 1

k ) rounds. (The notation Ω̃k hides factors that
depend only on k, which we think of as constant.) The bound approaches quadratic as k
grows, but in subgraph-freeness, we typically think of k as a constant rather than a growing
function. This leads to the question: is there a single subgraph H of some fixed size, such
that H-freeness requires Ω̃(n2) rounds?

In this section we give a negative answer, by showing an upper bound that nearly matches
the lower bound from [14]:

I Theorem 18. For any constant k ≥ 4 and any subgraph H of size k, there is an algorithm
for H-freeness and exact H-counting in Õ(n2− 2

3k+1 +o(1)) rounds.
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The same upper bound also holds for induced subgraph-freeness and counting. Furthermore,
the algorithm can be modified to enumerate all copies of H, in Θ(n2−Θ(1/k) +

√
#H) rounds,

where
√

#H is the number of copies present. We can also show that there exist graphs H
which require Ω(

√
#H) rounds to enumerate all copies.

Our algorithm begins by decomposing the edges of the graph into two sets, Em, Er, with
the following properties. Here, δ = 1−Θ(1/k) and S = nΘ(1/k) are parameters whose exact
values will be fixed later.
(1) The graph induced by Em is composed of maximal connected components CC = {Ri}i∈[C]

(where C is the number of connected components), which we refer to as centralized
components. In each centralized component Ri, there is a special root vertex ri ∈ V (Ri),
whose identity is known to all vertices in Ri. Moreover, the root vertex knows all the
edges of the subgraph G {Ri} (the subgraph induced on G by the vertices V (Ri)).

(2) |Er| ≤ n2−2δS, and each vertex in G knows all the edges in Er.
The decomposition is computed in Õ(n2/S+n2−δ/10+n1+δ) rounds. We give a brief overview,
and then explain how to use the centralized components.

5.1 Computing the Centralized Components
The first step in computing the decomposition is to run the decomposition from [9] with
different parameters than the ones used in [9]. It returns a partition of the graph into three
edge sets, E = Em′ ∪ Es′ ∪ Er′ , where
(a) Es′ has bounded arboricity,
(b) Er′ is subquadratic in size,
(c) Em′ consists of vertex-disjoint high-conductance clusters with high minimum degree.
Next, we divide the clusters of Em′ into equivalence classes, where two clusters are in the
same cluster iff they have many edge disjoint paths between them. We prove that indeed
this relation is transitive: if a cluster A has many edge disjoint paths to clusters B and C,
then clusters B,C have many disjoint paths between them. The resulting equivalence classes
have high connectivity, and therefore, some vertex in each class can learn all the edges in
that class in sub-quadratic time. Moreover, the cut separating any two distinct equivalence
classes is bounded in size (otherwise they would be the same class).

The algorithm takes Er be the set of all edges that participate in some cut between two
distinct equivalent classes; there are at most nΘ(1/k) such edges, because the cuts are not
too large. Finally, let Em = E \ Er.

5.2 Finding Copies of H

After computing the decomposition, we can immediately detect any copy of the subgraph
H whose vertices all belong to the same centralized component Ri, because each such copy
is known to the root vertex ri ∈ Ri. We can also find any copies of H whose edges are
contained entirely in Er, because all nodes know Er. It remains to find copies of H that
include some edges from Em and some from Er; that is, copies of H that include at least
one vertex from some centralized component, but also some edge from Er. To find such
“split” copies of H, we “guess” which vertices of H should be mapped to a vertex inside some
centralized component, and which vertices of H should be mapped to vertices adjacent to
edges of Er, and then verify that we can “stitch together” a complete copy of H by having
the root vertices locally check that their centralized component contains the missing pieces
and that Er connects everything properly. This must be done carefully, to ensure that we do
not detect false copies of H; we now describe the process in more detail.
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Mappings and partial mappings of H. A copy of H can be represented by a mapping
ρ : V (H)→ V (G) of the vertices of H to the vertices of G, such that for any x, y ∈ V (H), if
(x, y) ∈ E(H) then (ρ(x), ρ(y)) ∈ G. We call such a mapping a good total mapping of H.

