
Distrib. Comput. (1999) 12: 61–74

c© Springer-Verlag 1999

Cache consistency by design?

Ed Brinksma

Formal Methods and Tools Group, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands (e-mail: brinksma@cs.utwente.nl)

May 27, 1999

Summary. In this paper we present a proof of the sequen-
tial consistency of the lazy caching protocol of Afek, Brown,
and Merritt. The proof will follow a strategy ofstepwise re-
finement, developing the distributed caching memory in five
transformation steps from a specification of the serial mem-
ory, whilst preserving the sequential consistency in each
step. The proof, in fact, presents a rationalized design of
the distributed caching memory. We will carry out our proof
using a simple process-algebraic formalism for the specifi-
cation of the various design stages. We will not follow a
strictly algebraic exposition, however. At some points the
correctness will be shown using direct semantic arguments,
and we will also employ higher-order constructs likeaction
transducersto relate behaviours. The distribution of the de-
sign/proof over five transformation steps provides a good
insight into the variations that could have been allowed at
each point of the design while still maintaining sequential
consistency. The design/proof in fact establishes the correct-
ness of a whole family of related memory architectures. The
factorization in smaller steps also allows for a closer analysis
of the fairness assumptions about the distributed memory.

Key words: Formal design – Caching protocols – Reactive
systems – Process algebra – Correctness preserving – Trans-
formations

1 Introduction

In this paper we present a proof of the sequential consistency
of the lazy caching protocol of [ABM93] as formulated by
Gerth in this issue. The proof will follow a strategy ofstep-
wise refinement, developing the distributed caching memory
in five transformation steps from a specification of the se-
rial memory, whilst preserving the sequential consistency in
each step. Thus our proof presents a rationalized design of
the distributed caching memory.

? This work has been supported by the EU as part of ESPRIT BRA
project 6021Building Correct Reactive Systems(REACT).

We will carry out our proof using a simple process-
algebraic formalism for the specification of the various de-
sign stages. Process algebraic techniques [Hoa85, Mil89,
BW90] are by their nature suitable for transformational
proofs as they concentrate on laws that equate and/or com-
pare different behaviour expressions. Such laws are natural
candidates for design transformations. Our proof will not
follow a strictly algebraic exposition, however. For some
transformations we will show the correctness using seman-
tic arguments directly, instead of pure syntactic derivations
from basic laws. We will also employ the less standard fea-
ture ofaction transducersto relate behaviours in two of our
design steps.

The outline of our refinement proof is as follows. It starts
from a specification of aserial memorywith n user inter-
faces, where each user can perform direct atomic read and
write actions on the memory (see Fig. 4). This is a conve-
nient starting point for our ‘design’, as the serial memory de-
fines our correctness criterion: the distributed caching mem-
ory must besequentially consistentwith the serial memory.
This means that the behaviour at each user interface of the
distributed caching memory coincides with the projection on
the same interface of a legal behaviour of the serial memory.
In other words, if the user at one interface of the distributed
caching memory cannot compare the order of his actions
with that of the actions occurring at the other interfaces, he
cannot distinguish his interface from that of a serial mem-
ory. The idea now is to transform a serial memory into other
memory architectures step by step, where each new archi-
tecture is sequentially consistent if the previous one is. As
the serial memory is trivially sequentially consistent, this
implies that the final distributed caching memory, as well
as all intermediate architectures are sequentially consistent.
The transformation steps in the proof are all closely linked
to the ingredients of the lazy caching architecture, which is
depicted in Fig. 1.

First of all, we see that each user interface has a corre-
spondingcaching memoryinto which it can write, via two
buffers, and from which it can read directly, but subject
to some conditions.Transformation step 1will approximate
this situation very crudely. Instead of caches it equips each
user interface generously with a copy of the serial memory

62 E. Brinskma

Fig. 1. The lazy caching memory

itself, where each user directly reads from its local memory,
but each write action is atomically copied toall local mem-
ories (see Fig. 5). The latter ensures the global consistency
of the local memories, and thus the sequential consistency.

Transformation step 2introduces the local caches, but
without removing the local memories (see Fig. 6). Each user
reads directly from its local cache. When an invalidated ad-
dress is read this will succeed only after it has been updated
by the local memory. Because of the general fairness as-
sumption stated in [?] this will occur after a finite time. A
write action to a local cache is copied atomically to all local
memories and caches. The correctness of this step follows
from the fact that under the fairness assumption the caches
do not add to the behaviour of the distributed memories.

Transformation step 3adds a second ingredient of the
target architecture, viz. theIn-queues (see Fig. 7). These
queues buffer the write and local update messages for the
caches. Also, the constraint is added that local read actions
are only allowed if nolocal write actions are queued, i.e.
write messages of users at other interfaces can be in the
queue at the time of reading. The addition of such anIn-
buffer and a constraint to the use of a cache provides a
particular operationalcontext for the caches. The correct-
ness of the transformation follows from a general property
of contexts of this kind: they preserve the order of any set
of messages that may be queuedtogether withthose actions
that can be executed whenno messages of the given set
are queued. We show this property to be sufficient for the
preservation of sequential consistency.

Transformation step 4combines the coherent local mem-
ories into one, central serial background memory that up-
dates all local caches (see Fig. 8). This transformation ex-
ploits the associativity of the parallel compositions in the
system, which allows us to see it as subsystem of coher-
ent local memories in parallel with a subsystem of buffered
local caches. The inverse of transformation step 1 in turn
allows us to replace the former subsystem by a single serial
memory.

Finally, transformation step 5adds the last ingredient to
obtain the desired architecture, viz. theOut-queues. These
queues buffer the local write messages, which upon leaving
the queue are written atomically into the serial background
memory and allIn-queues. Local reads can occur only if
the corresponding localOut-queue is empty. The queues
and constraints are added separately for each user interface

(see Fig. 9), each providing a context similar to those used
in transformation step 3. Again, sequential consistency is
guaranteed by the general preservation properties of such
contexts.

The structure of the remainder of this article is as fol-
lows.

– Section 2introduces the process-algebraic formalism that
we use;

– Section 3explains aboutaction transducers, and in par-
ticular the new concept of aqueue-likeaction transducer,
which is used to represent the contexts ofIn- and Out-
queues mentioned in the proof outline above;

– Section 4gives the formal transformation style proof of
the weak sequential consistency of the distributed cache
memory along the lines of the proof outline above. This
proof takes only finite sequences of the observable ac-
tions of a system into account;

– Section 5improves the result tostrong sequential con-
sistency, which also deals with infinite behaviour;

– Section 6summarizes the results that have been obtained
and discusses possible generalizations and extensions.

2 A simple process-algebraic formalism

We will work with a simple process algebraic formalism to
specify the different design stages in the course of our proof.
Throughout this paper we will assume a working knowledge
of process algebras. For a good introduction to the literature
of process algebras the reader is referred to [Hoa85, Mil89,
BW90]. Below, we give a short summary of those features
that are essential for the development of our proof.

The syntax and semantics of our formalism are given
in Tables 1 and 2, respectively. The tables assume a given
set of observable actionsAct and an additionalsilent or
hidden actionτ . The behaviour expressionslisted in the
syntax table define the behaviour of systems in terms of
labelled transition systems, where the transitions are labelled
by elements inAct∪ {τ}. These operational models can be
derived for each behaviour expression with the aid of the
inference rules given in Table 2. For a detailed account of
this so-calledstructured operational semanticsor SOSstyle
of definition, we refer to [Mil89, Plo81].

