
ar
X

iv
:2

00
9.

06
14

9v
1 

 [
cs

.D
C

] 
 1

4 
Se

p 
20

20

Four Shades of Deterministic Leader Election in Anonymous

Networks

Barun Gorain∗ Avery Miller† Andrzej Pelc‡

September 15, 2020

Abstract

Leader election is one of the fundamental problems in distributed computing: a single node,
called the leader, must be specified. This task can be formulated either in a weak way, where one
node outputs leader and all other nodes output non-leader, or in a strong way, where all nodes
must also learn which node is the leader. If the nodes of the network have distinct identifiers,
then such an agreement means that all nodes have to output the identifier of the elected leader.
For anonymous networks, the strong version of leader election requires that all nodes must be
able to find a path to the leader, as this is the only way to identify it. In this paper, we study
variants of deterministic leader election in arbitrary anonymous networks.

Leader election is impossible in some anonymous networks, regardless of the allocated amount
of time, even if nodes know the entire map of the network. This is due to possible symmetries
in the network. However, even in networks in which it is possible to elect a leader knowing the
map, the task may be still impossible without any initial knowledge, regardless of the allocated
time. On the other hand, for any network in which leader election (weak or strong) is possible
knowing the map, there is a minimum time, called the election index, in which this can be done.
We consider four formulations of leader election discussed in the literature in the context of
anonymous networks : one is the weak formulation, and the three others specify three different
ways of finding the path to the leader in the strong formulation. Our aim is to compare the
amount of initial information needed to accomplish each of these “four shades” of leader election
in minimum time. Following the framework of algorithms with advice, this information (a single
binary string) is provided to all nodes at the start by an oracle knowing the entire network. The
length of this string is called the size of advice.

We show that the size of advice required to accomplish leader election in the weak formulation
in minimum time is exponentially smaller than that needed for any of the strong formulations.
Thus, if the required amount of advice is used as a measure of the difficulty of the task, the
weakest version of leader election in minimum time is drastically easier than any version of the
strong formulation in minimum time.

∗Department of Electrical Engineering and Computer Science, Indian Institute of Technology Bhilai, India.

barun@iitbhilai.ac.in
†Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.

avery.miller@umanitoba.ca. Supported by NSERC Discovery Grant RGPIN–2017–05936.
‡Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada.

pelc@uqo.ca. Partially supported by NSERC Discovery Grant RGPIN–2018–03899 and by the Research Chair

in Distributed Computing at the Université du Québec en Outaouais.

http://arxiv.org/abs/2009.06149v1


1 Introduction

Background. Leader election is one of the fundamental problems in distributed computing:
a single node, called the leader, must be specified. This task was first formulated in [34] in the study
of local area token ring networks, where, at all times, exactly one node (the owner of a circulating
token) is allowed to initiate communication. When the token is accidentally lost, a leader must be
elected as the initial owner of the token.

The task of leader election can be formulated either in a weak way, where one node outputs
leader and all other nodes output non-leader, or in a strong way, where all nodes must also learn
which node is the leader. If the nodes of the network have distinct identifiers, then such an
agreement means that all nodes have to output the identifier of the elected leader. In the labeled
case, the weak and the strong version do not differ much: once a node knows that it is a leader, it
can simply broadcast its identifier to all other nodes. By contrast, for anonymous networks, in the
strong version of leader election all nodes must be able to find a path to the leader, as this is the
only way to identify it. This turns out to be much more difficult.

In this paper, we study variants of deterministic leader election in arbitrary anonymous net-
works. In many applications, even if nodes have distinct identities, they may decide to refrain from
revealing them, e.g., for privacy or security reasons. Hence it is important to design leader election
algorithms that do not rely on knowing distinct labels of nodes, and that can work in anonymous
networks as well. This was done, e.g., in [6, 11, 25, 44].

Model and Problem Description. The network is modeled as a simple undirected con-
nected n-node graph with maximum degree ∆. Nodes do not have any identifiers. On the other
hand, we assume that, at each node v, each edge incident to v has a distinct port number from
{0, . . . , d− 1}, where d is the degree of v. Hence, each edge has two corresponding port numbers,
one at each of its endpoints. Port numbering is local to each node, i.e., there is no relation between
port numbers at the two endpoints of an edge. Initially, each node has no knowledge of the network,
apart from its own degree.

We use the extensively studied LOCAL communication model [39]. In this model, communica-
tion proceeds in synchronous rounds and all nodes start simultaneously. In each round, each node
can exchange arbitrary messages with all of its neighbors and perform arbitrary local computa-
tions. It is well known that the synchronous process of the LOCAL model can be simulated in an
asynchronous network using time-stamps.

We now formulate precisely four versions of the leader election task, in increasing order of their
strength. The weakest version of all is called Selection and will be abbreviated by S : one node
of the network must output leader and all other nodes must output non-leader. This is the basic
version defined, e.g., in [35]. All other versions of leader election in anonymous networks require one
node to output leader and require enabling all other nodes to find a path to the leader. Arguably,
the weakest way to do it is the following: each node outputs the first port number on a simple
path from it to the leader. This will be called Port Election and will be abbreviated by PE .
Then every node can, for example, send a message to the leader that will be conveyed by using the
port numbers on the resulting simple path. This simple and natural way was never analyzed in
detail in the context of leader election in anonymous networks, but was mentioned in [11, 25] as an
alternative possibility. A stronger way is for each non-leader to output the entire path to the leader.
This, in turn, can be done in two ways. In [25], a simple path from a node v = v0 to the leader

2



was coded as a sequence (p1, . . . , pk) of port numbers, such that node vi+1 is reached from vi by
taking port pi+1 and the path (v0, v1, . . . , vk) is a simple path, where vk is the leader. This version
will be called Port Path Election and will be abbreviated by PPE . Finally, in [11], a simple
path from a node to the leader was coded by listing all port numbers on the path, in their order
of appearance. More precisely, every node v must output a sequence P (v) = (p1, q1, . . . , pk, qk) of
nonnegative integers. For each node v, let P ∗(v) be the simple path starting at v, such that port
numbers pi and qi correspond to the i-th edge of P ∗(v), in the order from v to the other end of this
path. All paths P ∗(v) must end at a common node, called the leader. This version will be called
Complete Port Path Election and will be abbreviated by CPPE . Notice that in the absence of
port numbers, there would be no way to identify the elected leader by non-leaders, as all ports, and
hence all neighbors, would be indistinguishable to a node. Thus, the tasks PE , PPE and CPPE
would be impossible to formulate.

In [25], there is a discussion comparing the above versions of leader election. The authors
mention that Selection is sufficient for some tasks, e.g., if the leader has to broadcast a message to
all other nodes, but insufficient for others, e.g., if all nodes have to send a message to the leader.
For the latter task, Port Election is enough, as packets could be routed to the leader from node
to node using only the local port that each node outputs. However, the authors argue that this
holds only if nodes want to cooperate with others by revealing the local port towards the leader
when retransmitting packets. They observe that, in some applications, such cooperation may be
uncertain, and even when it occurs, it may slow down transmission as the local port has to be
retrieved from the memory of the relaying node. Putting the entire path to the leader as a header
of the packet by the original sender (i.e., using version PPE or CPPE) may in some cases speed
up transmissions, because relaying may then be done at the router level.

The central notion in the study of anonymous networks is that of the view of a node [44]. Let
G be any graph and v a node in this graph. The view from v in G, denoted V(v), is the infinite
tree of all finite paths in G, starting from node v and coded as sequences (p1, q1, . . . , pk, qk) of port
numbers, where pi, qi are the port numbers corresponding to the i-th edge of the path, in the order
starting at the root v, with the rooted tree structure defined by the prefix relation of sequences.
The truncated view V l(v) is the truncation of V(v) to level l, for each l.

The information that v gets about the graph in r rounds is precisely the truncated view Vr(v),
together with degrees of leaves of this tree. Denote by Br(v) the truncated view Vr(v) whose leaves
are labeled by their degrees in the graph, and call it the augmented truncated view at depth r. If
no additional knowledge is provided a priori to the nodes, the decisions of a node v in round r in
any deterministic algorithm are a function of Br(v). The time of (any version of) leader election in
a given graph is the minimum number of rounds sufficient to complete it by all nodes of this graph.

Unlike in labeled networks, if the network is anonymous then leader election is sometimes
impossible, regardless of the allocated time, even if the topology of the network is known to nodes
and even in the weakest version, i.e., Selection. This is due to symmetries, and the simplest
example is the two-node graph. It follows from [44] that if nodes know the map of the graph (i.e.,
its isomorphic copy with all port numbers indicated) then leader election is possible if and only if
views of all nodes are distinct. This holds for all four versions of the leader election task discussed
above. We will call such networks feasible and restrict attention to them. However, even in the
class of feasible networks, even Selection is impossible without any a priori knowledge about the
network. On the other hand, for any fixed feasible network G, whose map is given to the nodes,
and for any version Z ∈ {S ,PE ,PPE ,CPPE} of leader election, there is a minimum time, called

3



the Z-index of G and denoted by ψZ(G), in which version Z of leader election can be completed
on G. For example, ψS(G) = 0 if and only if G contains a node whose degree is unique. On the
other hand, if G is the 3-node line with ports 0, 0, 1, 0 from left to right, then ψCPPE (G) = 1.

We observe that the election tasks defined above form a hierarchy with respect to their election
indexes. In particular, note that if CPPE can be solved in G in k rounds, then the non-leaders
can simply output the outgoing ports of their output sequence in order to solve PPE at the end
of k rounds. Further, if PPE can be solved in k rounds, then the non-leaders can output the first
outgoing port of their output sequence in order to solve PE at the end of k rounds. Finally, if PE
can be solved in k rounds, then the non-leaders can simply output ‘non-leader’ in order to solve S
at the end of k rounds. Hence we have the following fact.

Fact 1.1. ψCPPE (G) ≥ ψPPE (G) ≥ ψPE (G) ≥ ψS (G) for any graph G.

Our aim is to compare the amount of information needed to accomplish each of these “four
shades” of leader election in minimum time. In order to avoid “comparing apples to oranges”, we
should make comparisons between any versions A and B of leader election for graphs in which the
minimum time to accomplish version A is equal to the minimum time to accomplish version B. In
other words, in order to prove, e.g., that the amount of information needed to accomplish version
PE in minimum time is much larger than that required to accomplish version S in minimum time,
we have to show that for all graphs G version S in time ψS (G) can be accomplished using a small
amount of information, but there is a class G of graphs G for which ψS (G) = ψPE (G), and for which
accomplishing version PE in time ψPE (G) requires a much larger amount of initial information.

Following the framework of algorithms with advice, see, e.g., [9, 13, 15, 18, 22, 29, 38], informa-
tion (a unique binary string) is provided to all nodes at the start by an oracle knowing the entire
network. The length of this string is called the size of advice. It should be noted that, since the
advice given to all nodes is the same, this information does not increase the asymmetries of the
network (unlike in the case when different pieces of information could be given to different nodes)
but only helps to take advantage of the existing asymmetries and use them to elect the leader.

The paradigm of algorithms with advice has been proven very important in the domain of
network algorithms. Establishing a strong lower bound on the minimum size of advice sufficient to
accomplish a given task implies that entire classes of algorithms can be ruled out. For example, one
of our results shows that, for some class of graphs, Selection in minimum time requires advice of
size polynomial in the maximum degree of the graph. This permits to eliminate potential Selection
algorithms relying only on knowing the maximum degree of the network, as this information is a
piece of advice of size logarithmic in this maximum degree. Lower bounds on the size of advice
give us impossibility results based strictly on the amount of initial knowledge available to nodes.
Hence this is a quantitative approach. This is much more general than the traditional approach
that could be called “qualitative”, based on specific categories of information given to nodes, such
as the size, diameter, or maximum node degree.

Our results. We show that the size of advice needed to accomplish leader election in the
weakest formulation, i.e., Selection, in minimum time, is exponentially smaller than that needed
for any of the strong formulations, i.e., Port Election, Port Path Election, or Complete Port Path
Election. More precisely, we show that this minimum size of advice for Selection is polynomial in the
maximum degree ∆ for all graphs, but, for each Z ∈ {PE ,PPE ,CPPE} and for sufficiently large
∆ and k, there exists a class C(Z) of graphs of maximum degree ∆ such that ψS(G) = ψZ(G) = k

4



for all graphs G in C(Z), and the size of advice required to accomplish the task Z in minimum
time, for some graph of class C(Z), is exponential in ∆.

It should be stressed that, while accomplishing CPPE obviously implies accomplishing PPE
which in turn implies accomplishing PE , the above three separations between S and any Z in
{PE ,PPE ,CPPE} must be proved separately. For example, the fact that there exists a class
C(PE ) of graphs of maximum degree ∆ such that ψS(G) = ψPE (G) = k for all graphs G in
C(PE ), and the size of advice required to accomplish PE in minimum time, for some graph of class
C(PE ), is exponential in ∆, does not necessarily imply the same statement when PE is replaced by
PPE , because for graphs G in the class C(PE ), we could have ψPPE (G) much larger than ψS (G).
Indeed, the class of graphs that we construct to prove a lower bound on advice size for the PE
task is different than the class of graphs that we use for the PPE and CPPE tasks. Actually, the
construction for the tasks PPE and CPPE is more difficult than for the task PE because it seems
more difficult to reconcile small election index with the need of large advice in the case of PPE and
CPPE than in the case of PE.

From the technical standpoint, our main contributions are constructions showing lower bounds
on the size of advice needed to accomplish various versions of leader election in minimum time.
These lower bounds are a crucial tool to show separations of difficulty between the weakest version
of leader election (i.e., Selection) and the three strong versions.

Related work. Early papers on leader election focused on the scenario with distinct labels.
Initially, it was investigated for rings in the message passing model. A synchronous algorithm based
on label comparisons was given in [28], using O(n log n) messages. In [19], the authors proved that
this complexity is optimal for comparison-based algorithms, while they showed a leader election
algorithm using only a linear number of messages but running in very large time. An asynchronous
algorithm using O(n log n) messages was given, e.g., in [40], and the optimality of this message
complexity was shown in [8]. Leader election was also investigated for radio networks, both in the
deterministic [30, 33, 37] and in the randomized [42] scenarios. In [26], leader election for labeled
networks was studied using mobile agents.

Many authors [3, 4, 5, 6, 7, 21, 43, 44] studied leader election in anonymous networks. In
particular, [6, 44] characterize message-passing networks in which leader election is feasible. In
[43], the authors study leader election in general networks, under the assumption that node labels
exist but are not unique. In [12, 14], the authors study message complexity of leader election in
rings with possibly nonunique labels. Memory needed for leader election in unlabeled networks was
studied in [22]. In [10], the authors investigated the feasibility of leader election among anonymous
agents that navigate in a network in an asynchronous way.

Providing nodes or agents with arbitrary types of knowledge that can be used to increase
efficiency of solutions to network problems was previously proposed in [1, 9, 13, 15, 16, 17, 18,
22, 23, 24, 29, 31, 32, 36, 38, 41]. This approach was referred to as algorithms with advice. The
advice is given either to the nodes of the network or to mobile agents performing some task in a
network. In the first case, instead of advice, the term informative labeling schemes is sometimes
used if (unlike in our scenario) different nodes can get different information.

Several authors studied the minimum size of advice required to solve network problems in an
efficient way. In [16], the authors compared the minimum size of advice required to solve two
information dissemination problems using a linear number of messages. In [18], it was shown
that advice of constant size given to the nodes enables the distributed construction of a minimum

5



spanning tree in logarithmic time. In [13], the advice paradigm was used for online problems. In the
case of [38], the issue was not efficiency but feasibility: it was shown that Θ(n log n) is the minimum
size of advice required to perform monotone connected graph clearing. In [23], the authors studied
the problem of topology recognition with advice given to the nodes.

Among papers studying the impact of information on the time of leader election, the papers
[11, 25, 36] are closest to the present work. In [36], the authors investigated the minimum size
of advice sufficient to find the largest-labelled node in a graph, all of whose nodes have distinct
labels. They compared the task of selection with that of election requiring all nodes to know the
identity of the leader. The main difference between [36] and the present paper is that we consider
networks without node labels. This is a fundamental difference: breaking symmetry in anonymous
networks relies heavily on the structure of the graph, rather than on labels, and, as far as results
are concerned, much more advice is needed for a given allocated time.

The authors of [25] studied leader election under the advice paradigm for anonymous networks,
but they restricted attention to trees. They studied the version that we call PPE and established
upper and lower bounds on the size of advice for various allocated time values. On the other
hand, authors of [11] investigated leader election in arbitrary anonymous networks. They used
the version that we call CPPE and studied the minimum size of advice to accomplish it both in
minimum possible time and for much larger time values allocated to leader election. The different
versions of leader election studied in [11, 25, 36] inspired us to investigate comparisons of their
difficulty measured by the required size of advice.

2 Solving Selection in minimum time

In this section, we prove tight upper and lower bounds on the size of the advice needed to solve
Selection on any graph G in time ψS (G).

2.1 Upper Bound

First, we show that if S is solvable using k rounds in a graph G, then there must be a node in G
whose augmented truncated view Bk(v) is unique.

Proposition 2.1. For any graph G and any positive integer k, suppose that there exists an algo-
rithm A that solves S using k rounds. At the end of every execution, the node u that outputs 1
must satisfy Bk(u) 6= Bk(w), for all w ∈ V (G) \ {u}.

Proof. To obtain a contradiction, assume that there exists an execution e of A such that a node
u outputs 1 and there exists a node u′ such that Bk(u) = Bk(u′). Since each node v’s output is a
function that depends only on Bk(v), it follows that, in execution e, node u′ also outputs 1. This
contradicts the correctness of A since, to solve S , exactly one node must output 1.

To solve S in time ψS (G) with advice, we specify an oracle that picks a node u whose augmented
truncated view is unique (as guaranteed by Proposition 2.1), and provides as advice to all nodes
the augmented truncated view of u. Our distributed algorithm consists of each node computing its
own augmented truncated view and comparing it to the advice they receive from the oracle. The
unique node whose view matches the advice outputs 1, and all other nodes output 0. This gives us
the following upper bound on the size of advice sufficient to solve S .

6



Theorem 2.2. There exists a distributed algorithm that solves S in every graph G whose elec-
tion index is finite, uses ψS (G) communication rounds, and uses advice of size at most O((∆ −
1)ψS (G) log∆), where ∆ is the maximum degree of nodes in G.

Proof. We specify an oracle and algorithm pair that solves S in every graph G whose election index
is finite.

