Distrib. Comput. (1999) 12: 61-74 @H@FRU@WE@
COMRUTING

© Springer-Verlag 1999

Cache consistency by design

Ed Brinksma

Formal Methods and Tools Group, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands (e-mail: brinksma@cs.utwente.nl)

May 27, 1999

Summary. In this paper we present a proof of the sequen- We will carry out our proof using a simple process-
tial consistency of the lazy caching protocol of Afek, Brown, algebraic formalism for the specification of the various de-
and Merritt. The proof will follow a strategy dftepwise re- sign stages. Process algebraic techniques [Hoa85, Mil89,
finement developing the distributed caching memory in five BW90] are by their nature suitable for transformational
transformation steps from a specification of the serial mem+yproofs as they concentrate on laws that equate and/or com-
ory, whilst preserving the sequential consistency in eachpare different behaviour expressions. Such laws are natural
step. The proof, in fact, presents a rationalized design otandidates for design transformations. Our proof will not
the distributed caching memory. We will carry out our proof follow a strictly algebraic exposition, however. For some
using a simple process-algebraic formalism for the specifitransformations we will show the correctness using seman-
cation of the various design stages. We will not follow a tic arguments directly, instead of pure syntactic derivations
strictly algebraic exposition, however. At some points thefrom basic laws. We will also employ the less standard fea-
correctness will be shown using direct semantic argumentgure ofaction transducergo relate behaviours in two of our
and we will also employ higher-order constructs l&etion design steps.
transducersto relate behaviours. The distribution of the de- The outline of our refinement proof is as follows. It starts
sign/proof over five transformation steps provides a goodfrom a specification of &erial memorywith n user inter-
insight into the variations that could have been allowed atfaces, where each user can perform direct atomic read and
each point of the design while still maintaining sequentialwrite actions on the memory (see Fig.4). This is a conve-
consistency. The design/proof in fact establishes the correcrient starting point for our ‘design’, as the serial memory de-
ness of a whole family of related memory architectures. Thefines our correctness criterion: the distributed caching mem-
factorization in smaller steps also allows for a closer analysisry must besequentially consisterwith the serial memory.
of the fairness assumptions about the distributed memory. This means that the behaviour at each user interface of the
distributed caching memory coincides with the projection on
Key words: Formal design — Caching protocols — Reactive the same interface of a legal behaviour of the serial memory.
systems — Process algebra — Correctness preserving — Trarig-other words, if the user at one interface of the distributed
formations caching memory cannot compare the order of his actions
with that of the actions occurring at the other interfaces, he
cannot distinguish his interface from that of a serial mem-
ory. The idea now is to transform a serial memory into other
memory architectures step by step, where each new archi-
] tecture is sequentially consistent if the previous one is. As
1 Introduction the serial memory is trivially sequentially consistent, this
implies that the final distributed caching memory, as well
In this paper we present a proof of the sequential consistencgs all intermediate architectures are sequentially consistent.
of the lazy caching protocol of [ABM93] as formulated by The transformation steps in the proof are all closely linked
Gerth in this issue. The proof will follow a strategy step- to the ingredients of the lazy caching architecture, which is
wise refinementdeveloping the distributed caching memory depicted in Fig. 1.
in five transformation steps from a specification of the se- First of all, we see that each user interface has a corre-
rial memory, whilst preserving the sequential consistency inspondingcaching memonjinto which it can write, via two
each step. Thus our proof presents a rationalized design dfuffers, and from which it can read directly, but subject
the distributed caching memory. to some conditionsTransformation step ill approximate
this situation very crudely. Instead of caches it equips each

* This work has been supported by the EU as part of ESPRIT BRAUSer interface generously with a copy of the serial memory
project 6021Building Correct Reactive SystenREACT).

62 E. Brinskma

W1 Ry Wy R, W R,
A A A
Out, Outy Out,
_ _ o K]
Memser T | y o
U U2

1

Iny Ej In, Ej In, Ifj

Cache, Cache, Cache,

Fig. 1. The lazy caching memory

itself, where each user directly reads from its local memory,(see Fig.9), each providing a context similar to those used
but each write action is atomically copieddtl local mem- in transformation step 3. Again, sequential consistency is
ories (see Fig.5). The latter ensures the global consistencguaranteed by the general preservation properties of such
of the local memories, and thus the sequential consistencycontexts.

Transformation step 2ntroduces the local caches, but The structure of the remainder of this article is as fol-
without removing the local memories (see Fig. 6). Each usetows.
reads directly from its local cache. When an invalidated ad-
dress is read this will succeed only after it has been updated
by the local memory. Because of the general fairness as-
sumption stated in? this will occur after a finite time. A
write action to a local cache is copied atomically to all local o
memories and caches. The corrgctness of thig step follows which is used to represent the contextslrof and Out-

from the fact that under the fairness assumption the caches queues me_nt|oned in the proof outlmg above;
do not add to the behaviour of the distributed memories. Section 4gives the formal transformation style proof of

Transformation step 3adds a second ingredient of the the weak sequential consistency of the distributed cache

target architecture, viz. thén-queues (see Fig.7). These memory along the_ Ii_nes of the proof outline above. This
gueues buffer the write and local update messages for the Ecr)?gct)?lges (s)?elymﬂirrllttoe ;fctqc)uuirzges of the observable ac-
caches. Also, the constraint is added that local read actions Section sz/ roves the result t'stron sequential con-
are only allowed if nolocal write actions are queued, i.e. P gseq

write messages of users at other interfaces can be in the Ssdzf:?[irg)(;\yé:lljr:#cga?:igsdt%aelsrevgmslnglnhaa?/eehggcleonugbtaine d
gueue at the time of reading. The addition of suchl@n

. . nd di ibl neralizations and extensions.
buffer and a constraint to the use of a cache provides a and discusses possible generalizations and extensions

particular operationatontext for the caches. The correct-
ness of the transformation follows from a general property2
of contexts of this kind: they preserve the order of any set

of messages that may be queuegether withthose actions \ye il work with a simple process algebraic formalism to

that can be executed whem) messages of th‘? given set specify the different design stages in the course of our proof.
are queued. We show this property to be sufficient for thery, o ,qhout this paper we will assume a working knowledge
preservation of sequential consistency. of process algebras. For a good introduction to the literature

Transformation step 4ombines the coherent local mem- of process algebras the reader is referred to [Hoa85, Mil89,

ories into one, central serial background memory that upgyy 9] Below, we give a short summary of those features
dates all local caches (see Fig.8). This transformation ©Xfhat are essential for the development of our proof.

ploits the associativity of the parallel compositions in the ™ 1o syntax and semantics of our formalism are given

system, which allows us to see it as subsystem of coherg, tapia™1 and 2, respectively. The tables assume a given

ent local memories in parallel with a subsystem of bu_fferedset of observable actionact and an additionakilent or

local caches. The inverse of transformation step 1 in tUrMpidden action+. The behaviour expressiondisted in the

allows us to replace the former subsystem by a single serial .oy table define the behaviour of systems in terms of
labelled transition systems, where the transitions are labelled

memory.
by elements imActu {7}. These operational models can be

Finally, transformation step Jdds the last ingredient to
obtain the desired architecture, viz. tit-queues. These yoiveqd for each behaviour expression with the aid of the
ference rules given in Table 2. For a detailed account of

gueues buffer the local write messages, which upon leavin
his so-calledstructured operational semantiag SOSstyle