We draw attention to the fact that the parallel composi-
tion combinator||G allows for so-calledmultiway synchro-

Cache consistency by design 63

Table 1. Syntax of a simple process algebraic language

Name SyntaxB Label setL(B)
inaction 0 ∅
action-prefix µ.B (µ ∈ Act) {µ} ∪ L(B)

τ.B L(B)
choice B1 + B2 L(B1) ∪ L(B2)
composition B1||GB2 L(B1) ∪ L(B2)

(G ⊆ Act)
hiding B/G L(B) − G

(G ⊆ Act)
renaming B[H] H(L(B))

(H : Act → Act)
instantiation p Lp

(p ⇐ Bp, L(Bp) ⊆ Lp)

Table 2. Structured operational semantics

Name Axioms and inference rules
inaction none

action-prefix µ.B
µ−→ B

(µ ∈ Act∪ {τ})

choice B1
µ−→ B1

′ ` B1 + B2
µ−→ B1

′

B2
µ−→ B2

′ ` B1 + B2
µ−→ B2

′

composition B1
µ−→ B1

′ `µ 6∈G B1||GB2
µ−→ B1

′||GB2

B2
µ−→ B2

′ `µ 6∈G B1||GB2
µ−→ B1||GB2

′

B1
µ−→ B1

′,
B2

µ−→ B2
′ `µ∈G B1||GB2

µ−→ B1
′||GB2

′

hiding B
µ−→ B′ `µ 6∈G B/G

µ−→ B′/G

B
µ−→ B′ `µ∈G B/G

τ−→ B′/G

renaming B
µ−→ B′ ` B[H]

H(µ)−→ B′[H]

instantiation Bp
µ−→ B′ `p⇐Bp p

µ−→ B′

nization between actions, i.e. the||G-composition of any fi-
nite number of processes can synchronize on a given action
a ∈ G. To make an action unavailable for further synchro-
nization an additionalhiding-combinator is part of our for-
malism. The combination of these two combinators allows
for a powerful specification style that is essential for our
proof of the caching protocol. A similar set of combinators is
available in CSP and LOTOS [BB87]. ACP also possesses a
hiding- or abstraction-combinator, and||G-composition can
be handled as a derived construct. In CCS synchronization
is always combined with hiding, thus effectively allowing
only binary synchronizations, which makes it unfit for our
proof strategy.

Behaviour expressions are defined in an environment of
process definitionsof the form

{p ⇐ Bp | p ∈ P }
whereP is a set of process identifiersp with action label
typeLp, andBp is a behaviour expression with action label
set L(Bp) ⊆ Lp. We will use the the notationp ⇐ Bp to
denote the statement that ‘p ⇐ Bp is an element of the envi-
ronment of process definitions’. The environment may con-
tain mutually recursive process definitions. The label types
Lp are usually left undefined, and are implicitly understood
to be the smallest label types satisfying the static constraints
of Table 1. In the application part of the paper we will pro-
vide concrete instances of the set of actionsAct and the
process definition environment.

In addition to the process algebraic combinators intro-
duced by Table 1 we will use generalizations for the choice

and composition operators. IfB denotes afinite set of be-
haviour expressions then

∑
B and

∏G
B denote the re-

peated application of ‘+’ and ‘||G’, respectively, to the ele-
ments ofB . E.g. if B = {B1, . . . , Bn} then
∑

B = B1 + . . . + Bn
∏G

B = B1||G . . . ||GBn

This notation exploits the commutativity and associativity of
the combinators ‘+’ and ‘||G’ that will be justified below. If
B = {Bi|i ∈ I } we often write

∑
i∈I

Bi and
∏G

i∈I
Bi

instead of
∑{Bi|i ∈ I } and

∏G{Bi|i ∈ I }, respectively.
The standard identity over the behaviour expressions

(and labelled transition systems) will be given by thestrong
bisimulation equivalencerelation, which is a congruence
with respect to all the given combinators. We recall the def-
inition.

Let BE denote the set of behaviour expressions over
given setsAct and P of actions and process identifiers,
respectively.

Definition 1 A relationR ⊆ BE × BE is a strong simula-
tion relation iff for all 〈B1, B2〉 ∈ R and for allµ ∈ Act∪{τ}
it is the case that∃B1

′ B1
µ−→ B1

′ implies∃B2
′ B2

µ−→ B2
′

and 〈B1
′, B2

′〉 ∈ R.
A relation R ⊆ BE × BE is a strong bisimulationre-

lation iff both R and its inverseR−1 are strong simulation
relations.

Two behaviour expressionsB1, B2 are strong bisimula-
tion equivalent, notationB1 ∼ B2, iff there exists a strong
bisimulation relationR with 〈B1, B2〉 ∈ R. ut

The following fact is a standard result in the process
algebraic literature (cf. [Mil89])

Fact 1 The relation∼ is a congruence with respect to all
the combinators introduced in Table 1 and satisfies the laws
listed in Table 3. ut

We recall the following (standard) notations. Action
names are variables overAct∪ {τ} and σ denotes a string
of actionsa1 . . . an.

B
σ−→ B′ ⇔df ∃B0, . . . , Bn B ≡ B0

a1−→ B1 ∧ . . .

∧ Bn−1
an−→ Bn ≡ B′

B
ε

=⇒ B′ ⇔df ∃n B
τn

−→ B′

B
a

=⇒ B′ ⇔df ∃B1, B2 B
ε

=⇒ B1 ∧ B1
a−→ B2

∧ B2
ε

=⇒ B′

B
σ

=⇒ B′ ⇔df ∃B0, . . . , Bn B ≡ B0
a1=⇒ B1 ∧ . . .

∧ Bn−1
an=⇒ Bn ≡ B′

Der(B) =df {B′ | ∃σ ∈ Act∗B σ
=⇒ B′}

The ⇒-notation is used for a generalized version of the
transition relation that concentrates onobservablebehaviour.
Note thatB

ε
=⇒ B′ expresses thatB can change intoB′

unobservedly, i.e. by executing 0 or moreτ -transitions. This
includes the special case that no transitions are excuted at
all (and thereforeB = B′). B

a
=⇒ B′ expresses thatB may

move toB′ when executing the observable actiona, possibly
preceded or followed by any finite number of invisibleτ -
steps.

σ−→ and
σ

=⇒ are the generalizations for strings

64 E. Brinskma

Table 3. Some transformation laws

(1) B1||GB2 = B2||GB1

(2) B1||G(B2||GB3) = (B1||GB2)||GB3

(3) B1||∗(B2||∗B3) = (B1||∗B2)||∗B3 whereB1||∗B2 =df B1||L(B1)∩L(B2)B2

(4) (B1||GB2)/A = B1/A||GB2/A if A ∩ G = ∅
(5) (B1||GB2)[H] = B1[H]||GB2[H] if H � G = idG andH−1(G) = G

of
a−→ and

a
=⇒ , respectively.Der(B) denotes the set

of behaviours that arereachablefrom B, also known as its
derivatives. These are all behaviours that can be reached
from B by some finite string of transitions.

Using the above notation we define also a less strict
equivalence relation than∼.

Definition 2 A relationR ⊆ BE×BE is aweak simulation
relation iff for all 〈B1, B2〉 ∈ R and for all α ∈ Act∪ {ε} it
is the case that∃B1

′ B1
α

=⇒ B1
′ implies∃B2

′ B2
α

=⇒ B2
′

and 〈B1
′, B2

′〉 ∈ R.
A relationR ⊆ BE×BE is aweak bisimulationrelation

iff bothR and its inverseR−1 are weak simulation relations.
Two behaviour expressionsB1, B2 are weak bisimulation

equivalent, notationB1 ≈ B2, iff there exists a weak bisim-
ulation relationR with 〈B1, B2〉 ∈ R. ut

Again we have a standard result (cf. [Mil89]).