By Proposition 2.1, we know that there exists at least one node u whose augmented truncated
view BψS (G)(u) is unique. Among all such nodes, the oracle chooses the node u whose BψS (G)(u)
is lexicographically smallest. The oracle encodes BψS (G)(u) as a binary string A using at most
O((∆ − 1)ψS (G) log ∆) bits (this is possible since there are most ∆ · (∆ − 1)(ψS (G)−1) edges in this
view, and each edge’s two port numbers can be encoded using O(log∆) bits). This binary string
A is provided as advice to all nodes in the network.

Our distributed algorithm works as follows: each node decodes the augmented truncated view
encoded in the provided advice A, and calculates the height h of this view. Then, using h com-
munication rounds, each node w calculates Bh(w). Finally, each node compares its Bh(w) with
the augmented truncated view encoded in A. If these are equal, then the node outputs 1, and
outputs 0 otherwise. Correctness is guaranteed by the fact that the augmented truncated view
encoded in A by the oracle is equal to Bh(u) for exactly one node u in the network. The number
of communication rounds used is equal to the height h of the augmented truncated view encoded
in A, i.e., ψS (G).

2.2 Lower bound

In this section, we prove a tight lower bound on the size of advice needed to solve S in minimum
time. In particular, for arbitrary positive integers ∆ ≥ 3 and k ≥ 1, we construct a class of
graphs G∆,k in which each graph has maximum degree ∆ and has finite S -index k such that every
deterministic distributed algorithm solving S in graphs of this class requires advice of size at least
Ω((∆− 1)k log∆).

2.2.1 Construction of G∆,k

Consider any positive integers ∆ ≥ 3 and k ≥ 1. Our construction involves various building blocks,
which we present in an incremental fashion.

Building Block 1: Rooted Tree T . We define a rooted tree T of height k whose root r has
degree ∆− 2, and all other internal nodes have degree ∆ (i.e., ∆− 1 children and one parent). The
ports at the root leading to the root’s children are labeled 1, . . . ,∆−2. For each internal node other
than the root, the port leading to its parent is labeled 0, and the ports leading to its children are
labeled 1, . . . ,∆−1. Let z denote the number of leaves in T , and note that z = (∆−2) · (∆−1)k−1.

Building Block 2: Augmented Trees. Using the rooted tree T , we construct a large set of
trees T∆,k by attaching new nodes to each leaf of T . In particular, let ℓ1, . . . , ℓz be the leaves of T ,
indexed in increasing order using the lexicographic ordering of the sequence of ports leading from
r to each leaf. We construct a tree TX for each sequence X = (x1, . . . , xz) of z positive integers
such that 1 ≤ xi ≤ ∆− 1 by attaching xi degree-one nodes to ℓi for each i ∈ {1, . . . , z}. The ports
at each ℓi leading to its new children are labeled 1, . . . , xi. The set T∆,k is defined to be the set of
all such trees TX . Note that the number of trees in T∆,k is the number of different sequences X
described above, i.e., |T∆,k| = (∆− 1)z where z = (∆− 2) · (∆ − 1)k−1.

7



Building Block 3: Augmented Trees with Appended Paths For each tree TX ∈ T∆,k,
create two new trees TX,1 and TX,2. The tree TX,1 is constructed by taking a copy of TX and
creating a new path of length k + 1 starting at its root r. In particular, the new path consists of
nodes r, p1, . . . , pk+1, the ports at r and pk+1 on this path are labeled 0, and, for each i ∈ {1, . . . , k},
the port at pi leading to pi−1 is labeled 1, and the port at pi leading to pi+1 is labeled 0. The tree
TX,2 is similar: take a copy of TX,1, but swap the port labels at pk on the newly-created path so
that the port at pk leading to pk−1 (or r, if k = 1) is labeled 0, and the port at pk leading to pk+1

is labeled 1. See Figure 1 for an illustration of the trees TX,1 and TX,2.
To make the notation cleaner, we will often index the trees of T∆,k using integers rather than

sequences of integers. To enable this, we order the trees of T∆,k as T1, . . . , T|T∆,k|, in increasing lex-
icographic order of the integer sequence X used to generate each tree. For each j ∈ {1, . . . , |T∆,k|},
we denote by rj,1 the root node of tree Tj,1, and we denote by rj,2 the root node of the tree Tj,2.

r

0 1

0

0

1

2
0

1

2

03
0

0

0

01
2
3

0

1

0 1 0 1 0 0

2

0

0
1
2
3 0

0

0

0

2

1
0

1 0

2

3

0

0

2

1
0

r

0 1

0

0

1

2
0

1

2

03
0

0

0

01
2
3

0

1

0 1 0 0 1 0

2

0

0
1
2
3 0

0

0

0

2

1
0

1 0

2

3

0

0

2

1
0

Figure 1: The tree TX,1 (left) and TX,2 (right) when k = 2, ∆ = 4, and X = (1, 2, 3, 3, 2, 2)

Final Construction of G∆,k. The class G∆,k consists of graphs {G1, . . . , G|T∆,k |}, where each
Gi is constructed by taking the disjoint union of the following graphs: the tree Ti,2, two copies of
each tree Tj′,2 for j′ ∈ {1, . . . , i − 1}, two copies of each tree Tj,1 for j ∈ {1, . . . , i}, and a cycle Ci
of 4i − 1 nodes c1, . . . , c4i−1 with ports alternately labeled 0 and 1. Further, we add the following
edges: for each j ∈ {1, . . . , i}, we add an edge between c4j−3 and the root node rj,1 in the first copy
of Tj,1, an edge between c4j−2 and the root node rj,1 in the second copy of Tj,1, an edge between
c4j−1 and the root node rj,2 in the first copy of Tj,2, and, for each j′ ∈ {1, . . . , i − 1}, an edge
between c4j′ and the root node rj′,2 in the second copy of Tj′,2. For each of these added edges, the
port at the cycle node is labeled 2, and the port at the r node is labeled ∆− 1. See Figure 2 for an
illustration of the graph Gi. From the description of the construction, we can verify the following
calculation of the number of graphs in the class.

8



c1

c2

c3

c4

c4j−3 c4j−2 c4j−1 c4j

c4α−3

c4α−2

c4α−1

0

1

0

1

0

1

00 0 0 01 1 1 1 1

0

1

0

1

0

12

2

2∆−1

2∆−1

∆−1

∆−1T1;1

T1;1

T1;2

T1;2

Tj;1

∆−1

2

Tj;1

∆−1

Tj;2

∆−1

Tj;2

∆−1

2 2 2

Tα;1∆−12

Tα;1∆−12

Tα;2∆−12

r
1;1

r
1;1

r
1;2

r
1;2

rj;1 rj;1 rj;2 rj;2

r
α;1

r
α;1

r
α;2

Figure 2: The graph Gi

Fact 2.3. |G∆,k| = |T∆,k| = (∆− 1)(∆−2)·(∆−1)k−1
for any positive integers ∆ ≥ 3 and k ≥ 1.

2.2.2 Lower bound proof

The idea behind the lower bound is to prove that, in each graph Gi ∈ G∆,k, the root node ri,2 of
Ti,2 is the only node that has a unique truncated augmented view at depth k. At a high level, this
is because only the roots of T1,1, T1,1, T1,2, T1,2, . . . , Ti,1, Ti,1, Ti,2 can “see” far enough to determine
which tree they are in, and, since there are two copies of each tree other than Ti,2, each root other
than the root of Ti,2 has a “twin” that has the exact same view. The fact that the root of Ti,2 has
no “twin” implies that it has a unique view up to depth k, which is the key fact that is used to
prove that the S -index of each Gi ∈ G∆,k is k. These ideas are formalized in the following results.

Proposition 2.4. For any h ∈ {0, . . . , k− 1}, any j, j′ ∈ {1, . . . , |T∆,k|}, and any b, b′ ∈ {1, 2}, we
have that Bh(rj,b) in Tj,b is equal to Bh(rj′,b′) in Tj′,b′.

Proof. First, we note that it is sufficient to prove the desired result for h = k − 1, since any two
augmented truncated views that are equal at some depth d are also equal at any depth less than d.

From our construction, we note that for any integer sequence X, each node within distance k−1
from the root of the augmented tree TX is defined to have ∆− 1 children, and the ports leading to
these children are labeled 1, . . . ,∆ − 1. Moreover, each non-root node within distance k − 1 from
the root of the augmented tree TX is defined to have a port labeled 0 leading to its parent in TX .
Thus, regardless of the sequence X used to construct TX , the augmented truncated view at depth
k − 1 of the root of TX is always the same.

Next, we recall from the definition of every Tj,1 that the (ordered) appended path of nodes
rj,1, p1, . . . , pk−1 is labeled such that the port leading to the next node is labeled 0 and the port
leading to the previous node is labeled 1. Similarly, from the definition of every Tj,2 we know that
the (ordered) appended path of nodes rj,2, q1, . . . , qk−1 is labeled such that the port leading to the
next node is labeled 0 and the port leading to the previous node is labeled 1. In particular, this

9



means that the augmented truncated view at depth k− 1 of node rj,b on the appended path is the
same for any j ∈ {1, . . . , |T∆,k|} and any b ∈ {1, 2}.

For each j ∈ {1, . . . , |T∆,k|} and b ∈ {1, 2}, each Tj,b consists of some TX with an appended
path. So, the above observations are sufficient to conclude that the root node of Tj,b has the same
augmented truncated view at depth k − 1 regardless of the values of j and b.

Lemma 2.5. For any integers k ≥ 1 and ∆ ≥ 3, for any Gα, Gβ ∈ G∆,k with α ≤ β, and for each
h ∈ {0, . . . , k}, both of the following statements hold:

1. Bh(cm) in Gα is equal to Bh(cm′) in Gβ for all m,m′ ∈ {1, . . . , 4α − 1}, and,

2. if h < k, then Bh(rj,b) in Gα is equal to Bh(rj′,b′) in Gβ for all j, j′ ∈ {1, . . . , α} and all
b, b′ ∈ {1, 2}.

Proof. Fix arbitrary Gα, Gβ ∈ G∆,k such that α ≤ β. The proof of the two required statements
proceeds by simultaneous induction on h. In the base case, we note that each rj,b in Gα has degree
∆ and each rj′,b′ in Gβ has degree ∆, so the second statement holds for h = 0. Similarly, each cm
in Gα has degree 3 and each cm′ in Gβ has degree 3, so the first statement holds for h = 0. As
induction hypothesis, assume that both of the following statements hold for some h ∈ {1, . . . , k}:

1. Bh−1(cm) in Gα is equal to Bh−1(cm′) in Gβ for all m,m′ ∈ {1, . . . , 4α− 1}, and,

2. if h < k, then Bh−1(rj,b) in Gα is equal to Bh−1(rj′,b′) in Gβ for all j, j′ ∈ {1, . . . , α} and all
b, b′ ∈ {1, 2}.

First, we set out to prove that Bh(cm) in Gi is equal to Bh(cm′) in Gi for all m,m
′ ∈ {1, . . . , 4α−1}.

In what follows, it is assumed that arithmetic in subscripts “wraps around”, i.e., cm+1 = c1 when
m = 4α−1, and cm−1 = c4α−1 when m = 1, and similarly for cm′+1 and cm′−1. The proof proceeds
by noticing from our construction that Bh(cm) in Gα consists of: the view Bh−1(cm−1) in Gα, the
view Bh−1(cm+1) in Gα, and the view Bh−1(rj,b) in Tj,b for some j ∈ {1, . . . , α} and b ∈ {1, 2},
with edges connecting the roots of these views to cm. In particular, the edge between cm and rj,b is
labeled 2 at cm and ∆− 1 at rj,b, the edge between cm and cm−1 is labeled 1 at cm and 0 at cm+1,
and the edge between cm and cm+1 is labeled 0 at cm and 1 at cm+1. Similarly, we know from our
construction that Bh(cm′) in Gβ consists of: the view Bh−1(cm′−1) in Gβ , the view Bh−1(cm′+1) in
Gβ , and the view Bh−1(rj′,b′) in Tj′,b′ for some j′ ∈ {1, . . . , α} and b′ ∈ {1, 2}, with edges connecting
the roots of these views to cm′ . In particular, the edge between cm′ and rj′,b′ is labeled 2 at cm′

and ∆− 1 at rj′,b′ , the edge between cm′ and cm′−1 is labeled 1 at cm′ and 0 at cm′+1, and the edge
between cm′ and cm′+1 is labeled 0 at cm′ and 1 at cm′+1. By the first statement in the induction
hypothesis, we know that the view Bh−1(cm−1) in Gα is equal to the view Bh−1(cm′−1) in Gβ, that
the view Bh−1(cm+1) in Gα is equal to the view Bh−1(cm′+1) in Gβ . Further, since h − 1 < k, the
second statement of the induction hypothesis tells us that the view Bh−1(rj,b) in Tj,b is equal to the
view Bh−1(rj′,b′) in Tj′,b′ . It follows that B

h(cm) in Gα is equal to Bh(cm′) in Gβ, as required.
Next, suppose that h < k. We set out to prove that Bh(rj,b) in Gα is equal to Bh(rj′,b′) in Gβ for

all j, j′ ∈ {1, . . . , α} and all b, b′ ∈ {1, 2}. The key is to notice from our construction that Bh(rj,b) in
Gα consists of the view Bh(rj,b) in Tj,b and the view Bh−1(cm) in Gα for some m ∈ {1, . . . , 4α− 1},
with an edge joining the two roots of these views, and this edge is labeled ∆ − 1 at endpoint rj,b
and labeled 2 at endpoint cm. Similarly, Bh(rj′,b′) in Gβ consists of Bh(rj′,b′) in Tj′,b′ and Bh−1(cm′)
in Gβ for some m′ ∈ {1, . . . , 4α − 1}, with an edge joining the two roots of these views, and this

10



edge is labeled ∆− 1 at endpoint rj′,b′ and labeled 2 at endpoint cm′ . Since h ≤ k− 1, Proposition
2.4 implies that Bh(rj,b) in Tj,b is equal to Bh(rj′,b′) in Tj′,b′ . Further, by the first statement of the
induction hypothesis, we know that Bh−1(cm) in Gα is equal to Bh−1(cm′) in Gβ . It follows that
Bh(rj,b) in Gα is equal to Bh(rj′,b′) in Gβ , as required.

Lemma 2.6. For any graph Gi ∈ G∆,k, the root ri,2 of Ti,2 is the only node u ∈ V (Gi) that satisfies
the property Bk(u) 6= Bk(u′) for all u′ ∈ V (Gi) \ {u}.

Proof. Let v be an arbitrary node in V (Gi).
We separately consider the following exhaustive list of cases, which come directly from the

various building blocks used in the construction of Gi.

• Suppose that node v is contained in a tree Tj,b such that j 6= i or b 6= 2.

We prove that there is another node v′ in Gi that has the same truncated view at depth k.
From the construction of Gi, if j 6= i or b 6= 2, then there are two copies of Tj,b in Gi. Let v

′

be the corresponding copy of node v that is contained in the other copy of Tj,b (i.e., the Tj,b
that does not contain v). Let r be the root of the Tj,b containing v, and let r′ be the root of
the Tj,b containing v

′. By construction, r is connected by an edge e to some node cm ∈ Ci,
the port number at r on this edge is ∆ − 1, and the port number at cm on this edge is 2.
Similarly, by construction, r′ is connected by an edge e′ to some node cm′ ∈ Ci, with m

′ 6= m,
the port number at r′ on this edge is ∆− 1, and the port number at cm′ on this edge is 2.

Consider each root-to-leaf path π in the view Bk(v). There are two cases to consider:

– If all nodes in π are contained in Tj,b, then the same path appears in the view Bk(v′)
since v′ is the corresponding copy of v in the other copy of Tj,b.

– If there exists a node in π that is not in Tj,b, then consider the first such node w along
the path starting from the root of Bk(v). By the construction of Gi, the only node in
Tj,b that has a neighbour outside of Tj,b is r, and this neighbour is cm. It follows that
w = cm, and the parent of w is r. Let πin denote the prefix of the path π that is entirely
contained in Tj,b (i.e., starting at v and ending at r), and let πout denote the remainder
of the path (i.e., starting at cm until the leaf of π). Since v′ is the corresponding copy
of v in the other copy of Tj,b, the same path prefix πin appears in the view Bk(v′) from
v′ to r′. As observed above, by construction, r′ is connected by an edge e′ to cm′ and
is labeled with the same port numbers as the edge e = {r, cm}. Finally, by Lemma 2.5,
the views B|πout|(cm) and B|πout|(cm′) are the same, so the path suffix πout appears in
the view Bk(v′) as well. This concludes the proof that the entire path π appears as a
root-to-leaf path in Bk(v′) as well.

By symmetry (swapping the roles of v and v′), each root-to-leaf path π′ in Bk(v′) appears as
a root-to-leaf path in Bk(v), which concludes the proof that Bk(v) = Bk(v′).

• Suppose that v ∈ Ci.

We prove that there is at least one other node v′ in Gi that has the same truncated view
at depth k. By Lemma 2.5 with α = β = i, we know that Bk(cm) = Bk(cm′) for all
m,m′ ∈ {1, . . . , 4α − 1}, which means that Bk(v) is the same for all nodes in v ∈ Ci.

11



• Suppose that v is the root ri,2 of Ti,2.

We prove that no other node v′ in Gi has the same truncated view at depth k as v. We
consider all possible cases for v′:

– Suppose that v′ ∈ Ci. In this case, by construction, v′ has degree 3, and has two
neighbours with degree 3 (its neighbours in Ci), and one neighbour with degree ∆ ≥ 3
(the root of some Tj,b). However, v = ri,2 has at least one neighbour with degree 2,
i.e., its neighbour in the appended path. Thus, B1(v) 6= B1(v′), which implies that
Bk(v) 6= Bk(v′).

– Suppose that v′ = rj,b for some j 6= i or b 6= 2. First, consider the case where b 6= 2,
i.e., b = 1. By construction, the tree Tj,1 has an appended path of length k + 1 starting
at its root rj,1 = v′, and the port sequence π along this path in Bk(v′) has its first port
equal to 0 and its final port equal to 1. However, by construction, the tree Ti,2 has an
appended path starting at its root ri,2 = v, and the port sequence along this path in
Bk(v) has first port equal to 0 and its final port equal to 0. (This is precisely the reason
why the construction of TX,2 swaps the port numbers at node pk in the appended path.)
Since no other port at v is labeled 0, it follows that the port sequence π does not exist
in Bk(v) starting at v. This proves that Bk(v) 6= Bk(v′).

