
Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience

ITTAI ABRAHAM, VMware Research

DANNY DOLEV, Hebrew University

GILAD STERN, Hebrew University

�e celebrated result of Fischer, Lynch and Paterson is the fundamental lower bound for asynchronous fault tolerant computation: any

1-crash resilient asynchronous agreement protocol must have some (possibly measure zero) probability of not terminating. In 1994,

Ben-Or, Kelmer and Rabin published a proof-sketch of a lesser known lower bound for asynchronous fault tolerant computation with

optimal resilience against a Byzantine adversary: if n ≤ 4t then any t-resilient asynchronous veri�able secret sharing protocol must

have some non-zero probability of not terminating.

Our main contribution is to revisit this lower bound and provide a rigorous and more general proof. Our second contribution is to

show how to avoid this lower bound. We provide a protocol with optimal resilience that is almost surely terminating for a strong

common coin functionality. Using this new primitive we provide an almost surely terminating protocol with optimal resilience for

asynchronous Byzantine agreement that has a new fair validity property. To the best of our knowledge this is the �rst asynchronous

Byzantine agreement with fair validity in the information theoretic se�ing.

ACM Reference format:

I�ai Abraham, Danny Dolev, and Gilad Stern. 2016. Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience. 1,

1, Article 1 (January 2016), 33 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

One of the most important models of distributed computing is the Asynchronous communication model. Intuitively, this

model captures the highest level of network un-reliability. It allows the adversary to delay each message arrival in an

adaptive manner up to any �nite amount. A basic question of distributed computing is:

Is there a fundamental limit to fault tolerant computation in the Asynchronous model?

�e celebrated Fischer, Lynch, and Merri� (FLP) [9] impossibility result from 1985 is perhaps the most well known

such fundamental limitation. It states that reaching agreement, even in the face of just one crash failure, is impossible

for deterministic protocols. More formally, FLP [9] prove that any protocol that solves Agreement in the asynchronous

model that is resilient to at least one crash failure must have a non-terminating execution. �us, no protocol can solve

Agreement in this model in �nite time, but using randomization, it is possible to de�ne a measure on the number of

rounds and obtain protocols that have a �nite expected termination. Given the FLP [9] impossibility it is natural to ask:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. Manuscript submi�ed to ACM

Manuscript submi�ed to ACM 1

ar
X

iv
:2

00
6.

16
68

6v
2

 [
cs

.D
C

]
 3

1
Ju

l 2
02

0

2 I�ai Abraham, Danny Dolev, and Gilad Stern

Is this potentially measure zero event of non-termination the only limitation for fault tolerant computation in the

asynchronous model?

In 1983, Ben-Or, Cane�i, and Goldreich [4] initiated the study of secure multiparty computation in the asynchronous

model. �eir fundamental result is that the answer above is yes when there are n > 4t servers and an adversary that can

corrupt at most t parties in a Byzantine (fully malicious) manner. �ey show that perfect security with �nite expected

run time can be obtained for any functionality.

�e BCG [4] work le� open the domain of 3t < n ≤ 4t (with n = 3t it is known that Byzantine agreement is

impossible, see [8]). In 1993, Cane�i and Rabin [7] obtained a protocol for Asynchronous Byzantine Agreement with

optimal resilience (3t < n). �eir protocol had an ”annoying property”: the non-termination event has a non-zero
probability measure. �is problematic non-zero probability of non-termination came from their veri�able secret

sharing protocol. In 1994, Ben-Or, Kelmer and Rabin [5] addressed this problem. �ey provided an optimal resilience

asynchronous secure multiparty computation protocol with the same ”annoying property”: the non-termination event

has a non-zero probability measure
1
. Moreover, BKR [5] claim that this is unavoidable. �at is, if n ≤ 4t then any

t-resilient asynchronous veri�able secret sharing protocol A must have some non-zero probability qA > 0 of not

terminating. Unfortunately, BKR [5] only provided a proof-sketch of the proof of this lower bound.

Our contributions: lower bounds on asynchronous verifiable secret sharing with optimal resilience

25 years a�er the publication of the proof-stretch of BKR [5], the main contribution of this paper is a rigorous proof of the

lower bound theorem. We believe that our work will help provide clarity and be�er understanding of the asynchronous

model and its impossibility results. In addition, our lower bound proof improves over the BKR proof-sketch in two

important ways:

One weakness of the BKR [5] proof-sketch is that its arguments only imply a lower bound for veri�able secret sharing

schemes that have perfect hiding and binding properties. �is raises a natural question: Can allowing some error

probability in the AVSS scheme remove the need for a non-zero probability of non-termination? Our proof strengthens

the BKR lower bound claim and proves this is not the case. We prove that even AVSS schemes with constant error must

have a a non-zero probability of non-termination.

A second weakness of the BKR [5] proof-sketch is that its arguments assume the share (and reconstruct) protocols

terminate in a �xed (constant) number of rounds. VSS protocols whose share terminates with probability 1 have been

shown to be useful in other contexts [1]. Our proof strengthens the BKR [5] lower bound claim and proves that a

non-zero probability of non-termination must occur even if the share and reconstruct protocols only terminate with

probability 1.

Our contributions: upper bounds on strong common coin and asynchronous Byzantine agreement with
fair validity

What are the implications of this lower bound? Does it imply that all optimal resilience secure computation must

have a non-zero probability of non-termination? We know that this is not the case. In fact, Ben-Or [3] and Bracha [6]

prove that Byzantine agreement has a measure zero probability of non-termination (it almost surely terminates) with

1
BCG [4]: ”our protocol, as well as the veri�able secret sharing protocol of [CR93], have the following annoying property: the exponentially small

error probability includes an exponentially small non-zero probability of not terminating. �is should be contrasted with the asynchronous Byzantine

Agreement problem where the randomized protocol terminates with probability 1.”

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 3

optimal resilience. However the expected time of termination of these protocols is exponential. �e work of [2] shows

that almost surely termination is possible even with a polynomial expected number of rounds. �is is obtained using

a certain type of a weak common coin functionality that is also almost surely terminating. �is gap raises a natural

question:

Are there other functionalities (that are stronger than a weak coin, but weaker than veri�able secret sharing) that can be

implemented in the asynchronous model for n = 3t + 1 that are almost surely terminating?

Our �rst upper bound contribution is to answer this question in the a�rmative. We show that a certain type of a

strong common coin is possible to implement in an almost surely terminating manner. �e di�erence between a weak

common coin and a strong common coin is that in a strong common coin protocol, all parties output the same value

while in a weak common coin, with constant probability, di�erent parties may output di�erent values for the coin.

What is the advantage of a strong common coin over a weak common coin? With a strong common coin we know

how to obtain asynchronous Byzantine agreement with a fair validity property. We do not know how to obtain this

validity property with a weak coin.

Our second upper bound contribution is a Byzantine Agreement protocol in the Asynchronous model for n = 3t + 1

with fair validity that is almost surely terminating. To the best of our knowledge this is the �rst Asynchronous Byzantine

Agreement protocol with fair validity in the information theoretic se�ing.

2 LOWER BOUND

De�nition 2.1. A Byzantine AVSS protocol, comprised of a pair of protocols (S,R)2, has a designated dealer called D,

which receives a secret s from a �nite �eld F as input. For ϵ > 0, such a protocol is called an almost-surely terminating

(1 − ϵ)-correct t-resilient AVSS protocol if the three following properties hold for every adversary controlling t parties

at most, and any message scheduling:

(1) Termination:

(a) If the dealer is nonfaulty and all nonfaulty parties participate in protocol S , then each nonfaulty party will

almost-surely eventually complete protocol S .

(b) If some nonfaulty party completed protocol S , then each nonfaulty party that participates in S will

almost-surely eventually complete protocol S .

(c) If all of the nonfaulty parties �nished protocol S and began protocol R, they will all almost-surely complete

protocol R.

(2) Correctness. Once the �rst nonfaulty party has completed protocol S , there exists some value r ∈ F such

that with a probability of at least (1 − ϵ):
(a) If the dealer is nonfaulty, r = s .

(b) Every nonfaulty party that completes protocol R outputs the value r .

(3) Secrecy. If the dealer is nonfaulty, and no honest party has began protocol R, no adversary can gain any

information about s . More precisely, denoteV s
to be the adversary’s view of an execution of S with a nonfaulty

dealer sharing s before some nonfaulty party calls protocol R. If the dealer is nonfaulty, then for any given

adversary and message scheduling, the distribution of V s
is the same for all possible secrets s .

2S is the protocol for sharing a secret and R is the protocol for reconstructing it.

Manuscript submi�ed to ACM

4 I�ai Abraham, Danny Dolev, and Gilad Stern

If some party almost-surely completes the protocol, it must complete the protocol in �nite time with probability 1.

�is also means that for every ϵ > 0 there exists some number N ∈ N such that the probability that the party exchanges

more than N messages with all parties during protocol S is less than ϵ . It is important to note that those values might

need to be adjusted based on the adversary and scheduling as well. Similarly, if all parties almost-surely terminate, for

every ϵ > 0 there exists some N ∈ N such that the probability that there exists a nonfaulty party who exchanges more

than N messages is no greater than ϵ . �e main result shown in this section is proving the following theorem:

Theorem 2.2. For any ϵ > 0 and n ≤ 4t there is no terminating
(

1

2
+ ϵ

)
-correct t-resilient Byzantine AVSS protocol

(S,R).

Let n = 4, t = 1 and assume a binary secret s ∈ {0, 1}. Using standard methods, this result can be expanded to any

4t ≥ n ≥ 3t + 1, and to a multivalued secret. Let the parties be A,B,C,D, and let D be the dealer.

By way of contradiction, assume the parties run an almost-surely terminating

(
1

2
+ ϵ

)
-correct t-resilient Byzantine

AVSS protocol. �e theorem is proven using two main claims. �e �rst claim describes possible malicious behaviour by

a faulty dealer during protocol S . �e second claim describes possible malicious behaviour by another party in protocol

R.

Before we state the �rst claim we de�ne a distribution of views where the system is synchronous, the dealer D

and parties A,B are nonfualty and party C has crashed. In such a se�ing, from the Termination property of AVSS all

nonfaulty parties almost-surely complete protocol S . Set some 1 > ϵ ′ > 0 and let N ∈ N be a number such that if

processors A,B,D participate in protocol S in the se�ing described above, the probability that one of them runs for

more than N rounds throughout protocol S is smaller than ϵ ′. From the Termination property of the protocol, and since

the se�ing is synchronous, such a value N must exist. De�ne lonд to be the event in which either A,B or D run for

longer than N rounds throughout protocol S , and lonд to be its complement.

De�nition 2.3. For every s ∈ {0, 1} , P ∈ {A,B}, let πs,P be the distribution of P ’s view when a nonfaulty D shares

the value s , conditioned upon the event lonд.

In the a�ack described in the �rst claim, the dealer, D has a non zero probability of causing parties A and B to

complete protocol S , but the conditional distribution of party A’s view is π0,A while the conditional distribution of

party B’s view is π1,B .

Claim 1. A faulty dealer D has some strategy such that with some nonzero probability the following event holds:

(1) Parties A and B complete protocol S .

(2) �e conditional distribution of party A’s view is π0,A.

(3) �e conditional distribution of party B’s view is π1,B .

Intuitively, the dealer will try to make partyA and party B complete protocol S while seeing contradictory worldviews.

Conditioned on this nonzero probability event the following happens. On the one hand, in A’s view, the execution of S

looks like one in which D shared the value 0 and C was faulty and silent (corresponding to the distribution π0,A). On

the other hand, in B’s view the execution of S looks like one in which D shared the value 1 and C was faulty and silent

(corresponding to the distribution π1,B). A�er A and B complete protocol S , C will start participating in the protocol,

and complete protocol S as well. �en all three parties will participate in protocol R, and eventually complete it and

output some value r . �is value r will be used in the next a�ack in the second claim.

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 5

�e crux of this a�ack is that parties A and B should not know whether 0 or 1 is shared during S in a run in which D

is nonfaulty because of the Secrecy property. Leveraging this ambiguity, the faulty dealer tries to make them complete

S with incompatible views, which they will have to resolve during protocol R.

A�erwards, in order to prove the main result, we prove the following claim for every 1 > ϵ ′ > 0 (arbitrarily close to

0):

Claim 2. Without loss of generality, the adversary has a strategy controlling party B such that when a nonfaulty D

shares the value 0, with probability at least 1 − ϵ ′:

• A’s view during protocol S is distributed according to the distribution π0,A,

• C outputs 0 at the end of protocol R with probability 1

2
or less.

�e value 0 in the claim is used when in the previous a�ack party C outputs the value r = 0 with probability
1

2
or

less. �e claim is ”without loss of generality”, in the sense that if C outputs the value r = 1 with probability
1

2
or less

then we switch A with B as well as 0 with 1.