Section 2introduces the process-algebraic formalism that
we use;

— Section 3explains abougction transducersand in par-
ticular the new concept of gueue-likeaction transducer,

A simple process-algebraic formalism

the queue are written atomically into the serial backgroun
memory and allln-queues. Local reads can occur only if of definition, we refer to [Mil89, Plo81]
the corresponding locaDut-queue is empty. The queues ’ ’ ’

. . We draw attention to the fact that the parallel composi-
and constraints are added separately for each user mterfa% b b

n combinator||s allows for so-callednultiway synchro-

Cache consistency by design 63

Table 1. Syntax of a simple process algebraic language and composition operators. .l# denotes dinite set of be-

Name SyntaxB Label setl(B) haviour expressions thew .7 and [[“.7 denote the re-
gﬁg_cgl:r;ref_ 0 B (0 € AS) ? VU L(B) peated application of ‘+’ and||¢’, respectively, to the ele-
on- IX M- H H , if B =
T.B L(B) ments of. 2. E.g. if /2 ={By,..., B,} then
choice By + By L(B) U L(53,) B =Bi+...+B,
composition Bi||lg B2 L(B1) U L(B>) o
(G C Act) H -r%):BlHG---HGBn
hidi B/G L(B) -G . . . - L
e (G/ C Ach) 5) This notation exploits the commutativity and associativity of
renaming B[H] H(L(B)) the combinators ‘+' and|!s’ that will be justified bglow. If
(H : Act— Acl) 7B ={B;li €. .7} we often writeS".,_ B; and [, B;
instantiation Ly { | } 2167 H16.7

instead ofy {B;|i € .7} and[[“{B;|i € .7}, respectively.
The standard identity over the behaviour expressions

Table 2. Structured operational semantics (and labelled transition systems) will be given by 8tmng

bisimulation equivalenceelation, which is a congruence

p
(p <= Bp, L(Byp) € Lp)

ngﬁm ?::]st and inference rules yvith respect to all the given combinators. We recall the def-
action-prefix wB 2 B inition. . .
(u € ActU {}) ~ Let BE denote the set of behaviour expressions over
choice B 5 By - Bi+B, 5 BY given s.etsAct and & of actions and process identifiers,
By 5 By By+ By 5 By respectively.
composition By — By’ buge BilleB2 ~= Bi'llcBz Definition 1 A relation R C BE x BE is astrong simula-
By % By buga BillgB2 —— Billa By tion relation iff for all (By, By) € Rand forally € Actu{r}
By = Bl:’ P itis the case thaiB,’ B, - B;'implies3B,’ B, - B,/
N Bz - By Fuea Bl\lcf’z — Bi'|lgB2 and (B/', B, € R.
hiding B — B'Fugc B/G — B'/G A relation R C BE x BE is astrong bisimulatiorre-
B - B'tueq B/G 5 B'/G lation iff both R and its inverseR~* are strong simulation
renaming B % B'+ BlH] ™Y B'[H] relations.
instantiation B, - B’ kpep, p — B’ Two behaviour expression3;, B, are strong bisimula-
tion equivalent, notatioB; ~ B, iff there exists a strong
bisimulation relationR with (B1, B2) € R. O

nization between actions, i.e. thé;-composition of any fi- The following fact i dard it in th
nite number of processes can synchronize on a given actionI b € ol_owmg ac; |sM§}859tan ard result in the process
a € G. To make an action unavailable for further synchro- 2/9ebraic literature (cf. [Mil89])

nization an additionahiding-combinator is part of our for- Fact 1 The relation~ is a congruence with respect to all

malism. The combination of these two combinators allowsihe combinators introduced in Table 1 and satisfies the laws
for a powerful specification style that is essential for our|isted in Table 3. 0

proof of the caching protocol. A similar set of combinators is

available in CSP and LOTOS [BB87]. ACP also possesses a We recall the following (standard) notations. Action
hiding- or abstractioncombinator, and|s-composition can names are variables ovéctU {7} ando denotes a string
be handled as a derived construct. In CCS synchronizatioef actionsas . . . ay,.

is always combined with hiding, thus effectively allowing o , a

only binary synchronizations, which makes it unfit for our B — B <4 3By, ..., By B=Bo — BiA...

proof strategy. A Bp-1 a—> B,=DB

Behaviour expressions are defined in an environment ofg =5 p &g B = B
process definition®f the form B = B ©43B,B, B =% BIAB, % B,
{p=By|pe7} NBy = B
whereZ’ is a set of process identifiegswith action label B = B df 3Bo, ..., Bn B = Do = BiA...
type L,, and B,, is a behaviour expression with action label AB,_1 =% B, =B

set L(B,) C L,. We will use the the notatiop < B, to Der(B) =4 {B' |30 €Act'B =% B'}
denote the statement that <= B, is an element of the envi- L . .
ronment of process definitions’. The environment may con- | € =--notation is used for a generalized version of the
tain mutually recursive process definitions. The label typedransition réelation that concentratesminservabldjehe_mou/r.
L, are usually left undefined, and are implicitly understood NOte thatB == B expresses thaB can change intd3’
to be the smallest label types satisfying the static constraintinoPservedlyi.e. by executing 0 or more-transitions. This
of Table 1. In the application part of the paper we will pro- includes the special case th%t no transitions are excuted at
vide concrete instances of the set of actigkat and the all (and therefore3 = B’). B = B’ expresses tha® may
process definition environment. move toB’ when executing the observable actigrpossibly

In addition to the process algebraic combinators intro-preceded or followed by any finite number of invisibte
duced by Table 1 we will use generalizations for the choicesteps. ——+ and == are the generalizations for strings

64 E. Brinskma

Table 3. Some transformation laws
@ BillgB2 = B2|laB1
(@) Billa(BzllgBs) = (BillgB2)lla B3
(3) Bill«(B2l|«Bs) = (Bil|«B2)||+ Bz whereBi||+« Bz =gt B1||L(B))nL(B,) B2
)] (Bill¢B2)/A = B1/A||cB2/A fANG=0
(6) (BilleB2)H] = Bi[H]||gB[H] if H|G=idg andH XG)=G

of %+ and =%, respectively.Der(B) denotes the set
of behaviours that areeachablefrom B, also known as its
derivatives These are all behaviours that can be reached
from B by some finite string of transitions.