Given a good total mapping ρ of H, we are interested in understanding how the copy of
H witnessed by ρ is split between centralized components, so that we can “stitch it together”.
Let Vr ⊆ V (G) be the set of vertices adjacent to the edges of Er. We distinguish between
two types of vertices:

Border vertices: vertices x ∈ V (H) such that ρ(x) ∈ Vr. These are vertices serve as
potential “stitching points”, because they are adjacent to the edges Er that interconnect
the centralized components.
Internal vertices: vertices x ∈ V (H) such that ρ(x) ∈ (

⋃
i V (Ri)) \ Vr.

(This is a partition, i.e., any vertex of H is either a border vertex or an internal vertex.)
A border mapping is a mapping σ : V (H)→ Vr ∪ {∗}, which specifies for some vertices

x ∈ V (H) a target σ(x) ∈ Vr onto which they are mapped in G, and leaves some vertices
unmapped, σ(x) = ∗. Intuitively, a border mapping specifies the “interface” between a copy
of H whose existence we are trying to verify, and each of the centralized components. We
say that a border mapping σ is good if there exists a good total mapping ρ of H, such that

ρ extends σ, that is, for any x ∈ V (H), if σ(x) 6= ∗, then ρ(x) = σ(x); and,
ρ does not add any border vertices, that is, for any x ∈ V (H) such that σ(x) = ∗, we
have ρ(x) 6∈ Vr.

Clearly, if G contains a copy of H, then there is a good border mapping, obtained by taking
a good total mapping of H and replacing any ρ(x) 6∈ Vr with ∗.

Our algorithm enumerates over all border mappings, and checks whether each one is
good. If we find a good border mapping, we reject, as we have found a copy of H. If we
have gone over all border mappings and none are good, we accept. It remains to show that
we can efficiently check whether a given border mapping is good, and also that there are not
too many border mappings to check.

Checking a border mapping. Fix a border mapping σ : V (H)→ Vr ∪ {∗} which is known
to all nodes of G, and let us describe how the nodes check whether σ is good, i.e., whether it
can be extended into a good total mapping by adding internal vertices.

We call an edge {x, y} ∈ E(H) external if σ(x) 6= ∗, σ(y) 6= ∗ and {σ(x), σ(y)} ∈ Er, that
is, this edge is mapped outside the centralized components. An edge that is not external is
called internal, and it includes at least one internal node (possibly two).

Each root vertex locally checks which parts of H it is “responsible for filling in”, as
follows: we delete from H all the external edges (but not their endpoints), obtaining a
collection H1, . . . ,Hk of connected components – at least two, since we assumed that H is
not contained inside any centralized component. Observe that for each x ∈ V (H) such that
σ(x) = ∗, there is some i such that x ∈ V (Hi).

A component Hi is owned by centralized component R if there is some internal edge
{x, y} ∈ E(Hi) such that σ(x) ∈ Vr ∩ V (R), that is, an internal edge that “touches” R. Note
that each Hi is owned by exactly one centralized component, and furthermore, if Hi is owned
by R, then the internal nodes of Hi must be filled in using nodes of R: let us say that a total
mapping ρ : V (H) → V (G) respects ownership if for any internal node x ∈ Hi (for some
i = 1, . . . , k), if Hi is owned by centralized component R, then ρ(x) ∈ V (R).

I Lemma 19. For any border mapping σ, any good total mapping ρ that extends σ and does
not add any border nodes must respect ownership.
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After deciding which centralized components own which parts H1, . . . ,Hk, the centralized
components try to locally complete σ by assigning internal vertices they own to vertices inside
the centralized component. More concretely, for each i, the root vertex r whose centralized
component R owns Hi looks for a local mapping for Hi, ρi : Hi → V (R), such that

ρi agrees with σ on all border vertices in Hi, that is, for any x ∈ Hi such that σ(x) ∈ Vr,
we have ρi(x) = σ(x); and,
Each edge of Hi is mapped onto some edge of Em inside R. That is, if {x, y} ∈ E(Hi),
then {ρi(x), ρi(y)} ∈ Em.