Fact 2 The relation≈ is a congruence with respect to all
the combinators introduced in Table 1 except for the choice
combinator+, and its generalization

∑
. Moreover,∼ ⊆ ≈,

i.e. ≈ satisfies all laws of∼. ut
Finally, let us defineTraces(B) =df {σ ∈ Act∗ | ∃B′

B
σ

=⇒ B′}, then we have the following well-known defini-
tion and results (cf. [Hoa85, vG93]).

Definition 3 Two behaviour expressionsB1, B2 are trace
equivalent, notationB1 ≈trace B2, iff Traces(B1) = Traces
(B2). ut
Fact 3 The relation≈trace is a congruence with respect to all
the combinators introduced in Table 1 and∼ ⊆ ≈ ⊆ ≈trace.

ut
Fact 4 Let B1||∗B2 be defined as in Table 3.

Traces(B1||∗B2) =

{σ ∈ (L(B1) ∪ L(B2))∗ | σ � L(B1) ∈ Traces(B1),

σ � L(B2) ∈ Traces(B2)}
ut

3 Queue-like action-transducers

Action-transducers are the operational counterpart ofcon-
texts, i.e. behaviour expressions with an open place orhole
in them. Such open places, often denoted by the symbol ‘[]’,
can be regarded as variables that can be replaced with actual
behaviour expressions to obtain instantiations of a given con-
text. For example, the contextC[] =df a.0+[] can be instan-
tiated by the expressionb.c.0, yieldingC[b.c.0] = a.0+b.c.0.

Fig. 2. Transductions of a context

Whereas we can use behaviour expressions to define
stateswith transitionsbetween them (e.g. as defined by Ta-
ble 2), contexts defineaction transducerswith transductions
between them. Such transductions will be denoted by doubly
decorated arrows, as in

T
a−→
b

T ′

which represents the transduction of actionb into actiona
as action-transducer (state)T changes intoT ′. Informally,
this should be understood as follows: whenever a behaviour
B at the place of the formal parameter ‘[]’ produces an
b-action transforming intoB′, T [B] will produce aa-action
as its result and transform intoT ′[B′].

Example 1

a.B||{a}[][a/b]
a−→
b

B||{a}[][a/b]

wherea/b denotes the obvious renaming function replacing
b by a. ut

The transductionT
a−→
b

T ′ thus corresponds to the op-

erational semantic rule

B
b−→ B′ ` T [B]

a−→ T ′[B′]

Additionally, we also allow transducers to produce actions
‘spontaneously’ to cater for contexts likea.[], which can
produce ana-action without consuming an action of an in-
stantiating behaviour. This will be denoted by transduction

of the formT
a−→
0

T ′, corresponding to the operational se-

mantic rule
` T [B]

a−→ T ′[B]

Example 2

a.B||{a}a.[]
a−→
0

B||{a}[]

ut

Cache consistency by design 65

Fig. 3. A queue-like transducer

In this paper we will not give a complete formal intro-
duction to the concept of contexts as action-transducers. For
this the reader is referred to [Lar90, Bri92]. Here, it will
suffice to define systems of action-transducers by explicitly
giving sets of transducer states and transductions between
them.

A last step before defining transducer systems is the ex-
tension of the transduction notation to a suitable ‘double-
arrow’ notation. Letσ, σ′ ∈ (Act∪{τ, 0})∗. We writeσ C σ′
iff σ can be obtained fromσ′ by erasing any number ofτ -
or 0-occurrences in it. We define

T
a1...an−−−→
b1...bn

T ′ ⇔df ∃T0, . . . , Tn T ≡ T0
a1−→
b1

T1 ∧ . . .

∧ Tn−1
an−→
bn

Tn ≡ T ′

T
σ1=⇒
σ2

T ′ ⇔df ∃σ1
′, σ2

′ T
σ1

′

−→
σ2

′
T ′ ∧ σ1 C σ1

′

∧ σ2 C σ2
′

We now proceed with the definition of the special kind of
action-transducer systems that we need for our application,
viz. the queue-like families of action transducers.

Definition 4 Let Q ⊆ Act. A family of action-transducers
TQ = {T σ | σ ∈ Q∗} is queue-likeiff its transductions are
of the form:

1. ∀q ∈ Q, σ ∈ Q∗ T σ
q−→
0

T σq

2. ∀q ∈ Q, σ ∈ Q∗ T qσ
τ−→
q

T σ

3. for 0 or moreσ ∈ Q∗, a ∈ (Act − Q) Tσ
a−→
a

T σ. ut

These transducers correspond to the contexts depicted in
Fig. 3. There are three sorts of transductions possible, cor-
responding to the double-headed arrows in the figure and
the rules in the definition. There is a designated subsetQ
of Act representing thequeuableactions. Actions ofQ may
be stored by the environment into the context queue (trans-
duction rule 1). The contents of the queue is represented
by a string inQ∗ used as a superscript ofT . Actions of Q
that are at the head of the context queue may be consumed
by the instantiating behaviour (transduction rule 2). This ac-
tion is invisible (τ) to the environment. Finally, there may
be states of the transducer (characterized by the contentsσ
of the queue) in which some non-queuable actionsa of the
environment coincide with actionsa of the instantiating be-
haviour (transduction rule 3). Note that the first two rules

require (de)queuing transductions to exist for all queuable
actions in all context states, whereas the last ruleallows the
existence of certain transductions in certain context states.

For the proofs in our derivation of the lazy caching mem-
ory we will be especially interested in queue-like action
transducers because of theobservable trace transductions
that they induce. More in particular we will need to know
those traces that are invariant under transduction. This mo-
tivates the following definition.

Definition 5 Let TQ = {T σ | σ ∈ Q∗} be a queue-like fam-
ily of action-transducers. We say thatTQ preservesA ⊆ Act
iff

∀ρ, σ ∈ Act∗, υ ∈ Q∗ T ε ρ
=⇒
σ

T υ implies ρ � A = συ � A

ut
It is not difficult to see that traces of queuable actions

are preserved in the above sense by queue-like transducers,
as (FIFO) queues preserve order. Strings of non-queuable
actions are also preserved, as their execution by the context
coincides with their execution by the instantiating behaviour.
In order to study the preservation properties of strings of both
queuable and non-queuable actions is it useful to consider
the setsDA of those non-queuable actions that can occur if
the queue doesnot contain any of the actions in a given set
A ⊆ Q.

Definition 6 Let TQ = {T σ | σ ∈ Q∗} be a queue-like fam-
ily of action-transducers. For eachA ⊆ Q we define the set
DA ⊆ Act by

DA = {a ∈ Act | ∀σ (T σ
a−→
a

T σ iff σ � A = ε)}
ut

The following lemma expresses the general preservation
properties of queue-like transducers. They state that strings
over A can always be mixed with actions inDA without
losing the preservation property. The intuition behind this
result is that actions inDA could never ‘overtake’ nor be
‘overtaken’ by actions inA and thus upset the ordering.

Lemma 7 Let TQ = {T σ | σ ∈ Q∗} be a queue-like family
of action-transducers. For eachA ⊆ Q TQ preservesA ∪
DA.

Proof. Let T ε ρ
=⇒
σ

T υ. We carry out the proof by induction

on |ρ|+ |σ|. The basic case that|ρ|+ |σ| = 0 follows trivially
as it implies thatρ = σ = υ = ε.