Using the above notation we define also a less strict
equivalence relation thax. a

Definition 2 ArelationR C BE x BE is aweak simulation
relation iff for all (B1, B,) € R and for all « € ActU {e} it
is the case thallB,’ B, = B, implies3iB,’ B, = B, C[B]
and (B, B) € R.
Arelation R C BE x BE is aweak bisimulatiomelation ~ Fig- 2. Transductions of a context
iff both R and its inverseR—1 are weak simulation relations.
Two behaviour expressiori$, B, are weak bisimulation
equivalent, notatiom3; ~ By, iff there exists a weak bisim-
ulation relation R with (B1, Bs) € R. O

Whereas we can use behaviour expressions to define
stateswith transitionsbetween them (e.g. as defined by Ta-
ble 2), contexts definaction transducersvith transductions

Again we have a standard result (cf. [Milg9]). between them. Such tr_ansductions will be denoted by doubly

decorated arrows, as in
Fact 2 The relation= is a congruence with respect to all a
the combinators introduced in Table 1 except for the choicel’ 7 T
combinator+, and its generalizatior) _. Moreover,~ C =,

i e ~ satisfies all laws of. 0 which represents the transduction of actiomto actiona

as action-transducer (statg) changes intdl”. Informally,
Finally, let us defineTrace§B) =4 {0 € Act' | 3B’ this should be understood as follows: whenever a behaviour
B at the place of the formal parameter [] produces an
b-action transforming intd3’, T B] will produce aa-action
as its result and transform in®'[B'].

B =% B'}, then we have the following well-known defini-
tion and results (cf. [Hoa85, vG93]).

Definition 3 Two behaviour expressionB;, B, are trace
equivalent notation B; ~yace Bo, iff TracegB;) = Traces
(B2). . a.B||w[Ma/b] > Bllay[a/t]

Fact 3 The relationy,ce IS @ congruence with respect to all
the combinators introduced in Table 1 ardC ~ C ~ace.

Example 1

wherea/b denotes the obvious renaming function replacing

O b by a. O
Fact 4 Let By||. B> be defined as in Table 3. The transductior” % T’ thus corresponds to the op-
Trace$ B ||. Bo) = erational semantic rule
{o € (L(B1) U L(By))* | o | L(B1) € Trace¢By), B % B FT[B] % T'[B]

o | L(B2) € Traces5,)} Additionally, we also allow transducers to produce actions

O ‘spontaneously’ to cater for contexts like[], which can
produce ar-action without consuming an action of an in-
stantiating behaviour. This will be denoted by transduction

3 Queue-like action-transducers of the formT % T’, corresponding to the operational se-
Action-transducers are the operational counterpartanf- mantic rule
texts i.e. behaviour expressions with an open plac@ale
in them. Such open places, often denoted by the symbol ‘[|',Example 2

can be regarded as variables that can be replaced with actual "

behaviour expressions to obtain instantiations of a given con- a.Blliayal]l = Bll{ay[]

text. For example, the conte&t|] =4 a.0+[] can be instan- 0

tiated by the expressidnc.0, yielding C[b.c.0] = a.0+b.c.0. O

FT[B] % T'[B]

Cache consistency by design 65

q ¢ require (de)queuing transductions to exist for all queuable
actions in all context states, whereas the last alllews the
existence of certain transductions in certain context states.

For the proofs in our derivation of the lazy caching mem-
ory we will be especially interested in queue-like action
transducers because of tiebservable trace transductions
that they induce. More in particular we will need to know
those traces that are invariant under transduction. This mo-
tivates the following definition.

Q°[B] Definition 5 Let.7; = {T7 | o € Q*} be a queue-like fam-
ily of action-transducers. We say thag, preservesA C Act

Fig. 3. A queue-like transducer iff
* € _p v 1 H —

In this paper we will not give a complete formal intro- ¥p:o € Act,v € Q" T == T* implies p [A=ov [A

duction to the concept of contexts as action-transducers. For ad

this the reader is referred to [Lar90, Bri92]. Here, it will

suffice to define systems of action-transducers by explicitly It is not difficult to see that traces of queuable actions

giving sets of transducer states and transductions betweefl€ Preserved in the above sense by queue-like transducers,
them as (FIFO) queues preserve order. Strings of non-queuable

A last step before defining transducer systems is the eXz_ictions are also preserved, as their execution by the context
tension of the transduction notation to a suitable .double_coincides with their execution by the instantiating behaviour.
arrow’ notation. Let, o’ € (ActU{r, 0})*. We writeo <1 o' In order to study the preservation properties of strings of both

iff o can be obtained from’ by erasing any number af- queuable and non-queuable actions is it useful to consider
or O-occurrences in it. We define the setsD 4 of those non-queuable actions that can occur if

the queue doesot contain any of the actions in a given set

" T/<:>df3To7...,TnTETong/\“- AcQ.
o J by

Definition 6 Let.%g = {T° | o € Q*} be a queue-like fam-
ily of action-transducers. For eacd C @ we define the set
Dy C Act by

an
ANT,_1 — T,=T
0'1,
T f% T <df 301',0’2/ T ST A o1 <](71,
a2 oo/

Aoy <o Da={a€ Act |Vo (T° = T iff o | A=e)}

We now proceed with the definition of the special kind of 0

action-transducer systems that we need for our application, The following lemma expresses the general preservation
viz. the queue-like families of action transducers. properties of queue-like transducers. They state that strings
over A can always be mixed with actions P4 without
losing the preservation property. The intuition behind this
result is that actions i 4 could never ‘overtake’ nor be
‘overtaken’ by actions ind and thus upset the ordering.

Definition 4 Let @ C Act. A family of action-transducers
To ={T7 | 0 € Q*} is queue-likeiff its transductions are
of the form:

q
* o oq

1LVqeQoecQ I7 = T Lemma 7 Let.75 = {T° | 0 € Q*} be a queue-like family
2.¥qeQ,0cQ* T 7o on action-transducers. For each C) .7 preservesd U

q A
3. forOormores € Q" a € (Act = Q)T — 17 O pryot et e £ TV, We carry out the proof by induction

These transducers correspond to the contexts depicted @ |p| +|o|. The basic case thgt| +|o| = O follows trivially

Fig. 3. There are three sorts of transductions possible, cor@s it implies thap =o =v =e.
responding to the double-headed arrows in the figure and Letus therefore suppose that the lemma holds fot afl
the rules in the definition. There is a designated sulgset |p|+|o|. We can factoriz&™ 2L TintoTe £& Tvr 2 v
of Act representing thgueuableactions. Actions of) may a o1

b
be stored by the environment into the context queue (transf-Or some suitably chosepy, o1, v1, a, andb. Since, by the

duction rule 1). The contents of the queue is representeqm"’"“On of queue-like transductions, not bathand b &

by a string inQ* used as a superscript @f. Actions of Q 7,0} we can deduce thap:|+|oa| < |p|+|o| and therefore
that are at the head of the context queue may be consumdf@tr [(AU D) =011 [(AU Da).

by the instantiating behaviour (transduction rule 2). This ac- Ve Now proceed by case analysis on the nature of the
tion is invisible ¢) to the environment. Finally, there may transductionl™ — T as given in Definition 4.

be states of the transducer (characterized by the contents b
of the queue) in which some non-queuable actioraf the or @ 4
environment coincide with actions of the instantiating be- L™ 7 =7 7 ti
haviour (transduction rule 3). Note that the first two rules Thenp [(AU D) =piq | (AU D)

66

=ov1q [(AU Da)
=ov [(AU Dy).