In this a�ack, B acts normally throughout S , and then throughout R acts as if the a�ack in claim 1 took place. As

opposed to the previous a�ack which can succeed with some nonzero probability, B’s a�ack will succeed (i.e. it will

look as if the a�ack in claim 1 took place) with a probability arbitrarily close to 1. �is means that the event that C

outputs 0 with probability
1

2
or less can occur with a probability arbitrarily close to 1. Note that if the dealer shares 0,

then every nonfaulty party should output 0 with probability
1

2
+ ϵ or greater, and thus C can only fail to output 0 with

probability
1

2
− ϵ . �erefore, for a small enough ϵ ′ we reach a contradiction. �is concludes the proof for �eorem 2.2.

Several random variables are de�ned in order to prove the aforementioned claims. Technically, the distribution of

the random variables could depend on the dealer, the adversary and on the message scheduling. �roughout all of the

analysis these factors are strictly de�ned, and are therefore omi�ed from the de�nitions of the random variables.

Let Ms
XY be the distribution of messages exchanged between party X and party Y during the sharing protocol S

if the network is synchronous, party D is a nonfaulty dealer sharing the value s , party C is faulty and silent, and no

nonfaulty party calls protocol R. Let RsX be the distribution of the internal randomness of party X throughout the

sharing protocol in the described se�ing. Let V s
X be the distribution of party X ’s view of the share phase in the se�ing

described above. For every pair of parties X ,Y and value s let r sX ∼ RsX be a random variable describing X ’s randomness

in a given run, ms
XY ∼ Ms

XY be a random variable describing the messages between parties X and Y with a non faulty

dealer sharing s in the described se�ing, and vsX ∼ V
s
X be a random variable describing X ’s view in the run. Note that

r sX is necessarily part of vsX in some way, as well asms
XY for every party Y .

For any distribution X , x ∈ X means that x has a nonzero probability under X . Party X ’s view vX is consistent with s

if vX ∈ V s
X . Similarly, a set of messages mXY exchanged between party X and party Y is consistent with the secret s if

mXY ∈ Ms
XY .

For the �rst part of the analysis, assume D is corrupted by the adversary. �e overarching goal is to prove claim 1

while processor A sees a view consistent with D sharing the value 0 and processor B sees a view consistent with D

sharing the value 1. Intuitively, from the Secrecy property, neither party A nor party B should be able to tell which value

was shared throughout protocol S , and thus D could send messages in that manner and neither party would notice.

�e adversary’s strategy is as follows: Party D samples sA ← R0

A |lonд and sAB ← M0

AB |r
0

A = sA, lonд and then

sB ← R1

B |m
1

AB = sAB , lonд. A�erwards it samples sAD ← M0

AD |m
0

AB = sAB , r
0

A = sA, lonд and mBD ← M1

BD |m
1

AB =

Manuscript submi�ed to ACM

6 I�ai Abraham, Danny Dolev, and Gilad Stern

sAB , r
1

B = sB , lonд. �e random variables sA, sB areD’s guesses ofA and B’s randomness, and the variables sAB , sAD , sBD

are the messages D predicts will be sent. De�ne party X ’s randomness throughout this run to be rX and the messages

exchanged between parties X and Y in this run to bemXY . Finally, de�ne the event G, in which sA = rA, sB = rB .

Before showing this behaviour can be used as part of claim 1, we need to show that these distributions are well-de�ned

and samplable. Note that the se�ing is entirely synchronous. For simplicity, assume that the number of bits in a message

and the amount of randomness needed in each round are bounded. In addition, assume that every party sends some

message indicating that it completes protocol S . �ese assumptions are used in order to simplify the proof of the next

lemma.
3

Lemma 2.4. For every valuesm′AD ,m
′
AB , r

′
A such that Pr[m0

AD = m′AD ,m
0

AB = m′AB , r
0

A = r ′A, lonд] , 0, Pr[m0

AD =

m′AD ,m
0

AB =m
′
AB , r

0

A = r
′
A |lonд]= Pr[m1

AD =m
′
AD ,m

1

AB =m
′
AB , r

1

A = r
′
A |lonд].

Proof. First note that from the Termination property of AVSS , if all nonfaulty parties participate in protocol S they

will all complete it. Observe a scheduling in which the communication between parties A,B and D is synchronous, party

C is silent throughout all of protocol S and no nonfaulty party calls protocol R at all. In this case, since no nonfaulty

party calls protocol R, the Secrecy property must hold at the time the parties complete protocol S .

Seeking a contradiction, assume the lemma doesn’t hold and show a violation of the Secrecy property. In that case,

observe the scenario in which the adversary controls party A and the nonfaulty dealer shares the value 0. Party A acts

like a nonfaulty party would throughout all of protocol S . From D and B’s point of view, party A acts as a nonfaulty

party andC acts as a faulty party which doesn’t send any messages. Since they cannot distinguish between the scenarios,

the messages must be distributed according to the distributions M0

AD ,M
0

AB and A’s randomness must be distributed

according to R0

A. Since Pr

[
m0

AD =m
′
AD ,m

0

AB =m
′
AB , r

0

A = r
′
A, lonд

]
, 0, there is a nonzero probability that parties

A,B,D complete protocol S with A having exchanged those messages in fewer than N rounds. All processors also know

when other processors complete the protocol because they send a message indicating they completed protocol S . No

nonfaulty party called R yet, and Pr[m0

AD = m′AD ,m
0

AB = m′AB , r
0

A = r ′A |lonд] , Pr[m1

AD = m′AD ,m
1

AB = m′AB , r
1

A =

r ′A |lonд]. In other words, if party A acted in the exact same way, and D were sharing the value s = 1 instead, A would

have had a di�erent probability of seeing these values if the event lonд took place. Since A’s random values and the

messages it exchanges are a part of its view, as well as its knowledge as to whether the event lonд happened, this

means that this adversary’s view in the case s = 0 is distributed di�erently than it would be in the case s = 1 reaching a

contradiction. For completeness, all messages to and from C can be sent and received a�er parties A,B and D complete

protocol S in order for the scheduling to be valid. �

�e probabilities are equal for every nonzero-probability event in the case that the dealer is sharing the value 0.

Since both must be probability spaces Pr

[
m0

AD =m
′
AD ,m

0

AB =m
′
AB , r

0

A = r
′
A |lonд

]
= 0 if and only if it is also true that

Pr[m1

AD = m′AD ,m
1

AB = m′AB , r
1

A = r ′A |lonд] = 0, and thus the distributions must be identical. In addition, the exact

same arguments can be made for B instead or if party D shared the value s = 1.

A direct corollary is that any of the marginal and conditional probabilities are also the same. For example:

3
In order to prove the general case, the dealer can simulate the entire run for parties A, B, D round-by-round twice, once sharing the value 0 and once

sharing the value 1. �e dealer will only accept pairs of runs in which the messages exchanged between processors A and B are the same. Proving that

there must exist such a pair of runs requires proving a lemma similar to the following lemma without conditioning upon the event lonд. Note that since

the rounds almost-surely terminate, the sampling process will also terminate with probability 1. �is will result in slight di�erences in the a�acks and

proofs, but with very similar techniques and ideas. �e main di�erence is that all of the sampled probabilities will not be conditioned upon the event

lonд.

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 7

Corollary 2.5. For every m′AD ∈ M0

AD |lonд, Pr[m0

AD = m′AD |lonд] = Pr[m1

AD = m′AD |lonд]. Also, for every

m′AB ∈ M
0

AB |lonд, Pr[m0

AD =mAD |m0

AB =m
′
AB , lonд] = Pr[m1

AD =mAD |m1

AB =m
′
AB , lonд].

Corollary 2.6. �e values sampled by D in the described a�ack are sampled from well-de�ned, samplable distributions.

�e proofs of the corollaries are provided in the appendix.

In general the strategy from this point on is to prove that if any party’s view is consistent with some secret it must

complete protocol S . �e next step is to show that if event G occurs, A and B’s view must be consistent with some

secret s and the event lonд must take place. In the runs by the random variables party C is faulty and doesn’t send

any messages, and thus we prove that there are runs in which parties A and B must complete protocol S even without

receiving any messages from C .

Lemma 2.7. If party A’s view is consistent with some secret s ∈ {0, 1} then it must almost-surely complete the protocol,

even without receiving any messages from party C .

Proof. Since party A’s view is consistent with the secret s , A could have had this exact view with a nonfaulty dealer

D sharing s if C were faulty and silent. Since in that run A and B are nonfaulty and D is a nonfaulty dealer, from

the Termination property of AVSS , A must almost-surely complete protocol S in that run. A can’t tell the di�erence

between its view in this run and the view in which C was faulty, and thus A must complete protocol S if its view is

merely consistent with s . Party C’s messages won’t be in�nitely delayed in this run because the probability that party

A has an in�nitely large view is 0. �

�is exact argument can be made for party B as well. We now turn to show that if D acts according to the described

strategy, there is a nonzero probability that A and B will complete protocol S with the desired distribution of views,

conditioned upon the event lonд.

Lemma 2.8. If the dealer is faulty, sA = rA, sB = rB , D exchanges the messages sAD and sBD with parties A and B

respectively, parties A and B exchange the messages sAB between them, and the scheduling is as described above, then party

A’s view is distributed according to V 0

A |lonд and party B’s view is distributed according to V 1

B |lonд.

�e proof of this lemma can be found in the appendix.

Lemma 2.9. If the dealer is faulty, sA = rA, sB = rB , D sends messages to parties A and B according to sAD and sBD ,

and the scheduling is as described above, then parties A and B complete protocol S having exchanged sAD , sBD with D

respectively and sAB between them.

Proof. If party D correctly guesses sA = rA, sB = rB , then the messages A and B exchange with each other and with

D in response to each of D’s messages are going to become entirely deterministic and dictated only by D’s messages.

�is means that since D’s messages are always going to be consistent with the sampled values sAD , sBD , parties A

and B are going to send the appropriate responses to D, as well as exchange the messages sAB sampled by D between

them. In that case, from lemma 2.8 party A’s view is distributed according to V 0

A |lonд and party B’s view is distributed

according to V 1

B |lonд. �is means that party A’s view is consistent with s = 0 and party B’s view is consistent with

s = 1. From lemma 2.7 this means that parties A and B almost-surely complete protocol S in �nite time. �

Manuscript submi�ed to ACM

8 I�ai Abraham, Danny Dolev, and Gilad Stern

In order for the scheduling to be valid, once parties A and B complete protocol S , all messages to and from party

C are instantly delivered. Note that party D hasn’t sent any messages to party C . �ere is a nonzero probability of

sA = rA, sB = rB , and thus claim 1 is proven by combining lemma 2.8 and lemma 2.9

Now observe the following behaviour and scheduling a�er protocol S : processor D now stays silent throughout all

of protocol R, and all of the messages to and from parties A,B and C are synchronously delivered. Since all nonfaulty

parties participate in protocol S , and some nonfautly party completed protocol S , all nonfaulty parties almost-surely

complete it as well. Similarly, since all nonfaulty parties completed protocol S and participate in protocol R, they all

almost-surely complete it as well. De�ne OC to be the random variable describing the output of party C during these

runs, conditioned upon the event G . In other words, only observe the runs in which party D correctly guessed the other

parties’ randomness. Now, it is either the case that Pr [OC = 0] ≤ 1

2
or the case that Pr [OC = 1] ≤ 1

2
.

�e rest of the section proves claim 2 by describing a�acks in which the adversary controls either party A or party

B and simulates the previous adversary’s behaviour conditioned upon the event G. It is possible for the adversary

to simulate that event with probability 1 − ϵ ′ even though the event has a negligible probability of occurring in the

original a�ack, gaining a signi�cant advantage. First assume that Pr [OC = 0] ≤ 1

2
. In that case, the adversary can

control party B with some speci�c scheduling in such a way that if a nonfaulty dealer shares the value 0 and the event

lonд takes place, party A’s view throughout the protocol must be distributed according to V 0

A |lonд. Party B also acts in

a way similar to the way it would have acted in the previous a�ack. �is means that all parties act in the same way

they would have acted in the original a�ack, and thus party C outputs 0 with probability
1

2
or less if the event lonд

takes place. Since the event lonд takes place with at least a probability of 1 − ϵ ′, this proves the claim.

Lemma 2.10. If Pr [OC = 0] ≤ 1

2
, there exist an adversary controlling party B and a scheduling such that with probability

1 − ϵ ′ or more the following things hold when a nonfaulty dealer D shares the value 0:

• party A’s view during protocol S is distributed according to V 0

A |lonд,
• party C outputs 0 at the end of protocol R with probability 1

2
or less.