Let us therefore suppose that the lemma holds for alln <

|ρ|+|σ|. We can factorizeT ε ρ
=⇒
σ

T υ into T ε ρ1=⇒
σ1

T υ1
a−→
b

T υ

for some suitably chosenρ1, σ1, υ1, a, and b. Since, by the
definition of queue-like transductions, not botha and b ∈
{τ, 0} we can deduce that|ρ1|+|σ1| < |ρ|+|σ| and therefore
that ρ1 � (A ∪ DA) = σ1υ1 � (A ∪ DA).

We now proceed by case analysis on the nature of the

transductionT υ1
a−→
b

T υ as given in Definition 4.

1. T υ1
a−→
b

T υ = T υ1
q−→
0

T υ1q.

Thenρ � (A ∪ DA) = ρ1q � (A ∪ DA)

66 E. Brinskma

= σ1υ1q � (A ∪ DA)
= συ � (A ∪ DA).

2. T υ1
a−→
b

T υ = T qυ
τ−→
q

T υ.

Thenρ � (A∪DA) = ρ1 � (A∪DA) = σ1υ1 � (A∪DA) =
σ1qυ � (A ∪ DA) = συ � (A ∪ DA).

3. T υ1
a−→
b

T υ = T υ
a−→
a

T υ.

This is only possible ifa 6∈ Q and thusa 6∈ A.
Assume that alsoa 6∈ DA then it follows that
ρ � (A ∪ DA) = ρ1a � (A ∪ DA) = σ1υ1a � (A ∪ DA) =
σ1aυ1 � (A ∪ DA) = συ � (A ∪ DA).
In the other case thata ∈ DA it follows that υ1 � A =
υ � A = ε. Therefore, we get
ρ � (A ∪ DA) = ρ1a � (A ∪ DA) = σ1υ1a � (A ∪ DA) =
σ1a � (A ∪ DA) = σ � (A ∪ DA) = συ � (A ∪ DA). ut
The following lemma casts the preservation property in

the form that we will need in our proofs later.

Lemma 8 (preservation lemma) Let TQ = {T σ | σ ∈ Q∗}
be a queue-like family of action-transducers. LetB continu-
ously allow all actions inQ, i.e. for all B′ ∈ Der(B) and all
q ∈ Q ∃B′′ B′ q−→ B′′. Then for allσ ∈ Traces(T ε[B]) we
have

∃σ′ ∈ Traces(B) ∀A ⊆ Q

with σ � (A ∪ DA) = σ′ � (A ∪ DA)

Proof. Assume thatT ε[B]
σ

=⇒ T υ[B′]. BecauseB contin-
uously allows all actions inQ, we have in particular that
B′ υ

=⇒ B′′ and thereforeT υ[B′] ε
=⇒ T ε[B′′]. It follows

that there exists aσ′ with T ε σ
=⇒
σ′

T ε andσ′ ∈ Traces(B).

The required preservation result now follows from an appli-
cation of the previous lemma. ut

4 Deriving the lazy caching memory

We start our derivation of the lazy caching protocol with a
specification of the serial memory, which is given by the
processMem(x) defined by (1) below. The contents of the
memory is represented by the process parameterx, which
is a vector of elements in the data domainD indexed by
the setA of memory addresses. For alla ∈ A xa denotes
the ath element ofx. The setI = {1, . . . , n} indexes the
number of user interaction points of the memory, i.e. the
number of locations where local read and write actions can
be performed.

Memser(x) ⇐
∑

i∈I

a∈A,d∈D

Wi(d, a).Memser(x{d/xa}) (1)

+
∑

i∈I

a∈A

Ri(xa, a).Memser(x)

Here,Wi(d, a) represents the action of writing datumd in
memory addressa, andRi(d, a) reading datumd from mem-
ory locationa. It will also be useful to define the sets

Fig. 4. A serial memory withn user interfaces

Fig. 5. A distributed memory

– Wi =df {Wi(d, a) | d ∈ D, a ∈ A}, the set of write
actions at user interfacei, andW =df

⋃
i∈I Wi, the set

of all write actions,
– Ri =df {Ri(d, a) | d ∈ D, a ∈ A}, the set of read

actions at user interfacei, andR =df
⋃

i∈I Ri, the set
of all read actions,

– Li =df Wi ∪ Ri, the set of read and write actions at
user interfacei, andL =df

⋃
i∈I Li, the set of all read

and write actions.

We can now formulate the correctness criterion in our setting
as

Definition 9 Let B1 and B2 be behaviour expressions with
L(Bi) ⊆ L . A behaviourB1 is weakly sequentially consis-
tent with B2 iff

∀σ ∈ Traces(B1) ∃σ′ ∈ Traces(B2)

such that∀i ∈ I σ � Li = σ′ � Li

ut
This is a weaker requirement than the originally given

definition of sequential consistency, which is concerned with
maximal, and therefore possibly infinite traces (which are
not in Traces(B1)). We will first complete the design for
this version of sequential consistency and will revisit the
question of infinite traces in Section 5.

4.1 Distributing the memory

Our first step in the design is to create a local copy of the
memory for every user. The specification of the local mem-
ory for user j ∈ I is given by the process definition of
Locmemj(x) at (2) below. Note thatLocmemj(x) still inter-
acts in all actions inW , but accepts only local read actions,
i.e. those inRj .

Locmemj(x) ⇐
∑

i∈I

a∈A,d∈D

Wi(d, a).Locmemj(x{d/xa}) (2)

+
∑

a∈A

Rj(xa, a).Locmemj(x)

Our first refinement is now given by the process defini-
tion Refinement1 in (3).

Cache consistency by design 67

Fig. 6. Factoring out a local cache

Refinement1 ⇐
∏

j∈I

W

Locmemj(0) (3)

The correctness of this step is certified by the following
lemma.

Lemma 10

Memser(0) ∼ Refinement1

Proof. The relation defined by

{〈Memser(x),
∏

j∈I

W

Locmemj(x)〉 | x ∈ DA}

is a strong bisimulation. This follows directly as for all writ-
ing actions we have

Memser(x)
Wi(d,a)−→ Memser(x{d/xa})

⇔ ∀j ∈ I Locmemj(x)
Wi(d,a)−→ Locmemj(x{d/xa})

⇔
∏

j∈I

W

Locmemj(x)
Wi(d,a)−→

∏

j∈I

W

Locmemj(x{d/xa})

and for all reading actions

Memser(x)
Ri(xa,a)−→ Memser(x)

⇔ Locmemi(x)
Ri(xa,a)−→ Locmemi(x)

⇔
∏

j∈I

W

Locmemj(x)
Ri(xa,a)−→

∏

j∈I

W

Locmemj(x)

ut
Corollary 11 Refinement1 is weakly sequentially consistent
with Memser(0)

Proof. Follows directly from∼ ⊆ ≈trace (fact 3). ut

4.2 Introducing local caching

In the next step of our design we introduce a local cache that
the user communicates with and that is updated by the local
memory. Because of its direct interface with the user this
cache has a more elaborate set of interactions than the caches
that we will ultimately design. The behaviour of the cache
at interaction pointj ∈ I is given by the process definition
Cachej(x) in (4) below. In addition to the (local) memory
the caches haveupdate actionsUj(d, a). For convenience
we defineUi =df {Ui(d, a) | d ∈ D, a ∈ A} and U =df⋃

i∈I Ui.

Cachej(x) ⇐
∑

i∈I

a∈A,d∈D

Wi(d, a).Cachej(x{d/xa}) (4)

+
∑

a∈A,d∈D

Uj(d, a).Cachej(x{d/xa})

+
∑

a↓x

Rj(xa, a).Cachej(x)

+
∑

y∈r(x)

τ.Cachej(y)

Note that the local caches synchronize on all actions
in W , but accept only local read and update actions, i.e.
only actions inRj ∪ Uj . Cache invalidation is modelled
by allowing the elements of the memory vectorx to take
the undefined value↑, and the introduction of the following
predicate and set:

– a ↓ x iff xa /=↑, denoting thatx is defined at addressa,
and

– r(x) =df {y | ∀a ∈ A ya = xa ∨ ya =↑}, denoting the set
of all memory vectorsy that coincide withx at all their
defined addresses, i.e.y is obtained by invalidatingx at
any number of its addresses.