LT S T =T ST
b

q
Thenp [(AUDA) = p1 [(AUD4) = o1v1 [(AUD,) =
o1qu | (AU D4) =0ov | (AU Dy).
T S o=y 5 e,

b a
This is only possible itz ¢ @ and thusa ¢ A.
Assume that alsa ¢ D4 then it follows that
pl(AUDA)=pra | (AUDA) =o1via | (AU Da) =
orav1 | (AU D) =0ov [(AU Dy).
In the other case that € D4 it follows thatv, [A =
v [A = e. Therefore, we get
p I (AUDA)=pia | (AUDa) =01v1a | (AU Dy) =
c1a | (AUDA)=c [(AUDy)=0ov [(AUDy,). O

The following lemma casts the preservation property in
the form that we will need in our proofs later.

Lemma 8 (preservation lemma) Let.75 = {17 | 0 € Q*}
be a queue-like family of action-transducers. [B&etontinu-
ously allow all actions inQ, i.e. for all B’ € Der(B) and all
¢e Q3B B' - B".Thenforallo € Trace§T[B]) we
have

o’ ¢ Trace§B) VA C Q
with o [(AUDA) =0’ | (AU Dy)

Proof. Assume thaf"“[B] == T"[B’]. BecauseB contin-
uously allows all actions i), we have in particular that
B’ =% B" and thereforel*[B'] == T¢[B"]. It follows
that there exists &’ with T =§> T ando’ € Traceg¢B).

The required preservation result now follows from an appli-
cation of the previous lemma. a

4 Deriving the lazy caching memory

We start our derivation of the lazy caching protocol with a
specification of the serial memory, which is given by the
processMem(z) defined by (1) below. The contents of the
memory is represented by the process paramatevhich
is a vector of elements in the data domdnindexed by
the setA of memory addresses. For alle A x, denotes
the o™ element ofz. The setl = {1,...,n} indexes the

E. Brinskma

Wll TRI ng TRz

Serial Memory

Wnl TR,.

Fig. 4. A serial memory withn user interfaces

!

Locmem,

Rl W2 R2 WTL

1

Locmem,,

W R,

Locmemg

Fig. 5. A distributed memory

— ;| =4 {Wi(d,a) | d € D,a € A}, the set of write
actions at user interfacg and 7% =4 .. ; 7#;, the set
of all write actions,

H; =4t {Ri(d,a) | d € D,a € A}, the set of read
actions at user interface and.22 =4 |, -#2;, the set
of all read actions,

Sy =4t ;U .2;, the set of read and write actions at
user interface, and % =4 |, ; %;, the set of all read
and write actions.

iel

icl

We can now formulate the correctness criterion in our setting
as

Definition 9 Let B; and B, be behaviour expressions with
L(B;) € % . A behaviourB; is weakly sequentially consis-
tentwith B, iff
Vo € Trace$B;) o’ € Trace$By)
suchthatvie I o | %, =0' | %;
O

This is a weaker requirement than the originally given
definition of sequential consistency, which is concerned with
maximal, and therefore possibly infinite traces (which are
not in TracegB1)). We will first complete the design for
this version of sequential consistency and will revisit the
question of infinite traces in Section 5.

4.1 Distributing the memory

Our first step in the design is to create a local copy of the

number of user interaction points of the memory, i.e. thememory for every user. The specification of the local mem-
number of locations where local read and write actions carpry for userj € I is given by the process definition of

be performed.

Meme(®) < > Wild,a)Meme(@{d/z}) (1)
ae;féeD
+ 3 Ri(a, a)Meme(z)
e

Here, W;(d, a) represents the action of writing datu#nin
memory address, andR;(d, a) reading datunad from mem-
ory locationa. It will also be useful to define the sets

Locmem(z) at (2) below. Note thakocmem(z) still inter-
acts in all actions in77”, but accepts only local read actions,
i.e. those in%;.

Locmem(z) < Z Wi(d, a).Locmem(z{d/z.}) (2)

iel
acA,deD

> Rj(zq,a).Locmem(z)

a€A

+

Our first refinement is now given by the process defini-
tion Refinementin (3).

Cache consistency by design 67

Wi R Cachg(@) < > Wi(d,a).Cachg(@{d/z.}) (4)
+ [T - aeféeD
Locmem; Cache; + Z U;(d, a).Cachg(z{d/x.})

Ui a€A,deD

Fig. 6. Factoring out a local cache + Z Rj(a?a a).CaChg(E)

alT
+ > r.Cachg(y)
Refi 7L 0 3 vere
efinement< H ocmem(0)) Note that the local caches synchronize on all actions

gl in 77”, but accept only local read and update actions, i.e.

The correctness of this step is certified by the following Only actions in.2; U #¢;. Cache invalidation is modelled

lemma. by allowing the elements of the memory vectorto take
the undefined value', and the introduction of the following
Lemma 10 predicate and set:
Meme(0) ~ Refinement - a | 7 iff 2, #1, denoting thatr is defined at address
. ' and
Proof. The relation defined by — () =4t {7 | Ya € A y, = x4 V y, =1}, denoting the set
w " of all memory vectorgj that coincide withz at all their
{{(Meme(z), [[Locmem(z)) | = € D} defined addresses, i.is obtained by invalidating: at
jeI any number of its addresses.
is a strong bisimulation. This follows directly as for all writ- Let ¥46/.72 : Act — Act denote the renaming function
ing actions we have that maps each read actid®;(d,a) to the corresponding
update actiorl;(d, a) for all 7, d, anda, and all other ac-
MemedZ) Wﬂ}“) Meme(z{d/z,}) tions to themselves. We are now ready to define the second

o Vje I Locmem(z) Wi(da) Locmem(@{d/x.}) refinement of our design as follows.
v (d.a v
& [[° Locmem@ "% T]” Locmem(z{d/z.}) - B
jerl jer Refinemept« H (Locmem(0)[%¢ /. #2]
Jel

and for all reading actions 11,07~ Cachg(7,0))/ 2)

_\ Ri(za,a -
Meme(z) 57 Memedz)
& Locmeny(z) Rilra®) | ocmeny(z)

7 (o a Va . .
o H Locmem (@) Ri(waga) H Locmem(z) Iem1r:nh: correctness of this step follows from the following

for arbitrary 7, € r(0).

jel el
O Lemmai12 vz e DA ger(@),jel

Corollary 11 Refinementis weakly sequentially consistent (Locmem(z)[24 /-72] || 2,07 Cache(y))/ 24
with Meme(0) ~ Locmem(7)

Proof. Follows directly from~ C =syace (fact 3). ad Proof. The relation
{{(Locmem(z)[74 /.72] || 22,07 Cache(y))/?¢,
4.2 Introducing local caching Locmem(z)) | 7 € DA, 7 € r(Z)}

)) is a weak bisimulation relation. It suffices to consider the
In the next step of our design we introduce a local cache thajg|iowing cases:

the user communicates with and that is updated by the local
memory. Because of its direct interface with the user this — (Locmem(Z)[2/ /.%2] ||,;,u7- Cachg(v))/?¢ = B:
cache has a more elaborate set of interactions than the caches ThenB=(Locmem(z)[74 /.72] || »+,u7 Cache(y'))/ %¢
that we will ultimately design. The behaviour of the cache |, 7 € r(z) where the silent transitions i< con-
at interaction poin < I is given by the process definition sist of zero or more cache invalidations and/or updates.
Cachg(z) in (4) below. In addition to the (local) memory It suffices to take_ocmem(z) == Locmem(z)
the caches havapdate actionsUj(d, a). For convenience (Locmem(@)[7. 7] n31||) Car(?h (;))/W
we define?s; =4 {U;(d,a) | d € D,a € A} and 24 =4 Wi a)m 7 [7C ;07 §W))/ e
Uier %:. —" B: Then B = (Locmem(z{d/xz,})[?¢/.72]

| 22,07-Cachg (G {d/ya)/ 7.