Proof. �e scheduling is described only in case the dealer shares the value s = 0 and no party runs for longer than

N round. Any other valid scheduling can take place if those conditions don’t hold. �e adversary takes control of party

B, and makes it act as a nonfaulty party would throughout all of protocol S . All communications between parties A,B

and D are synchronous throughout protocol S . In addition, all messages to and from C are delayed until parties A,B

and D complete protocol S . Since party B is acting as a nonfaulty party would, parties A and D can’t tell the di�erence

between this run and a run in which partyC is faulty and silent. As discussed above, in this situation parties A,B and D

must complete protocol S .

Let m̂XY be the messages partyX exchanged with partyY throughout protocol S , and let r̂X be partyX ’s randomness

throughout the protocol. A�er completing protocol S , party B simulates all runs in which lonд takes place when a

nonfaulty dealer shares the value 1. If there is no such run in which the messages m̂AB are exchanged between parties

A and B, party B acts as a nonfaulty processor throughout protocol R. Otherwise, party B samples some random

values ŝB ← R1

B |m
1

AB = m̂AB , lonд and some messages ŝBD ← M1

BD |m
1

AB = m̂AB , r
1

B = ŝB , lonд. Note that clearly

Pr

[
m0

AB = m̂AB |lonд
]
, 0, and thus also Pr

[
m1

AB = m̂AB |lonд
]
, 0 from corollary 2.5. �is means that the above

distributions are well-de�ned. From this point on, party B acts as a nonfaulty party would act with a view consisting

of m̂AB , ŝBD , ŝB . A�er parties A and B complete protocol S all messages between parties A,B and C , including the

messages previously sent, are synchronously delivered. All messages to and from party D are delayed until the rest of

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 9

the parties complete protocol R. It is important to note that in this scheduling, all the messages party D sent to party C

throughout protocol S are also delayed until a�er all nonfaulty parties complete protocol R.

Recall that mXY is de�ned as the messages exchange by parties X and Y and rX is de�ned as X ’s randomness

throughout the a�ack described in claim 1. Now observe a snapshot of the values party A saw throughout protocol

S and the values party B claims it saw throughout the protocol. For any values r ′A, r
′
B ,m

′
AB ,m

′
BD ,m

′
AD such that

Pr[mAB =m
′
AB ,mAD =m

′
AD ,mBD =m

′
BD , rA = r

′
A, rB = r

′
B |G] , 0 the following also holds:

Pr
[
mAB=m

′
AB ,mAD =m

′
AD ,mBD =m

′
BD , rA = r

′
A, rB = r

′
B |G

]
= Pr

[
sAB=m

′
AB , sAD =m

′
AD , sBD =m

′
BD , rA = r

′
A, rB = r

′
B |G

]
= Pr

[
sAB =m

′
AB , sAD =m

′
AD , sA = r

′
A |G

]
· Pr

[
sB = r

′
B |sAB =m

′
AB , sAD =m

′
AD , sA = r

′
A
]

· Pr

[
sBD =m

′
BD |sAB =m

′
AB , sAD =m

′
AD , sA = r

′
A, sB = r

′
B
]

= Pr

[
m0

AB =m
′
AB ,m

0

AD =m
′
AD , r

0

A = r
′
A |lonд

]
· Pr

[
r1

B = r
′
B |m

1

AB =m
′
AB , lonд

]
· Pr

[
m1

BD =m
′
BD |m

1

AB =m
′
AB , r

1

B = r
′
B , lonд

]
Where the last equality stems from several facts. From lemma 2.8 Pr[sAB = m′AB , sAD = m′AD , rA = r ′A |G] =
Pr[m0

AB=m
′
AB ,m

0

AD =m
′
AD , r

0

A = r
′
A |lonд]. From the way the random variable sB is sampled, given sAB the variable

sB is independent of the variables sAD , sA. Now, Pr[sB = r ′B |sAB = m′AB] = Pr[r1

B = r ′B |m
1

AB = m′AB , lonд] from the

de�nition of sB . A similar argument can be made for the �nal expression.

On the other hand, note that since parties A,B and D are acting as nonfaulty parties throughout S , their actions are

distributed identically to the se�ing in which C is faulty and silent. In this se�ing, the event lonд takes place with

probability 1 − ϵ ′ at the very least. Note that if this event takes place, then processor B sees that the messages m̂AB can

be exchanged in some run in which the event lonд takes place, and thus sample some values. �erefore, conditioned

upon the event lonд:

Pr

[
m̂AB=m

′
AB ,m̂AD =m

′
AD , ŝBD =m

′
BD , r̂A = r

′
A, ŝB = r

′
B |lonд

]
= Pr

[
m̂AB =m

′
AB ,m̂AD =m

′
AD , r̂A = r

′
A |lonд

]
· Pr

[
ŝB = r

′
B |m̂AB =m

′
AB ,m̂AD =m

′
AD , r̂A = r

′
A, lonд

]
· Pr

[
m̂BD=m

′
BD |m̂AB=m

′
AB ,m̂AD=m

′
AD , r̂A=r

′
A, ŝB = r

′
B , lonд

]
= Pr

[
m0

AB =m
′
AB ,m

0

AD =m
′
AD , r

0

A = r
′
A |lonд

]
· Pr

[
r1

B = r
′
B |m

1

AB =m
′
AB , lonд

]
· Pr

[
m1

BD =m
′
BD |m

1

AB =m
′
AB , r

1

B = r
′
B , lonд

]
Manuscript submi�ed to ACM

10 I�ai Abraham, Danny Dolev, and Gilad Stern

Where the last equality stems from similar arguments. First of all, note that fromA’s point of view, partyC is acting like a

faulty party which is staying silent throughout protocol S and parties B,D are acting as nonfaulty parties with D sharing

the value 0. �erefore, Pr[m̂AB = m′AB ,m̂AD = m′AD , r̂A = r ′A |lonд] = Pr[m0

AB = m′AB ,m
0

AD = m′AD , r
0

A = rA |lonд].
�is also means that if the event lonд takes place, party A’s view is distributed according toV 0

A |lonд. From the way ŝB is

sampled, given m̂AB , the random variable ŝB is entirely independent of m̂AD , r̂A. Taking that fact into consideration, and

looking at the de�nition of ŝB , Pr[ŝB = r ′B |m̂AB =m
′
AB ,m̂AD =m

′
AD , r̂A = r

′
A, lonд] = Pr[r1

B = r
′
B |m

1

AB =m
′
AB , lonд].

A similar argument can be made for ŝBD .

Party B’s behaviour is identical to the behaviour it would have in the a�ack described in the �rst part, and party A’s

view is identical to that view as well. From this point on, protocol R is run in the exact same way, and neither party A

nor party C can tell the di�erence between the runs in which party B was faulty and event lonд occurred, and the runs

in which party D was faulty, given that event G occurred. First of all note that in the previous a�ack, parties A and C

output some value before receiving messages from party D during protocol R, and thus must do so in this scenario as

well. In order for the scheduling to be valid, all of the messages to and from party D are received some �nite time a�er

party A and partyC output a value. �e distribution of A andC’s views in the beginning of protocol R is identical to the

distribution of their views in the previous a�ack. Furthermore, party B’s actions are de�ned by the view it is simulating

in the beginning of protocol R as well. Since parties A,B and C’s actions are determined by their view at any point in

time, the distribution of their views throughout the rest of protocol R is identical in both runs as well, and thus the

distributions of their outputs must be the same as well. �erefore if event lonд occurred, the probability that party C

outputs 0
1

2
or less. Note that event lonд takes place with probability 1 − ϵ ′ or more, which completes the lemma.

�

Now assume that Pr [OC = 1] ≤ 1

2
. In that case:

Lemma 2.11. If Pr [OC = 1] ≤ 1

2
, there exist an adversary controlling partyA and a scheduling such that with probability

1 − ϵ ′ or more the following things hold when a nonfaulty dealer D shares the value 1:

• party B’s view during protocol S is distributed according to V 1

B |lonд,
• party C outputs 1 at the end of protocol R with probability 1

2
or less.

Proof. �e proof of this lemma is extremely similar to the proof of lemma 2.10, and is thus provided in the

appendix. �

If Pr [OC = 0] ≤ 1

2
, lemma 2.10 shows that claim 2 holds when s = 0 with the adversary controlling B. On the other

hand, if Pr [OC = 1] ≤ 1

2
, lemma 2.11 shows that claim 2 holds when s = 1 with the adversary controlling A. Since

either Pr [OC = 0] ≤ 1

2
or Pr [OC = 1|G] ≤ 1

2
, claim 2 must hold. Now, assume w.l.o.g that Pr [OC = 0] ≤ 1

2
. �en, if a

nonfaulty dealer D shares the value 0, an adversary has a strategy controlling B such that for any 1 > ϵ ′ > 0 party

C outputs 0 with probability no greater than
1

2
if an event occurs with probability 1 − ϵ ′ or more. In addition to that

if that event doesn’t occur (with probability ϵ ′ or less), party C might output 0 with any probability. So in total, the

probability thatC outputs 0 is no greater than (1 − ϵ ′) · 1

2
+ 1 · ϵ ′ All nonfaulty parties, includingC , must output 0 with

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 11

probability
1

2
+ ϵ or more. �erefore, pick an ϵ ′ such that:(

1 − ϵ ′
)
· 1

2

+ 1 · ϵ ′ < 1

2

+ ϵ

1

2

− 1

2

· ϵ ′ + ϵ ′ < 1

2

+ ϵ

1

2

+
1

2

· ϵ ′ < 1

2

+ ϵ

ϵ ′ < 2ϵ

which reaches a contradiction, completing our proof. A short sketch of how to extend the proof to any n such that

4t ≥ n ≥ 3t + 1 or to multivalued secrets is provided in the appendix.

3 STRONG COMMON COIN

�e main goal of this section is to construct a strong common coin primitive. �is primitive is de�ned as follows:

De�nition 3.1. ProtocolCC is an ϵ-biased almost-surely terminating common coin protocol if the following properties

hold:

(1) Termination. If all nonfaulty parties participate in the CC protocol they almost-surely complete it. Fur-

thermore, if some nonfaulty party completes protocol CC , every nonfaulty party that begins the protocol

almost-surely completes it as well.

(2) Correctness. For every value b ∈ {0, 1}, there is at least a
1

2
− ϵ probability that every nonfaulty party that

completes the protocol outputs b. Regardless, all nonfaulty parties that complete the protocol output the same

value with probability 1.

�is de�nition has three natural desired properties of a common coin protocol: the protocol almost-surely terminates,

it has an arbitrarily small bias (as a parameter of the protocol), and the output value is always agreed upon by all parties.

Previous works have achieved some subset of those properties, but not all three together. For example, the protocol in

[7] doesn’t always terminate and the parties don’t always agree on the output value. On the other hand, the protocol

described in [2] always terminates, but can completely fail O
(
n2

)
times. �is also means that if just one common coin

instance is required, there is no guarantee that protocol will yield the desired properties.

�roughout the following sections assume the number of nonfaulty parties is t such that 3t + 1 ≤ n. �e following

protocols use the protocols SVSS and BA, which are resilient to this number of faulty parties. �e SVSS protocol,

as de�ned in [2], has a designated dealer with some input s and it consists of two sub-protocols, SVSS − Share and

SVSS − Rec .

De�nition 3.2. An SVSS protocol has the following properties:

(1) Validity of termination. If a nonfaulty dealer initiates SVSS − Share and all nonfaulty parties participate in

the protocol, then every nonfaulty party eventually completes SVSS − Share .

(2) Termination. If a nonfaulty party completes either protocol SVSS − Share or SVSS − Rec , then all nonfaulty

parties that participate in the protocol eventually complete it. Moreover, if all nonfaulty parties begin protocol

SVSS − Rec , then all nonfaulty parties eventually complete protocol SVSS − Rec .

(3) Binding. Once the �rst nonfaulty party completes an invocation of SVSS − Share with session id (c,d), there

is a value r such that either:

Manuscript submi�ed to ACM

12 I�ai Abraham, Danny Dolev, and Gilad Stern

• the output of each nonfaulty party that completes protocol SVSS − Rec is r ; or

• there exists a nonfaulty party Pi and a faulty party Pj such that Pj is shunned by Pi starting in session

(c,d).
(4) Validity. If the dealer is nonfaulty with input s , then the binding property holds with r = s .

(5) Hiding. If the dealer is nonfautly and no nonfaulty party invokes protocol SVSS − Rec , then the faulty parties

learn nothing about the dealer’s value.

Party Pi shuns party Pj if it accepted messages from it in the current invocation, but won’t accept any messages

from it in future interactions. For our purposes it is enough to note that fewer than n2
shunning events can take place

overall.