Let U/R : Act → Act denote the renaming function
that maps each read actionRi(d, a) to the corresponding
update actionUi(d, a) for all i, d, anda, and all other ac-
tions to themselves. We are now ready to define the second
refinement of our design as follows.

Refinement2 ⇐
∏

j∈I

W

(Locmemj(0)[U/R]

||Uj∪W Cachej(yj0))/U (5)

for arbitraryyj0 ∈ r(0).

The correctness of this step follows from the following
lemma.

Lemma 12 ∀x ∈ DA, y ∈ r(x), j ∈ I

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U

≈ Locmemj(x)

Proof. The relation

{〈(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U ,

Locmemj(x)〉 | x ∈ DA, y ∈ r(x)}
is a weak bisimulation relation. It suffices to consider the
following cases:

– (Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U
ε

=⇒ B:
ThenB=(Locmemj(x)[U/R] ||Uj∪W Cachej(y′))/U

with y′ ∈ r(x) where the silent transitions in
ε

=⇒ con-
sist of zero or more cache invalidations and/or updates.
It suffices to takeLocmemj(x)

ε
=⇒ Locmemj(x).

– (Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U

Wi(d,a)−→ B: Then B = (Locmemj(x{d/xa})[U/R]
||Uj∪W Cachej(y{d/ya}))/U .

68 E. Brinskma

This is directly matched byLocmemj(x)
Wi(d,a)−→

Locmemj(x{d/xa}).

– (Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U
Rj (xa,a)−→

B: Then B = (Locmemj(x)[U/R] ||Uj∪W

Cachej(y))/U .

This is directly matched byLocmemj(x)
Rj (xa,a)−→

Locmemj(x).
– Locmemj(x)

ε
=⇒ B: ThenB = Locmemj(x).

This is therefore directly matched by
(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U

ε
=⇒

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U .

– Locmemj(x)
Wi(d,a)−→ B: ThenB = Locmemj(x{d/xa}).

This is directly matched by

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U
Wi(d,a)−→

(Locmemj(x{d/xa})[U/R] ||Uj∪W Cachej
(y{d/ya}))/U .

– Locmemj(x)
Rj (xa,a)−→ B: ThenB = Locmemj(x).

If a ↓ y then this is directly matched by

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U
Rj (xa,a)−→

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U .
If ya =↑ then first a cache update of addressa must take
place.
This generates the following matching sequence of ac-
tions:
(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U

τ−→
(Locmemj(x)[U/R] ||Uj∪W Cachej(y{xa/ya}))/U

Rj (xa,a)−→
(Locmemj(x)[U/R] ||Uj∪W Cachej(y{xa/ya}))/U

ut

Corollary 13 Refinement2 is weakly sequentially consistent
with Memser(0)

Proof. Because≈ is a congruence relation w.r.t. the parallel
combinator||G (fact 2) it follows from the above lemma that
Refinement2 ≈ Refinement1. Combining this with≈ ⊆ ≈trace

(fact 3) and Corollary 11 the desired result now follows
directly. ut

4.3 Buffering cache communication

In this refinement step we will buffer the communication
of write/update actions to the cache, and only allow read
actions if there are no local write actions buffered. This can
be expressed using a family of queue-like action transducers
in the sense of Section 3.

Definition 14 The family of queue-like action transducers
{Kσ

j | σ ∈ (W ∪ Uj)∗} is for eachj ∈ I completely
characterized by the following set of transductions:

Fig. 7. Buffering a local cache

• Kσ
j

Uj (d,a)
−−−→

0
K

σ.Uj (d,a)
j

• Kσ
j

Wi(d,a)−−−→
0

Kσ.Wi(d,a)
j for all i ∈ I

• K
Uj (d,a).σ
j

τ−−−→
Uj (d,a)

Kσ
j

• KWi(d,a).σ
j

τ−−−→
Wi(d,a)

Kσ
j for all i ∈ I

• Kσ
j

Rj (d,a)
−−−→
Rj (d,a)

Kσ
j if σ contains noWj-actions

ut
If we compare the above transductions to Definition 4

we see that the first two transductions correspond to queuing
(case 1 of Definition 4) write and update messages, the next
two transductions correspond to dequeuing (case 2) write
and update messages, and the last transduction corresponds
to direct execution (case 3) of read actions under a specific
constraint on the contents of the queue.

The third refinement is reflected in the following process
definition.

Refinement3 ⇐
∏

j∈I

W

(Locmemj(0)[U/R] ||Uj∪W

Kε
j [Cachej(yj0)])/U (6)

for arbitraryyj0 ∈ r(0).

We can now prove the following lemma.

Lemma 15

∀j ∈ I, σ ∈ (W ∪ Rj)∗, x ∈ DA, y ∈ r(x)

(Locmemj(x)[U/R] ||Uj∪W Kε
j [Cachej(y)])/U

σ
=⇒

∃σ′ ∈ (W ∪ Rj)∗

(Locmemj(x)[U/R] ||Uj∪W Cachej(y))/U
σ′

=⇒
∧ σ � (Wj ∪ Rj) = σ′ � (Wj ∪ Rj)

∧ σ � W = σ′ � W

Proof. This essentially follows from the preservation Lemma
8. Assume that

(Locmemj(x)[U/R] ||Uj∪W Kε
j [Cachej(y)])/U

σ
=⇒

It follows there must exist aσ1 with σ1/U = σ and

Cache consistency by design 69

Locmemj(x)[U/R] ||Uj∪W Kε
j [Cachej(y)]

σ1=⇒
By the properties of||Uj∪W (fact 4) for σ2 = σ1 � (Uj ∪
W) we have

Locmemj(x)[U/R]
σ2=⇒ andKε

j [Cachej(y)]
σ1=⇒

By the preservation Lemma 8 there is aσ′
1 with

Cachej(y)
σ′

1=⇒ and

σ′
1 � (Wj ∪ Rj) = σ1 � (Wj ∪ Rj) and

σ′
1 � (W ∪ Uj) = σ1 � (W ∪ Uj)

which follows by takingA = Wj (then DA = Rj), and
A = W ∪ Uj (then DA = ∅), respectively. Recombining,
we get

Locmemj(x)[U/R] ||Uj∪W Cachej(y)
σ′

1=⇒
Then takingσ′ = σ′

1/U it follows that

(Locmemj(x)[U/R] ||Uj ∪W Kε
j [Cachej(y)])/U

σ′
=⇒

with

σ � (Wj ∪ Rj) = (σ1/U) � (Wj ∪ Rj)

= (σ1 � (Wj ∪ Rj))/U

= (σ′
1 � (Wj ∪ Rj))/U

= (σ′
1/U) � (Wj ∪ Rj)

= σ′ � (Wj ∪ Rj)

and likewise

σ � W = (σ1/U) � W = (σ1 � W)/U

= (σ′
1 � W)/U = (σ′

1/U) � W = σ′ � W

ut
Corollary 16 Refinement3 is weakly sequentially consistent
with Memser(0)

Proof. Assume that

∏

j∈I

W

(Locmemj(0) [U/R] ||Uj∪W

Kε
j [Cachej(yj0)])/U

σ
=⇒

then according to fact 4 for eachj ∈ I with σj = σ �
(W ∪ Rj) we have

(Locmemj(0)[U/R] ||Uj∪W Kε
j [Cachej(yj0)])/U

σj
=⇒

Also, it follows that for all j ∈ I the σj must agree on
their common actions inW , i.e. σj1 � W = σj2 � W for
j1, j2 ∈ I.