Next, consider the case where b = 2 and j 6= i. Since j 6= i, it follows from our
construction that Ti,2 is built using a tree TX and Tj,2 is built using a tree TY where
X = (x1, . . . , xz) and Y = (y1, . . . , yz) are distinct sequences of integers in the range
1, . . . ,∆ − 1. Recall that TX has height k + 1, has z nodes at distance k from its root
ri,2, and the ith node at distance k from the root has xi degree-1 neighbours. (The
ordering of nodes at distance k is based on the lexicographic ordering of the sequence
of ports leading from the root to each such node.) Similarly, TY has height k + 1, has z
nodes at distance k from its root rj,2, and the ith node at distance k from the root has yi
degree-1 neighbours. As X and Y are distinct, there exists an index i such that xi 6= yi.
Therefore, in the augmented view Bk(ri,2), there is a path with port sequence π starting
at r whose other endpoint is labeled with xi, and, in the augmented view Bk(rj,2), the
path with the same port sequence π starting at r exists, but the other endpoint is labeled
with yi 6= xi. This proves that B

k(ri,2) 6= Bk(rj,2), i.e., B
k(v) 6= Bk(v′).

– Suppose that v′ ∈ Tj,b for some j ∈ {1, . . . , i}, b ∈ {1, 2}, and v′ 6= rj,b. By construction,
every root-to-leaf path in the tree Tj,b has length exactly k + 1. As v = rj,b, it follows
that Bk(v) contains no node that has degree 1 in Gi. Moreover, as v′ is assumed to be
a node in Tj,b other than the root rj,b, the distance from v′ to a leaf node in Tj,b is at
most k. Therefore, Bk(v′) contains a node w that has degree 1 in Gi. It follows that
Bk(v) 6= Bk(v′).

Lemma 2.7. ψS (Gi) = k for any graph Gi ∈ G∆,k.

Proof. Consider an arbitrary graph Gi ∈ G∆,k. We first observe that no node in Gi has a unique
augmented truncated view at depth k − 1: Lemma 2.5 proves that this is true for the root ri,2 of
Ti,2, and Lemma 2.6 proves that this is true for all other nodes in Gi. Thus, by Proposition 2.1, it
follows that ψS (Gi) ≥ k.

12



Next, we give an algorithm that solves S in time k in any Gi ∈ G∆,k given a map of the graph Gi.
First, each node uses the map to deduce the value of k by subtracting 2 from the shortest distance
from a leaf in Gi to a node in the cycle Ci. Then, using k communication rounds, each node v learns
Bk(v). Finally, each node v finds, in the map of Gi, the node with the unique augmented truncated
view at depth k (Lemma 2.6 guarantees that there is exactly one such node), and compares it to
its own Bk(v). If these match, then the node outputs 1, and otherwise outputs 0. This shows that
ψS (Gi) ≤ k, which concludes the proof.

To obtain a lower bound on the size of advice, we first observe that, using only its truncated
augmented view at depth k, a root node rj,2 of Tj,2 cannot determine whether it is in Gj or some
other graph Gi with i 6= j. Using this fact, we show that, for any algorithm using insufficient
advice, there exists a Gi ∈ G∆,k and an rj,2 in Gi with i 6= j that is “fooled” into outputting 1, and
that ri,2 will also output 1, which proves that the algorithm does not solve S .

Lemma 2.8. For any Gα, Gβ ∈ G∆,k with α ≤ β, the view Bk(rj,b) in Gα is the same as Bk(rj,b)
in Gβ for any j ∈ {1, . . . , α} and b ∈ {1, 2}.

Proof. A node rj,b in Gα is the root node of a tree Tj,b in Gα, and a node rj,b in Gβ is the root node
of a tree Tj,b in Gβ . The part of Bk(rj,b) in Gα belonging to Tj,b is equal to the part of Bk(rj,b)
in Gβ belonging to Tj,b. The remainder of node rj,b’s view in Gα consists of some Bk−1(cm) along
with an edge between rj,b and cm with the port at rj,b labeled ∆ − 1 and the port at cm labeled
2. The remainder of node rj,b’s view in Gβ consists of some Bk−1(cm′) along with an edge between
rj,b and cm′ with the port at rj,b labeled ∆− 1 and the port at cm′ labeled 2. However, by Lemma
2.5, we know that Bk−1(cm) in Gα is equal to Bk−1(cm′) in Gβ, which concludes the proof.

Theorem 2.9. Consider any algorithm A that solves S in ψS (G) rounds for every graph G. For
all integers k ≥ 1,∆ ≥ 5, there exists a graph G with maximum degree ∆ and with ψS (G) = k for
which algorithm A requires advice of size Ω((∆− 1)k log ∆).

Proof. To obtain a contradiction, assume that there exists an algorithm A that solves S in k rounds
for the class of graphs G∆,k with the help of an oracle that provides advice of size 1

8(∆− 1)k log2 ∆.

There are at most 21+( 1
8
(∆−1)k log2 ∆) ≤ 2

1
4
(∆−1)k log2 ∆ = ∆

1
4
(∆−1)k binary advice strings whose

length is at most 1
8(∆ − 1)k log2∆. By Fact 2.3, the total number of graphs in G∆,k is |T∆,k| =

(∆− 1)(∆−2)·(∆−1)k−1
> ∆

1
2
(∆−2)·(∆−1)k−1

> ∆
1
4
(∆−1)k . Therefore, by the Pigeonhole Principle, the

oracle provides the same advice for at least two graphs Gα and Gβ from G∆,k. Suppose α < β. By
Lemma 2.8, the root node rα,2 in Tα,2 of Gα and the root node rα,2 in Tα,2 of Gβ have the same
augmented truncated view at the end of k communication rounds. Hence, the output of rα,2 is the
same when the algorithm A is executed in Gα and Gβ. By Lemma 2.1, since the node rα,2 in Tα,2
of Gα is the only node with a unique augmented truncated view at depth k, it will output 1 when
A is executed in Gα. Therefore, the node rα,2 in Tα,2 of Gβ also outputs 1 when A is executed in
Gβ . But, according to the construction of Gβ, there are two copies of Tα,2 in Gβ, and, by Lemma
2.8 (with α = β), the two copies of node rα,2 have the same augmented truncated view at depth k.
Therefore, there are two nodes in Gβ that output 1, which contradicts the correctness of A.

3 Port Election vs. Selection

In this section, we prove that the size of advice needed to solve PE in minimum time is exponentially
larger than the size of advice needed to solve S . More specifically, for any fixed integers k ≥ 1 and

13



∆ ≥ 4, we construct a class of graphs such that: ψS (G) = ψPE (G) = k for each graph in the class,
solving S in time k in this class can be done with advice of size at most O((∆− 1)k log ∆) (in view
of Theorem 2.2), but there exists a graph in the class for which the size of advice needed to solve

PE in time k is at least Ω((∆ − 1)(∆−2)(∆−1)k−1
log ∆).

3.1 Construction of U∆,k

Consider any positive integers ∆ ≥ 4 and k ≥ 1. Recall, from Building Block 2 of Section 2.2.1, the
construction of the set of augmented trees T∆,k. Our construction proceeds by first constructing
the following template graph U with maximum degree 2∆− 1 (which is illustrated in Figure 3):

∆:::

Tj;1 rj;1

Tj;2 rj;2

T1;1

r1;2

r1;1

T1;2

ry;2 Ty;2

ry;1

Ty;1

∆+1

∆+1

∆+1

∆+1

∆+1

∆+1

∆−1

∆−1

∆−1

∆−1

∆−1

∆−1
Tj;1;1

rj;1;1

Tj;1;2
rj;1;2

1 k

1 k

∆

∆

∆

∆

∆

∆

1

0

1

1

1

0

0

0

1

0

1

0

1

1

0 0

k+1k+1

1

1

1

1

0

0

0

0

k+1 k+1

∆−1

∆−1

∆:::

2∆−2

2∆−2

Figure 3: The graph U , where y = |T∆,k|. Node labels in the diagram are not known by the nodes:
they correspond to variables used in the description of the construction, or to indicate the lengths
of paths.

1. Create a graph U by taking the disjoint union of all the trees Tj,b for j ∈ {1, . . . , |T∆,k|}
and b ∈ {1, 2} (as they are defined in Building Block 3 of Section 2.2.1). Add edges so that
the roots of these trees form the cycle r1,1, r1,2, r2,1, r2,2, . . . , r|T∆,k|,1, r|T∆,k|,2, r1,1. As for port
numbers on these added edges, orient the cycle by labeling the port at r1,1 leading to r1,2 as
∆+1, label the port at r1,2 leading to r1,1 as ∆− 1, and keep alternating between ∆+1 and
∆− 1 around the cycle.

2. For each j ∈ {1, . . . , |T∆,k|}, add two more copies of Tj,1 to U . These additional trees will be
denoted by Tj,1,1 and Tj,1,2, and their roots will be denoted by rj,1,1 and rj,1,2, respectively.

14



3. For each j ∈ {1, . . . , |T∆,k|}, create a path of length k+1 between rj,1 and rj,1,1 (by introducing
k new nodes). Label the new port created at rj,1 as ∆, label the new port created at rj,1,1
as ∆ − 1, and label the remaining ports on the new path by assigning a 1 in the direction
leading towards rj,1 and assigning a 0 in the direction leading towards rj,1,1. Similarly, for
each j ∈ {1, . . . , |T∆,k|}, create a path of length k + 1 between rj,2 and rj,1,2 (by introducing
k new nodes), label the new port created at rj,2 as ∆, label the new port created at rj,1,2
as ∆ − 1, and label the remaining ports on the new path by assigning a 1 in the direction
leading towards rj,2 and assigning a 0 in the direction leading towards rj,1,2.

4. For each j ∈ {1, . . . , |T∆,k|}, introduce ∆ − 1 new paths of length k + 1, each with rj,1,1 as
an endpoint. Label the ∆ − 1 new ports at rj,1,1 using the integers ∆, . . . , 2∆ − 2. At each
of the new nodes introduced to form these paths, label the port leading towards rj,1,1 with 0,
and the other port with 1. Similarly, for each j ∈ {1, . . . , |T∆,k|}, introduce ∆− 1 new paths
of length k+1, each with rj,1,2 as an endpoint. Label the ∆− 1 new ports at rj,1,2 using the
integers ∆, . . . , 2∆ − 2. At each of the new nodes introduced to form these paths, label the
port leading towards rj,1,2 with 0, and the other port with 1.

Using the template graph U , we construct each graph of the class U∆,k as follows. Consider
every integer sequence σ = (s1, . . . , s|T∆,k|) where sj ∈ {1, . . . ,∆ − 1} for each j ∈ {1, . . . , |T∆,k|}.
For each such sequence σ, construct the graph Gσ by taking the template graph U and, for each
j ∈ {1, . . . , |T∆,k|}, exchanging the ports ∆− 1 and ∆− 1+ sj at both of the nodes rj,1,1 and rj,1,2.
The class U∆,k consists of all such graphs Gσ. The number of different sequences σ is (∆− 1)|T∆,k|,
which we use along with Fact 2.3 to get the following result about the number of graphs in U∆,k.

Fact 3.1. |U∆,k| = (∆ − 1)|T∆,k| = (∆ − 1)(∆−1)(∆−2)·(∆−1)k−1

for any positive integers ∆ ≥ 4 and
k ≥ 1.

In the template graph U or any fixed Gσ ∈ U∆,k, we refer to the set of nodes {rj,b | j ∈
{1, . . . , |T∆,k|} and b ∈ {1, 2}} as the cycle nodes.

3.2 Minimum Election Time and Advice

For each graph in U∆,k (where ∆ ≥ 4 and k ≥ 1), we show that the S -index and the PE -index are
both k.

To prove that the S -index is at least k for any graph Gσ ∈ U∆,k, the idea is that Gσ was
carefully constructed such that, when considering truncated views up to distance k − 1, each node
v has at least one ‘twin’ elsewhere in the graph with the same view. We divide the proof into three
parts (Propositions 3.2, 3.3, and 3.5) based on v’s location within Gσ . First, we prove this about
the cycle nodes in Gσ.

Proposition 3.2. Consider any Gσ ∈ U∆,k. For any h ∈ {0, . . . , k− 1}, any j, j′ ∈ {1, . . . , |T∆,k|},
and any b, b′ ∈ {1, 2}, we have that Bh(rj,b) in Gσ is equal to Bh(rj′,b′) in Gσ.

Proof. It is sufficient to prove the claim about the template graph U , as any differences between
U and Gσ are at a distance greater than k from rj,b and rj′,b′ . The proof proceeds by induction on
h. For the base case, consider h = 0. By the construction of the template graph U , all nodes rj,b
with j ∈ {1, . . . , |T∆,k|} and b ∈ {1, 2} have the same degree ∆+ 2, which proves the desired result
for h = 0.

15



As induction hypothesis, assume that, for any h ∈ {1, . . . , k−1}, any j, j′ ∈ {1, . . . , |T∆,k|}, and
any b, b′ ∈ {1, 2}, we have that Bh−1(rj,b) in U is equal to Bh−1(rj′,b′) in U .

To prove the inductive step, consider any j, j′ ∈ {1, . . . , |T∆,k|}, and any b, b′ ∈ {1, 2}. By the
construction of U , the view Bh(rj,b) in U consists of the following parts:

(1) The view of rj,b at distance h within Tj,b,

(2) A path P of length h with:

• the node rj,b as one endpoint of P with port labeled ∆,

• h − 1 internal nodes of degree 2 with port 1 leading in the direction towards rj,b (and
the other port labeled 0), and,

• a second endpoint of P with port 1 leading in the direction towards rj,b, but with degree
2 in U .

(3) An edge on the cycle from rj,b to some rα1,β1 with α1 ∈ {1, . . . , |T∆,k|} and β1 ∈ {1, 2}, with
the port at rj,b labeled ∆ + 1 and the port at rα1,β1 labeled ∆ − 1, together with the view
Bh−1(rα1,β1), and,

(4) An edge on the cycle from rj,b to some rα2,β2 with α2 ∈ {1, . . . , |T∆,k|} and β2 ∈ {1, 2}, with
the port at rj,b labeled ∆ − 1 and the port at rα2,β2 labeled ∆ + 1, together with the view
Bh−1(rα2,β2).

Similarly, by the construction of U , the view Bh(rj′,b′) in U consists of the following parts:

(1) The view of rj′,b′ at distance h within Tj′,b′ ,

(2) A path P ′ of length h with:

• the node rj′,b′ as one endpoint of P ′ with port labeled ∆,

• h − 1 internal nodes of degree 2 with port 1 leading in the direction towards rj′,b′ (and
the other port labeled 0), and,

• a second endpoint of P with port 1 leading in the direction towards rj′,b′ , but with degree
2 in U .

(3) An edge on the cycle from rj′,b′ to some rα′
1,β

′
1
with α′

1 ∈ {1, . . . , |T∆,k|} and β′1 ∈ {1, 2}, with
the port at rj′,b′ labeled ∆ + 1 and the port at rα′

1,β
′
1
labeled ∆ − 1, together with the view

Bh−1(rα′
1,β

′
1
), and,

(4) An edge on the cycle from rj′,b′ to some rα′
2,β

′
2
with α′

2 ∈ {1, . . . , |T∆,k|} and β′2 ∈ {1, 2}, with
the port at rj′,b′ labeled ∆ − 1 and the port at rα′

2,β
′
2
labeled ∆ + 1, together with the view

Bh−1(rα′
2,β

′
2
).

First, we see that part (1) of the two views are equal by Lemma 2.4 since h ≤ k − 1. Part
(2) of the two views are equal since P and P ′ are labeled in the same way. Part (3) of the two
views are equal since, by the induction hypothesis, the views Bh−1(rα1,β1) and Bh−1(rα′

1,β
′
1
) are

equal. Similarly, part (4) of the two views are equal since, by the induction hypothesis, the views
Bh−1(rα2,β2) and Bh−1(rα′

2,β
′
2
) are equal. This concludes the proof that Bh(rj,b) in U is equal to

Bh(rj′,b′) in U , which completes the inductive step.

16



Next, we show that, when considering truncated views up to distance k − 1, each node in each
Tj,b in Gσ has a ‘twin’ elsewhere in the graph with the same view. In fact, we will prove a stronger
version of the result so that it holds for truncated views up to distance k, which we will reuse later
when considering the advice size for the Port Election task in Gσ.

Proposition 3.3. Consider any Gσ ∈ U∆,k, any j ∈ {1, . . . , |T∆,k|} and any b ∈ {1, 2}. For each
node v ∈ Tj,b − {rj,b}, there exists a node v′ 6= v such that Bk(v) in Gσ is equal to Bk(v′) in Gσ.

Proof. Consider any fixed j ∈ {1, . . . , |T∆,k|} and b ∈ {1, 2}, and consider any node v ∈ Tj,b−{rj,b}.
There are two cases to consider depending on which part of Tj,b the node v is located in:

• Suppose that v is contained in the augmented tree Tj . We prove that there is a node in Tj,3−b
with the same view as v up to distance k. Note that Tj,b and Tj,3−b are the trees Tj,1 and
Tj,2. According to the construction in Building Block 3 of Section 2.2.1, Tj,1 and Tj,2 are
constructed using the same tree Tj, so it follows that there is a node v′ in Tj,3−b that is at
the same location within Tj as v is located within Tj,b. We show that v and v′ have the same
view up to distance k. The view of v up to distance k consists of two parts: paths of length
k contained entirely within Tj (we’ll call these type-1 paths), and, paths of length k that
pass through rj,b and have a subpath of length at most k − 1 outside of Tj (we’ll call these
type-2 paths). Regarding type-1 paths: by the choice of v′ within Tj,3−b (i.e., v and v′ are
copies of the same node within Tj) the set of paths that originate at v and lie entirely within
Tj is the same as the set of paths that originate at v′ and lie entirely within Tj. Regarding
type-2 paths: the fact established in the previous sentence implies that the path with v and
rj,b as endpoints in Tj,b is the same as the path with v′ and rj,3−b as endpoints in Tj,3−b. By
Proposition 3.2, the views of rj,b and rj,3−b are identical up to distance k − 1. So, the set
of paths of length h ≤ k − 1 starting from rj,b is the same as the set of paths of length h
starting from rj,3−b. It follows that the set of type-2 paths starting at v is the same as the
set of type-2 paths starting at v′. This concludes the proof that the views of v and v′ are
identical up to distance k.