De�nition 3.3. An almost-surely terminating binary Asynchronous Byzantine Agreement is a protocol in which each

nonfaulty party has an input from {0, 1}, and the following properties hold:

(1) Termination. If all nonfaulty parties participate in the protocol, all nonfaulty parties almost-surely eventually

complete the protocol. Furthermore, if some nonfaulty party completes the protocol, all nonfaulty parties that

participate in it do so as well.

(2) Validity. If all nonfaulty parties have the same input σ ∈ {0, 1}, every nonfaulty party that completes the

protocol outputs σ .

(3) Correctness. All nonfaulty parties that complete the protocol output the same value σ ∈ {0, 1}.

Let SVSS be a protocol with the SVSS properties, and BA be an almost-surely terminating binary Asynchronous

Byzantine Agreement protocol, as described in [2]. Both of these protocols are resilient to t faulty processors such that

3t + 1 ≤ n.

In addition to these two protocol, the common coin protocol requires a protocol for agreeing on a common subset of

parties for which some condition holds. In order to do that, in the protocol each party Pi employs a ”dynamic predicate”

Qir for each round r . Intuitively Qir (j) denotes whether Pi saw that some irreversible condition holds with regard to

Pj . For every value j ∈ [n], Qir (j) ∈ {0, 1} at any given point in time. Initially, ∀j ∈ [n] Qir (j) = 0, and for any such j,

Qir (j) can turn into 1, but not back to 0. �e idea of a dynamic predicate and for the protocol below are described in [5].

De�nition 3.4. Protocol CS is a common subset protocol, with a dynamic predicate Qi and a number k ≤ n as input,

if it has the following properties:

(1) Termination. If all nonfaulty parties invoke the protocol, and there exists a set I ⊆ [n] such that:

• |I | ≥ k , and

• for every nonfaulty party Pi , eventually ∀j ∈ I Qi (j) = 1,

then all nonfaulty parties almost-surely complete the invocation of CS .

Furthermore, if some nonfaulty party completes protocol CS and if for every pair of nonfaulty parties

Pi , Pj that participate in the CS protocol and value k ∈ [n] if Qi (k) = 1 then eventually Q j (k) = 1, then every

nonfaulty party that participates in the protocol almost-surely completes it as well.

(2) Correctness. All nonfaulty parties that complete an invocation ofCS output the same set S ⊆ [n]. Furthermore,

|S | ≥ k and for every j ∈ S there exists a nonfaulty party Pi such that Qi (j) = 1.

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 13

A construction of a common subset protocol resilient to t faulty parties such that 3t + 1 ≤ n is shown and proven

with slight changes in [5]. For completeness, another construction and proof with the aforementioned properties is

shown in the appendix. From this point on, assume the CommonSubset protocol is a common subset protocol.

Using the previously discussed primitives, the rest of this section describes and proves the correctness of a common

coin protocol. Intuitively, in the protocol several weak coins are �ipped using the SVSS protocol. �ese coins should

behave as fully unbiased coin in most cases, but n2
of these coins could fail because the SVSS protocol could fail n2

times. In this context a coin failing means that it can be totally biased, or not agreed upon. �is means that enough

weak coins need to be �ipped so that the n2
failures are not signi�cant. �e number of weak coin �ips is set to be

proportionate to n4
and to a function of the acceptable bias in the �nal coin, and the output is the value output in the

majority of the rounds. From the properties of the binomial distribution the n2
faulty coin �ips should not signi�cantly

bias the result given that around n4
coins are �ipped.

Algorithm 1 CoinFlip (ϵ)
Code for Pi :

• Let k = 4

⌈(e
ϵ ·π

)
2

n4

⌉
• For r = 1 to k:

(1) Sample bir ← {0, 1} uniformly. Call SVSS − Shareir (bir) as dealer.

(2) Participate in SVSS − Sharejr with Pj as dealer for every j ∈ [n].
Note this means the party begins participating in iteration r ’s SVSS − Share invocations only a�er

completing iteration r − 1.

(3) De�ne the dynamic predicate Qir as follows for every j ∈ [n]:

Qir (j) =


1 if SVSS − Sharejr has been completed

0 else

(4) Continually participate in CommonSubsetr (Qir ,n − t), denote its output as Sir .

(5) A�er CommonSubsetr terminates, invoke SVSS − Rec jr for every j ∈ Sir , let the reconstructed value be

bi jr .

(6) For every j ∈ Sir compute b ′i jr = bi jr mod 2.

Compute b ′ir =
⊕

j ∈Sir b
′
i jr and continue to the next iteration.

• A�er completing the �nal iteration, compute b ′i = majorityr ∈[k]
{
b ′ir

}
.

• Participate in a �nal BA invocation with input b ′i . A�er completing the BA invocation, output its output. In

addition, continue participating in all relevant invocations of BA, SVSS andCommonSubset until they terminate.

Theorem 3.5. For every ϵ ∈
(
0, 1

2

)
and t faulty processors such that 3t + 1 ≤ n, protocol CoinFlip (ϵ) is an ϵ-biased

almost-surely terminating common coin protocol.

Proof. Each property is proven individually. �roughout this proof let k = 4

⌈(e
ϵ ·π

)
2

n4

⌉
as de�ned in the protocol.

Termination First show that if all nonfaulty parties participate in theCoinFlip (ϵ) protocol they all almost-surely com-

plete it. In order to do that, we �rst show that if all nonfaulty parties start the r ’th iteration of protocolCoinFlip (ϵ), then

they all almost-surely complete it. Note that all nonfaulty parties continue participating in all SVSS andCommonSubset

invocations even a�er completing the CoinFlip protocol, so if all nonfaulty parties started participating in them, their

Manuscript submi�ed to ACM

14 I�ai Abraham, Danny Dolev, and Gilad Stern

termination properties continue to hold. If all nonfaulty parties start the r ’th iteration of CoinFlip (ϵ), every nonfaulty

party Pi samples a random value bir , invokes SVSS − Shareir as dealer, and participates in SVSS − Sharejr with Pj as

dealer for every j ∈ [n]. From the Termination property of SVSS , since all nonfaulty parties participate in SVSS−Sharejr
for every nonfaulty dealer Pj , all nonfaulty parties eventually complete SVSS − Sharejr . Once party Pi completes

SVSS − Sharejr , Qir (j) becomes 1. �is means that there exists a set I ⊆ [n] , |I | ≥ n − t such that for every nonfaulty

party Pi , eventually ∀j ∈ I Qir (j) = 1. In addition, all nonfaulty parties participate in CommonSubsetr because they

started iteration r and continue participating in it even a�er completing CoinFlip until CommonSubsetr terminates

locally. From the Termination property ofCommonSubset , all nonfaulty parties almost-surely completeCommonSubsetr .

From the Correctness property of CommonSubset , for every j ∈ Sr , Qir (j) = 1 for at least one nonfaulty party Pi . �is

means that for every j ∈ Sr at least one nonfaulty party completed SVSS − Sharejr . From the Termination property

of SVSS , all other nonfaulty parties complete SVSS − Sharejr as well. A�er that, all nonfaulty parties reach step 5 of

the iteration, and invoke SVSS − Rec jr for every j ∈ Sr . Again, from the Termination property of SVSS , all nonfaulty

parties complete SVSS − Rec jr for every j ∈ Sr . A�er that, all nonfaulty parties perform local computations in step 6,

and reach the end of the iteration.

Since all parties start with the same parameter ϵ they all compute the same value k . Note that this means that all

nonfaulty parties begin the �rst iteration, and won’t stop before completing the k’th iteration. Using a simple inductive

argument, all nonfaulty parties almost-surely complete k iterations. A�er completing all k iteration, every nonfaulty

party then performs a local computation and participates in the last BA invocation. From the Termination property

of the BA protocol, all nonfaulty parties almost-surely complete that BA invocation, and then output its value and

complete the protocol.

For the second part of the property, assume some nonfaulty party Pi completed the CoinFlip protocol. Before doing

that, it must have completed the CommonSubsetr protocol for every r ∈ [k] and output some set Sr . It must have also

completed the SVSS − Rec jr protocol for every r ∈ [k] , j ∈ Sr , and the �nal BA protocol. Now observe some other

nonfaulty party Pl that participates in the protocol. For every nonfaulty party Pk and value j ∈ [n], ifQkr (j) = 1 it must

have �rst completed the invocation of SVSS − Sharejr . From the Termination property of SVSS , every other nonfaulty

party Pm that participates in SVSS − Sharejr completes the protocol as well and sets Qmr (j) = 1. Note that every

nonfaulty party that participates in theCommonSubsetr protocol also participates in each of the relevant SVSS − Share
invocations. �erefore the conditions of the second part of the Termination property of CommonSubset hold, and thus

if Pl participates in CommonSubsetr it almost-surely completes it as well, and from the Correctness property it outputs

Sr as well. Pl then calls SVSS − Rec jr for every j ∈ Sr and since those are the same invocations that Pi completed, Pl

completes them as well. �is mean that for every r ∈ [k], Pl almost-surely completesCommonSubetr and SVSS − Rec jr
for every j ∈ Sr , a�er which it continues to the next iteration. A�er completing all k iterations, Pl performs some local

computations and participates in the BA protocol as well. Since Pi completed the BA protocol, Pl must almost-surely

complete the protocol as well, and then complete the protocol.

Correctness Every nonfaulty party that completes the protocol outputs the value it output in the �nal BA protocol.

From the Correctness property of BA, all nonfaulty parties output the same value in the BA protocol, and thus they all

output the same value in the CoinFlip protocol. �is proves the second part of the property

We now turn to deal with the �rst part of the property. Every nonfaulty party that completes the CoinFlip protocol

must have completed all iterations of the loop in protocol CoinFlip. In each iteration, from the correctness property of

CommonSubset there exists some set Sr such that every nonfaulty party that completes CommonSubsetr outputs Sr .

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 15

From the Correctness property ofCommonSusbet , at the timeCommonSubsetr is completed, for every j ∈ Sr there exists

some nonfaulty party Pi such that Qir (j) = 1. Pi only sets Qir (j) = 1 if it has has already completed SVSS − Sharejr .

In other words, at the time some nonfaulty party completes CommonSubsetr there exists some nonfaulty party that

completes SVSS − Sharejr for every j ∈ Sr . From the binding property of SVSS , at that time some value s ′jr is set such

that every nonfaulty party that completes SVSS − Rec jr either outputs s ′jr , or some nonfaulty party shuns some faulty

party starting in that SVSS session. Denote c ′jr = s ′jr mod 2, and c ′r =
⊕

j ∈Sr c
′
jr . Note that s ′jr is supposed to be

either 0 or 1 but in the case of sharing over a large �eld, this cannot be enforced for faulty dealers.

For every j ∈ Sr , no nonfaulty party invokes SVSS − Rec jr before completing the CommonSubsetr invocation, at

which time Sr is set already. From the hiding property of SVSS , before some nonfaulty party invokes SVSS − Rec jr for

any nonfaulty dealer Pj , the faulty (and nonfaulty) parties’ view is distributed independently of the value bjr shared

by Pj . �is also means that the values shared by any nonfaulty party Pj such that j ∈ Sr are entirely independent

of other values shared by all other parties in Sr . From the validity property of SVSS , c ′jr = bjr for every nonfaulty

Pj . Since |Sr | ≥ n − t , there exists at least one nonfaulty party Pj such that j ∈ Sr . Note that c ′r = 0 if and only if⊕
l ∈Sr \{j } c

′
lr = c

′
jr = bjr . bjr is sampled uniformly from {0, 1} and entirely independently from the rest of the values,

and thus the probability that c ′r = 0 for any r ∈ [k] is exactly
1

2
. Using similar arguments it can also be shown that the

values c ′r are independent of values computed in all other iterations.

For each r ∈ [k] either every nonfaulty party Pi that completes the r ’th iteration computes b ′ir = c
′
r or some nonfaulty

party shuns some faulty party starting in iteration r . Overall, there can occur fewer than n2
shunning events, and thus

for at least k − n2
di�erent iterations every nonfaulty party Pi that completes the r ’th iteration computes b ′ir = c ′r .