Using the above lemma we findσ′
j with σj � (Wj ∪

Rj) = σ′
j � (Wj ∪Rj) andσj � W = σ′

j � W . The latter
equality implies that forj1, j2 ∈ I we haveσ′

j1
� W =

σj1 � W = σj2 � W = σ′
j2

� W . This means that we can
apply fact 4 again, in the opposite direction, combining the
σ′

j and find aσ′ with σ′ � (W ∪ Rj) = σ′
j � (W ∪ Rj)

∏

j∈I

W

(Locmemj(0)[U/R] ||Uj∪W Cachej(yj0))/U
σ′

=⇒

It follows that σ′ � (Wj ∪ Rj) = σ � (Wj ∪ Rj) for all
j ∈ I, i.e.Refinement3 is weakly sequentially consistent with
Refinement2, and thus withMemser(0). ut

We proceed with a cosmetic transformation that is not
really necessary for the design, but brings our specification
closer in line with the specification given in the problem
statement in [?]. There, the cache communication buffer
identifies all update and non-local write interactions once
they have been buffered. The contents of local write inter-
actions is marked for identification with a special symbol
(‘∗’). To achieve this in our design we introduce a revised
class of queue-like transducer families.

Definition 17 The family of queue-like action transducers
{Lσ

j | σ ∈ (W ∪ Uj)∗} is for eachj ∈ I completely
characterized by the following set of transductions:

• Lσ
j

Uj (d,a)
−−−→

0
Lσ.(d,a)

j

• Lσ
j

Wj (d,a)
−−−→

0
Kσ.(d,a,∗)

j

• Lσ
j

Wi(d,a)−−−→
0

Kσ.(d,a)
j i /= j

• Lα(d,a).σ
j

τ−−−→
Uj (d,a)

Lσ
j α(d, a) ∈ {(a, d), (a, d, ∗)}

• Lσ
j

Rj (d,a)
−−−→
Rj (d,a)

Lσ
j if σ contains no∗-actions

ut
The corresponding revision of the cache specification is

given by the process definition ofCache′j(x) below.

Cache′j(x) ⇐
∑

a∈A,d∈D

Uj(d, a).Cache′j(x{d/xa}) (7)

+
∑

a↓x

Rj(xa, a).Cache′j(x)

+
∑

y∈r(x)

τ.Cache′j(y)

The overall refinement step that is implied by these
changes is given by the process definitionRefinement3′ .

Refinement3′ ⇐
∏

j∈I

W

(Locmemj(0) [U/R]||Uj∪W (8)

Lε
j [Cache′j(yj0)])/U

for arbitraryyj0 ∈ r(0).

Essentially,Lε
j [Cache′j(yj0)] differs from Kε

j [Cachej(yj0)]
only in the way in which the internal events corresponding to
the buffer-cache communication are produced; the resulting
transition systems are identical.

70 E. Brinskma

Fig. 8. Centralizing the memory

Lemma 18

Lε
j [Cache′j(yj0)] ∼ Kε

j [Cachej(yj0)]

Proof. Left to the reader. ut
Corollary 19 Refinement3′ is weakly sequentially consistent
with Memser(0)

Proof. As ∼ is a congruence w.r.t. the operators used and
preserves traces. ut

4.4 Centralizing background memory

As the local memories have served their purpose in produc-
ing the local (buffered) caches they can now be recombined
into a central background memory. Therefore, our penulti-
mate design step is specified as follows.

Refinement4 ⇐ (Memser(0)[U/R] ||U∪W

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U (9)

for arbitraryyj0 ∈ r(0).

Lemma 20

(Memser(0)[U/R] ||U∪W

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U ∼

∏

j∈I

W

(Locmemj(0)[U/R] ||Uj∪W Lε
j [Cache′j(yj0)])/U

Proof.

W∏

j∈I

(Locmemj(0)[U/R] ||Uj∪W Lε
j [Cache′j(yj0)])/U

∼ {law 4 of Table 3}

(
W∏

j∈I

(Locmemj(0)[U/R] ||Uj∪W Lε
j [Cache′j(yj0)]))/U

∼ {L(Locmemj1(0)[U/R])

∩ L(Locmemj2(0)[U/R]) = W (j1 /= j2),

L(Locmemj(0)[U/R])

∩ L(Lε
j [Cache′j(yj0)]) = Uj ∪ W }

(
∗∏

j∈I

(Locmemj(0)[U/R] ||∗ Lε
j [Cache′j(yj0)]))/U

∼ {laws 1 and 3 of Table 3}

(
∗∏

j∈I

Locmemj(0)[U/R] ||∗
∗∏

j∈I

Lε
j [Cache′j(yj0)])/U

∼ {law 5 of Table 3 and Lemma 10}

(Memser(0)[U/R] ||∗
∗∏

j∈I

Lε
j [Cache′j(yj0)])/U

∼ {L(Memser(0)[U/R])

∩ L(
∗∏

j∈I

Lε
j [Cache′j(yj0)]) = U ∪ W ,

L(Lε
j1

[Cache′j1
(yj10)])

∩ L(Lε
j2

[Cache′j2
(yj20)]) = W (j1 /= j2)}

(Memser(0)[U/R] ||U∪W

W∏

j∈I

Lε
j [Cache′j(yj0)])/U

ut
Corollary 21 Refinement4 is weakly sequentially consistent
with Memser(0)

Proof. As ∼ preserves traces. ut

4.5 Adding the user interface

The last step in our design is the buffering of local write
interactions with the users. Local read interaction is permit-
ted only when the local write buffer is empty. Again, this
can be conveniently modelled using families of queue-like
action transducers.

Definition 22 The family of queue-like action transducers
{Mσ

j | σ ∈ Wj
∗} is for eachj ∈ I completely characterized

by the following set of transductions:

• Mσ
j

Wj (d,a)
−−−→

0
M

σ.Wj (d,a)
j

• M
Wj (d,a).σ
j

τ−−−→
Wj (d,a)

Mσ
j

• M ε
j

Rj (d,a)
−−−→
Rj (d,a)

M ε
j

• Mσ
j

α−→
α

Mσ
j α ∈ {Ri(d, a), Wi(d, a)|j /= i ∈ I}

ut
The first and second transduction rules correspond to the

queuing and dequeuing of local write actions. The third rule
corresponds to the local read actions, and the last rule to all
read and write actions at the other user interfaces. The last
two rules are both instances of case 3 of Definition 4.

The corresponding refinement is expressed by process
definition Refinement5 below (recall that in the beginning of
this section we putI = {1, . . . , n}).

Refinement5 ⇐ (10)

(M ε
1 ◦ . . . ◦ M ε

n)[(Memser(0)[U/R] ||U∪W

Cache consistency by design 71

Fig. 9. Adding a user interface

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U]

for arbitraryyj0 ∈ r(0).

Here,M ε
1 ◦ . . . ◦ M ε

n denotes the composition ofn tran-
ducer applications, one for each user interface. With the
addition of these interfaces the last ingredients of the lazy
caching memory of Fig. 1, viz. theOut-queues and their as-
sociated constraints, have been incorporated in the design.
The following theorem and its corollary, therefore, express
the correctness of the lazy caching memory.

Theorem 23 For all i ∈ I

(M ε
1 ◦ . . . ◦ M ε

i)[(Memser(0)[U/R] ||U∪W

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U]

is weakly sequentially consistent with Memser(0).