68 E. Brinskma

This is directly matched bylLocmem(z) Waldya) o Wi R
Locmem(z{d/xz,}). Y
—\T /) Tz — 3 Rj(waaa) .
— (Locmery(@)[24 /-72) || vs,u7- Cache(@))/ 2¢ =% Loemenm,—2:
B: Then B = (Locmem(z)[?4/ 7] ||s,um
Cachg(y))/ 4.
This is directly matched byLocmem(z) ' “%®
Locmem(Z).

— Locmem(z) = B: Then B = Locmem(z).
This is therefore directly matched by
(Locmem(z)[24 /. 72] || 22,07 Cache())/ 24 =

K?[Cache;)

(Locmem(z)[24 /. 72] || 424,07~ Cache(y))/?¢. Fig. 7. Buffering a local cache

— Locmem(z) Wild®) B Then B = Locmem(z{d/x}).
This is directly matched by U, (d,a) U (d.a)

DA o, Wilda K¢ —— KJ779\%

§Locmen@§x){[///A/,ﬁ[] | 7U]7/ Caﬁhg(y))/M Qh) Ay o
Locmem(z{d/x.})[?¢ /.72 0,07 Cachg o Vil o Wi(d,a) .
— ; K — K: @ foralliel
@{d/ya})/ 2. * Lo !

— Locmem(@) "% B: Then B = Locmem(z). o KjIVC —— K7
If a | 7 then this is directly matched by Wid.a) 3(da) or all

o . Ri(aa K% o K7 forallicl

(Locmer@(@)[%?.ﬁ] HMM/- Cach(;(y))?% i(zaye) * N Widay !
(Locmem(z)[24 /.72 || 1s,u7 Cachg(y))/ ?¢. , Rida) _ . o
If y, =1 then first a cache update of addressiust take ~ * X Ao K; it ¢ contains noZz;-actions
place. O
This generates the following matching sequence of ac- If we compare the above transductions to Definition 4
tions:) i we see that the first two transductions correspond to queuing
(Locmem(z)[24 /. 7] || 2,07 Cache(y))/ 2 —) (case 1 of Definition 4) write and update messages, the next
(Locmeny(z)[24 /. A2) || 22,07 Cachg(y{za/ya}))/?¢ two transductions correspond to dequeuing (case 2) write
RJ‘(&;@) and update messages, and the last transduction corresponds

constraint on the contents of the queue.
The third refinement is reflected in the following process
definition.

(Locmem(@)[%2/ 22) || 1,07 Cache(F{za/ya}))/ 24 to direct execution (case 3) of read actions under a specific
’ O

Corollary 13 Refinementis weakly sequentially consistent

i 0 W _
with Meme(0) Refinement< [[(Locmem(0)[24/.7] || v,

jel
Proof. Becausex is a congruence relation w.r.t. the parallel Kj[Cache(y,o)])/ 2¢ (6)
combinator | (fact 2) it follows from the above lemma that
Refinement~ Refinement Combining this with~ C ~race
(fact 3) and Corollary 11 the desired result now follows

directly. U We can now prove the following lemma.

for arbitraryy;, € 7(0).

Lemma 15
Vjel,oc(# UR),Tc D ger@)
(Locmem(z)[24 /. 72] || ss,u7 K;[Cache(®)])/ 2 =
Jo’ € (7" U.2;)*

In this refinement step we will buffer the communication (Locmem(T)[24 /.72] || 1s,u7 Cache(@))/ 2¢ :U:;

of write/update actions to the cache, and only allow read TURN = o {7/ »

actions if there are no local write actions buffered. This can /\ @ | (775 U-#;) = 0" [(7/; U 7;)

be expressed using a family of queue-like action transducersA o [77" =o' | 7/~
in the sense of Section 3.

4.3 Buffering cache communication

Proof. This essentially follows from the preservation Lemma
8. Assume that
Definition 14 The family of queue-like action transducers (| gemem(@) 22 /.21 ||, .« - K[Cache(@) /724 =
{KJ‘? | 0 € (#" U 2;)*} is for eachj € I completely (W@/ oty it s/
characterized by the following set of transductions: It follows there must exist a; with 01/7¢ = o and

Cache consistency by design

Locmem(z)[22 /.72] || 17,07 K§[Cachg(®)] =

By the properties of| ;L7 (fact 4) forop = oy [(24; U
77") we have

Locmem(z)[% /.72] =% and K[Cachg(y)] =
By the preservation Lemma 8 there isr@with
Cachg() = and

o (U R) =0y | (WU 2;) and
o (T V) =01 [(U 2))

which follows by takingA = 7/ (then D4 = .2;), and
A=/"U%; (thenD4 = (), respectively. Recombining,
we get

Locmem(@)[%4 /.72 || ss,,7 Cache(y) =

Then takinge’ = o7/ 74 it follows that

(Locmem@)[24 /. 72] || su- K:[Cache(@))/ 2 <
with

o [(H]U.R)) = (01/) | (F;U.72;)
= (o0 [(H5U.22;))] 2¢
= (o1 [(Z5U.-%;))] %
= (01/20) | (77U 7))
= o [(U2

and likewise

o | T = (o)) | T = (o |)2
=L | T2 =04 2) | T =o' | T

O

Corollary 16 Refinementis weakly sequentially consistent
with Mem(0)

Proof. Assume that

Va —) _
H g (Locmem(0) [24/.72] ||s,u
! Kj[Cachg(@,0))/ 7% =

then according to fact 4 for each € I with ¢; =
(77" U .72;) we have

o

(Locmem(0)[74 /.72] || 2¢;u97 Kj[Cache(y;0)])/ ¢ =

Also, it follows that for allj € I the o; must agree on
their common actions i/, i.e.o, | 7" =oj, | 7 for
Juj2 € 1.

Using the above lemma we find; with o; | (7 U
Sj) =0y [(HjUH;) anda; | 777 =0’ | 7/°. The latter
equality implies that forj;, j» € I we haveo) | 7" =

69

o | W =04, | W = a§2 [77”. This means that we can
apply fact 4 again, in the opposite direction, combining the
o and find a0’ with o’ [(77" U. %)) = o', | (7" U.72;)

- - y
[(Locmem(©)[2¢/. 7] || 1,07 Cache(F,0))/ 24 =

Jel

It follows thato’ | (7, U .2;) = o | (#; U .22;) for all
j € I, i.e.Refinementis weakly sequentially consistent with
Refinement and thus withMem(0). O

We proceed with a cosmetic transformation that is not
really necessary for the design, but brings our specification
closer in line with the specification given in the problem
statement in 7]. There, the cache communication buffer
identifies all update and non-local write interactions once
they have been buffered. The contents of local write inter-
actions is marked for identification with a special symbol
(‘+"). To achieve this in our design we introduce a revised
class of queue-like transducer families.