�is means that if

��{r |c ′r = 1

}�� > k
2
+ n2

, then regardless of the faulty parties’ actions, every nonfaulty party Pi that

completes all k iterations outputs b ′ir = c ′r = 1 for at least

⌊
k
2

⌋
+ 1 of those iteration, and thus inputs 1 to the BA

invocation at the end of the protocol. From the correctness property of BA, if every nonfaulty party that participates in

a BA invocation inputs the value 1, then every nonfaulty party that completes the invocation outputs 1. In that case, all

nonfaulty parties output 1 in the end of the CoinFlip protocol. �e exact same argument can be made stating that all

nonfaulty parties output 0. �e proof that these events take place with probability
1

2
− ϵ at the very least follows from

well-known properties of the binomial distribution and is therefore moved to the appendix. �

4 FAIR AGREEMENT

�is section deals with constructing a Byzantine Agreement protocol with strong properties. First of all, the regular

notions of Correctness (i.e. agreement) and Termination are preserved. In addition to that, a stronger notion of Validity

is achieved in the case of multivalued agreement. If all nonfaulty processors have the same input σ , they all output σ ;

however, if that is not the case, the probability that all nonfaulty parties output some nonfaulty party’s input is at least

1

2
. �is also nicely extends to natural notions of fairness in the case of a non-Byzantine adversary.

De�nition 4.1. A Fair Byzantine Agreement protocol has the following properties:

(1) Termination. If all nonfaulty parties participate in the protocol, they almost-surely complete it. Furthermore,

if some nonfaulty party completes the protocol, all other nonfaulty parties that participate in it almost-surely

complete it as well.

(2) Validity. If all nonfaulty parties have the same input to the protocol, they output that value. Otherwise, with

probability at least
1

2
, all nonfaulty parties output some nonfaulty party’s input.

Manuscript submi�ed to ACM

16 I�ai Abraham, Danny Dolev, and Gilad Stern

(3) Correctness. All nonfaulty parties that complete the protocol output the same value.

�e goal in this section is to design a Fair Byzantine Agreement protocol. In order to do so, a protocol for choosing

one element out ofm elements in an almost fair way is described.

De�nition 4.2. A Fair Choice protocol has the following properties if all nonfaulty parties that participate in it have

the same inputm ≥ 3:

(1) Termination. If all nonfaulty parties participate in the protocol they all almost-surely complete it. Furthermore,

if some nonfaulty party completes the protocol, all other nonfaulty parties that participate in it almost-surely

complete it as well.

(2) Validity. For any set G ⊆ {0, . . . ,m − 1} such that |G | > m
2

the probability that all nonfaulty parties that

complete the protocol output some i ∈ G is at least
1

2
.

(3) Correctness. All nonfaulty parties that complete the protocol output the same value i ∈ {0, . . . ,m − 1}.

Algorithm 2 FairChoice(m)
Code for Pi :

(1) Set N = 2
l

for the smallest l ∈ N such that 4m2 ≥ N ≥ 2m2
and set ϵ = 1

100m log
2
m .

(2) For every i ∈ [l] participate in CoinFlipi (ϵ) and let the i’th output be bi .

(3) Let r be the number whose binary representation is b1b2 . . .bl . Output r mod m.

Theorem 4.3. FairChoice is a Fair Choice protocol for any number of faulty parties t such that 3t + 1 ≤ n.

�e proof is provided in the appendix. A Fair Byzantine Agreement protocol that uses the Fair Choice protocol is

described below. In this Fair Byzanting Agreement protocol, each party Pi has some input xi . �e construction makes

use of a Broadcast protocol.

De�nition 4.4. A Broadcast protocol is a protocol with a designated sender Pi with some input v , which has the

following properties:

(1) Termination. If Pi is nonfaulty and all nonfaulty parties participate in the protocol, they all complete the

protocol. Furthermore, if some nonfaulty party completes the protocol, every other nonfautly party that

participates in it does so as well.

(2) Validity. If Pi is nonfaulty, every nonfaulty party that completes the protocol outputs v .

(3) Correctness. All nonfaulty parties that complete the protocol output the same value.

Let A-Cast be a Broadcast protocol, for example as described in [6].

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 17

Algorithm 3 FBA

Code for Pi with input xi :

(1) A-Cast xi and participate in every other party’s A −Cast . Denote the output of Pj ’s A-Cast to be x ′j .

(2) De�ne the dynamic predicate Qi as follows:

Qi (j) =


1 if Pj ’s A-Cast has been completed

0 else

(3) Continually participate in CommonSubset (Qi ,n − t).
(4) A�er completing the CommonSubset protocol, let S be the protocol’s output and let m = |S |. Wait to complete

Pj ’s A-Cast for every j ∈ S .

(5) If there exists some value x such that

���{x ′j = x |j ∈ S
}��� > m

2
, output x and complete the protocol. Otherwise,

continue to the next step.

(6) Participate in FairChoice (m), and let the output be k .

(7) Let j be the k’th biggest value in S , with 0 being understood as the biggest value, 1 as the second biggest, etc.

(8) Output x ′j .

Theorem 4.5. Protocol FBA is a Fair Byzantine Agreement protocol for any number of faulty parties t such that

3t + 1 ≤ n.

Intuitively, each party A-Casts its input value, and the parties agree on a subset of parties of size n − t at the very

least whose values have been received using the CommonSubset protocol. If all nonfaulty parties have the same input,

they will see that a majority of the parties sent the same value and output that value in line 5, achieving the �rst part of

the Validity property. Otherwise, the parties choose the value sent by one of those parties ”almost fairly” using the

FairChoice Protocol. Since more than half of the parties in the agreed upon subset are nonfaulty, the probability that a

nonfaulty party will be chosen is at least
1

2
. A formal proof is provided in the appendix.

ACKNOWLEDGMENTS

�e authors would like to thank the anonymous referees for their valuable comments and helpful suggestions. �is

work was supported by the HUJI Federnann Cyber Security Research Center in conjunction with the Israel National

Cyber Directorate (INCD) in the Prime Minister’s O�ce under Grant No.: 3011004045.

REFERENCES

[1] I�ai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing meets game theory: Robust mechanisms for rational secret

sharing and multiparty computation. In Proceedings of the Twenty-Fi�h Annual ACM Symposium on Principles of Distributed Computing, PODC �06,

page 53��62, New York, NY, USA, 2006. Association for Computing Machinery.

[2] I�ai Abraham, Danny Dolev, and Joseph Y. Halpern. An almost-surely terminating polynomial protocol for asynchronous byzantine agreement with

optimal resilience. In Proceedings of the Twenty-Seventh ACM Symposium on Principles of Distributed Computing, PODC �08, page 405��414, New

York, NY, USA, 2008. Association for Computing Machinery.

[3] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous agreement protocols. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, PODC ’83, 1983.

[4] Michael Ben-Or, Ran Cane�i, and Oded Goldreich. Asynchronous secure computation. In Proceedings of the Twenty-Fi�h Annual ACM Symposium on
�eory of Computing, STOC �93, page 52��61, New York, NY, USA, 1993. Association for Computing Machinery.

Manuscript submi�ed to ACM

18 I�ai Abraham, Danny Dolev, and Gilad Stern

[5] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resilience (extended abstract). In Proceedings of the
�irteenth Annual ACM Symposium on Principles of Distributed Computing, PODC �94, page 183��192, New York, NY, USA, 1994. Association for

Computing Machinery.

[6] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, November 1987.

[7] Ran Cane�i and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In Proceedings of the Twenty-��h Annual ACM Symposium
on �eory of Computing, STOC ’93, pages 42–51, New York, NY, USA, 1993. ACM.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael Merri�. Easy impossibility proofs for distributed consensus problems. In Proceedings of the Fourth
Annual ACM Symposium on Principles of Distributed Computing, PODC �85, page 59��70, New York, NY, USA, 1985. Association for Computing

Machinery.

[9] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2):374–382,

April 1985.

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 19

APPENDIX

A PROOFS OF TECHNICAL LEMMAS IN SECTION �

Corollary A.1. For every m′AD ∈ M0

AD |lonд, Pr[m0

AD = m′AD |lonд] = Pr[m1

AD = m′AD |lonд]. Also, for every

m′AB ∈ M
0

AB |lonд, Pr[m0

AD =mAD |m0

AB =m
′
AB , lonд] = Pr[m1

AD =mAD |m1

AB =m
′
AB , lonд].

Proof. Each of these equalities is shown individually.

Pr

[
m0

AD =m
′
AD |lonд

]
=

=
∑

m′AB ∈M
0

AB |lonд,
r ′A ∈R

0

A |lonд

Pr

[
m0

AD =m
′
AD ,m

0

AB =m
′
AB , rA = r

′
A |lonд

]

=
∑

m′AB ∈M
1

AB |lonд,
r ′A ∈R

1

A |lonд

Pr

[
m1

AD =m
′
AD ,m

1

AB =m
′
AB , rA = r

′
A |lonд

]

= Pr

[
m1

AD =m
′
AD |lonд

]
Note that summing over m′AB ∈ M0

AB |lonд is the same as summing over m′AB ∈ M1

AB |lonд because for every

m′AB ∈ M
0

AB |lonд there must existm′AD , r
′
A such that Pr[m0

AD =m
′
AD ,m

0

AB =m
′
AB ,

r0

A = r ′ |lonд] , 0. From previous observations, this means that Pr[m1

AD =m
′
AD ,m

1

AB =m
′
AB , r

1

A = r ′A |lonд] , 0 and

thusm′AB ∈ M
0

AB |lonд as well. �e same reasoning holds about r ′A. �e argument also clearly works in reverse. �is

argument can also be made for any other subset of the three variables.

For the second property, note that Pr

[
m0

AB =m
′
AB |lonд

]
, 0 and thus the probability is well de�ned. In that case:

Pr

[
m0

AD =m
′
AD |m

0

AB =m
′
AB , lonд

]
=

=
Pr

[
m0

AD =m
′
AD ,m

0

AB =m
′
AB |lonд

]
Pr

[
m0

AB =m
′
AB |lonд

]
=

Pr

[
m1

AD =m
′
AD ,m

1

AB =m
′
AB |lonд

]
Pr

[
m1

AB =m
′
AB |lonд

]
= Pr

[
m1

AD =m
′
AD |m

1

AB =m
′
AB , lonд

]
It is important to notice that all of those arguments could have been made with any subset of the three random variables

described in the lemma. �

Corollary A.2. �e values sampled by D in the described a�ack are sampled from well-de�ned, samplable distributions.

Proof. We go through each sampled value and check if the distribution is well-de�ned. First, D samples sA ←
R0

A |lonд. From the de�nitions of ϵ ′ and the corresponding N , the probability that A’s view throughout protocol S is of

length greater than N is no greater than ϵ ′. �is means that the event lonд happens with probability 1 − ϵ ′ > 0 at the

Manuscript submi�ed to ACM

20 I�ai Abraham, Danny Dolev, and Gilad Stern

very least, and thus there must also exist some value rA ∈ R0

A |lonд. D then samples sAB ← M0

AB |r
0

A = sA, lonд. Since

Pr

[
r0

A = rA |lonд
]
, 0, there must be some set of messagesm′AB ∈ M

0

AB |lonд such that Pr

[
m0

AB =m
′
AB , r

0

A = sA |lonд
]
,

0 and thus the distribution is well de�ned. �e argument for sAD is identical. D then samples sB ← R1

B |m
1

AB = sAB , lonд.

Following similar arguments, Pr

[
m0

AB = sAB |lonд
]
, 0 and thus from corollary 2.5, Pr

[
m1

AB = sAB |lonд
]
, 0. Now,

following similar arguments both sB and sBD are sampled from well-de�ned distributions. D can easily sample from

these distributions by simulating all runs with parties A,B and D that take no more than N rounds to terminate. �is is

possible because of the assumption that the size of messages and randomness in each round is bounded. If that is not

the case, D can simulate the protocol step by step and sample values that way. �

Lemma A.3. If the dealer is faulty, sA = rA, sB = rB , D exchanges the messages sAD and sBD with parties A and B

respectively, parties A and B exchange the messages sAB between them, and the scheduling is as described above, then party

A’s view is distributed according to V 0

A |lonд and party B’s view is distributed according to V 1

B |lonд.

Proof. �e random variable v0

A is de�ned to be party A’s view during protocol S with a nonfaulty dealer D sharing

the value s = 0, and a faulty C which remains silent. Since no messages are received from party C , A’s view consists

of m0

AB ,m
0

AD , r
0

A . In the run described in the lemma no messages are sent or received from party C either and thus

party A’s view consists of sAB , sAD , rA. Technically the ordering could also ma�er, but note that the scheduling is

deterministic and looks identical in both runs, so the order in which messages are received is ignored.