• Suppose that v is contained in the path P appended to Tj to form Tj,b. Consider any
j′ ∈ {1, . . . , |T∆,k|} − {j}. According to the construction in Building Block 3 of Section 2.2.1,
Tj,b and Tj′,b are constructed by appending the same path P of length k + 1 to Tj and Tj′ ,
respectively. Denoting by h ≥ 1 the distance from v to rj,b, let v

′ be the node at distance h
from rj′,b in the appended path P of Tj′,b. We show that v and v′ have the same view up to
distance k. The view of v up to distance k consists of two parts: paths of length k contained
entirely within P (we’ll call these type-1 paths), and, paths of length k that pass through rj,b
and have a subpath of length k − h outside of P (we’ll call these type-2 paths). Regarding
type-1 paths: by the choice of v′ within the appended path P (i.e., v and v′ are copies of the
same node within P ) the set of paths that originate at v and lie entirely within P is the same
as the set of paths that originate at v′ and lie entirely within P . Regarding type-2 paths: the
fact established in the previous sentence implies that the path with v and rj,b as endpoints
in P is the same as the path with v′ and rj′,b as endpoints in Tj′,b. By Proposition 3.2, the
views of rj,b and rj′,b are identical up to distance k − h. So, the set of paths of length k − h
starting from rj,b is the same as the set of paths of length k− h starting from rj′,b. It follows
that the set of type-2 paths starting at v is the same as the set of type-2 paths starting at v′.
This concludes the proof that the views of v and v′ are identical up to distance k.

17



Finally, we consider the remaining nodes in Gσ, i.e., each node in Gσ that is reachable from
an rj,b using a path whose first outgoing port is ∆. We show that, when considering truncated
views up to distance k− 1, each such node has a ‘twin’ elsewhere in the graph with the same view.
Once again, we will prove a stronger version of the result so that it holds for truncated views up to
distance k, which will be reused later when considering the advice size for the Port Election task
in Gσ . For any j ∈ {1, . . . , |T∆,k|}, denote by Hj,1 the subtree rooted at rj,1 consisting of all nodes
reachable from rj,1 by a path with first outgoing port ∆. Similarly, denote by Hj,2 the subtree
rooted at rj,2 consisting of all nodes reachable from rj,2 by a path with first outgoing port ∆.

Fact 3.4. For any Gσ ∈ U∆,k and any j ∈ {1, . . . , |T∆,k|}, the trees Hj,1 and Hj,2 are identical.

Proof. The result is true about the template graph U , which can be verified by the description of
its construction. To create Gσ from template graph U , the same port ∆− 1+ sj was swapped with
∆− 1 at the nodes rj,1,1 and rj,1,2, so it follows that the subtrees are identical in Gσ as well.

Proposition 3.5. Consider any Gσ ∈ U∆,k and any j ∈ {1, . . . , |T∆,k|}. For any node in v1 ∈ Hj,1

other than the root rj,1, the corresponding copy v2 of v1 in Hj,2 has the same view as v1 up to
distance k in Gσ.

Proof. Consider any v1 ∈ Hj,1, and let v2 be the corresponding copy of v1 in Hj,2. There are two
cases to consider:

• Suppose that the distance between v1 and rj,1 is greater than k. Then v1’s view up to distance
k does not include rj,1, and v2’s view up to distance k does not include rj,2, i.e., the views of
v1 and v2 are contained strictly inside Hj,1 and Hj,2, respectively. By Fact 3.4, Hj,1 and Hj,2

are identical, which implies that the views of v1 and v2 up to distance k are identical in Gσ.

• Suppose that the distance between v1 and rj,1 is at most k. Let d ≥ 1 denote the distance
between v1 and rj,1 (which is also the distance between v2 and rj,2). The part of v1’s view
that lies completely within Hj,1 is identical to the part of v2’s view that lies completely within
Hj,2, since Hj,1 and Hj,2 are identical (by Fact 3.4). The rest of v1’s view consists of rj,1’s
view up to distance k−d, and the rest of v2’s view consists of rj,2’s view up to distance k−d.
However, as d ≥ 1, Proposition 3.2 tells us that Bk−d(rj,1) in Gσ is equal to Bk−d(rj,2) in Gσ ,
which completes the proof that the views of v1 and v2 up to distance k are identical in Gσ.

Together, Propositions 3.2, 3.3, and 3.5 give us the following result, which tells that no node
has a unique view up to distance k − 1 in Gσ. This implies that the S -index of GS is at least k.

Lemma 3.6. For any Gσ ∈ U∆,k and any node v ∈ Gσ, there exists a node v′ ∈ Gσ − {v} such
that Bk−1(v) = Bk−1(v′) in Gσ.

Corollary 3.7. ψS (Gσ) ≥ k for any graph Gσ ∈ U∆,k.

We now turn our attention to the PE -index of graphs in U∆,k. We set out to prove that the
PE -index is at most k for any graph Gσ ∈ U∆,k. This fact will allow us to conclude that ψPE (Gσ) =

18



ψS (Gσ) = k since, by Fact 1.1 and Corollary 3.7, we have already shown that ψPE (Gσ) ≥ ψS (Gσ) ≥
k.

We first prove a structural result which shows that each cycle node in Gσ has a unique truncated
view up to distance k. This fact will be exploited by our Port Election algorithm when choosing
a leader node, since, given a complete map of the graph, each node can find the lexicographically
smallest view from among the views of the cycle nodes, and compare it to its own view up to
distance k.

Lemma 3.8. For any integers ∆ ≥ 4 and k ≥ 1, consider any Gσ ∈ U∆,k. For any j ∈
{1, . . . , |T∆,k|}, any b ∈ {1, 2}, and any node v 6= rj,b, we have that Bk(rj,b) 6= Bk(v) in Gσ.

Proof. By construction of the template graph U when ∆ ≥ 4, the nodes with degree exactly ∆+ 2
are precisely the cycle nodes (all other nodes either have degree at most ∆, or degree exactly
2∆−1). The construction of each Gσ ∈ U∆,k does not change the node degrees, so the same is true
for each Gσ.

Fix an arbitrary cycle node rj,b ∈ Gσ. From the above observation, for any node v ∈ Gσ that
is not a cycle node, the nodes rj,b and v have different degree, so Bk(rj,b) 6= Bk(v) in Gσ.

The remaining case to consider is when v = rj′,b′ with j
′ 6= j or b′ 6= b.

• Suppose that b′ 6= b. Without loss of generality, assume that b = 1 and b′ = 2. By construction
(Building Block 3 of Section 2.2.1), the tree Tj,b has an appended path of length k+1 starting
at its root rj,b, and the port sequence π along this path in Bk(rj,b) has its first port equal to
0 and its final port equal to 1. However, by construction (Building Block 3 of Section 2.2.1),
the tree Tj,b′ has an appended path starting at its root rj,b′ = v, and the port sequence along
this path in Bk(v) has first port equal to 0 and its final port equal to 0. Since no other port
at v is labeled 0, it follows that the port sequence π does not exist in Bk(v) starting at v.
This proves that Bk(v) 6= Bk(rj,b).

• Suppose that j′ 6= j. It follows from our construction (Building Blocks 2 and 3 of Section
2.2.1) that Tj,b is built using a tree Tj = TX , and Tj′,b′ is built using a tree Tj′ = TY ,
where X = (x1, . . . , xz) and Y = (y1, . . . , yz) are distinct sequences of integers in the range
1, . . . ,∆−1. Recall that TX has height k+1, has z nodes at distance k from its root rj,b, and
the ith node at distance k from the root has xi degree-1 neighbours. (The ordering of nodes
at distance k is based on the lexicographic ordering of the sequence of ports leading from the
root to each such node.) Similarly, TY has height k+1, has z nodes at distance k from its root
rj′,b′ , and the ith node at distance k from the root has yi degree-1 neighbours. As X and Y are
distinct, there exists an index i such that xi 6= yi. Therefore, in the augmented view Bk(rj,b),
there is a path with port sequence π starting at r whose other endpoint is labeled with xi,
and, in the augmented view Bk(rj′,b′), the path with the same port sequence π starting at r
exists, but the other endpoint is labeled with yi 6= xi. This proves that Bk(rj,b) 6= Bk(rj′,b′),
i.e., Bk(rj,b) 6= Bk(v).

Lemma 3.8 implies that there is a unique cycle node with the smallest lexicographic view, and,
in what follows, we will denote this node by rmin.

To prove that the PE -index is at most k for any graph Gσ ∈ U∆,k, we provide a distributed
algorithm that solves Port Election using k rounds of communication, assuming that each node

19



has a complete map of the graph Gσ. At a high level, the algorithm partitions the nodes of Gσ
into three types: ‘heavy’ nodes with degree 2∆− 1, ‘medium’ nodes with degree ∆+ 2, and ‘light’
nodes with degree less than ∆+2. The medium nodes are precisely the cycle nodes, so they follow
a strategy similar to the one described above to solve S : each cycle node has a unique truncated
view up to distance k, and so given a complete map of the graph, each cycle node can find rmin and
compare Bk(rmin) with its own view up to distance k. The unique cycle node rmin whose view is a
match will output ‘leader’, and all other cycle nodes output the port ∆ + 1, which is the first port
on a simple path around the cycle towards rmin. The heavy nodes are precisely the rj,1,1 and rj,1,2
nodes for each j ∈ {1, . . . , |T∆,k|}. After k rounds of communication, their view contains the entire
Tj,1,1 or Tj,1,2 of which they are the root. Given a complete map of the network, they can locate
Tj,1,1 and Tj,1,2 and conclude that they are root of one of these two trees. Regardless of which tree
they belong to, the same port leads towards the cycle in Gσ, which they will output. Finally, after
k rounds of communication, each light node either: has degree 1, in which case it outputs 0 (its
only outgoing port); or, has at least one medium node in its view, in which case it outputs the port
leading towards the closest such medium node; or, otherwise, it has a heavy node in its view, in
which case it outputs the port leading towards this heavy node. The above argument is formalized
in the following result.

Lemma 3.9. For any integers ∆ ≥ 4 and k ≥ 1, ψPE (Gσ) = ψS (Gσ) = k for any graph Gσ ∈ U∆,k.

Proof. For any graph Gσ ∈ U∆,k, we note that ψPE (Gσ) ≥ ψS (Gσ) ≥ k by Fact 1.1 and Corollary
3.7. To complete the proof of the desired result, it suffices to prove that ψPE (Gσ) ≤ k. We provide
a distributed algorithm that solves Port Election using k rounds of communication, assuming that
each node has a complete map of the graph Gσ. First, each node v uses k communication rounds
to obtain Bk(v), i.e., their view up to distance k. Based on v’s own degree, it follows one of the
following strategies:

• If v’s degree is 1: output 0.

• If v’s degree is ∆+2: compute Bk(v′) for each cycle node v′ in the network map. Let rmin be
the lexicographically smallest such view. If Bk(v) = Bk(rmin), then output ‘leader’, otherwise
output ∆ + 1.

• If v’s degree is 2∆ − 1: compute Bk(v′) for each node v′ with degree 2∆ − 1 in the network
map. Let rmatch be one such node on the map that has Bk(rmatch) = Bk(v). Output the port
p that is the first port on a simple path from rmatch to the network’s cycle.

• In all other cases: if Bk(v) contains a node with degree ∆ + 2, then let v′ be such a node,
and, otherwise, let v′ be a node with degree 2∆ − 1 in Bk(v). Output the port p that is the
first port on a simple path from v to v′.

We now confirm that this k-round algorithm solves leader election.
First, observe that exactly one cycle node outputs ‘leader’: indeed, according to the algorithm,

Case 3.2 is the only one that results in a node outputting ‘leader’. In this case, the node’s degree is
∆+ 2, which means that it is only executed by the cycle nodes. Further, by Lemma 3.8, there is a
unique cycle node whose view up to distance k is lexicographically smallest, so only one cycle node
will output ‘leader’. All other cycle nodes will output ∆ + 1, which is the first port on a simple
path towards the leader (i.e., the path obtained by following port ∆ + 1 repeatedly).

20



Next, we show that all other nodes output the first port on a simple path towards a cycle node
(which is sufficient since, from such a cycle node, there is a simple path on the cycle that leads to
the leader). Each node v that is not on the cycle in Gσ falls into one of the following cases:

• Suppose that v has degree equal to 1. As v only has one incident edge, this edge is on the
simple path from v to the closest cycle node. By the construction of Gσ , v’s port on this edge
is labeled 0, and, according to the algorithm, v’s output is 0.

• Suppose that, for some j ∈ {1, . . . , |T∆,k|} and b ∈ {1, 2}, node v is contained in Tj,b − {rj,b}.
We may assume that v does not have degree equal to 1, as this is handled in the previous
case. By the construction of Tj,b, all nodes other than rj,b have degree at most ∆, so v follows
Case 3.2 of the algorithm’s strategy. Further, as Tj,b has height k + 1, all non-leaf nodes are
within distance k of the root rj,b. It follows that v’s view up to distance k contains rj,b, i.e.,
a node with degree ∆ + 2. According to the algorithm, v outputs the first port on a simple
path towards rj,b, i.e., towards a cycle node.

• Suppose that v = rj,1,1 or v = rj,1,2 for some j ∈ {1, . . . , |T∆,k|}. By construction, v has
degree 2∆ − 1, so v follows Case 3.2 of the algorithm’s strategy. According to this strategy,
v finds a node rmatch in the network map such that Bk(rmatch) = Bk(v). Claim 1 (proven
below) implies that rmatch is equal to rj′,1,1 or rj′,1,2 for exactly one j′ ∈ {1, . . . , |T∆,k|}, which
implies that j′ = j. In particular, v has narrowed its own location within the map down to
two possibilities, one of which is its actual location within the network. By the construction
of Gσ using the template graph U , the same port is swapped at both rj,1,1 and rj,1,2 for any
fixed j ∈ {1, . . . , |T∆,k|}. This implies that the same port p at rj,1,1 and rj,1,2 is the first port
on a simple path leading towards the closest cycle node, which is the algorithm’s output.

Claim 1. For any j ∈ {1, . . . , |T∆,k|}, we have that Bk(rj,1,1) = Bk(rj,1,2), and, for any node
v 6∈ {rj,1,1, rj,1,2}, we have that Bk(v) 6= Bk(rj,1,1).

To prove the claim, fix an arbitrary j ∈ {1, . . . , |T∆,k|}.

Proposition 3.5 implies that Bk(rj,1,1) = Bk(rj,1,2).

Next, consider any v 6∈ {rj,1,1, rj,1,2}. If v does not have degree exactly 2∆− 1, then Bk(v) 6=
Bk(rj,1,1) since rj,1,1 has degree 2∆ − 1.

The remaining case to consider is when v ∈ {rj′,1,1, rj′,1,2} for some j′ ∈ {1, . . . , |T∆,k|}− {j}.
Without loss of generality, assume that v = rj′,1,1 (since the case v = rj′,1,2 follows from the
fact that Bk(rj′,1,1) = Bk(rj′,1,2)). It follows from our construction of Gσ that rj,1,1 is the root
of Tj,1,1 and that rj′,1,1 is the root of Tj′,1,1. Further, Tj,1,1 is a copy of Tj,1, and Tj′,1,1 is a
copy of Tj′,1. By the construction of Tj,1 and Tj′,1 (Building Blocks 2 and 3 of Section 2.2.1),
it follows that Tj,1 is built using a tree Tj = TX , and Tj′,1 is built using a tree Tj′ = TY ,
where X = (x1, . . . , xz) and Y = (y1, . . . , yz) are distinct sequences of integers in the range
1, . . . ,∆−1. Recall that TX has height k+1, has z nodes at distance k from its root, and the
ith node at distance k from the root has xi degree-1 neighbours. (The ordering of nodes at
distance k is based on the lexicographic ordering of the sequence of ports leading from the root
to each such node.) Similarly, TY has height k+1, has z nodes at distance k from its root, and
the ith node at distance k from the root has yi degree-1 neighbours. As X and Y are distinct,
there exists an index i such that xi 6= yi. Therefore, in the augmented view Bk(rj,1,1), there

21



is a path with port sequence π starting at r whose other endpoint is labeled with xi, and, in
the augmented view Bk(rj′,1,1), the path with the same port sequence π starting at r exists,
but the other endpoint is labeled with yi 6= xi. This proves that Bk(rj,1,1) 6= Bk(rj′,1,1), i.e.,
Bk(rj,1,1) 6= Bk(v), and concludes the proof of the claim.

• Suppose that, for some j ∈ {1, . . . , |T∆,k|} and some b ∈ {1, 2}, node v is contained in
Tj,1,b − {rj,1,b}. We may assume that v does not have degree equal to 1, as this is handled in
a previous case. By the construction of U , the tree Tj,1,b is simply a copy of the tree Tj,1. So,
by construction, all nodes other than rj,1,b in Tj,1,b have degree at most ∆, therefore v follows
Case 3.2 of the algorithm’s strategy. Further, as Tj,1,b has height k+1, all non-leaf nodes are
within distance k of the root rj,1,b. It follows that v’s view up to distance k contains rj,1,b,
i.e., a node with degree 2∆ − 1. Note that only the cycle nodes in Gσ have degree ∆ + 2,
and v’s distance to the cycle is greater than k, so v’s view up to distance k does not contain
a node with degree ∆ + 2. Thus, according to the algorithm, v outputs the first port on a
simple path towards rj,1,b. Since rj,1,b is on a simple path between v and rj,b, it follows that
v’s output is the first port on a simple path towards a cycle node.

• Suppose that v does not belong to any of the previous cases. From the construction of the
template graph U , it follows that v is an internal node on an induced path P of length k + 1
with one endpoint of P equal to rj,1,b for some j ∈ {1, . . . , |T∆,k|} and b ∈ {1, 2}. If the other
endpoint of P is rj,b, then it follows that v is within distance k from rj,b, which is a node
with degree ∆ + 2, so it outputs the first port on a simple path towards the cycle node rj,b.
Otherwise, the other endpoint of P has degree 1, so there is no node within distance k from
v that has degree ∆+2. However, v is within distance k from rj,1,b, which has degree 2∆−1,
so v outputs the first port on a simple path towards rj,1,b. Since rj,1,b is on a simple path
from v to rj,b, it follows that v outputs the first port on a simple path towards the cycle node
rj,b.

We now proceed to analyze the amount of advice needed to solve Port Election in the graph
class U∆,k. First, we observe that any algorithm that solves PE for the graphs in U∆,k must elect
one of the cycle nodes as leader. The proof of this fact follows directly from Propositions 3.3 and
3.5, as these two results show that any node that does not belong to the network’s cycle has at least
one ‘twin’ in the network that has the same view up to distance k. hence we have the following
lemma.

Lemma 3.10. Consider any algorithm A that, for any graph Gσ ∈ U∆,k, solves PE in ψPE (Gσ)
rounds. At the end of the execution of A on any fixed graph Gσ ∈ U∆,k, the node in Gσ that outputs
‘leader’ is the root node rj,b of Tj,b for some j ∈ {1, . . . , |T∆,k|} and some b ∈ {1, 2}.