Definition 17 The family of queue-like action transducers
{LS | o € (" U 2)"} is for eachj € I completely
characterized by the following set of transductions:

Uj(d,a)

g ’ L?-(d;a)
(0

W,(d,a

g M) poaan
0

Wi(d,a) ;.(d,a)

0

L?z(d,a)‘a T Lo

J Us(d,a)

R;(d,a)

—

Rj(d,a)

QL?

i
a(d, a) € {(a,d), (a,d, %)}

L; L? if o contains nox-actions

O
The corresponding revision of the cache specification is
given by the process definition ﬁfachéj\(f) below.

Caché(@) <= Y Uj(d,a).Caché(@{d/z.}) (7)
a€A,deD
+ Y Rj(z,,a).Caché(z)
alT
+) r.Caché()
yer(z)

The overall refinement step that is implied by these
changes is given by the process definitRefinement.

Refineme@t¢H7/iLocmem(6) [2) 2| e,om (8)
Jet L§[Cache(y,)])/ %¢

for arbitrary ;o € 7(0).

Essentially,L;[Caché(yjo)] differs from K7[Cachg(y,o)]

only in the way in which the internal events corresponding to
the buffer-cache communication are produced; the resulting
transition systems are identical.

70

Memger

e

i
aches

Fig. 8. Centralizing the memory

Lemma 18
L$[Caché(y,0)] ~ Kj[Cachg(y;o)]

Proof. Left to the reader.

Corollary 19 Refinement is weakly sequentially consistent

with Mem(0)

E. Brinskma

(H(Locmer@(ﬁ)[% /7] ||« L§[Caché(y,0)])/?¢
jeI
~ {laws 1 and 3 of Table B

(I] Locmem(@)7¢/.72] ||] L5ICaché,o))/ 74
JeI JeI

~ {law 5 of Table 3 and Lemma }0
(Meme0)[22/.72] ||, [L5[Caché(g,0))/ 2

jeI

~ {L(Memy(0)[22 /.72])

N L(ﬁ L§[Caché(y,0)]) = 24 U 7",
jer
L(LS, [Cachg, 7,0))

N L(LS,[Cachg, (7,,01) = 77 (j1 # j2)}
o

Proof. As ~ is a congruence w.r.t. the operators used andMemed0)[22 /.72 || 207 HLE[CaChé‘-@jo)])/‘M

preserves traces. O

4.4 Centralizing background memory

jel
O

Corollary 21 Refinementis weakly sequentially consistent
with Mem(0)

As the local memories have served their purpose in produc-
ing the local (buffered) caches they can now be recombinedProof. As ~ preserves traces. o
into a central background memory. Therefore, our penulti-

mate design step is specified as follows.

Refinement< (Memye(0)[74/.22] || o
17 z5icaché @,/ # ©)

jel
for arbitraryy; € 7(0).

Lemma 20

(Meme0)[72/ || o [LiICaché@ o)/ 26 ~
jeI
[17 (ocmem@(22/.72] || su L[Caché(m, o))/ 2
jel
Proof.
w B
H(Locmery(O)[% [LY N os; 07 L;[Cachg\-@jo)]) /7t
jel
~ {law 4 of Table 3
v ~
(] [(Locmem(©)[24/.22] || 07 L5[Caché (@,0)]) / 2¢
jel
~ {L(Locmem, (0)[2 /.72])
N L(Locmem, (0)[24/ 2])) = 77" (j1 # j2),
L(Locmem(0)[24 |.72])
N L(LS[Caché(y,0)]) = 24, U 77}

4.5 Adding the user interface

The last step in our design is the buffering of local write

interactions with the users. Local read interaction is permit-
ted only when the local write buffer is empty. Again, this

can be conveniently modelled using families of queue-like
action transducers.

Definition 22 The family of queue-like action transducers
{M? | o € 7;"} is for eachj € I completely characterized

by the following set of transductions:
Wj (d,a)

. Mo 20 M('T.Wj(dval)
J 0 J
TR
W;(d,a)
R]‘(d,a)
o MS —— MS
7 R;(d,a) /
o My S M) ac{R(da)Wi(dalj#icl}
a

O

The first and second transduction rules correspond to the
queuing and dequeuing of local write actions. The third rule
corresponds to the local read actions, and the last rule to all
read and write actions at the other user interfaces. The last
two rules are both instances of case 3 of Definition 4.

The corresponding refinement is expressed by process
definition Refinemengtbelow (recall that in the beginning of
this section we puf = {1,...,n}).

Refinement« (10)
(M; o...o Mp)[(Memed0)[24 /- 22] || sou7r

Cache consistency by design 71

Wi B W (R Woy) Bn Example 3Consider a serial memory with only two user
interfaces and only a single memory location initially hold-
ing the value 0. Suppose now a distributed implementation
displays the infinite trace

Wi(1)(R2(0))* or Wi(1)Rz(0)R2(0)R2(0). . .

that is, user 1 writes the value 1 into the memory and user
L 2 keeps on reading the initial value 0 infinitely often.
Cache, ‘ hen |8 12 Note that every finite prefix of this trace is weakly
e : = . sequentially consistent with the serial memory. For rall
W1(1)(R2(0))™ is weakly sequentially consistent with
(R2(0))"W1(1), which is a valid behaviour of the serial
memory. For the infinite tracél’1(1)(R2(0))* there exists

S
Lo [Cache) °2[Caches)

MY |Refinementy)

Fig. 9. Adding a user interface no analogous permutation, as can be readily checkedt
w The above example shows that when infinite strings are
H L;[Cachg@jo)])/%] considered sequential consistency implieBvanessprop-

jel erty: a write by one user is eventually read by the other.

In this section we will show that the lazy caching memory

in fact satisfies this stronger requirement, and will require
Here, M7 o ... o My denotes the composition eftran- only minor adaptations of the proofs for weak sequential

ducer applications, one for each user interface. With theconsistency.

addition of these interfaces the last ingredients of the lazy First, let A~ denote the set of finitand infinite strings

caching memory of Fig. 1, viz. th@ut-queues and their as- over A. Then we define the set of finite and infinite traces

sociated constraints, have been incorporated in the designf a behaviourB as

The following theorem and its corollary, therefore, express

the correctness of the lazy caching memory.

for arbitrary 7, € r(0).

Traces,(B) =4 {00.01.02.--- € Act” |

Theorem 23 For all i € T I Bi}ien B = Bo, Bi => Bi+1}

M5 o...o Mf)[(Memed0)[24). 72) || sru7r Definition 25 (strong sequential consistency).et B, and
(M u %,.er(ool 7 v B, be behaviour expressions wifl{ B;) C 4. A behaviour
H L;[Cachg(yjo)])/%] B is strongly sequentially consistewith B; iff
Jel B Vo € Traces,(B1) Jo’ € Traces,(B.) such that
is weakly sequentially consistent with Mgg®). Vielo| % =0 %
Proof. By induction oni using preservation Lemma 8 it O
is straightforward to show that the application of eddt
preserves the actions i, U.#2; and in 7/, U.%; for j # i, To show the correctness of the distributed caching mem-

choosingA = 7, and A = 0, respectively. The sequential ory it suffices to extend some of the definitions and facts of

consistency wittMemy(0) then follows from Corollary 21. Section 2. We start with the equivalence corresponding to
O Traces, (B) defined by

Corollary 24 B1 ~irace, B2 iff Traces,(B1) = Traces,(Bo)
(M; o ... o M)[(Memed0)[22 /- 22] || se7r Fact 5 The relation~yace, iS @ congruence with respect to
W all the combinators introduced in Table 1 ardC ~yace, C
[T rzsicachém,on /21 Rtrace- O
Jjel

Fact 6 Let By||. B2 be defined as in Table 3.
Traces, (B1]|«B2) =
Proof. Takei = n. O {o e (LBYU LB | o | L(By) € Traces,(By),
o | L(By) € Traces,(B2)}
5 Strong sequential consistency O

is weakly sequentially consistent with Mg#®).