Observe somem′AB ,m
′
AD , r

′
A such that Pr[m0

AB =m
′
AB ,m

0

AD =m
′
AD , rA = r

′
A |lonд] , 0:

Pr

[
m0

AB =m
′
AB ,m

0

AD =m
′
AD , r

0

A = r
′
A |lonд

]
=

= Pr

[
m0

AD =m
′
AD |m

0

AB =m
′
AB , r

0

A = r
′
A, lonд

]
· Pr

[
m0

AB =m
′
AB |r

0

A = r
′
A, lonд

]
· Pr

[
r0

A = r
′
A |lonд

]
On the other hand:

Pr

[
sAB =m

′
AB , sAD =m

′
AD , rA = r

′
A |G

]
=

= Pr

[
sAD =m

′
AD |sAB =m

′
AB , rA = r

′
A,G

]
· Pr

[
sAB =m

′
AB |rA = r

′
A,G

]
Pr

[
rA = r

′
A |G

]
= Pr

[
sAD =m

′
AD |sAB =m

′
AB , sA = r

′
A
]

· Pr

[
sAB =m

′
AB |sA = r

′
A
]

Pr

[
sA = r

′
A
]

= Pr

[
m0

AD =m
′
AD |m

0

AB =m
′
AB , r

0

A = r
′
A, lonд

]
· Pr

[
m0

AB =m
′
AB |r

0

A = r
′
A, lonд

]
Pr

[
r0

A = r
′
A |lonд

]
= Pr

[
m0

AB =m
′
AB ,m

0

AD =m
′
AD , r

0

A = r
′
A |lonд

]
Where the second to last equality stems from the de�nitions of the random variables sA, sAB , sAD .

�e analysis for B’s view can be done in a similar fashion, �nding that:

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 21

Pr

[
sAB =m

′
AB , sBD =m

′
BD , rB = r

′
B |G

]
=

= Pr

[
sBD =m

′
BD |sAB =m

′
AB , rB = r

′
B ,G

]
· Pr

[
rB = r

′
B |sAB =m

′
AB ,G

]
Pr

[
sAB =m

′
AB |G

]
= Pr

[
sBD =m

′
BD |sAB =m

′
AB , sB = r

′
B
]

· Pr

[
sB = r

′
B |sAB =m

′
AB

]
Pr

[
sAB =m

′
AB |G

]
= Pr

[
m1

BD =m
′
BD |m

1

AB =m
′
AB , r

1

B = r
′
B , lonд

]
· Pr

[
r1

B = r
′
B |m

1

AB =m
′
AB , lonд

]
Pr

[
sAB =m

′
AB |G

]
Where the �nal equality stems from the de�nition of the random variables sBD , sB . Now observe the messages between

parties A and B:

Pr

[
sAB =m

′
AB |G

]
=

=
∑

r ′A ∈R
0

A |lonд

Pr

[
sAB =m

′
AB |rA = r

′
A,G

]
Pr

[
rA = r

′
A |G

]
=

∑
r ′A ∈R

0

A |lonд

Pr

[
sAB =m

′
AB |sA = r

′
A
]

Pr

[
sA = r

′
A
]

=
∑

r ′A ∈R
0

A |lonд

Pr

[
m0

AB =m
′
AB |r

0

A = r
′
A, lonд

]
Pr

[
r0

A = r
′
A |lonд

]
= Pr

[
m0

AB =m
′
AB |lonд

]
= Pr

[
m1

AB =m
′
AB |lonд

]
Where the third equality stems from the de�nitions of sA and sAB , and the last equality stems from corollary 2.5.

Completing the original analysis:

Pr

[
sAB =m

′
AB , sBD =m

′
BD , rB = r

′
B |G

]
=

= Pr

[
m1

BD =m
′
BD |m

1

AB =m
′
AB , r

1

B = r
′
B , lonд

]
· Pr

[
r1

B = r
′
B |m

1

AB =m
′
AB , lonд

]
Pr

[
sAB =m

′
AB |G

]
= Pr

[
m1

BD =m
′
BD |m

1

AB =m
′
AB , r

1

B = r
′
B , lonд

]
· Pr

[
r1

B = r
′
B |m

1

AB =m
′
AB , lonд

]
Pr

[
m1

AB =m
′
AB |lonд

]
= Pr

[
m1

AB =m
′
AB ,m

1

BD =m
′
BD , r

1

B = r
′
B |lonд

]
Since an equality holds for every nonzero-probability event and both views must de�ne probability spaces, the

distributions must be the same. �

Manuscript submi�ed to ACM

22 I�ai Abraham, Danny Dolev, and Gilad Stern

Lemma A.4. If Pr [OC = 1] ≤ 1

2
, there exist an adversary controlling partyA and a scheduling such that with probability

1 − ϵ ′ or more the following things hold when a nonfaulty dealer D shares the value 1:

• party B’s view during protocol S is distributed according to V 1

B |lonд,
• party C outputs 1 at the end of protocol R with probability 1

2
or less.

Proof. �e scheduling is identical to the scheduling described in the previous lemma, and party A similarly acts as

a nonfaulty party throughout all of protocol S . Following the exact same arguments, parties A,B and D must complete

protocol S without party C sending or receiving any messages. Similarly de�ne m̂XY to be the messages party X and Y

exchanged throughout protocol S , and r̂X to be party X ’s randomness throughout the protocol.

A�er completing protocol S , party A simulates all runs in which lonд takes place when a nonfaulty dealer shares

the value 0. If there is no such run in which the messages m̂AB are exchanged between parties A and B, party A acts

as a nonfaulty processor throughout protocol R. Otherwise, using those simulations, party A samples random values

ŝA ← R0

A |m
0

AB = m̂AB , lonд and messages ŝAD ← M0

AD |m
0

AB = m̂AB , r
0

A = ŝA, lonд. Note that in this case clearly

Pr

[
m1

AB =mAB |lonд
]
, 0, and thus also Pr

[
m0

AB =mAB |lonд
]
, 0 from corollary 2.5. �is means that the above

distributions are well-de�ned. From this point on, party A acts as a nonfaulty party would act with a view consisting of

m̂AB , ŝAD , ŝA. �e scheduling from this point on is identical to the scheduling described in the previous lemma.

Recall that mXY is de�ned as the messages exchange by parties X and Y and rx is de�ned as X ’s randomness

throughout the a�ack described in claim 1. Now observe a snapshot of the values party A saw throughout protocol

S and the values party B claims it saw throughout the protocol. For any values r ′A, r
′
B ,m

′
AB ,m

′
BD ,m

′
AD such that

Pr[mAB =m
′
AB ,mAD =m

′
AD ,mBD =m

′
BD , rA = r

′
A, rB = r

′
B |G] , 0 �rst analyse the variable sA:

Pr

[
sA = r

′
A |sAB =m

′
AB , sBD =m

′
BD , sB = r

′
B
]
=

Pr

[
sA = r

′
A |sAB =m

′
AB

]
=

Pr

[
sAB =m

′
AB |sA = r

′
A
]

Pr

[
sA = r

′
A
]∑

r̄A ∈R0

A |lonд
Pr

[
sAB =m

′
AB |sA = r̄A

]
Pr [sA = r̄A]

=

Pr

[
m0

AB =m
′
AB |r

0

A = r
′
A, lonд

]
Pr

[
r0

A = r
′
A |lonд

]
∑
r̄A ∈R0

A |lonд
Pr

[
m0

AB =m
′
AB |r

0

A = r̄A, lonд
]

Pr

[
r0

A = r̄A |lonд
] =

Pr

[
r0

A = r
′
A |m

0

AB =m
′
AB , lonд

]
Where the �rst equality stems from the fact that given sA, sAB is independent of sBD , sB , from which the reverse also

follows. In addition, the third equality stems from the de�nition of sAB . Now continue the analysis in a similar fashion

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 23

to before:

Pr

[
mAB =m

′
AB ,mAD =m

′
AD ,mBD =m

′
BD , rA = r

′
A, rB = r

′
B |G

]
= Pr

[
sAB =m

′
AB , sAD =m

′
AD , sBD =m

′
BD , rA = r

′
A, rB = r

′
B |G

]
= Pr

[
sAB =m

′
AB , sBD =m

′
BD , rB = r

′
B |G

]
· Pr

[
sA = r

′
A |sAB =m

′
AB , sBD =m

′
BD , sB = r

′
B
]

· Pr

[
sAD =m

′
AD |sAB =m

′
AB , sBD =m

′
BD , sA = r

′
A, sB = r

′
B
]

= Pr

[
m1

AB =m
′
AB ,m

1

BD =m
′
BD , r

1

B = r
′
B |lonд

]
· Pr

[
r0

A = r
′
A |m

0

AB =m
′
AB , lonд

]
· Pr

[
m0

AD =m
′
AD |m

0

AB =m
′
AB , rA = rA, lonд

]
Where the last equality stems from several facts. From lemma 2.8, Pr[sAB =m′AB , sBD =m

′
BD , rB = r

′
B |G] = Pr[m1

AB =

m′AB ,m
1

BD =m
′
BD , r

1

B = r
′
B |lonд]. From the de�nition of the random variable sAD , given sAB and sA, the variable sAD

is independent of the variables sBD , sB , and then the equality stems from the de�nition of sAD and from the previous

analysis.

On the other hand, note that since parties A,B and D are acting as nonfaulty parties throughout S , their actions are

distributed identically to the se�ing in which C is faulty and silent. In this se�ing, the event lonд takes place with

probability 1 − ϵ ′ at the very least. Note that if this event takes place, then processor A sees that the messages m̂AB can

be exchanged in some run in which the event lonд takes place, and thus sample some values. �erefore, conditioned

upon the event lonд:

Pr

[
m̂AB=m

′
AB , ŝAD =m

′
AD ,m̂BD =m

′
BD , ŝA = r

′
A, r̂B = r

′
B |lonд

]
= Pr

[
m̂AB =m

′
AB ,m̂BD =m

′
BD , r̂B = r

′
B |lonд

]
· Pr

[
ŝA = r

′
A |m̂AB =m

′
AB ,m̂BD =m

′
BD , r̂B = r

′
B , lonд

]
· Pr

[
ŝAD=m

′
AD |m̂AB=m

′
AB ,m̂BD =m

′
BD , ŝA = r

′
A, r̂B = r

′
B , lonд

]
= Pr

[
m1

AB =m
′
AB ,m

1

BD =m
′
BD , r

1

B = r
′
B |lonд

]
· Pr

[
r0

A = r
′
A |m

0

AB =m
′
AB , lonд

]
· Pr

[
m0

AD =m
′
AD |m

0

AB =m
′
AB , r

0

A = r
′
A, lonд

]
Where the last equality stems from similar arguments. First of all note that from B’s point of view, partyC is acting like a

faulty party which is staying silent throughout protocol S and partiesA,D are acting as nonfaulty parties with D sharing

the value 1. �erefore, Pr[m̂AB = m′AB ,m̂BD = m′BD , r̂B = r ′B |lonд] = Pr[m1

AB = m′AB ,m
1

BD = m′BD , r
1

B = r ′B |lonд].
�is also means that if event lonд occurs, party B’s view is distributed according toV 1

B |lonд. From the way ŝA is sampled,

given ŝAB , the random variable ŝA is entirely independent of m̂BD , r̂B . Taking that fact into consideration, and looking

at the de�nition of ŝA, Pr[ŝA = r ′A |m̂AB = m′AB ,m̂BD = m′BD , r̂B = r ′B , lonд] = Pr[r0

A = r ′A |m
0

AB = m′AB , lonд]. A

similar argument can be made for ŝAD .

Manuscript submi�ed to ACM

24 I�ai Abraham, Danny Dolev, and Gilad Stern

From this point on the rest of the argument is identical to the argument in the previous lemma, �nding that if event

lonд occurs, the probability that party B outputs 0 is
1

2
or less. Since event lonд occurs with probability 1 − ϵ ′ at the

very least, this completes the proof. �

B EXTENDING THE IMPOSSIBILITY RESULT

In order to extend the proof to a multivalued secret, it is enough to note that any protocol in which the dealer can share

values from some set V can be used for sharing binary values. For example, this can be done by mapping the possible

values to the values 0 and 1 in some predetermined fashion. Extending the result to any n such that 4t ≥ n ≥ 3t + 1

requires a more intricate simulation. If there exists a terminating

(
1

2
+ ϵ

)
-correct t-resilient Byzantine AVSS protocol

for some 4t ≥ n ≥ 3t + 1, then there must also exist such a protocol for n = 4, t = 1. A sketch for this reduction follows:

• Parties A,B,C each simulate t parties running the protocol for the case that 4t ≥ n ≥ 3t + 1, and party D

simulates n − 3t parties. �e dealer must be one of the parties D simulates.

• Every time some party needs to send a message between two parties it is simulating, the simulating party just

”delivers” the message.

• If some message is sent between simulated parties controlled by di�erent parties, the message is sent between

the simulating parties, including the ids of the sending and receiving parties. When the message is received, the

relevant simulating party ”delivers” the message to the correct party and continues the simulation accordingly.

• Finally, when some simulating party sees that all of the parties it controls completed protocol R and output

some value, the simulating party outputs the value which was output by most of the parties it simulated.

�is is a standard technique. Note that the message scheduling in the simulation could also take place in the case that

there actually are n parties. In addition, the adversary can only control up to t parties. In order to give the adversary

full control over which parties it controls, this argument can be made with each possible allocation of simulated parties.