We say that a root vertex r ∈ V (R) is happy if, for each Hi owned by R, there is a local
mapping ρi satisfying the requirements above.

So far, everything we described is done locally, with no communication – all nodes know
the edges Er, and consequently the know Vr; and each root vertex knows all edges of Em
inside its centralized component, so it can check if there is a local mapping ρi satisfying the
requirements.

Finally, each root vertex announces whether it is happy or not, and the network computes
an AND over these answers to check if all root vertices are happy. If all are happy, then σ is a
good mapping, and the network rejects. Otherwise, we move on to the next border mapping.

If all root vertices are happy, then we can “piece together” the partial mappings
σ, ρ1, . . . , ρk into a total mapping ρ, which we prove is good:

I Lemma 20. If there exist local mappings ρ1, . . . , ρk for H1, . . . ,Hk (respectively), then G
contains a copy of H.

I Corollary 21. Given the decomposition into centralized components, we can check whether
G contains a copy of H in O

((
n2−2δS

)k +D
)
rounds.

Proof. Since |Er| ≤ n2−2δS, we also have |Vr| ≤ n2−2δS, so the number of border mappings
is at most

(
n2−2δS

)k. To check each border mapping, we only need to compute an AND
over the happiness of each root vertex; using pipelining, we can compute all these ANDs in
parallel, in a total of O

((
n2−2δS

)k +D
)
rounds. J

6 Hardness of Proving Lower Bounds For C2k

We give a brief overview of two obstacles on proving strong lower bounds for even-length
cycles. All details appear in the full version of the paper [12].

To date, all lower bounds on subgraph-freeness have been shown by reduction from two-
party communication complexity, with the players partitioning the network graph between
them [11, 14, 21, 8]. The players simulate the execution of a distributed algorithm, and the
cost of the simulation per round corresponds to the size of the cut between the players’ parts.
We usually reduce from n-bit set disjointness, which means that we must have (size of the
cut) · (number of rounds) ≥ n (up to a logn factor). In [8], it was shown that this approach
cannot yield a lower bound greater than Ω̃(

√
n) for 4-cliques, because no matter how we try

to partition the graph between the two players, they can solve the K4-freeness problem using
Õ(
√
n · s) bits, where s is the size of the cut between them.

We show an analogous result for 6-cycles, using different ideas: for any fixed partition of
the graph between two players, they can solve C6-freeness using roughly

√
n · s bits. Our

two-party protocol uses the connection to Zarankiewitz numbers that we already exploited in
Section 4, to argue that the players can compactly encode paths of length two, three or four
that are entirely contained on their side of the graph. This enables the players to “stitch
together” a 6-cycle that is split between them, if there is one.
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Next, we show that although it seems plausible that the round complexity of C2k-freeness
approaches Ω(n) as k →∞, proving such a result would imply very powerful circuit lower
bounds. In fact, there is an absolute constant c ∈ (1/2, 1), such that proving any lower bound
greater than Ω(nc) on any particular even-length cycle is already difficult.

We are inspired by a result from [11], where it is shown that the Congested Clique is able
to simulate certain types of circuits, which have very large fan-in, efficiently. We are not able
to use this result as-is, nor do we simulate the same type of circuit. Instead, we show that
(a) the problem of C2k-freeness in general networks can be reduced to solving C2k-freeness in
networks with high conductance; and (b) using the routing scheme of [17, 18], we show that
networks with sufficiently high conductance can simulate constant fan-in circuits of depth
nδ, where δ is a constant. Therefore, a lower bound of the form Ω(nc), for some absolute
constant c ∈ (1/2, 1), would imply lower bounds on the size of circuits with constant fan-in
and depth nδ. At present, it is still open to find an explicit function that cannot be computed
by a circuit of linear size and logarithmic depth.
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