Having completed the design and proven it correct in terms The proofs of these facts are standard, and are left to the
of weak sequential consistency we come back to the originateader.

formulation of the problem in7], where sequential consis- The last generalization that we need is the extension of
tency is required with respect to thmaximal observable Lemma 8 to strings inPAct’. This is the only part of the
traces, i.e. possibly infinite traces, of the systems involvedproof in which we will need theveak fairnessassumption
This is a strictly stronger requirement, as can be learnedjiven in the problem description ir?]} that no read, write,
from the following example. or update action is continuously enabled but never executed.

72

Lemma 26 (extended preservation lemma)let .7,
{T7 | o € Q*} be a queue-like family of action-transducers.
Let B continuously allow all actions i), i.e. for all B’ €

Der(B) and all ¢ € Q 3B” B’ - B”". Then for all
o € Traces,(T¢[B]) we have
Jo’ € Traces,(B) VA C @ with
o[(AUDa)=0" | (AU Da)
Proof. We may assume that is an infinite trace, otherwise

the proof of Lemma 8 applies. By the definition of an infinite
trace we then get that = 0g.071.07. - - - with

TV [Bil}ien TV [Bi] = TV*[Bis] with
T°[Bp] = T°[B]

E. Brinskma

and the extended preservation Lemma 26, which leads
to the strong version of Corollary 16. The subsequent
modification inRefinement can be imitated as=yace,

is invariant under renaming of internal actions.

4. centralizing background memarthis is more or less the
inverse of refinement 1, and therefore follows again by
~ C ®race,, and the fact thateyace, iS @ congruence.

. adding the user interfacethis follows by using the ex-
tended version of the preservation lemma. O

6 Conclusions

In this paper we have presented a proof of the sequential
consistency of the lazy caching protocol of [ABM93]. It

Factorizing these transitions into transductions of the contexis based on the application of a number of transformation

and transitions of (the derivatives of§ we get
Holtien TV £ TV and B; = Biu

It follows from Lemma 7 thatdy.---.0;) | (AU Dy4) is
prefix of (.- --.0:) [(AU D) for all s.

Now defineo’ = g{.0}.0%. - - -, and suppose that [(AU
Da) #0' | (AUD,), then itfollows thav | (AUD4) =0’ |
(AUD4).0” | (AUD 4) for somes” with o | (AUD 4) # €.
The latter entails in particular that’ | A # € as the elements
in D4 would, by construction, already occur ér. Also, it
follows thato’ | (A U D,) is finite, i.e. that there exists
an N such thato} | (AU Dy) =€ for all i > N. By the

steps, deriving the distributed caching memory in several
steps from the sequential memory, whilst maintaining the
property of sequential consistency. Thus the proof can also
be seen as a rationalized reconstruction of the design of
the lazy caching protocol, and am posteriori attempt at
correctness by desigrOne of the potential benefits of such
an approach is that more general results can be obtained
than the correctness of a specific design only. In this case
the factorization of the proof in separate design steps gives
substantial insight in design alternatives, and in fact provides
us with correctness proofs for a whole family of distributed
caching designs. Being based on the same transformation
principles the following variations can be proven correct by

transduction rules for queue-like transducers this implies thafninimal rearrangements of the proof:

v; is a prefix ofv for all transducers™ that occur in the
derivation of 7%/ =% TV for j > > N.

o',

J

Becauses” | A # € we get thatvy, # e from some

M > N onwards. AsB continuously allows all actions
in @, in particular the first elementy of v,,, this action
is continuously enabled a8 71 for i > M and

uo
v; = ug.v’. But it is never selected, because N andv; is
not a prefix ofv’. This contradicts our fairness assumption.
Thereforeo [(AU D) =0’ | (AU Dy). O

Theorem 27
(M5 o ... 0 MOUMemo(O)[72 /72 || 37
17 zslcaché@,o,/ #1

jel

is strongly sequentially consistent with May0).

Proof. We check proofs of the refinement steps for the weak

sequential case:

1. distributing the memorythis was proved using that

C ~race (See Corollary 11), which can now be replaced
by the argument that C ~yace, -

introducing local cachingthis was proved using that

C =race (Se€ Corollary 13), which can now be replaced
by the argument that C ~yace, -

. buffering cache communicatioan infinite trace version

1. user interface bufferswe can allow asymmetry between
users in the sense that some may, and others may not,
have a buffered user interface. This is obtained by ap-
plying the tranducerg/¢ for only those user interfaces
1 that should hav®©ut-queues.

. cache bufferswe can also allow asymmetry between
caches in the sense that some may have buffered access
and others not. This is similar to the above: apply the
transducersL{ only to those local caches that should
haveln-queues.

. local memorieswe may choose some users to have ac-

cess to a complete local memory instead of a cache. This

is obtained by carrying out refinement step 2 for only
those interfaces where a cache instead of a local serial
memory is required. It is easy to see that (the proof of)

Lemma 10 does not depend on the particularThis

means that for any nonempty subsetigfC I the Io-

product of local memories is bisimilar to a serial memory
of type Ip. This is sufficient for the subsequent creation
of a central background memory in transformation step

4 for those interfaces that do have caches.

background memoriesve may choose to have several

write-synchronizing background memories for smaller

user groups (e.g. to expedite cache updates). This relies
on the same observation as the previous point, applying

it for disjoint Io,...,I; C I.

4.