Clearly, in every case in which all nonfaulty parties complete protocol R and all output some value, every nonfaulty

party will also output the same value, from which all of the properties follow.

C CONSTRUCTION AND PROOF OF A COMMON SUBSET PROTOCOL

Algorithm 4 CommonSubsetr (Qir ,k)
Code for Pi :

(1) Initialize cir = 0.

(2) For every j ∈ [n], once Qir (j) becomes 1, if cir < k , begin participating in BAjr with input 1.

(3) If at any point BAjr terminates with output 1 for any j ∈ [n], set cir = cir + 1.

(4) Once cir ≥ k , begin participating in BAjr with input 0 for every j ∈ [n] such that Qir (j) = 0 at this point in

time.

(5) Denote bjr to be the output of BAjr . Output

{
j |bjr = 1

}
.

(6) Continue participating in BAjr for every j ∈ [n] until they terminate even a�er completing this invocation of

CommonSubsetr .

Note that throughout this discussion we assume k ≤ n and 3t + 1 ≤ n.

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 25

Lemma C.1. If there exists a set I ⊆ [n] , |I | ≥ k such that for every nonfaulty party Pi , eventually ∀j ∈ I Qir (j) = 1

and all nonfaulty parties invoke CommonSubsetr for a given r, then at least k invocations of BAjr almost-surely terminate

with output 1.

Proof. Note that cir is incremented only when BAjr terminates with output 1. In addition, every nonfaulty party

Pi inputs 0 to any BAjr invocation only a�er having cir ≥ k . �is means that if some nonfaulty party inputs 0 to

some invocation of BAjr then it must have completed at least k prior invocations with output 1. From the correctness

property of protocol BA, every other nonfaulty party also outputs 1 for the same invocations of BA, which proves our

lemma. �us, assume no nonfaulty party inputs the value 0 to any invocation of BAjr ever for any j ∈ [n]. In that case,

every nonfaulty party Pi invokes CommonSubsetr , and eventually for every j ∈ I Qir (j) = 1. �us every nonfaulty

party begins participating in BAjr with input 1 for every j ∈ I . From the Validity and Termination properties of BA all

nonfaulty parties almost-surely complete those invocations of BAjr with output 1. Since |I | ≥ k , this completes the

proof. �

Theorem C.2. Protocol CommonSubset is a common subset protocol for any number of faulty parties t such that

3t + 1 ≤ n.

Proof. Each property is proven separately.

Correctness. If two nonfaulty parties Pi , Pl complete CommonSubsetr then they must have completed BAjr for

every j ∈ [n]. From the correctness property of BA, they completed each of those invocation with the same output bjr

and thus both output Sr =
{
j |bjr = 1

}
. Next, show that for every j ∈ Sr , Qir (j) = 1 for at least one nonfaulty party

Pi . Assume by way of contradiction Qir (j) = 0 for every nonfaulty party Pi for some j ∈ Sr . If that is the case, and

some nonfaulty party completed CommonSubsetr , every nonfaulty party that participated in BAjr at that point must

have input 0. From those parties’ point of view, this run is identical to one in which all nonfaulty parties’ inputs are

0, and some might be slow. From the Validity property of BA, all nonfaulty parties must have then output 0 in BAjr .

However, in that case bjr , 1, and thus j < Sr reaching a contradiction. Finally, show that |Sr | ≥ k . Assume by way

of contradiction |Sr | < k . In that case, all parties completed all invocations of BAjr , with at most k − 1 terminating

with output 1. Since nonfaulty parties increment cir exactly once for every BA session that outputs the value 1, this

means that for every nonfaulty party Pi , cir < k . Since k ≤ n, BAjr terminated with output 0 for at least one j ∈ [n].
Observe BAjr for that j. Nonfaulty parties participate in any BAjr session only if either Qir (j) = 1 or ci ≥ k . Since

ci < k , Qir (j) must equal 1 at the time of invoking BAjr for every nonfaulty party Pi . From the Validity property of

BAjr , all nonfaulty parties must output 1 in BAjr reaching a contradiction.

Termination. First assume that all nonfaulty parties participate in the protocol, and that there exists some set

I ⊆ [n] such that |I | ≥ k , and that for every nonfaulty party Pi and j ∈ I eventually Qir (j) = 1 almost-surely. From

lemma C.1, all nonfaulty parties almost-surely eventually complete at least k invocations of BAjr with output 1. At

that point, cir ≥ k holds for every nonfaulty party Pi . Because of line 4, every nonfaulty party Pi participates in BAjr

for every j ∈ [n] such that Qir (j) = 0 at that point in time. It is important to note that if Qir (j) , 0 then it must

equal 1, which means that Pi has already invoked BAjr with input 1 previously. In other words, all nonfaulty parties

have invoked BAjr for every j ∈ [n], so from the Termination property of BA they almost-surely complete all of those

invocations. At that point they reach line 6 of the protocol, and complete CommonSubsetr .

Manuscript submi�ed to ACM

26 I�ai Abraham, Danny Dolev, and Gilad Stern

For the second part of the property observe some nonfaulty party Pl that participates in theCommonSubset protocol.

If some nonfaulty party Pi completed the CommonSubsetr protocol, it must have completed the BAjr invocation for

every j ∈ [n]. Let Sr be Pi ’s output in this invocation of the CommonSubsetr protocol. From the Correctness property

of CommonSubsetr , for every j ∈ Sr , Qkr (j) = 1 for some nonfaulty party Pk . Since for some nonfaulty party Pk

Qkr (j) = 1, by assumption eventually Qlr (j) = 1 as well. At that point, if Pl hasn’t started participating in BAjr with

input 0, it starts participating in it with input 1. Since Pi completed each of those BA invocations, from the Termination

property of BA, Pl almost-surely completes them as well. Note that a�er completing the CommonSubsetr invocation,

all nonfaulty parties continue participating in all relevant BA invocations until they terminate. From the Correctness

property of BA, party Pl outputs 1 in every BAjr invocation such that j ∈ Sr because Pi must have output 1 in that

invocation as well. From the Correctness Property of CommonSubsetr , |S | ≥ k and thus at that point clr ≥ k . At that

point, Pl inputs 0 to every BA invocation it hasn’t started participating in yet. Following similar arguments, from the

Termination property of BA Pl almost-surely completes all of those invocations and then completes the protocol.

�

D COMPLETION OF THE PROOF OF THEOREM �

In order to complete the proof of the Correctness property, it is le� to show that Pr

[��{r |c ′r = 1

}�� > k
2
+ n2

]
≥ 1

2
− ϵ . If

that is the case, every nonfaulty party that completes the protocol outputs 1. Since for every r ∈ [k], Pr

[
c ′r = 1

]
= 1

2
=

Pr

[
c ′r = 0

]
, the case for 0 is entirely symmetric. De�ne the random variable X =

��{r |c ′r = 1

}��
. Each c ′r is an independent

Bernoulli variable with probability
1

2
of being 1, and thus X ∼ Bin

(
k, 1

2

)
. In this analysis we use the fact that:

n! ≤ e · nn+
1

2 · e−n

n! ≥
√

2π · nn+
1

2 · e−n

Start by bounding the size of

(
2n
n
)

for any n:

(
2n

n

)
=
(2n)!
(n!)2

≤ e (2n)2n+
1

2 e−2n(√
2π (n)n+

1

2 e−n
)

2

=
e

2π
· (2n)

2n+ 1

2

(n)2n+1

=
e

2π
· 22n+ 1

2 · 1

√
n

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 27

Denote k = 4

⌈
c2n4

⌉
with c = e

ϵ ·π , and µ = k
2
= 2

⌈
c2n4

⌉
. Now bound the probability that X is very close to µ:

Pr

[
µ − n2 ≤ X ≤ µ + n2

]
=

∑
µ−n2≤l ≤µ+n2

(
2µ

l

) (
1

2

)
2µ

≤
(
2n2 + 1

) (
2µ

µ

) (
1

2

)
2µ

≤
(
2n2 + 1

) e

2π
· 22µ+ 1

2 · 1

√
µ

(
1

2

)
2µ

=
(
2n2 + 1

)
· e

2π
· 1

√
µ
·
√

2

Substituting back µ = 2

⌈
c2n4

⌉
:

Pr

[
µ − n2 ≤ X ≤ µ + n2

]
≤

(
2n2 + 1

)
· e

2π
· 1

√
µ
·
√

2

=
(
2n2 + 1

)
· e

2π
· 1√

2

⌈
c2n4

⌉ · √2

≤
(
2n2 + 1

)
· e

2π
· 1

cn2

=
2n2 + 1

n2
· e

2π
· 1

c

≤ 2e

π
· 1

c

Since the cases that X > µ + n2
and X < µ − n2

are entirely symmetric:

Pr

[
X > µ + n2

]
=

1

2

(
1 − Pr

[
µ − n2 ≤ X ≤ µ + n2

])
≥ 1

2

(
1 − 2e

π
· 1

c

)
=

1

2

− e

π
· 1

c

Finally, substituting c = e
ϵ ·π and µ = k

2
:

Pr

[
X >

k

2

+ n2

]
≥ 1

2

− e

π
· 1

c

=
1

2

− e

π
· ϵ · π

e

=
1

2

− ϵ

which completes the proof.

E PROOF OF THEOREM �

Theorem 4.3. FairChoice is a Fair Choice protocol for any number of faulty parties t such that 3t + 1 ≤ n.
Manuscript submi�ed to ACM

28 I�ai Abraham, Danny Dolev, and Gilad Stern

Proof. Each property is proven individually. �roughout the analysis, unless explicitly stated di�erently all

logarithms are treated as logarithms with base 2.

Termination. If all nonfaulty parties participate in the protocol and have the same input m, they all compute

the same values l and ϵ . �ey then all participate in the CoinFlip protocol l times with the same parameter ϵ and

from the Termination property of the CoinFlip protocol, they all almost-surely complete each of those invocations.

A�erwards every nonfaulty party performs some local computations and completes the protocol. On the other hand, if

some nonfaulty party completes the FairChoice protocol, it must have �rst completed all l invocations of the CoinFlip

protocol with parameter ϵ . Observe some other nonfaulty party Pi that participates in the FairChoice protocol with

the same input m. It must have computed the same values l and ϵ , and then participated in l invocations of the

CoinFlip protocol with the same parameter ϵ . Since some nonfaulty party completed all l of those invocations, from

the Termination property of the CoinFlip protocol, Pi almost-surely completes them as well. A�erwards Pi performs

some local computations and completes the protocol.

Correctness. Observe two nonfaulty parties that complete the protocol. Since they both have the same input

m, they must have computed the same value l , and participated in l invocations of the CoinFlip protocol. From the

Correctness property of the CoinFlip protocol, for every i ∈ [l] they must have output the same value bi ∈ {0, 1} in

the i’th invocation of the CoinFlip protocol. �is means that they compute the same number r , and then both output

output r mod m ∈ {0, . . . ,m − 1}.
Validity. Intuitively, there are more values in G than values not in G and each value i ∈ G has almost the same

number of numbers k ∈ [l] such that k ≡ i mod m. Furthermore, each number in [l] has nearly the same probability of

being sampled. If every number had the exact same probability of being sampled, and each value i ∈ G had exactly the

same number of numbers k ∈ [l] such that k ≡ i mod m it is clear that the property holds. It is only le� to show that

these slight di�erences aren’t big enough for the property not to hold.

Consider the case in which all nonfaulty parties that participate in the protocol have the same input m. Let N , l , ϵ be

de�ned as they are in the protocol. Consider some G ⊆ {0, . . . ,m − 1} such that |G | > m
2

. For every i ∈ {0, . . . ,m − 1}
de�ne the set Si = {j ∈ {0, . . . ,N − 1} |j ≡ i mod m}. De�ne S = ∪i ∈GSi . First, bound the size of S . For every

i ∈ {0, . . . ,m − 1}, |Si | ≥ b Nm c ≥
N
m − 1.