The main theorem of this section shows that the size of advice needed to solve PE in the class
U∆,k in minimum time is exponential in ∆, and thus exponentially larger than the size of advice
needed to solve S in minimum time in this class.

Theorem 3.11. Consider any algorithm A that solves PE in ψPE (G) rounds for every graph G.
For all integers ∆ ≥ 4, k ≥ 1, there exists a graph G with maximum degree 2∆ − 1 and with
ψPE (G) = ψS (G) = k for which algorithm A requires advice of size Ω((∆− 1)(∆−2)(∆−1)k−1

log ∆).

22



Proof. To obtain a contradiction, assume that there exists an algorithm A that solves PE in k
rounds for all graphs in the class U∆,k with the help of an oracle that provides advice of size
1
4 |T∆,k| log2∆. There are at most 21+( 1

4
|T∆,k| log2 ∆) binary advice strings whose length is at most

1
4 |T∆,k| log2∆. By Fact 2.3, along with the assumptions that ∆ ≥ 4 and k ≥ 1, we see that
1
4 |T∆,k| log2∆ = 1

4 (∆− 1)(∆−2)·(∆−1)k−1
· log2 ∆ ≥ 1, so the number of binary advice strings whose

length is at most 1
4 |T∆,k| log2 ∆ is at most 21+( 1

4
|T∆,k| log2 ∆) ≤ 2

1
2
|T∆,k| log2 ∆ = ∆

1
2
|T∆,k|. But, by Fact

3.1, the total number of graphs in U∆,k is (∆− 1)|T∆,k| > ∆
1
2
|T∆,k|, so, by the Pigeonhole Principle,

the oracle provides the same advice for at least two graphs Gα and Gβ from U∆,k, where α and β
are distinct sequences of integers of length |T∆,k|.

By Lemma 3.10, at the end of any execution of A on any graph Gσ ∈ U∆,k, the elected leader is a
cycle node. It follows that, in bothGα andGβ , all nodes rj,1,1 and rj,1,2 for j ∈ {1, . . . , |T∆,k|} output
the unique integer that labels the first port along the simple path towards their corresponding rj,1
and rj,2 on the cycle. Since α 6= β, there exists an j′ ∈ {1, . . . , |T∆,k|} such that αj′ 6= βj′ . Recall
from our construction that Gα was obtained from the template graph U by swapping the ports
label ∆ − 1 and ∆ − 1 + αj′ at nodes rj′,1,1 and rj′,1,2, and Gβ was obtained from the template
graph U by swapping the port labels ∆−1 and ∆−1+βj′ at nodes rj′,1,1 and rj′,1,2. In particular,
this means that, at rj′,1,1, the first port along the simple path towards its corresponding rj′,1 is
different in Gα than in Gβ . However, for any fixed j ∈ {1, . . . , |T∆,k|}, the node rj,1,1 has the same
view up to distance k in both graphs Gα and Gβ (which is the same as its view in the template
graph, i.e., the subtree Tj,1,1, along with ∆ induced paths of length k, each with a different incident
port at rj,1,1 from the range ∆− 1, . . . , 2∆− 2). Since each node receives the same advice string in
the execution of A in both graphs Gα and Gβ , the node rj′,1,1 will output the same port in both
executions (due to indistinguishability), which is a contradiction.

4 Port Path Election and Complete Port Path Election

In this section, we prove that the size of advice needed to solve CPPE (or PPE) in minimum time
is exponentially larger than the size of advice needed to solve S . More specifically, for sufficiently
large k and ∆, we construct a class of graphs such that: ψS (G) = ψPPE (G) = ψCPPE (G) = k for
each graph in the class, solving S in time k in this class can be done with advice of size at most
O((∆− 1)k log ∆) (in view of Theorem 2.2), but there exists a graph in the class for which the size

of advice needed to solve CPPE (or PPE) in time k is at least Ω(2∆
k/6

).

4.1 Construction of Jµ,k

Consider any two integers µ ≥ 2 and k ≥ 4. Denote by T h a port-labeled full µ-ary tree of height h.
In particular, the root has degree µ with ports labeled 0, . . . , µ − 1, each internal node has degree
µ+ 1 with port µ leading to its parent and ports 0, . . . , µ− 1 leading to its children, and each leaf
has port 0 leading to its parent.

Part 1: Construct layer graphs. We begin by constructing a collection of graphs L0, . . . , Lk,
called layer graphs, where the graph Lj in this set has diameter j. Define L0 to be a single node
called r00. Define L1 to be a clique with µ nodes (and any port labeling using 0, . . . , µ − 2). For
each j ≥ 1, construct L2j as follows:

23



1. Take two copies of T j , denoted by T j0 and T j1 with roots r2j0 and r2j1 , respectively.

2. For each leaf ℓ0 ∈ T j0 , identify ℓ0 with the leaf ℓ1 ∈ T j1 such that the sequence of ports on

the path from r2j1 to ℓ1 is the same as the sequence of ports on the path from r2j0 to ℓ0. The
nodes corresponding to these identified leaves will be called the middle nodes of L2j .

3. For each middle node of L2j, label the port on the incident edge from T j0 with 0, and label

the port on the incident edge from T j1 with 1.

For each j ≥ 1, construct L2j+1 as follows:

1. Take two copies of T j , denoted by T j0 and T j1 with roots r2j+1
0 and r2j+1

1 , respectively.

2. For each leaf ℓ0 ∈ T j0 , add an edge between ℓ0 and the leaf ℓ1 ∈ T j1 such that the sequence

of ports on the path from r2j+1
1 to ℓ1 is the same as the sequence of ports on the path from

r2j+1
0 to ℓ0. The leaves of T j0 and T j1 will be called the middle nodes of L2j+1.

3. For each edge connecting two middle nodes, label both ports on the edge with 1.

Figure 4 provides examples of the resulting layer graphs. From the description of the construction,
we obtain the following result about the size of each layer graph.

Fact 4.1. The number of nodes in L0 is 1, and the number of nodes in L1 is µ. For each j ≥ 1,

the number of nodes in L2j is µj+1+µj−2
µ−1 , and the number of nodes in L2j+1 is 2µj+1−2

µ−1 .

In what follows, we will sometimes refer to a node in a layer graph using the outgoing port
sequence that can be used to reach it starting from a node rm0 or rm1 for some m ≥ 0. In particular,
for any given integer sequence σ, the notation vm0 σ will denote the node in Lm that can be reached
starting from rm0 using the integers in σ to trace a path of outgoing ports. The notation vm1 σ will
be used analogously but starting from the node rm1 . If |σ| = 0, then vm0 σ = rm0 and vm1 σ = rm1 .

Part 2: Join layer graphs together to create component graphs. Next, we construct
a component graph H by starting with the disjoint union of the layer graphs L0, L1, . . . , Lk−1 along
with two copies of Lk (denoted by Lk,1 and Lk,2) and then adding edges between consecutive layer
graphs in the following way:

• Edges between L0 and L1. For each node v ∈ L1, add an edge {r00, v}. Label the ports at
r00 using 0, . . . , µ− 1, and label the newly-created port at each node in L1 by µ− 1.

• Edges between L1 and L2. For each i ∈ 0, . . . , µ − 1, add an edge between v00 (i) and

v20 (i). At each of these added edges, label the port at v00 (i) with µ, and label the port at

v20 (i) with 2. Next, add an edge connecting v00 (0) to r20. On this edge, label the port at

v00 (0) with µ+1, and label the port at r20 with µ. Similarly, add an edge connecting v00 (µ−1)

to r21. On this edge, label the port at v00 (µ−1) with µ+ 1, and label the port at r21 with µ.

• Edges between Lm and Lm+1 when 2 ≤ m < k − 1.

– Add an edge between rm0 and rm+1
0 , and add an edge between rm1 and rm+1

1 . Label the
new ports at rm0 and rm1 with µ+ 1, and label the new ports at rm+1

0 and rm+1
1 with µ.

24



r
0

0

L0

0
1

0

1

1
0

L1

0

1

2

0

1

2

0

0

0

1

1

1

r
2
0 r

2
1

L2

0

1

2

0

1

2

0

0

0

11

11

11

0

0

0

r
3
0 r

3
1

L3

r
4

0
r
4

1

0

1

2

0 1

0 1

0

1

2

0 1

0

1

2

0 1

0 1

0

1

2

0 1

0

1

2

0 1

0 1

0

1

2

0 1

3

3

3

3

3

3

0

1

2

0

1

2

L4

r
5

0
r
5

1

0

1

2

0 0

0 0

0

1

2

0 0

11

11

11

0

1

2

0 0

0 0

0

1

2

0 0

11

11

11

0

1

2

0 0

0 0

0

1

2

0 0

11

11

11

1

2

0

1

2

0

3

3

3 3

3

3

L5

Figure 4: Layer graphs L0, L1, L2, L3, L4, L5 when µ = 3

– Connect each non-middle node of Lm (other than rm0 and rm1 ) to its corresponding non-
middle node in Lm+1. Formally, for each sequence σ consisting of integers from the
range {0, . . . , µ− 1} such that 1 ≤ |σ| <

⌊
m
2

⌋
, add an edge between vm0 σ and vm+1

0 σ , and
add an edge between vm1 σ and vm+1

1 σ . At v
m
0 σ and vm1 σ, label the new port with µ+2.

At vm+1
0 σ and vm+1

1 σ , label the new port with µ+ 1.

– Case 1: m is even. Connect each middle node of Lm to its two corresponding middle
nodes in Lm+1. Formally, for each sequence σ consisting of integers from the range
{0, . . . , µ − 1} such that |σ| = m

2 , add an edge between vm0 σ and vm+1
0 σ , label the new

port at vm0 σ with 3 if m = 2, or with 4 if m > 2, and label the new port at vm+1
0 σ with 2.

Also, add an edge between vm0 σ and vm+1
1 σ , label the new port at vm0 σ with 4 if m = 2,

or with 5 if m > 2, and label the new port at vm+1
1 σ with 2.

– Case 2: m is odd. In what follows, we use ++ to denote sequence concatenation.
Connect each middle node of Lm to its corresponding node in Lm+1, as well as the µ
middle nodes in Lm+1 adjacent to it. Formally, for each sequence σ consisting of integers
from the range {0, . . . , µ− 1} such that |σ| = m−1

2 :

∗ Add an edge between vm0 σ and vm+1
0 σ , and add an edge between vm1 σ and vm+1

1 σ . At
vm0 σ and vm1 σ , label the new port with 3. At vm+1

0 σ and vm+1
1 σ , label the new port

with µ+ 1.

∗ For each i ∈ {0, . . . , µ − 1}, add an edge between vm0 σ and vm+1
0 (σ++i), and add an

edge between vm1 σ and vm+1
1 (σ++i). For each added edge, label the new port at vm0 σ

25



0

v
0
0;(0)

v
0
0;(1)

v
0
0;(2)

r
0
0

v
2
0;(0)

v
2
0;(2)

r
2
1

0

1

2

2

2

2

4

3

3

0

0 0

1

2

0

1

2

0

0

0

1

1

1

1

1

1

0

r
3
0

v
3
0;(0)

v
3
0;(1)

v
3
0;(2)

3

2

2

0

1

2

0

0

v
3
1;(0)

v
3
1;(2)

r
3
1

3

0

1

2

0

0

0

1 1

1 1

1 1

4

4

3

3

2

4 2

4

r
2
0

3

3

3

2

2

2

3 2

4

4 2
v
3
1;(1)v

2
0;(1)

L0 L1 L2 L3

Figure 5: Subgraph of H induced by layers L0, L1, L2, and L3 when µ = 3. Grey edges were added
in Part 1 of the construction (edges within a layer), and black edges were added in Part 2 of the
construction (edges between different layers).

and vm1 σ with 4 + i, label the new port at vm+1
0 (σ++i) with 2, and label the new port

at vm+1
1 (σ++i) with 3.

• Edges between Lm and Lm+1 when m = k − 1. Add edges between Lk−1 and Lk,1
according to the m < k − 1 case above. Then, add edges between Lk−1 and Lk,2 using a
slightly modified version of the m < k − 1 case: increase the values of port labels used at
nodes in Lk−1 so that they do not conflict with the labels that were used when adding edges
between Lk−1 and Lk,1.

Figure 5 illustrates the edges added between layers L0, L1, L2, and L3. Figure 6 illustrates the
edges added between layers Lm and Lm+1 when m is odd and strictly less than k − 1. Figure 7
illustrates the edges added between Lm and Lm+1 when m is even and strictly less than k − 1.

The edges we added to connect the layer graphs were chosen in such a way that, from any node
v in the resulting component graph H, all the nodes in H are contained within v’s truncated view
up to distance k, but, there exist some nodes in the last layer Lk that are not within v’s truncated
view up to distance k− 1. This property will be formally proven and used later when arguing that
the S -index of each graph in our constructed class is at least k.

Part 3: Create a gadget graph using the component graph H. Create four copies
of the component graph H, which we refer to as left, top, right, and bottom component graphs,
denoted by HL, HT , HR, and HB, respectively. Merge the four r00 nodes of these component graphs
together to create a new node ρ that has degree 4µ. To avoid duplicate port labels at ρ due to the
merge, add µ to each port label at ρ in HT , add 2µ to each port label at ρ in HR, and add 3µ to
each port label at ρ in HB . The resulting graph is called the gadget Ĥ. Figure 8 illustrates the
constructed graph Ĥ.

Part 4: Create a template graph by chaining together gadget graphs. First, we
induce an ordering on the vertices of the layer graph Lk. Denote by z the number of nodes in
Lk. As described in Part 2 of the construction above, each node in Lk can be represented using

26



0

0

1

2

0

0

0

1

2

0

0

0

1 1

1 1

1 1

0

1

2

3

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

3

3

3

3

3

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

r
3
0

v
3
0;(0)

v
3
0;(1)

v
3
0;(2)

v
3
1;(0)

v
3
1;(2)

r
3
1

v
3
1;(1)

r
4
0 r

4
1

v
4
0;(0;0)

v
4
0;(0;2)

v
4
0;(0;1)

v
4
0;(0) v

4
1;(0)

v
4
0;(1;0)

v
4
0;(1;2)

v
4
0;(1;1)

v
4
0;(1) v

4
1;(1)

v
4
0;(2;0)

v
4
0;(2;2)

v
4
0;(2;1)

v
4
0;(2) v

4
1;(2)

3

3

3

4

4

4

32

32

32

32

32

32

32

32

32

L3

L4

4

3

4

3

3

3

3

4

4

4

6 5 4

6 5 4

6 5 4

4 5 6

4 5 6

4 5 6

Figure 6: Subgraph of H induced by layers L3 and L4 when µ = 3 and k > 5. Grey edges were
added in Part 1 of the construction (i.e., edges within a layer), and black edges were added in Part
2 of the construction (i.e., edges between different layers).27



0

1

2

3

0

1

2

3

3 3

0

1

2

3

3

0

1

2

3

3

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

1
2

0

1
2

3 3

0

1
2

0

1
2

0

1
2

0

1
2

1

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

1

1

1

0

1

2

0

0

0

0

1

2

0

0

0

0

1

2

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

0

1

2

0

1

2

3

L4

L5

v
4
0;(1;0)

v
4
0;(1;2)

v
4
0;(1;1)

v
4
0;(2;0)

v
4
0;(2;2)

v
4
0;(2;1)

v
4
0;(0;0)

v
4
0;(0;2)

v
4
0;(0;1)

v
4
1;(0)

v
4
1;(1)

v
4
1;(2)

r
4
1

v
5
1;(1;0)

v
5
1;(1;2)

v
5
1;(1;1)

v
5
1;(2;0)

v
5
1;(2;2)

v
5
1;(2;1)

v
5
1;(0;0)

v
5
1;(0;2)

v
5
1;(0;1)

v
5
1;(0)

v
5
1;(1)

v
5
1;(2)

r
5
1r

5
0

v
5
0;(0)

v
5
0;(1)

v
5
0;(2)

v
5
0;(1;0)

v
5
0;(1;2)

v
5
0;(1;1)

v
5
0;(2;0)

v
5
0;(2;2)

v
5
0;(2;1)

v
5
0;(0;0)

v
5
0;(0;2)

v
5
0;(0;1)

v
4
0;(0)

v
4
0;(1)

v
4
0;(2)

r
4
0

44

3 3

5

4

5

4

5

4

5

5

5

4

4

4

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Figure 7: Subgraph of H induced by layers L4 and L5 when µ = 3 and k > 5. Grey edges were
added in Part 1 of the construction (i.e., edges within a layer), and black edges were added in Part
2 of the construction (i.e., edges between different layers).

28



HR

HT

ρHL

HB

0

µ−1

2µ

3µ−1

µ 2µ−1

3µ 4µ−1

Figure 8: The gadget graph Ĥ

vkb σ for some b ∈ {0, 1} and some sequence σ of integers from the range {0, . . . , µ − 1}. By
prepending b to the sequence σ, we obtain a sequence that identifies each node, and we order the
resulting sequences using lexicographic order to obtain an ordered list w1, . . . , wz of the nodes of
Lk. Recalling that each component graph H contains two copies of Lk, i.e., Lk,1 and Lk,2, we use
the notation w1,1, . . . , wz,1 to refer to the nodes in Lk,1, and we use w1,2, . . . , wz,2 to refer to the
nodes in Lk,2.

Next, we describe how to build our template graph. For each i ∈ {0, . . . , 2z − 1}, denote by xi
the z-bit binary representation of i. Moreover, for each i ∈ {0, . . . , 2z − 1}, create a copy of the

gadget graph Ĥ, denote it by Ĥi and denote its ρ node by ρi. We create a template graph J by
taking the disjoint union of all Ĥ0, . . . , Ĥ2z−1, and adding edges as follows. For each i ≥ 1, and for
each q ∈ {1, . . . , z} such that the qth bit of xi is 1:

1. Add an edge between wq,1 and wq,2 in component HB of gadget Ĥi−1.

2. Add an edge between wq,1 and wq,2 in component HT of gadget Ĥi.

3. Add an edge between wq,1 in component HR of gadget Ĥi−1 and wq,2 in component HL of

gadget Ĥi.

4. Add an edge between wq,2 in component HR of gadget Ĥi−1 and wq,1 in component HL of

gadget Ĥi.

Figure 9 illustrates how gadgets are chained together to form the template graph J .
For each added edge {u1, u2}, label the port at u1 with degH(u1) (which is equal to degJ (u1)−1)

and label the port at u2 with degH(u2) (which is equal to degJ (u2) − 1). Note that, for any fixed
q, all port labels on all added edges are the same, since all endpoints are copies of the same node
wq in the component graph H.