The structured presentation of the proof also allows for
a rather precise analysis of the blanket fairness assumption

of Lemma 15 can be proved using fact 6 instead of fact 4,(no action other than cache invalidations can always be en-

Cache consistency by design 73

abled but never taken) in the general expositior?in\Weak Although our transformations do preserve the desired cor-
fairness is required in the following places: rectness criterion, this term is usually reserved for generic
design principles whose correctness has been established be-
Yorehand (cf. for example [Bol92]), to be contrasted with the
rocedure of invent and verify. In addition to the applied
tandard process algebraic laws listed in Table 3, however,
most other parts of the proof could retrospectively qualify as
CPTs. The formulation of our transduction based proofs, the
The first two are used in (the application of) the ex- (extended) preservation lemma, for example, is generic in
tended preservation Lemma 26; the last is implicit in thethe sense that it applies to all queue-like transducers. This
proof of weak bisimulation equivalence in Lemma 12. The enables its repeated application in proof, viz. twice in the
latter exploits a notion of fairness that is ‘built-in’ in the proof of Lemma 15 concerning the cache buffer, and twice
notion of weak bisimulation equivalence. In the context of in the proof of Theorem 23 concerning the user interface
ACP it appears aKoomen's fair abstraction rul¢BW9O0]. buffer. In order not to burden our proof with such concerns
It may be good to point out that the way in which we we have foregone the formulation of a generic transforma-
have factored the proof into transformations is not uniquetion principle corresponding to the equivalence proven in
We could have chosen, for example, to first recombine thd.emma 10. The idea behind the proof is quite general, how-
local memories (now step 4) and then add hequeues to ever, viz. that a process may be split into parts according to
the caches (now step 3). In that case we could even have trigal partitioning of all those of its actions that do not affect its
to carry out the first three transformations in one fell swoop,state, where each part should still be able to synchronize on
factoring all local caches out of a central memory. Thereall actions that do influence the state in order to maintain
may even be design strategies completely different from thét. We present a generic formulation of this transformation
approach that we have followed. We have tried to follow without proof.
a strategy that we believe leads to elegant and insightful Let p(z) be a parameterized process defined by
transformations, and minimizes the amount of “global rea-
soning” by making arguments depend only on actions locab(z) < Y f(a,2).p(9(a,2))+ Y _ h(a,z).p(z) (11)
to the user interfaces whenever this is possible. Whether this a€Var a€lnv
is the best approach is to some extent a matter of taste,
course.
Although we have used a process-algebraic notation fof?mdh Invx D — ActU {7} are functions withf injective
the specification of the various design stages, and havgndrge(f)mrge(h) _y
applied a number of well-known laws from the process- '

algebraic literature, our proofis, in fact, heterogeneous in NaThqqrem 28 Let p(x) of the form defined b§11) above. Let
ture. The process-algebraic syntax is used to define labelled- . - finite partitioning of Inv and define for all ;,7

transition systems. We have allowed, however, some of the
fairness requirements to be superimposed on this representﬁ%(x) - Z f(a, z).pr(g(a,) + Z ha, z).pr(x)
tion, thereby leaving a proper process-algebraic framework.
Also, we have not used a structured syntax to define ac-
tion transducers, but have defined them directly in termsThen
of their transductions. As already mentioned, the transduc- r9e(f)
ers have their syntactic counterparts in behaviour expresp(z) ~ H pr(z)
sion contexts, i.e. behaviour expressions with open places Fer7
or ‘holes’ in them. Contexts corresponding to the transduc- o
ers that we have used could be expressed in terms of our . : .
process-algebraic formalism if we accept simple compound . 1nuS far, we have not succeeded in formulating a suit-
data types such agrings and their associated operations as 20!y general formulation of the transformation principle be-
given (otherwise one could turn to languages like LOTOSNIN the introduction of the local caches in Lemma 12. It
to formalize such notions [BB87]). In these cases, howeverS€€MS th"?‘t the semantic |qea behind it is not readily ex-
their syntactic representation is much more involved tharrDreSSIbIe In generic syntactic terms. Summa”?'”g’ We can
their operational one, and would distract from the essentiaf2y that the problem of proving the lazy caching protocol
feature that figures in the proof, viz. that they are actionCO"ect has also served as a source of inspiration for the
transducers that inducebservable action-sequendeans- formulatlon of new correctness preserving des'gn transfor-
ductions. As sequential consistency is an invariant of suctnations. Although much of our proof can be interpreted as
transductions, that is precisely the way we want to viewthe application of such trqnsformatlons, parts remain that
them. rely on the invent and verify approach. As a whole the
The correctness of a number of transformations has beef00f illustrates that an opportunistic combination of differ-
shown in terms of direct semantic proofs, viz. by producingem me_thods can lead to an insightful example of correctness
strong and weak bisimulations, and by reasoning in terms oPY d€sign.
action transducers. As a consequence, it can be disputed as
to what extent our proof can be seen as one based on the ape thank an anonymous referee for pointing out a subtle error in the original
plication of correctness-preservintransformations (CPTs). presentation of the preservation lemmas 8 and 26.

1. processing local writes stored in the user interface buffer
into the memory and the local cache buffers;

2. processing writes and updates stored in a local cach
buffer into the local cache;

3. processing memory updates into the local cache buffer

Ceitlherez: ranges over a given domaif, Var and Inv are
iven index sets, and : Varx D — Act, g : Varx D — D,

acVar acF

74

E. Brinskma

References [Mil89] Milner, R.: Communication and Concurrency. Englewood Cliffs,

NJ: Prentice-Hall 1989

[ABM93] Afek, Y., Brown, G., Merritt, M.: Lazy caching. ACM Transac- [Plo81] Plotkin, G.D.: A structural approach to operational semantics.

[BB87]

[Bol92]

[Brio2]

[BW9OQ]
[Hoa85]

[Lar90]

tions on Programming Languages and Systems, 15(1):182—-206 Technical Report DAIMI FN-19, Computer Science Department,
(1993) Aarhus University, 1981

Bolognesi T., Brinksma, E.: Introduction to the 1SO specifica- [VG93] van Glabbeek,_ R.J.: The Iinear_time - branching time spectrum_ii.
tion language LOTOS. Computer Networks and ISDN Systems, LectureNotes in Computer Science Vol. 715, pp. 66-81, Berlin
14:25-59 (1987) Heidelberg New York: Springer 1993

Bolognesi, T.: Catalogue of LOTOS correctness preserving
transformations. Technical Report Lo/WP1/T1.2/N0045/V03,

Esprit Project 2304 Lotosphere, April 1992

Brinksma, E.: On the uniqueness of fixpoints modulo observa-
tion congruence. Lecture Notes in Computer Science 630, pp.
62-76. Berlin Heidelberg New York: Springer 1992

Ed Brinksma holds the chair of Formal Methods and Tools of the Faculty
of Computer Science at the University of Twente at Enschede, The Nether-
lands. His main research interest lies in the application of formal methods
to the design of distributed systems, including specification, verification,
implementation, testing and software tool support. Ed was chairman of the
- . . IS0 standardization committee of the formal specification language LOTOS
5i?\‘/tzps’itlgégﬂs; X\ggand’ W.P.. Process algebra. Cambrldge(ISO IS 8807). His current research focusses on testing (test derivation),
Hoare éA R.. Communicating Sequential Processes Engle_yalidation by model checking, formal m'thO(':iS for real-tim(_e system_s, link-

d (’:Iiff.s NJ Prentice-Hall 1985 ' ing performance models to formal specifications, and the introduction for-
woo L o . . mal methods into industrial working practices. He is leader of the Systems
Larsen,_ K.G.: Compositional theories based on an Operatlonal\/alidation Centre at the Telematics Institute, a leading national research in-
semantics of contexts. In: de Bakker, J.W., de Roever, W.P.,

)) o stitute that is jointly funded by the Dutch government and major computer
Rozenberg, G. (eds.) Stepwise Refinement of Distributed Sys-_ . J yu o 9 ! P
h ~ science and telecom industries.
tems — Models, Formalisms, Correctness, Lecture Notes in

Computer Science, Vol. 430 pp. 487-518, Berlin Heidelberg
New York: Springer 1990