Proof. By induction on i using preservation Lemma 8 it
is straightforward to show that the application of eachM ε

i
preserves the actions inWi ∪Ri and inWj ∪Rj for j /= i,
choosingA = Wi and A = ∅, respectively. The sequential
consistency withMemser(0) then follows from Corollary 21.

ut
Corollary 24

(M ε
1 ◦ . . . ◦ M ε

n)[(Memser(0)[U/R] ||U∪W

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U]

is weakly sequentially consistent with Memser(0).

Proof. Take i = n. ut

5 Strong sequential consistency

Having completed the design and proven it correct in terms
of weak sequential consistency we come back to the original
formulation of the problem in [?], where sequential consis-
tency is required with respect to themaximal observable
traces, i.e. possibly infinite traces, of the systems involved.
This is a strictly stronger requirement, as can be learned
from the following example.

Example 3Consider a serial memory with only two user
interfaces and only a single memory location initially hold-
ing the value 0. Suppose now a distributed implementation
displays the infinite trace

W1(1)(R2(0))ω or W1(1)R2(0)R2(0)R2(0) . . .

that is, user 1 writes the value 1 into the memory and user
2 keeps on reading the initial value 0 infinitely often.

Note that every finite prefix of this trace is weakly
sequentially consistent with the serial memory. For alln
W1(1)(R2(0))n is weakly sequentially consistent with
(R2(0))nW1(1), which is a valid behaviour of the serial
memory. For the infinite traceW1(1)(R2(0))ω there exists
no analogous permutation, as can be readily checked.ut

The above example shows that when infinite strings are
considered sequential consistency implies alivenessprop-
erty: a write by one user is eventually read by the other.
In this section we will show that the lazy caching memory
in fact satisfies this stronger requirement, and will require
only minor adaptations of the proofs for weak sequential
consistency.

First, let Aω denote the set of finiteand infinite strings
over A. Then we define the set of finite and infinite traces
of a behaviourB as

Tracesω(B) =df {σ0.σ1.σ2. · · · ∈ Actω |
∃{Bi}i∈N B ≡ B0, Bi

σi=⇒ Bi+1}
Definition 25 (strong sequential consistency)Let B1 and
B2 be behaviour expressions withL(Bi) ⊆ L . A behaviour
B1 is strongly sequentially consistentwith B2 iff

∀σ ∈ Tracesω(B1) ∃σ′ ∈ Tracesω(B2) such that

∀i ∈ I σ � Li = σ′ � Li

ut
To show the correctness of the distributed caching mem-

ory it suffices to extend some of the definitions and facts of
Section 2. We start with the equivalence corresponding to
Tracesω(B) defined by

B1 ≈traceω
B2 iff Tracesω(B1) = Tracesω(B2)

Fact 5 The relation≈traceω is a congruence with respect to
all the combinators introduced in Table 1 and≈ ⊆ ≈traceω⊆
≈trace. ut
Fact 6 Let B1||∗B2 be defined as in Table 3.

Tracesω(B1||∗B2) =

{σ ∈ (L(B1) ∪ L(B2))ω | σ � L(B1) ∈ Tracesω(B1),

σ � L(B2) ∈ Tracesω(B2)}
ut

The proofs of these facts are standard, and are left to the
reader.

The last generalization that we need is the extension of
Lemma 8 to strings inActω. This is the only part of the
proof in which we will need theweak fairnessassumption
given in the problem description in [?]: that no read, write,
or update action is continuously enabled but never executed.

72 E. Brinskma

Lemma 26 (extended preservation lemma)Let TQ =
{T σ | σ ∈ Q∗} be a queue-like family of action-transducers.
Let B continuously allow all actions inQ, i.e. for all B′ ∈
Der(B) and all q ∈ Q ∃B′′ B′ q−→ B′′. Then for all
σ ∈ Tracesω(T ε[B]) we have

∃σ′ ∈ Tracesω(B) ∀A ⊆ Q with

σ � (A ∪ DA) = σ′ � (A ∪ DA)

Proof. We may assume thatσ is an infinite trace, otherwise
the proof of Lemma 8 applies. By the definition of an infinite
trace we then get thatσ = σ0.σ1.σ2. · · · with

∃{T υi [Bi]}i∈N T υi [Bi]
σi=⇒ T υi+1[Bi+1] with

T υ0[B0] ≡ T ε[B]

Factorizing these transitions into transductions of the context
and transitions of (the derivatives of)B we get

∃{σ′
i}i∈N T υi

σi=⇒
σ′

i

T υi+1 and Bi
σ′

i=⇒ Bi+1

It follows from Lemma 7 that (σ′
0. · · · .σ′

i) � (A ∪ DA) is
prefix of (σ0. · · · .σi) � (A ∪ DA) for all i.

Now defineσ′ = σ′
0.σ

′
1.σ

′
2. · · ·, and suppose thatσ � (A∪

DA) /= σ′ � (A∪DA), then it follows thatσ � (A∪DA) = σ′ �
(A∪DA).σ′′ � (A∪DA) for someσ′′ with σ′′ � (A∪DA) /= ε.
The latter entails in particular thatσ′′ � A /= ε as the elements
in DA would, by construction, already occur inσ′. Also, it
follows that σ′ � (A ∪ DA) is finite, i.e. that there exists
an N such thatσ′

i � (A ∪ DA) = ε for all i > N . By the
transduction rules for queue-like transducers this implies that
υi is a prefix ofυ for all transducersT υ that occur in the

derivation ofT υj
σj

=⇒
σ′

j

T υj+1 for j ≥ i > N .

Becauseσ′′ � A /= ε we get thatυM /= ε from some
M > N onwards. AsB continuously allows all actions
in Q, in particular the first elementu0 of υM , this action

is continuously enabled asT υi
τ−→
u0

T υ′
for i > M and

υi = u0.υ
′. But it is never selected, becausei > N andυi is

not a prefix ofυ′. This contradicts our fairness assumption.
Thereforeσ � (A ∪ DA) = σ′ � (A ∪ DA). ut
Theorem 27

(M ε
1 ◦ . . . ◦ M ε

n)[(Memser(0)[U/R] ||U∪W

∏

j∈I

W

Lε
j [Cache′j(yj0)])/U]

is strongly sequentially consistent with Memser(0).

Proof. We check proofs of the refinement steps for the weak
sequential case:

1. distributing the memory: this was proved using that∼
⊆ ≈trace (see Corollary 11), which can now be replaced
by the argument that∼ ⊆ ≈traceω .

2. introducing local caching: this was proved using that≈
⊆ ≈trace (see Corollary 13), which can now be replaced
by the argument that≈ ⊆ ≈traceω

.
3. buffering cache communication: an infinite trace version

of Lemma 15 can be proved using fact 6 instead of fact 4,

and the extended preservation Lemma 26, which leads
to the strong version of Corollary 16. The subsequent
modification inRefinement3′ can be imitated as≈traceω

is invariant under renaming of internal actions.
4. centralizing background memory: this is more or less the

inverse of refinement 1, and therefore follows again by
∼ ⊆ ≈traceω

, and the fact that≈traceω
is a congruence.