Since |G | ,m ∈ N:

|G | > m

2

2 |G | > m

2 |G | ≥ m + 1

|G | ≥ m

2

+
1

2

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 29

Note that for every i , j Si ∩ Sj = ∅ and thus:

|S | =
∑
i ∈G
|Si |

≥
(
N

m
− 1

)
|G |

≥
(
N

m
− 1

) (
m

2

+
1

2

)
= (N −m)

(
1

2

+
1

2m

)
As shown in the proof of the Correctness property, all nonfaulty parties that complete the protocol �rst complete l

invocations of theCoinFlip protocol, output the same bits bi for every i ∈ [l], then compute the same value r and output

r mod m. In that case, all nonfaulty parties output some i ∈ G if and only if r ∈ S . From the Correctness property of

the CoinFlip protocol, for every j ∈ [l] and b ∈ {0, 1}, Pr

[
bj = b

]
≥ 1

2
− ϵ regardless of the adversary’s actions. For

every number r denote ri to be the i ′th bit in its binary representation. �erefore:

Pr [i ∈ G] = Pr [r ∈ S]

=
∑
r ′∈S

Pr

[
r = r ′

]
=

∑
r ′∈S

Pr


l∧
j=1

r j = r
′
j


≥

∑
r ′∈S

(
1

2

− ϵ
)l

= |S |
(

1

2

− ϵ
)l

≥ (N −m)
(

1

2

+
1

2m

) (
1

2

− ϵ
)

logN

= (N −m)
(

1

2

+
1

2m

) (
1

2

)
logN

(1 − 2ϵ)logN

=
(
1 − m

N

) (
1

2

+
1

2m

) (
1 − 2

100m logm

)
logN

≥
(
1 − m

2m2

) (
1

2

+
1

2m

) (
1 − 1

50m logm

)
log 4m2

=

(
1

2

+
1

2m
− 1

4m
− 1

4m2

)
·
((

1 − 1

50m logm

)m logm
) 2 logm+2

m logm

At this point recall that m ≥ 3. First, clearly
2 logm+2

m logm ≤ 4 logm
m logm =

4

m for any m ≥ 2. Secondly, note that the

expression

(
1 − x

n
)n

approaches e−x from below in a monotonously increasing manner for 1 > x > 0. Plugging in

Manuscript submi�ed to ACM

30 I�ai Abraham, Danny Dolev, and Gilad Stern

m = 3,

(
1 − 1

50·3 log 3

)
3 log 3

≥ 99

100
e−

1

50 , and from the previous observation this means

(
1 − 1

50m logm

)m logm
≥ 99

100
e−

1

50

for everym ≥ 3. Combining these observations:

Pr [i ∈ G] ≥

≥
(

1

2

+
1

2m
− 1

4m
− 1

4m2

) ((
1 − 1

50m logm

)m logm
) 2 logm+2

m logm

≥
(

1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m

First, note that clearly:

lim

m→∞

(
1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m
=

(
1

2

)
(1) = 1

2

In addition, se�ingm = 3 and checking numerically:(
1

2

+
1

4 · 3 −
1

4 · 32

) (
99

100

e−
1

50

) 4

3

≈ 0.534 > 0.5

Next observe the derivative of the expression with respect tom and check when it is negative.

d

dm

(
1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m
=

=

(
− 1

4m2
+

1

2m3

) (
99

100

e−
1

50

) 4

m

+

(
1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m ©­­«
−4 ln

(
99

100
e−

1

50

)
m2

ª®®¬
=

(
99

100

e−
1

50

) 4

m ©­­«
2 −m
4m3

−
16m

(
1

2
+ 1

4m −
1

4m2

)
ln

(
99

100
e−

1

50

)
4m3

ª®®¬
=

1

4m3

(
99

100

e−
1

50

) 4

m
(
2 −m −

(
8m + 4 − 4

m

)
ln

(
99

100

e−
1

50

))
Now note that for anym ≥ 3:

1

4m3

(
99

100

e−
1

50

) 4

m
> 0

and thus the whole expression is negative if:

0 > 2 −m −
(
8m + 4 − 4

m

)
ln

(
99

100

e−
1

50

)
= 2 −m +

(
8m + 4 − 4

m

)
ln

(
100

99

e
1

50

)

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 31

Numerically we can �nd that 0.031 ≥ ln

(
100

99
e

1

50

)
> 0 and thus:

2 −m +
(
8m + 4 − 4

m

)
ln

(
100

99

e
1

50

)
≤

≤ 2 −m + (8m + 4) ln
(

100

99

e
1

50

)
≤ 2 −m + (8m + 4) 0.031

= 2 −m + 0.248m + 0.124

= 2.124 − 0.752m

Finally check if this term is negative:

2.124 − 0.752m < 0

2.124 < 0.752m

2.124

0.752

≈ 2.824 < m

Sincem ≥ 3:

2 −m +
(
8m + 4 − 4

m

)
ln

(
100

99

e
1

50

)
< 0

and thus for everym ≥ 3:

d

dm

(
1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m
< 0

Combining the fact that at m = 3 the expression is greater than
1

2
, that the derivative is negative for anym ≥ 3 and

that the expression approaches
1

2
asm approaches in�nity, for anym ≥ 3:

Pr [i ∈ G] ≥
(

1

2

+
1

4m
− 1

4m2

) (
99

100

e−
1

50

) 4

m
>

1

2

�

F PROOF OF THEOREM �

Theorem 4.5. Protocol FBA is a Fair Byzantine Agreement protocol for any number of faulty parties t such that

3t + 1 ≤ n.

Proof. Again, each property is proven individually.

Termination. If all nonfaulty parties participate in the FBA protocol, they all A-Cast some values in step 1 and

participate in each other’s A-Casts. Since all of the senders in those A-Casts are nonfaulty and all nonfaulty parties

participate in all of those A-Casts, from the Termination property of A-Cast they all complete each of those invocations.

�is means that for every pair of nonfaulty parties Pi , Pj eventually Qi (j) = 1. In other words, since there are at least

n − t nonfaulty parties there exists a set I ⊆ [n] such that for every nonfaulty party Pi , eventually ∀j ∈ I Qi (j) = 1.

From the Termination property of CommonSubset , all nonfaulty parties almost-surely eventually complete the protocol.

Manuscript submi�ed to ACM

32 I�ai Abraham, Danny Dolev, and Gilad Stern

From the Correctness property of CommonSubset , all nonfaulty parties output the same S ⊆ [n] and for every j ∈ S
there exists some nonfaulty party Pi such that Qi (j) = 1. A nonfaulty party sets Qi (j) = 1 only if it completed Pj ’s

A-Cast, and from the Termination property of A-Cast, all nonfaulty parties that participate in that A-Cast complete it as

well. �is means that all nonfaulty parties complete all relevant A-Cast invocations and then �nish step 4 of the protocol.

From the Correctness property of A-Cast, all nonfaulty parties receive the same value x ′k in Pk ’s A-Cast for every k ∈ S .

If some nonfaulty party completes the protocol in step 5, then there exists some x such that

���{x ′j = x |j ∈ S
}��� > m

2
. Every

other nonfaulty party sees that this holds as well and completes the protocol in step 5. Otherwise, all nonfaulty parties

participate in FairChoice (m) with the same m = |S |. Note that from the correctness property of the CommonSubset

protocol, they all output some set S such that |S | ≥ n− t ≥ 3. From the Termination property of the FairChoice protocol,

they all almost-surely complete the FairChoice protocol as well. A�erwards they perform some local computations and

complete the protocol.

For the second part of the property, assume some nonfaulty party Pi completed the FBA protocol. �is means it must

have completed both the CommonSubset protocol and the FairChoice protocol if it didn’t complete the protocol in step

5. Observe some other nonfaulty party Pj that participates in the protocol. First, Pj A-Casts some value and participates

in every other party’s A-Cast. Pj then participates in the CommonSubset protocol. Note that every nonfaulty party

that participates in the CommonSubset protocol also participates in each of the A-Cast invocations. For every pair of

nonfaulty parties Pk , Pl that participate in CommonSubset and value m ∈ [n], if Qk (m) = 1 Pk must have completed

Pm ’s A-Cast. From the Termination property of A-Cast, Pl will eventually complete Pm ’s too A-Cast and set Ql (m) = 1.

�erefore, the conditions of the second part of the Termination property of the CommonSubset protocol hold, and thus

since Pi completed the CommonSubset protocol Pj almost-surely completes it as well with some output S . From the

Correctness property of CommonSubset , for every k ∈ S , for some nonfaulty party Pl , Ql (k) = 1. �is means that Pl

completed Pk ’s A-Cast, which means Pj does so as well. If Pj completes the protocol in step 5 a�er completing all of

the A-Cast invocations we are done. Otherwise, a�er completing all of the relevant A-Casts, Pj participates in the

FairChoice protocol. In that case there must not exist any x such that

���{x ′k = x |k ∈ S
}��� > m

2
. From the Correctness

property of A-Cast, Pi must have output the same value in each of those A-Casts, seen that there does not exist any

x such that

���{x ′k = x |k ∈ S
}��� > m

2
, and then invoked and completed the FairChoice protocol. From the Termination

property of the FairChoice protocol, Pj almost-surely completes it as well, performs some local computations, and then

�nally completes the FBA protocol.

Correctness. Let Pi , Pj be two nonfaulty parties that completed the protocol. �ey must have both �rst completed

the CommonSubset protocol and from its Correctness property output the same set S ⊆ [n]. �ey then completed Pk ’s

A-Cast for every k ∈ S . From the Correctness property of A-Cast, they both received the same value x ′k for every

k ∈ S . If there exists some x such that

���{x ′k = x |k ∈ S
}��� > m

2
then they both must have output that value and completed

the protocol. Note that clearly there cannot be more than one such value. If there isn’t any such value x , then they

both participated in the FairChoice protocol and from the Correctness property of the protocol output the same value

k ∈ {0, . . . ,m − 1}. �ey then both took the k’th biggest value in S and output the value corresponding to that party’s

A-Cast. Again, from the Correctness property of A-Cast Pi , Pj must have received the same value in that A-Cast and

thus output the same value.

Validity. First assume that all nonfaulty parties have the same input x . In that case, in the beginning of the protocol

each nonfaulty party that participates in the protocol A-Casts x . Let Pi be some nonfaulty party that completed the

protocol. It must have �rst participated in all relevant A-Casts and in the CommonSubset protocol, and completed the

Manuscript submi�ed to ACM

Revisiting Asynchronous Fault Tolerant Computation with Optimal Resilience 33

CommonSubset protocol with some output S . From the Correctness property of CommonSubset , |S | ≥ n − t . Pi then

completed Pj ’s A-Cast for every j ∈ S . From the Validity property of A-Cast, for every nonfaulty party Pj such that

j ∈ S , Pi received the value x ′j = x . Let G be the set of all j ∈ S such that Pj is nonfaulty. Since there are at most t faulty

parties Pk such that k ∈ S , |G | ≥ |S | − t =m − t . Note thatm ≥ n − t > 2t and thus:

m > 2t

m

2

> t

m − t > m

2

Since |G | ≥ m − t > m
2

, and for every j ∈ G , Pi received the value x ′j = x , Pi sees that

���{x ′j = x |j ∈ S
}��� > m

2
. �is means

that in step 5 Pi outputs x and completes the protocol.

On the other hand, if it is not the case that all nonfaulty parties had the same input, for every nonfaulty party Pj let

x j be its input. Observe some nonfaulty party Pi that completed the protocol. Following the exact same arguments

as above, Pi must have participated in all A-Casts, completed the CommonSubset protocol with some output S such

that m = |S | ≥ n − t , and completed Pj ’s A-Cast for every j ∈ S . Note that from the Validity property of A-Cast, for

every nonfaulty party Pj , Pi received the value x j = x ′j in Pj ’s A-Cast. If Pi output some value in step 5, it must have

found some value x such that

���{x ′j = x |j ∈ S
}��� > m

2
. As previously shown

m
2
> t , and thus

���{x ′j = x |j ∈ S
}��� ≥ t + 1.

�ere are t faulty parties at most, which means that there must be some nonfaulty party Pj such that x j = x ′j = x . In

other words, if Pi completed the protocol in step 5 the property holds. Otherwise, Pi must have invoked and completed

protocol FairChoice before completing the FBA protocol. De�ne G as de�ned above. As previously shown |G | > m
2

.

Let SG ⊆ {0, . . . ,m − 1} be all of the numbers k ∈ {0, . . . ,m − 1} such that the k’th biggest value in S (as de�ned in

the protocol) is in G. Note that each k ∈ {0, . . . ,m − 1} corresponds to a unique value j ∈ S , and thus |SG | = |G | > m
2

.

From the Correctness property of FairChoice , with probability
1

2
at the very least Pi outputs some k ∈ SG . Pi then

�nds the corresponding j ∈ G and outputs x ′j = x j . Since by de�nition Pj is a nonfaulty party, Pi output some nonfaulty

party’s input, completing the proof. �

Manuscript submi�ed to ACM

	Abstract
	1 Introduction
	2 Lower Bound
	3 Strong Common Coin
	4 Fair Agreement
	Acknowledgments
	References
	A Proofs of Technical Lemmas in Section 2
	B Extending the Impossibility Result
	C Construction and Proof of a Common Subset Protocol
	D Completion of the Proof of Theorem 3.5
	E Proof of Theorem 4.3
	F Proof of Theorem 4.5