Part 5: Construct the final class of graphs by copying the template graph and

swapping ports. Consider all binary sequences with length 2z−1. For an arbitrary such sequence
Y = (y0, . . . , y2z−1−1), construct a graph JY by taking a copy of the template graph J , and, for
each i such that yi = 1, perform the following modifications:

1. For each x ∈ {2µ, . . . , 3µ − 1}, swap ports x and x+ µ at node ρi
(i.e., the ports at HR and HB of node ρ of gadget Ĥi).

29



HR

HT

ρ4HL

HB

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

w
1
;1

w
1
;2

w
z
;1

w
z
;2

w
z
−

1
;1

w
z
−

1
;2

w
z
−

2
;1

w
z
−

2
;2

w
1
;1

w
1
;2

w
z
;1

w
z
;2

w
z
−

1
;1

w
z
−

1
;2

w
z
−

2
;1

w
z
−

2
;2

HR

HT

ρ5HL

HB

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

w
1
;1

w
1
;2

w
z
;1

w
z
;2

w
z
−

1
;1

w
z
−

1
;2

w
z
−

2
;1

w
z
−

2
;2

w
1
;1

w
1
;2

w
z
;1

w
z
;2

w
z
−

1
;1

w
z
−

1
;2

w
z
−

2
;1

w
z
−

2
;2

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

w1;1

w1;2

wz;1

wz;2

w
z−1;1

w
z−1;2

w
z−2;1

w
z−2;2

Figure 9: Example of edges added at layer-k nodes within gadgets Ĥ4 and Ĥ5 in the construction
of template graph J (Part 4)

2. For each x ∈ {0, . . . , µ− 1}, swap ports x and x+ µ at node ρ2z−1−i

(i.e., the ports at HL and HT of node ρ of gadget Ĥ2z−1−i).

Figure 10 demonstrates the three possible outcomes of performing the above to an arbitrary gadget
Ĥi, depending on the values of i and yi.

HR

HT

ρiHL

HB

0

µ−1

2µ

3µ−1

µ 2µ−1

3µ 4µ−1

(a)

HR

HT

ρiHL

HB

0

µ−1

3µ

4µ−1

µ 2µ−1

2µ 3µ−1

(b)

HR

HT

ρiHL

HB

µ

2µ−1

2µ

3µ−1

0 µ−1

3µ 4µ−1

(c)

Figure 10: For an arbitrary gadget Ĥi in JY , the outcome of performing Part 5 when: (a) yi = 0,
(b) yi = 1 and i ∈ {0, . . . , 2z−1 − 1}, (c) y2z−1−i = 1 and i ∈ {2z−1, . . . , 2z − 1}

Figure 11 gives an example of a fully constructed graph JY .
Taken over all possible binary sequences Y of length exactly 2z−1, the graphs JY together form

the class Jµ,k. We see immediately that the number of graphs in Jµ,k is the number of binary
sequences of length 2z−1, where z is the number of nodes in layer graph Lk (and this value can be
obtained using Fact 4.1).

Fact 4.2. Let z be the number of nodes in layer graph Lk. For any positive integers µ ≥ 2 and
k ≥ 4, we have |Jµ,k| = 22

z−1
, where µ⌊k/2⌋ ≤ z ≤ 4µ⌊k/2⌋.

30



ρ0

0

µ−1

3µ

4µ−1

µ 2µ−1

ρ1

0

µ−1

2µ

3µ−1

3µ 4µ−1

µ 2µ−1

ρ2z−2

0

µ−1

2µ

3µ−1

3µ 4µ−1

µ 2µ−1

ρ2z−1

µ

2µ−1

2µ

3µ−1

3µ 4µ−1

0 µ−1

2µ 3µ−1

Figure 11: The graph JY when Y = (1, 0, . . . , 0)

Proof. The number of binary sequences of length 2z−1 is 22
z−1

. For the upper bound on z, note

that by Fact 4.1, we have L2j ≤ L2j+1 = 2µj+1−2
µ−1 ≤ 2µj+1

µ/2 = 4µj . For the lower bound on z, note

that by Fact 4.1, we have L2j+1 ≥ L2j =
µj+1+µj−2

µ−1 ≥ µj+1

µ = µj . Substituting j = ⌊k/2⌋ gives us
the desired bounds on the number of nodes in layer graph Lk.

The following result about each JY ∈ Jµ,k will be instrumental in proving that the S -index is
always at least k, and it motivates many of the decisions made in the design of the graph class. In
particular, within k − 1 rounds of communication, no node can see all nodes in the kth layer of its
component, so it cannot determine which integer is ‘encoded’ by the added edges in the kth layer.
This will later be used to show that no node can determine with certainty in which gadget it is
located.

Lemma 4.3. For any i ∈ {0, . . . , 2z− 1}, any D ∈ {L, T,R,B}, and any node v in component HD

of gadget Ĥi, there exists an ℓ ∈ {1, . . . , z} such that wℓ,1 and wℓ,2 in HD of Ĥi are not contained
in Bk−1(v).

Proof. We introduce some new terminology to distinguish two types of edges. An edge whose
endpoints are within the same layer graph Lj for some j ∈ {0, . . . , k} will be called a layer edge.
An edge whose endpoints are in consecutive layer graphs Lj and Lj+1 for some j ∈ {0, . . . , k − 1}
will be called an inter-layer edge. To clarify to which layer a node u belongs, we will often write
the layer number as a superscript, e.g., uj belongs to layer graph Lj. We begin by proving some
technical claims about our construction of H. Claim 2 can be verified by a case analysis of Part 2
of the construction.

Claim 2. Consider any m ∈ {0, . . . , k}, and any two inter-layer edges {um, um+1} and {wm, wm+1}
such that um+1 6= wm+1. If d(um, wm) = t for some non-negative integer t, then d(um+1, wm+1) ≥ t.

Claim 3. Consider any node u in layer Lj1 and any node w in layer Lj2 such that 0 ≤ j1 ≤ j2 ≤ k.
There exists a shortest path between u and w such that all layer edges in the path have both endpoints
in Lj1.

To prove the claim, let wj1 be a node in layer Lj1 such that w can be reached from wj1 using
j2 − j1 inter-layer edges. Denote by vj1+1, . . . , vj2−1 the interior nodes along this path from wj1

to w, and note that each vi belongs to layer Li. Let P1 be any shortest path from u to w. Note
that P1 is some sequence of layer edges and inter-layer edges. For each i ∈ j1, . . . , j2, denote by
Vi the subsequence of vertices on the path P1 that are contained in layer Li. Note that each Vi
is non-empty, since, by construction, each edge in H connects two nodes in the same layer or in

31



consecutive layers. In view of Claim 2, we may assume, without loss of generality, that P1 has the
form Vj1 · Vj1+1 · · ·Vj2 . Let j

′ be the largest index in {j1, . . . , j2} such that Vj′ contains more than
one node. If j′ = j1 + 1, then we are done, as this would mean that only Vj1 contains multiple
nodes, and thus all layer edges would be contained in Lj1 , as desired. So, we proceed under the
assumption that j′ > j1 + 1, and demonstrate a procedure that will strictly decrease the value of
j′. Denote by aj′−1 the last node in Vj′−1, and denote by bj′ the first node of Vj′ .

• Suppose that bj′ = vj′ . We create a new path P2 consisting of the node sequence Vj1 · · ·Vj′−1 ·
vj′ · vj′+1 · · · vj2 .

• Suppose that bj′ 6= vj′. Note that the edge {aj′−1, bj′} is an inter-layer edge. Consider the
distance between aj′−1 and vj′−1, and denote this distance by t. By Claim 2, the distance
between bj′ and vj′ is at least t. So, we create a new path P2 consisting of the node sequence
Vj1 · · ·V

′
j′−1 · vj′ · Vj′+1 · · · Vj2 , where V

′
j′−1 is the concatenation of the sequence Vj′−1 and the

shortest path from aj′−1 and vj′−1.

In both cases, P2 is also a shortest path between u and w. However, observe that P2 can be written
as the concatenation of sequences Wj1 · · ·Wj2 , where each Wi is the subsequence of vertices on the
path P2 that are contained in layer Li, and, note that the largest index j′ in {j1, . . . , j2} such that
Wj′ contains more than one node is strictly smaller than the value of j′ for the path P1. Repeating
the above procedure enough times, we will eventually reach the case where j′ = j1 + 1, which, as
remarked earlier, would complete the proof of Claim 3.

Claim 4. Consider any j ∈ {2, . . . , k} and any node wj in layer Lj of H, where wj = vjb σ for
some fixed b ∈ {0, 1} and some integer sequence σ. There exists a unique simple path Q starting at
vkb σ consisting only of inter-layer edges such that the other endpoint of Q is in layer Lj. Moreover,

Q consists of exactly k − j edges, and the two endpoints of Q are vkb σ and vjb σ.

To prove the claim, we proceed by induction on the value of j. The result is trivial when j = k.
Assume that the statement holds for some j ∈ {3, . . . , k}, and consider any wj−1 = vj−1

b σ for some
fixed b ∈ {0, 1} and some integer sequence σ. From Part 2 of the construction, exactly one inter-
layer edge is added between layers Lj−1 and Lj with endpoint vjb σ , and this edge is {vj−1

b σ , v
j
b σ}.

By the induction hypothesis, there exists a unique simple path Q starting at vkb σ consisting only
of inter-layer edges such that the other endpoint of Q is in layer Lj. Moreover, Q consists of exactly

k − j edges, and the two endpoints of Q are vkb σ and vjb σ . Appending the edge {vj−1
b σ , v

j
b σ} to

Q gives the unique simple path Q′ with endpoint in Lj−1, the length is k− j+1 = k− (j− 1), and

the two endpoints are vkb σ and vj−1
b σ, which completes the induction step and the proof of Claim

4.

Claim 5. For any m ∈ {0, . . . , k} and any node um in layer Lm of H, there exists a node wm in
layer Lm of H such that the distance between um and wm in Lm is exactly m.

To prove the claim, note that the cases m = 0 and m = 1 are trivial to verify by inspection.
Another simple case is when um = rmb for some b ∈ {0, 1}, since, in this case, the node wm = rm1−b
is at distance m from um. In all other cases, note that um is an internal node on some path P of
length m between rm0 and rm1 , where the port label at rm0 and the port label at rm1 on this path are
both equal to some p ∈ {0, . . . , µ− 1}. Consider the path Q of length m between rm0 and rm1 such
that the port label at rm0 and the port label at rm1 on this path are both equal to p+ 1 modulo µ.
As P and Q are internally disjoint, they form a cycle of length 2m. Thus, picking the node wm

32



that is diametrically opposite to um on this cycle satisfies the desired conditions. This completes
the proof of Claim 5.

We now proceed to prove the lemma. Consider any j ∈ {0, . . . , k} and any node uj in layer
Lj of H. We show that there exists an ℓ ∈ {1, . . . , z} such that wℓ,1 and wℓ,2 are not contained in

Bk−1(uj). By Claim 5, there exists a node wj in layer Lj such that d(uj , wj) = j. Write wj = vjb σ
for some fixed b ∈ {0, 1} and some fixed integer sequence σ. Consider the node vkb σ from Lk. By
Claim 3, there exists a shortest path between uj and vkb σ such that all layer edges in this path
have both endpoints in Lj . It follows that there exists a shortest path P between uj and vkb σ that,
starting at vkb σ, consists only of inter-layer edges until a node in layer Lj is reached, and then
consists only of layer edges within Lj . By Claim 4, the prefix of P consisting of inter-layer edges has

length exactly k − j, and the endpoint of this prefix in Lj is v
j
b σ. Recalling that vjb σ = wj , and

that d(uj , wj) = j, it follows that the remainder of P consisting of layer edges has length exactly j.
Thus, we have shown that the length of shortest path P between uj and vkb σ has length exactly k.
The above proof applies to either copy of vkb σ from Lk,1 or Lk,2, which are represented as nodes
wℓ,1 and wℓ,2 for some fixed ℓ ∈ {1, . . . , z}. Thus, we have shown that d(uj , wℓ,1) and d(uj , wℓ,2)
are exactly k, which proves that wℓ,1 and wℓ,2 are not contained in Bk−1(uj).

4.2 Minimum Election Time and Advice

For each graph in Jµ,k (where µ ≥ 2 and k ≥ 4) we first show that the S -index, the PPE -index,
and the CPPE -index are all equal to k.

To prove that the S -index is at least k for any graph JY ∈ Jµ,k, the idea is that each JY was
carefully constructed such that, when considering truncated views up to distance k − 1, each node
v has at least one ‘twin’ elsewhere in the graph with the same view. In particular, using only k− 1
rounds, an arbitrary node u in some component HD of a gadget Ĥi cannot see all of the nodes in the
kth layer of HD, which is where the value of i is encoded (see Part 4 of the construction). Supposing
some wq,1 and wq,2 in the kth layer are not seen by u, then effectively u cannot distinguish whether

it is in gadget Ĥi or Ĥi′ , where i
′ differs from i only in the qth bit. This is the key observation

needed to find a u′ with the same truncated view up to distance k−1 as u, which proves that k−1
rounds are not enough to elect a unique leader.

To formalize this idea, we first prove that all nodes in {ρ0, . . . , ρ2z−1} have the same truncated
view up to any distance h ≤ k − 1. This fact means that none of the ρ-nodes have a unique view
up to distance k − 1 (so none of them can be selected as leader within k − 1 rounds), but it will
also be a useful ingredient in the proof that no other node in any gadget has a unique view up to
distance k − 1.

Proposition 4.4. For any h ∈ {0, . . . , k−1} and any JY ∈ Jµ,k, we have B
h(ρ0) = · · · = Bh(ρ2z−1)

in JY .

Proof. It is sufficient to prove the result for h = k − 1, as two equal views up to distance k − 1
are also equal up to any smaller distance. By Parts 1 and 2 of the construction, every edge in
the component graph H is either between two nodes in the same layer graph, or in consecutive
layer graphs Lm and Lm+1 for some m ∈ {0, . . . , k− 1}. It follows that Bk−1(r00) in the component
graph H only contains nodes from the layers L0, . . . , Lk−1, i.e., does not contain any nodes from
either Lk,1 or Lk,2. By Part 3 of the construction, the gadget graph Ĥ consists of four copies of H
(named HL, HT , HR, HB) such that the four r00 nodes have been merged at a single node named

33



ρ, and then the port numbers at ρ are modified to be distinct in the range 0, . . . , 4µ− 1. It follows
that Bk−1(ρ) in Ĥ only contains nodes from the layers L0, . . . , Lk−1 from each of HL, HT , HR, and
HB. By Part 4 of the construction, the only edges added when forming the template graph J are
incident to nodes in layer graphs Lk,1 and Lk,2 of HL,HT ,HR,HB in each gadget, i.e., these edges

do not affect the degrees of nodes in layer graphs L0, . . . , Lk−1. It follows that B
k−1(ρi) in each Ĥi

for i ∈ {0, . . . , 2z − 1} is the same as Bk−1(ρ) in Ĥ. Finally, when creating each JY in Part 5 of

the construction, note that in each Ĥi for i ∈ {0, . . . , 2z − 1}, either the ports at ρi in HT and HL

are swapped, or the ports at ρi in HB and HR are swapped. In either case, since Bk−1(ρi) within
each component HL, HT , HR and HB is identical, it follows that swapping corresponding ports at
ρi between two components does not change Bk−1(ρi). This proves that, in an arbitrary JY ∈ Jµ,k,

the views Bk−1(ρ0), . . . ,B
k−1(ρ2z−1) are all the same as Bk−1(ρ) in Ĥ, which implies the desired

result.

Next, we introduce the following notation to help us refer to specific nodes within a graph JY .
Each node of JY belongs to some gadget, and within the gadget, belongs to some component. So
each node corresponds to some u in the component graph H, we use a subscript from {L, T,R,B}
to indicate which of the four components of its gadget it belongs to, and also a subscript i ∈
{0, . . . , 2z−1} to indicate which gadget Ĥi within JY it belongs to. For example, v = uL,2 indicates

that the node v belongs to HL in gadget Ĥ2, and corresponds to node u within the component
graph H defined in Part 2 of the construction. For any node uD,i for any D ∈ {L, T,R,B} and
any i ∈ {0, . . . , 2z − 1}, we say that uD,i is a border node if it is located in either layer graph Lk,1
or Lk,2 in component HD of gadget Ĥi. Node uD,i is called an internal node if it is not equal to
ρi and is not a border node. We say that a sequence of nodes (v1, . . . , vh) forms an internal path if
v1, . . . , vh−1 are internal nodes, and vh is either an internal node or a border node.

The following fact will help us make arguments about symmetry in JY and demonstrate that
certain nodes have the same views up to distance at most k− 1. It makes a key observation about
the construction of each JY : the differences between different gadgets in JY , and the differences
between components within a gadget, can only be noticed at the ρ nodes and the border nodes. In
particular, any fixed labeled path P that avoids the ρ nodes and the border nodes actually appears
in every component of every gadget. To see why, note that the construction of each JY is identical
up to Part 3, and, in Parts 4 and 5, the only modifications involve adding edges between border
nodes, and swapping edges at ρ nodes.

Fact 4.5. Consider any node u ∈ H such that u 6= ρ and u 6∈ Lk,1 ∪ Lk,2, and consider any
node u′ ∈ H such that u′ 6= ρ. For any D,D′ ∈ {L, T,R,B}, any i, i′ ∈ {0, . . . , 2z − 1}, any
h ∈ {0, . . . , k− 1}, and any sequence σ of length 2h, the sequence σ appears as the port labels along
an internal path of length h from uD,i to u

′
D,i in JY if and only if σ appears as the port labels along

an internal path of length h from uD′,i′ to u
′
D′,i′ .

We now prove that, when considering truncated views up to distance k − 1, each node v in JY
has a ‘twin’ v′ that has the same view.

Lemma 4.6. For any JY ∈ Jµ,k and any i ∈ {0, . . . , 2z − 1}, let v be any node in Ĥi. There exists
a node v′ 6= v in JY such that Bk−1(v) = Bk−1(v′).

Proof. If v = ρi, then, by Proposition 4.4, setting v′ to be any node from {ρ0, . . . , ρ2z−1} \ {ρi}
gives the desired result. So we proceed under the assumption that v 6= ρi.

34



Consider the case where v is contained in component HL of Ĥi, i.e., v is equal to uL,i for some
node u ∈ H −{r00}. By Lemma 4.3, there exists an ℓ ∈ {1, . . . , z} such that the nodes wℓ,1 and wℓ,2

in HL of Ĥi are not contained in Bk−1(uL,i), and the nodes wℓ,1 and wℓ,2 in HR of Ĥi−1 are not
contained in Bk−1(uL,i). Let i

′ be the integer whose z-bit binary representation is the same as the
z-bit binary representation of i except with the ℓth bit flipped.

From the description of Part 5 of the construction of JY , there are four cases to consider based
on the values of i, i′, yi, and yi′ :

• no-swap: [i ∈ {0, . . . , 2z−1 − 1} or (i ∈ {2z−1, . . . , 2z − 1} and y2z−1−i = 0)] and [i′ ∈
{0, . . . , 2z−1−1} or (i′ ∈ {2z−1, . . . , 2z−1} and y2z−1−i′ = 0)]. In this case, no port swapping
occurs at ρi or ρi′ involving edges in HL and HT .

• i-swap: [i ∈ {2z−1, . . . , 2z − 1} and y2z−1−i = 1] and [i′ ∈ {0, . . . , 2z−1 − 1} or (i′ ∈
{2z−1, . . . , 2z − 1} and y2z−1−i′ = 0)]. In this case, port swapping occurs at ρi involving
edges in HL and HT , i.e., for each g ∈ {0, . . . , µ− 1}, port g at ρi is swapped with port g+µ
at ρi. No port swapping occurs at ρi′ involving edges in HL and HT .

• i′-swap: [i ∈ {0, . . . , 2z−1 − 1} or (i ∈ {2z−1, . . . , 2z − 1} and y2z−1−i = 0)] and [i′ ∈
{2z−1, . . . , 2z − 1} and y2z−1−i′ = 1]. In this case, no port swapping occurs at ρi involving
edges in HL and HT . Port swapping occurs at ρi′ involving edges in HL and HT , i.e., for each
g ∈ {0, . . . , µ− 1}, port g at ρi′ is swapped with port g + µ at ρi′ .

• both-swap: [i ∈ {2z−1, . . . , 2z − 1} and y2z−1−i = 1] and [i′ ∈ {2z−1, . . . , 2z − 1} and
y2z−1−i′ = 1]. In this case, port swapping occurs at both ρi and ρi′ involving edges in HL

and HT , i.e., for each g ∈ {0, . . . , µ − 1}, port g at ρi is swapped with port g + µ at ρi, and,
port g at ρi′ is swapped with port g + µ at ρi′ .

Wherever necessary, the proof will branch out to separately provide the details for the above four
cases.

First, we specify the node v′ for which we will prove that Bk−1(v) = Bk−1(v′).

• For cases no-swap and both-swap, we set v′ = uL,i′ .

• For cases i-swap and i′-swap, we set v′ = uT,i′ .

Our goal is to show that Bk−1(v) = Bk−1(v′), and we begin by proving that Bk−1(v) ⊆ Bk−1(v′).
To this end, we consider any labeled root-to-leaf path P of length k− 1 in Bk−1(v), and prove that
P also appears as a labeled root-to-leaf path in Bk−1(v′).

There are three cases to consider based on the nature of P .

• Case 1: The path P contains node ρi. Denote by u′′L,i the neighbour of ρi that appears
immediately before the first occurrence of ρi in P . Consider P = P1 · e · P2, where:

– P1 is the (possibly empty) path in Bk−1(v) from v = uL,i to u
′′
L,i,

– e is the edge {u′′L,i, ρi}, and,

– P2 is the (possibly empty) remainder of the path from ρi to the leaf of P .

35



Let σ1 be the port sequence on path P1 from uL,i to u
′′
L,i, and let σ2 be the port sequence

on path P2 from ρi to the leaf of P . As the total length of P is k − 1 and P contains ρi,
it follows that P does not contain any nodes from layer graphs Lk,1 or Lk,2. Therefore, the
path from v = uL,i to u

′′
L,i consists completely of internal nodes, so by Fact 4.5, σ1 is also a

port sequence from uL,i′ to u
′′
L,i′ (needed for cases no-swap and both-swap), and is also a

port sequence from uT,i′ to u
′′
T,i′ (needed for cases i-swap and i′-swap).

Next, for the edge e, we consider the four cases:

– In case no-swap, we argue that the edge between u′′L,i and ρi is labeled the same as the

edge between u′′L,i′ and ρi′ . By Part 2 of the construction, the edge between u′′ and r00 in

H is labeled with some g ∈ {0, . . . , µ− 1} at r00, and labeled with µ− 1 at u′′. These are
the same port labels on the edge between u′′ and ρ in HL, by Part 3 of the construction.
No port labels at any ρ node are modified in Part 4 of the construction. Since no port
swapping occurs involving HL at ρi and ρi′ , we conclude that the edge between u

′′
L,i and

ρi is labeled the same way as the edge between u′′L,i′ and ρi′ , i.e., labeled µ − 1 at both
u′′L,i and u

′′
L,i′ , and labeled g at both ρi and ρi′ , as desired.

– In case i-swap, we argue that the edge between u′′L,i and ρi is labeled the same as the

edge between u′′T,i′ and ρi′ . By Part 2 of the construction, the edge between u′′ and r00 in

H is labeled with some g ∈ {0, . . . , µ− 1} at r00, and labeled with µ− 1 at u′′. These are
the same port labels on the edge between u′′ and ρ in HL, by Part 3 of the construction.
No port labels at any ρ node are modified in Part 4 of the construction. In Part 5 of the
construction, port swapping occurs at ρi, in particular, ports g and g + µ are swapped
at ρi, which implies that the edge between u′′L,i and ρi is labeled with µ− 1 at u′′L,i and
labeled with g+µ at ρi. However, no port swapping occurs at ρi′ involving edges in HL

and HT so the edge between u′′T,i′ and ρi′ is labeled with µ− 1 at u′′T,i′ and labeled with
g + µ at ρi′ , as desired.

– In case i′-swap, we argue that the edge between u′′L,i and ρi is labeled the same as the

edge between u′′T,i′ and ρi′ . By Part 2 of the construction, the edge between u′′ and r00 in

H is labeled with some g ∈ {0, . . . , µ− 1} at r00, and labeled with µ− 1 at u′′. These are
the same port labels on the edge between u′′ and ρ in HL, by Part 3 of the construction.
No port labels at any ρ node are modified in Part 4 of the construction. In Part 5 of the
construction, no port swapping occurs at ρi involving edges in HL and HT , so the edge
between u′′L,i and ρi is labeled with µ− 1 at u′′L,i and labeled with g at ρi. However, port
swapping does occur at ρi′ , in particular, ports g and g + µ are swapped at ρi′ , which
implies that the edge between u′′T,i′ and ρi′ is labeled with µ−1 at u′′T,i′ and labeled with
g at ρi′ , as desired.

– In case both-swap, we argue that the edge between u′′L,i and ρi is labeled the same as
the edge between u′′L,i′ and ρi′ . By Part 2 of the construction, the edge between u′′ and

r00 in H is labeled with some g ∈ {0, . . . , µ − 1} at r00, and labeled with µ − 1 at u′′.
These are the same port labels on the edge between u′′ and ρ in HL, by Part 3 of the
construction. No port labels at any ρ node are modified in Part 4 of the construction. In
Part 5 of the construction, port swapping occurs at ρi, in particular, ports g and g + µ
are swapped at ρi, which implies that the edge between u′′L,i and ρi is labeled with µ− 1
at u′′L,i and labeled with g+µ at ρi. Moreover, port swapping occurs at ρi′ , in particular,

36



ports g and g + µ are swapped at ρi′ , which implies that the edge between u′′L,i′ and ρi′

is labeled with µ− 1 at u′′L,i′ and labeled with g + µ at ρi′ , as desired.

Finally, as |P2| ≤ |P | − 1 < k − 1, it follows from Proposition 4.4 that B|P2|(ρi) = B|P2|(ρi′),
so the same port sequence σ2 exists on a root-to-leaf path in B|P2|(ρi′).

We have shown that the three pieces of P = P1 · e · P2 appear in the desired order starting
from node v′, which completes the proof that the labeled root-to-leaf path P also exists in
Bk−1(v′).

• Case 2: The path P is an internal path. Then P is a path of length k − 1 from v = uL,i
to some u′L,i. Denote by σ the port sequence from uL,i to u′L,i on path P . By Fact 4.5,
the port sequence σ also labels a path from uL,i′ to u′L,i′ (needed for cases no-swap and
both-swap) and also labels a path from uT,i′ to u

′
T,i′ (needed for cases i-swap and i′-swap),

which completes the proof that the labeled root-to-leaf path P also exists in Bk−1(v′).

• Case 3: The path P does not contain ρi but contains node wq,b for some q ∈ {1, . . . , z}−{ℓ}
and b ∈ {1, 2}.We prove a stronger statement: if P (with the given property) is a labeled
root-to-leaf path in Bh(uL,i) or B

h(uR,i−1), then P appears as a labeled root-to-leaf path in
Bh(uL,i′) and Bh(uT,i′) (which covers both of our possible choices for v′).

We proceed by induction on the length h ≥ 0 of P . For base case, consider h = 0. As P
contains node wq,b for some q ∈ {1, . . . , z} − {ℓ} and b ∈ {1, 2}, it follows that u = wq,b. By
Part 4 of the construction, the qth bit of i is 1 if and only if an edge was added incident to
uL,i and an edge was added incident to uR,i−1. Thus, the nodes uL,i and uR,i−1 have the
same degree. Further, by our choice of i′, the qth bit of i′ is the same as the qth bit of i. So,
by Part 4 of the construction, we have that each of the nodes uL,i′ and uT,i′ has the same
degree as each of the three nodes uL,i and uR,i−1. This proves that B0(uL,i) = B0(uR,i−1) =
B0(uL,i′) = B0(uT,i′), which implies the desired result.

As induction hypothesis, assume that, for some h ∈ {0, . . . , k − 2}, if P ′ (with the given
property) is a labeled root-to-leaf path in Bh(u′L,i) or B

h(u′R,i−1), then P
′ appears as a labeled

root-to-leaf path in Bh(u′L,i′) and Bh(u′T,i′).

For the induction step, suppose that P (with the given property) is a labeled root-to-leaf
path in Bh+1(uL,i) or Bh+1(uR,i−1). Denote by w′ a node from {uL,i, uR,i−1} for which the
previous sentence holds. Let w′′ denote the first border node along the path P . Re-write
P = P1 · e ·P2, where P1 is the path from w′ to w′′, edge e is the outgoing edge from w′′ along
the path P to the first node of P2 (which we denote by w′′′), and P2 is the remainder of the
path P . Since P starts at uL,i or uR,i−1, has length at most k − 1, and contains a border
node (i.e., contains a node at distance at least k from ρi and ρi−1), we can conclude that P
does not contain ρi or ρi−1. It follows that:

– w′′ (the last node of P1) is in the same component as w′, i.e., if w′ = uL,i, then w
′′ = u′′L,i

for u′′ = wq,b, where q ∈ {1, . . . , z} − {ℓ} and b ∈ {1, 2}, and, if w′ = uR,i−1, then
w′′ = u′′R,i−1 for u′′ = wq,b, where q ∈ {1, . . . , z} − {ℓ} and b ∈ {1, 2}.

– w′′′ (the first node of P2) is equal to node u′′′L,i or u
′′′
R,i−1 for some node u′′′ ∈ H − {r00}.

37



First, consider the path P1 from w′ to w′′. By our choice of w′′, i.e., the first border node
along path P , we know that the path P1 from w′ to w′′ is an internal path, so by Fact 4.5,
P1 appears as a labeled root-to-leaf path in each of B|P1|(uL,i′) and B|P1|(uT,i′).

Next, consider the edge e = {w′′, w′′′}. By our choice of i′ and the fact that q 6= ℓ, we know
that the qth bit of i is equal to the qth bit of i′. So, after Part 4 of the construction of
JY , either all of the following pairs are edges (with all ports labeled with the same integer
degH (wq,1)) or all are non-edges:

– wq,b in HL of Ĥi and wq,2−b in HR of Ĥi−1

– wq,b in HR of Ĥi−1 and wq,2−b in HL of Ĥi

– wq,b in HL of Ĥi′ and wq,2−b in HR of Ĥi′−1

– wq,b in HR of Ĥi′−1 and wq,2−b in HL of Ĥi′

– wq,b and wq,2−b in HT of Ĥi

– wq,b and wq,2−b in HT of Ĥi′

Recall that u′′ = wq,b and the immediate neighbourhoods of u′′L,i, u
′′
R,i−1, u

′′
L,i′ , u

′′
T,i′ are all the

same at the end of Part 3 of the construction (all components in all gadgets are just copies
of H). Together with the fact that either all of the above pairs are non-edges or they are
identically-labeled edges, it follows that B1(u′′L,i) = B1(u′′R,i−1) = B1(u′′L,i′) = B1(u′′T,i′). This

is sufficient to show that the edge e (which is an edge in B1(u′′L,i) or B
1(u′′R,i−1)) also appears

as an edge in B1(u′′L,i′) and B1(u′′T,i′).

Finally, there are two possibilities for the path P2. If P2 is an internal path, then by Fact 4.5,
P2 appears as a labeled root-to-leaf path in each of B|P2|(u′′′L,i′) and B|P2|(u′′′T,i′). The other
possibility is that P2 contains a border node. Note that P2 has length strictly less than P ,
so we apply the induction hypothesis to P2 starting at node w′′′ (which is equal to either
u′′′L,i or u

′′′
R,i−1), and we conclude that P2 also exists as a labeled root-to-leaf path in each of

B|P2|(u′′′L,i′) and B|P2|(u′′′T,i′).

This concludes the induction step: we showed that P appears as a labeled root-to-leaf path in
Bh+1(u′L,i′) and Bh+1(u′T,i′) by showing that each of the three pieces of P = P1 · e ·P2 appears
in the desired order.

In all three cases, we proved that P also exists in Bk−1(v′), i.e., we have shown that Bk−1(v) ⊆
Bk−1(v′). A symmetric argument proves that any labeled root-to-leaf path P ′ of length k − 1
in Bk−1(v′) also exists as a labeled root-to-leaf path in Bk−1(v), which completes the proof that
Bk−1(v) = Bk−1(v′).

The above proof considers the case where v is assumed to be in component HL of Ĥi, i.e., v is
equal to uL,i for some node u ∈ H − {r00}. A nearly identical proof works under the assumption

that v is in component HT of Ĥi. Then, by symmetry, one can write similar proofs for v in HR of
Ĥi and v in HB of Ĥi (where R takes on the role of L, and B takes on the role of T ).

The previous result implies that no node in any JY can have a unique truncated view up to
distance k − 1, which gives us the following lower bound on the S -index of JY .

Lemma 4.7. ψS (JY ) ≥ k for any graph JY ∈ Jµ,k.

38



Next, we prove that the CPPE -index is at most k for any graph JY ∈ Jµ,k. We specify an
algorithm that, when given a map of JY as input, gets each node to output a complete port sequence
on a path from itself to node ρ0 of gadget Ĥ0. The idea is that, within k rounds, each node can
determine in which gadget Ĥi it is located: it will be able to see the entire kth layer of whichever
component it is in (one of HL, HT , HR or HB of its gadget Ĥi) and, as it knows the procedure
used in Part 4 to ‘encode’ the value of i via added edges in the kth layer, it can deduce the value of
i used in the encoding. Then, each node computes a complete port sequence on a path from itself
to ρi in its gadget Ĥi (as ρi is the unique node in its view with largest degree), then consults the
given map of JY to determine a complete port sequence on a path from ρi to ρ0.

Lemma 4.8. ψCPPE (JY ) ≤ k for any graph JY ∈ Jµ,k.

Proof. We present an algorithm that solves CPPE within k rounds when executed by the nodes of
any graph JY ∈ Jµ,k when the full map of JY is provided to each node.

First, we introduce some new notation for the purposes of our algorithm. For any fixed i ∈
{0, . . . , 2z − 1}, recall that the gadget Ĥi has four ‘sub-components’ (in the construction, these
were called HL, HT , HR, and HB). However, in a given map of JY , or in a node’s view, these
sub-components are not labeled as HL, HT , HR, and HB. Instead, for each c ∈ {0, 1, 2, 3}, we
denote by Hi,c the subgraph induced by nodes within distance k of ρi that can be reached using
the outgoing ports µc, . . . , µ(c + 1) − 1. Further, for each c ∈ {0, 1, 2, 3}, we associate an integer
Wi,c whose z-bit binary representation is encoded in the kth layer of Hi,c. In particular, the qth bit
of the z-bit binary representation of Wi,c is 1 if and only if deg(JY )(wq,1) = degH (wq,1) + 1 in Hi,c.
At a high level, the value of Wi,c is obtained by ‘decoding’ the value that was encoded using edges
in Part 4 of the construction in building the template graph J .

Our CPPE algorithm proceeds as follows. First, assuming that a full map of JY is given as
input to each node, the following pre-processing occurs at each node before any communication
takes place.

1. Use the map of JY to find the nodes ρ0, . . . , ρ2z−1: these are the 2z nodes that have the
(same) largest degree in the map. By construction, these nodes have degree 4µ, so we deduce
the value of µ. Next, to determine which node is ρ0 and which is ρ2z−1, compute the four
integers Wx,0, Wx,1, Wx,2, and Wx,3 at each of the two extreme gadgets in the given map of
JY . In particular, the gadget for which two of these integers are 0 and the other two are 1
is necessarily gadget Ĥ0, and the gadget for which two of these integers are 0 and the other
two are 2z − 1 is necessarily gadget Ĥ2z−1. Using this information, label the center node of
each gadget on the map of JY as ρi using the correct subscript i.

2. For each i ∈ {1, . . . , 2z − 1}, compute a shortest path Pi in the map from ρi to ρi−1, and
define σi to be the sequence of ports along such a path. These paths and port sequences will
be used later when determining the algorithm’s output.

Next, each node v considers its own degree and behaves according to one of the two following
cases.

• If v has degree 4µ, then v concludes that it is some ρx ∈ {ρ0, . . . , ρ2z−1}, and determines
which one it is, as follows. First, using k communication rounds, v computes Bk(v), and
using this view, computes the four integers Wx,0,Wx,1,Wx,2,Wx,3. There are 2 possible cases:
if two of these integers are 0 and the other two are 2z − 1, then v concludes that x = 2z − 1;

39



otherwise, two of these integers are equal to some fixed j ∈ {0, . . . , 2z − 2} and the other two
are j + 1, in which case v concludes that x = j.

After determining the value of x such that v = ρx, node v produces an output, and there
are two possible cases: if x = 0, then v outputs ‘leader’, and, otherwise, v outputs σx · · · σ1,
i.e., the concatenation of port sequences that label a shortest path from ρi to ρi−1 for each
i = x, . . . , 1.

• If v does not have degree 4µ, then v concludes that it is not one of the nodes ρ0, . . . , ρ2z−1.
Node v must belong to gadget Ĥx for some x ∈ {0, . . . , 2z − 1}, and it determines the value
of x, as follows. First, using k communication rounds, v computes Bk(v). There is exactly
one node with degree 4µ in this view, and this node is ρx. Denote by p the last port number
on a shortest path from v to ρx (this is the port incident to ρx). This port number p is in
the range µc, . . . , µ(c+1)− 1 for some c ∈ {0, 1, 2, 3}, and it is straightforward for v to use p
to determine this value of c. The nodes w1,1, . . . , wz,1, w1,2, . . . , wz,2 of Hx,c are all within v’s
view up to distance k, so, v uses their degrees to compute Wx,c, as described above. Next, v
uses the values of c and Wx,c to determine x based on the following cases:

– if Wx,c ≤ 2z−1 − 1, and,

∗ if c ∈ {0, 1}, then set x =Wx,c.

∗ if c ∈ {2, 3}, then set x =Wx,c − 1.

– if Wx,c ≥ 2z−1, and,

∗ if c ∈ {0, 1}, then set x =Wx,c − 1.

∗ if c ∈ {2, 3}, then set x =Wx,c.

After determining the value of x such that v belongs to gadget Ĥx, node v constructs its
output, as follows. First, v computes a shortest path Qx in Bk(v) from itself to ρx (where
ρx is the only node with degree 4µ in JY that is within v’s view up to distance k). Let u
be the first node on the path Qx that is contained in Px. (Note that, in many cases, node u

is simply ρx, but u might be a different node if v is in HL of Ĥx). Define sx to be the port
sequence that labels the part of Qx from v to u, and define tx to be the port sequence that
labels the part of Px from u to ρx−1 (if u = ρx, then tx is simply σx). Finally, v outputs the
following concatenation of port sequences: sx · tx · σx−1 · · · σ1.

By Fact 1.1, Lemma 4.7 and Lemma 4.8, we see that k ≥ ψCPPE (JY ) ≥ ψPPE (JY ) ≥ ψS (JY ) ≥ k
for all JY ∈ Jµ,k, which allows us to conclude that the S -index, PPE -index, and CPPE -index are
all equal to k in our constructed class Jµ,k.

Lemma 4.9. For any integers µ ≥ 2 and k ≥ 4, ψCPPE (JY ) = ψPPE (JY ) = ψS (JY ) = k for any
graph JY ∈ Jµ,k.

We now proceed to analyze the amount of advice needed to solve Port Path Election and
Complete Port Path Election in the graph class Jµ,k. To show that a large amount of advice is

needed, the idea is to think of each JY as having a ‘left’ half (gadgets Ĥ0, . . . , Ĥ2z−1−1) and a ‘right’

half (gadgets Ĥ2z−1 , . . . , Ĥ2z−1) and observing that, whichever node u is elected as leader, there

40



exists a node v on the opposite half that must output a sequence of ports corresponding to a very
long simple path from v to u. But, most of the ports on this path are outside of v’s view up to
distance k, so v has to depend on the given advice to help it determine the port sequence. The
goal is to show that v has to output a different port sequence for each graph in the class, and that
a different piece of advice is needed for each. By the construction of JY , the i

th binary entry of
Y determines whether or not some ports at ρi are swapped, so even changing one entry of Y will
affect whether or not a port leads in the correct direction towards the opposite half of JY . The
following result formalizes these observations, in particular, (1) a node that is on one ‘edge’ of JY
cannot see far enough to detect any port swaps due to values in Y , and, (2) for any two different
graphs Jα and Jβ , no fixed port sequence can correspond to a simple path in both graphs that
starts from one ‘edge’ node on one half and ending in the opposite half.

Lemma 4.10. Consider any positive integers µ ≥ 2 and k ≥ 4. Let z be the number of nodes in
layer graph Lk, and let α, β be distinct binary sequences of length exactly 2z−1. For each Y ∈ {α, β},

let vY be the node w1,1 in component HL of gadget Ĥ0 of JY ∈ Jµ,k. Then:

(1) Bk(vα) in Jα is equal to Bk(vβ) in Jβ .

(2) Suppose that σ is a fixed sequence of ports that corresponds to a simple path Pα in Jα starting

at node vα such that Pα contains at least one node from gadget Ĥ2z−1 of Jα. Then σ corre-
sponds to a path Pβ in Jβ starting at node vβ such that either Pβ is not simple, or, Pβ only

contains nodes from gadgets Ĥ0, . . . , Ĥ2z−1−1 of Jβ .

Proof. To prove statement (1), first recall from Part 4 of the construction that node w1,1 is in layer
Lk of its component. By Part 4 of the construction, no edges are added incident to nodes in HL

of Ĥ0. Further, by Part 2 of the construction, the distance from any node in Lk to L0 in HL is k.
So, if we consider node w1,1 in HL of gadget Ĥ0, the previous two facts allow us to conclude that

its truncated view up to distance k is completely contained in HL of gadget Ĥ0 in the template
graph J . By Part 3 of the construction, the port numbers at ρ at edges in HL are in the range
0, . . . , µ− 1, so, in Part 5 of the construction, the port numbers at edges in HL are never swapped
with others. Altogether, we get that the node w1,1 in HL of gadget Ĥ0 has the same truncated
view up to distance k in the template graph J as it does in every graph of the class Jµ,k, which is
sufficient to prove statement (1).

To prove statement (2), consider any Y ∈ {α, β}, and consider any fixed port sequence σ that
corresponds to a path PY in JY starting at node vY such that PY has the following two properties:
it is a simple path, and, it contains at least one node from gadget Ĥ2z−1 of JY . By the choice of
vY and Part 4 of the construction, to have both of these properties, PY necessarily only contains
nodes in HL and HR of each gadget Ĥ0, . . . , Ĥ2z−1−1 of JY . This is because the only edges that
have endpoints in two different gadgets are incident to nodes in components HL and HR, and, any
path between two components of a gadget must pass through node ρ of the gadget (and a simple
path can only use node ρ once).

Assume that σ is a port sequence that corresponds to a path Pα in Jα starting at node vα
such that Pα is a simple path, and, it contains at least one node from gadget Ĥ2z−1 of Jα. Let
m ≤ 2z−1 − 1 be the smallest index where the sequences α and β differ. Without loss of generality,
assume that αm = 0 and βm = 1. By Part 5 of the construction, the gadgets Ĥ0, . . . , Ĥm−1 in Jα
and Jβ are identical, so, following the port sequence σ will trace out the same path up to node ρm
(in gadget Ĥm) in both Jα and Jβ . Since αm = 0, gadget Ĥm of Jα is the same as in J , which

41



means that the port in σ that is used to leave node ρm in Ĥm of Jα to enter component HR is
in the range 2µ, . . . , 3µ − 1. In Jβ , the ports 2µ, . . . , 3µ − 1 at node ρm of gadget Ĥm have been
swapped with the ports 3µ, . . . , 4µ − 1. But, in the template graph, the ports 3µ, . . . , 4µ − 1 lead
to nodes in HB. So, following the port sequence σ in Jβ will result in a path Pβ that contains a

node in component HB of gadget Ĥm. As remarked in the previous paragraph, this means that
Pβ does not have both specified properties, i.e., either Pβ is not simple, or, Pβ does not contain at

least one node from gadget Ĥ2z−1 of Jβ, which concludes the proof of statement (2).

We prove that a large amount of advice is needed by any algorithm that solves PPE in time k
for all graphs in Jµ,k. Without loss of generality, we can assume that the algorithm elects a leader
in the ‘right’ half of JY for at least half of the graphs JY ∈ Jµ,k, and we restrict our attention to
these graphs. We consider a node that is on the extreme ‘left’ side of each such JY , and we use
the previous result to conclude that this node must output a different port sequence for each such
JY . Again, by the previous result, this extreme node cannot see far enough to detect any swapped
ports, so it must rely entirely on the advice it is given, i.e., producing two different outputs requires
two different pieces of advice. This shows that the oracle gives a different piece of advice for each
graph, which leads to our lower bound on the length of the advice strings in the worst case.

Theorem 4.11. Consider any algorithm A that solves PPE in ψPPE (G) rounds for every graph
G. For all integers ∆ ≥ 16, k ≥ 6, there exists a graph G with maximum degree O(∆) and with

ψPPE (G) = k for which algorithm A requires advice of size Ω(2∆
k/6

).

Proof. Let µ = ⌈∆/4⌉ and note that µ ≥ 4. To obtain a contradiction, assume that there exists
an algorithm A that solves PPE in k rounds for all graphs in the class Jµ,k with the help of an

oracle that provides advice of size 2(4µ)
k/6

. By construction, every graph G in Jµ,k has maximum

degree 4µ ∈ O(∆), and, by Lemma 4.9, has ψPPE (G) = k. Let J right
µ,k be the subset of Jµ,k

consisting of graphs such that algorithm A elects as leader a node contained in some Ĥi with
i ∈ {2z−1, . . . , 2z − 1}. Let J left

µ,k = Jµ,k \ J
right
µ,k , i.e., the subset of Jµ,k consisting of graphs such

that algorithm A elects as leader a node contained in some Ĥi with i ∈ {0, . . . , 2z−1 − 1}. The

proof proceeds by considering the subset J left
µ,k or J right

µ,k that contains at least half of the graphs

from Jµ,k. Without loss of generality, we assume that |J right
µ,k | ≥ |Jµ,k|/2

There are at most 21+2(4µ)
k/6

binary advice strings whose length is at most 2(4µ)
k/6

. The number
of graphs in J right

µ,k is at least |Jµ,k|/2, which, by Fact 4.2, is at least 22
z−1−1. We now set out to

show that the number of graphs in J right
µ,k is strictly larger than the number of possible binary

advice strings. As µ ≥ 4 and k ≥ 6, it follows that (4µ)k/6 ≤ µk/3 and µk/3 < µ⌊k/2⌋ − 2. By Fact
4.2, µ⌊k/2⌋ − 2 ≤ z − 2. Thus, we have shown that (4µ)k/6 < z − 2, from which it follows that

2(4µ)
k/6

< 2z−2. As µ ≥ 4 and k ≥ 6, from Fact 4.2 we get that z ≥ 64, so 2z−2 < 2z−1−2. Therefore,

2(4µ)
k/6

< 2z−1 − 2, from which it follows that 1 + 2(4µ)
k/6

< 2z−1 − 1, so 21+2(4µ)
k/6

< 22
z−1−1, as

desired.
By the Pigeonhole Principle, the oracle provides the same advice for at least two different graphs

Jα and Jβ from J right
µ,k . For each Y ∈ {α, β}, let vY be the node w1,1 in component HL of gadget

Ĥ0 of JY . By statement (1) of Lemma 4.10, we know that Bk(vα) in Jα is equal to Bk(vβ) in Jβ , so
together with the fact that the two nodes get the same advice, it follows that vα and vβ output the

same port sequence σ when A terminates. By the definition of J right
µ,k and the assumed correctness

42



of A, port sequence σ corresponds to a simple path in Jα starting at vα that terminates at the
leader node in some Ĥi with i ∈ {2z−1, . . . , 2z − 1}, and, also corresponds to a simple path in Jβ
starting at vβ that terminates at the leader node in some Ĥi′ with i′ ∈ {2z−1, . . . , 2z − 1}. This
contradicts statement (2) of Lemma 4.10.

The exact same proof applies to the amount of advice needed by any algorithm that solves the
CPPE task in time k.

Theorem 4.12. Consider any algorithm A that solves CPPE in ψCPPE (G) rounds for every graph
G. For all integers ∆ ≥ 16, k ≥ 6, there exists a graph G with maximum degree O(∆) and with

ψCPPE (G) = k for which algorithm A requires advice of size Ω(2∆
k/6

).

5 Conclusion

We showed that the size of advice required to accomplish the weakest version of leader election in
minimum time is exponentially smaller than that needed for any of the strong versions. A natural
open question is whether, for all strong versions, the sizes of advice required to accomplish these
tasks in minimum time differ only polynomially, or if there are also exponential gaps between some
of them. Another open problem is whether the same relations between the four studied “shades of
leader election” hold if we allocate to these tasks some other amount of time that is larger than
the strict minimum.

References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley 1983.

[3] D. Angluin, Local and global properties in networks of processors. Proc. 12th Annual ACM
Symposium on Theory of Computing (STOC 1980), 82–93.

[4] H. Attiya and M. Snir, Better computing on the anonymous Ring, Journal of Algorithms 12,
(1991), 204-238.

[5] H. Attiya, M. Snir, and M. Warmuth, Computing on an anonymous ring, Journal of the ACM
35, (1988), 845-875.

[6] P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell, and J. Simon, Symmetry break-
ing in anonymous networks: Characterizations. Proc. 4th Israel Symposium on Theory of
Computing and Systems, (ISTCS 1996), 16-26.

[7] P. Boldi and S. Vigna, Computing anonymously with arbitrary knowledge, Proc. 18th ACM
Symp. on Principles of Distributed Computing (PODC 1999), 181-188.

[8] J.E. Burns, A formal model for message passing systems, Tech. Report TR-91, Computer
Science Department, Indiana University, Bloomington, September 1980.

43



[9] D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed Com-
puting 72 (2012), 132–143.

[10] D. Dereniowski, A. Pelc, Leader election for anonymous asynchronous agents in arbitrary
networks, Distributed Computing 27 (2014), 21-38.

[11] Y. Dieudonné, A. Pelc, Impact of knowledge on election time in anonymous networks, Algo-
rithmica 81 (2019), 238-288.

[12] S. Dobrev and A. Pelc, Leader election in rings with nonunique labels, Fundamenta Informat-
icae 59 (2004), 333-347.

[13] Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with advice, Theoretical
Computer Science 412 (2011), 2642–2656.

[14] P. Flocchini, E. Kranakis, D. Krizanc, F.L. Luccio and N. Santoro, Sorting and election in
anonymous asynchronous rings, Journal of Parallel and Distributed Computing 64 (2004),
254-265.

[15] P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with advice: Informa-
tion sensitivity of graph coloring, Distributed Computing 21 (2009), 395–403.

[16] P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice, Journal of Com-
puter and System Sciences 76 (2010), 222–232.

[17] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Information and Computation
206 (2008), 1276–1287.

[18] P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short advice, Theory of
Computing Systems 47 (2010), 920–933.

[19] G.N. Fredrickson and N.A. Lynch, Electing a leader in a synchronous ring, Journal of the
ACM 34 (1987), 98-115.

[20] E. Fusco, A. Pelc, How much memory is needed for leader election, Distributed Computing 24
(2011), 65-78.

[21] E. Fusco, A. Pelc, Knowledge, level of symmetry, and time of leader election, Distributed
Computing 28 (2015), 221-232.

[22] E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting time in trees, Algo-
rithmica 60 (2011), 719–734.

[23] E. Fusco, A. Pelc, R. Petreschi, Topology recognition with advice, Information and Computa-
tion 247 (2016), 254-265.

[24] C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs, Journal of Algorithms
53 (2004), 85-112.

[25] C. Glacet, A. Miller, A. Pelc, Time vs. information tradeoffs for leader election in anonymous
trees, ACM Transactions on Algorithms 13 (2017), 31:1-31:41.

44



[26] M.A. Haddar, A.H. Kacem, Y. Métivier, M. Mosbah, and M. Jmaiel, Electing a leader in the
local computation model using mobile agents. Proc. 6th ACS/IEEE International Conference
on Computer Systems and Applications (AICCSA 2008), 473-480.

[27] J. Hendrickx, Views in a graph: To which depth must equality be checked?, IEEE Transactions
on Parallel and Distributed Systems 25 (2014) 1907-1912.

[28] D.S. Hirschberg, and J.B. Sinclair, Decentralized extrema-finding in circular configurations of
processes, Communications of the ACM 23 (1980), 627-628.

[29] D. Ilcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice, Theoretical Computer
Science, 411 (2012), 1544–1557.

[30] T. Jurdzinski, M. Kutylowski, and J. Zatopianski, Efficient algorithms for leader election
in radio networks. Proc., 21st ACM Symp. on Principles of Distributed Computing (PODC
2002), 51-57.

[31] M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, SIAM
Journal of Computing 34 (2004), 23–40.

[32] A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, Distributed Computing 22 (2010),
215–233.

[33] D. Kowalski, and A. Pelc, Leader election in ad hoc radio networks: A keen ear helps, Journal
of Computer and System Sciences 79 (2013), 1164-1180.

[34] G. Le Lann, Distributed systems - Towards a formal approach, Proc. IFIP Congress, 1977,
155–160, North Holland.

[35] N.L. Lynch, Distributed Algorithms, Morgan Kaufmann Publ. Inc., San Francisco, USA, 1996.

[36] A. Miller, A. Pelc, Election vs. selection: How much advice is needed to find the largest node in
a graph?, Proc. 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
2016), 377-386.

[37] K. Nakano and S. Olariu, Uniform leader election protocols for radio networks, IEEE Trans-
actions on Parallel and Distributed Systems 13 (2002), 516-526.

[38] N. Nisse, D. Soguet, Graph searching with advice, Theoretical Computer Science 410 (2009),
1307–1318.

[39] D. Peleg, Distributed Computing, A Locality-Sensitive Approach, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia 2000.

[40] G.L. Peterson, An O(n log n) unidirectional distributed algorithm for the circular extrema
problem, ACM Transactions on Programming Languages and Systems 4 (1982), 758-762.

[41] M. Thorup, U. Zwick, Approximate distance oracles, Journal of the ACM, 52 (2005), 1–24.

[42] D.E. Willard, Log-logarithmic selection resolution protocols in a multiple access channel, SIAM
J. on Computing 15 (1986), 468-477.

45



[43] M. Yamashita and T. Kameda, Electing a leader when procesor identity numbers are not
distinct, Proc. 3rd Workshop on Distributed Algorithms (WDAG 1989), LNCS 392, 303-314.

[44] M. Yamashita and T. Kameda, Computing on anonymous networks: Part I - Characterizing
the solvable cases, IEEE Trans. Parallel and Distributed Systems 7 (1996), 69-89.

46


	1 Introduction
	2 Solving Selection in minimum time
	2.1 Upper Bound
	2.2 Lower bound
	2.2.1 Construction of G,k
	2.2.2 Lower bound proof


	3 Port Election vs. Selection
	3.1 Construction of U,k
	3.2 Minimum Election Time and Advice

	4 Port Path Election and Complete Port Path Election
	4.1 Construction of J,k
	4.2 Minimum Election Time and Advice

	5 Conclusion