5. adding the user interface: this follows by using the ex-
tended version of the preservation lemma. ut

6 Conclusions

In this paper we have presented a proof of the sequential
consistency of the lazy caching protocol of [ABM93]. It
is based on the application of a number of transformation
steps, deriving the distributed caching memory in several
steps from the sequential memory, whilst maintaining the
property of sequential consistency. Thus the proof can also
be seen as a rationalized reconstruction of the design of
the lazy caching protocol, and ana posteriori attempt at
correctness by design. One of the potential benefits of such
an approach is that more general results can be obtained
than the correctness of a specific design only. In this case
the factorization of the proof in separate design steps gives
substantial insight in design alternatives, and in fact provides
us with correctness proofs for a whole family of distributed
caching designs. Being based on the same transformation
principles the following variations can be proven correct by
minimal rearrangements of the proof:

1. user interface buffers: we can allow asymmetry between
users in the sense that some may, and others may not,
have a buffered user interface. This is obtained by ap-
plying the tranducersM ε

i for only those user interfaces
i that should haveOut-queues.

2. cache buffers: we can also allow asymmetry between
caches in the sense that some may have buffered access
and others not. This is similar to the above: apply the
transducersLε

i only to those local caches that should
haveIn-queues.

3. local memories: we may choose some users to have ac-
cess to a complete local memory instead of a cache. This
is obtained by carrying out refinement step 2 for only
those interfaces where a cache instead of a local serial
memory is required. It is easy to see that (the proof of)
Lemma 10 does not depend on the particularI. This
means that for any nonempty subset ofI0 ⊆ I the I0-
product of local memories is bisimilar to a serial memory
of type I0. This is sufficient for the subsequent creation
of a central background memory in transformation step
4 for those interfaces that do have caches.

4. background memories: we may choose to have several
write-synchronizing background memories for smaller
user groups (e.g. to expedite cache updates). This relies
on the same observation as the previous point, applying
it for disjoint I0, . . . , Ii ⊆ I.

The structured presentation of the proof also allows for
a rather precise analysis of the blanket fairness assumption
(no action other than cache invalidations can always be en-

Cache consistency by design 73

abled but never taken) in the general exposition in [?]. Weak
fairness is required in the following places:

1. processing local writes stored in the user interface buffers
into the memory and the local cache buffers;

2. processing writes and updates stored in a local cache
buffer into the local cache;

3. processing memory updates into the local cache buffers.

The first two are used in (the application of) the ex-
tended preservation Lemma 26; the last is implicit in the
proof of weak bisimulation equivalence in Lemma 12. The
latter exploits a notion of fairness that is ‘built-in’ in the
notion of weak bisimulation equivalence. In the context of
ACP it appears asKoomen’s fair abstraction rule[BW90].

It may be good to point out that the way in which we
have factored the proof into transformations is not unique.
We could have chosen, for example, to first recombine the
local memories (now step 4) and then add theIn-queues to
the caches (now step 3). In that case we could even have tried
to carry out the first three transformations in one fell swoop,
factoring all local caches out of a central memory. There
may even be design strategies completely different from the
approach that we have followed. We have tried to follow
a strategy that we believe leads to elegant and insightful
transformations, and minimizes the amount of “global rea-
soning” by making arguments depend only on actions local
to the user interfaces whenever this is possible. Whether this
is the best approach is to some extent a matter of taste, of
course.

Although we have used a process-algebraic notation for
the specification of the various design stages, and have
applied a number of well-known laws from the process-
algebraic literature, our proof is, in fact, heterogeneous in na-
ture. The process-algebraic syntax is used to define labelled
transition systems. We have allowed, however, some of the
fairness requirements to be superimposed on this representa-
tion, thereby leaving a proper process-algebraic framework.
Also, we have not used a structured syntax to define ac-
tion transducers, but have defined them directly in terms
of their transductions. As already mentioned, the transduc-
ers have their syntactic counterparts in behaviour expres-
sion contexts, i.e. behaviour expressions with open places
or ‘holes’ in them. Contexts corresponding to the transduc-
ers that we have used could be expressed in terms of our
process-algebraic formalism if we accept simple compound
data types such asstrings and their associated operations as
given (otherwise one could turn to languages like LOTOS
to formalize such notions [BB87]). In these cases, however,
their syntactic representation is much more involved than
their operational one, and would distract from the essential
feature that figures in the proof, viz. that they are action
transducers that induceobservable action-sequencetrans-
ductions. As sequential consistency is an invariant of such
transductions, that is precisely the way we want to view
them.

The correctness of a number of transformations has been
shown in terms of direct semantic proofs, viz. by producing
strong and weak bisimulations, and by reasoning in terms of
action transducers. As a consequence, it can be disputed as
to what extent our proof can be seen as one based on the ap-
plication of correctness-preservingtransformations (CPTs).

Although our transformations do preserve the desired cor-
rectness criterion, this term is usually reserved for generic
design principles whose correctness has been established be-
forehand (cf. for example [Bol92]), to be contrasted with the
procedure of ‘invent and verify’. In addition to the applied
standard process algebraic laws listed in Table 3, however,
most other parts of the proof could retrospectively qualify as
CPTs. The formulation of our transduction based proofs, the
(extended) preservation lemma, for example, is generic in
the sense that it applies to all queue-like transducers. This
enables its repeated application in proof, viz. twice in the
proof of Lemma 15 concerning the cache buffer, and twice
in the proof of Theorem 23 concerning the user interface
buffer. In order not to burden our proof with such concerns
we have foregone the formulation of a generic transforma-
tion principle corresponding to the equivalence proven in
Lemma 10. The idea behind the proof is quite general, how-
ever, viz. that a process may be split into parts according to
a partitioning of all those of its actions that do not affect its
state, where each part should still be able to synchronize on
all actions that do influence the state in order to maintain
it. We present a generic formulation of this transformation
without proof.

Let p(x) be a parameterized process defined by

p(x) ⇐
∑

a∈Var

f (a, x).p(g(a, x)) +
∑

a∈Inv

h(a, x).p(x) (11)

where x ranges over a given domainD, Var and Inv are
given index sets, andf : Var×D → Act, g : Var×D → D,
andh : Inv × D → Act∪ {τ} are functions withf injective
and rge(f) ∩ rge(h) = ∅.

Theorem 28 Let p(x) of the form defined by(11) above. Let
F be a finite partitioning of Inv and define for allF ∈ F

pF (x) ⇐
∑

a∈Var

f (a, x).pF (g(a, x)) +
∑

a∈F

h(a, x).pF (x)

Then

p(x) ∼
∏

F∈F

rge(f)
pF (x)

ut

Thus far, we have not succeeded in formulating a suit-
ably general formulation of the transformation principle be-
hind the introduction of the local caches in Lemma 12. It
seems that the semantic idea behind it is not readily ex-
pressible in generic syntactic terms. Summarizing, we can
say that the problem of proving the lazy caching protocol
correct has also served as a source of inspiration for the
formulation of new correctness preserving design transfor-
mations. Although much of our proof can be interpreted as
the application of such transformations, parts remain that
rely on the ‘invent and verify’ approach. As a whole the
proof illustrates that an opportunistic combination of differ-
ent methods can lead to an insightful example of correctness
by design.

We thank an anonymous referee for pointing out a subtle error in the original
presentation of the preservation lemmas 8 and 26.

74 E. Brinskma

References

[ABM93] Afek, Y., Brown, G., Merritt, M.: Lazy caching. ACM Transac-
tions on Programming Languages and Systems, 15(1):182–206
(1993)

[BB87] Bolognesi T., Brinksma, E.: Introduction to the ISO specifica-
tion language LOTOS. Computer Networks and ISDN Systems,
14:25–59 (1987)

[Bol92] Bolognesi, T.: Catalogue of LOTOS correctness preserving
transformations. Technical Report Lo/WP1/T1.2/N0045/V03,
Esprit Project 2304 Lotosphere, April 1992

[Bri92] Brinksma, E.: On the uniqueness of fixpoints modulo observa-
tion congruence. Lecture Notes in Computer Science 630, pp.
62–76. Berlin Heidelberg New York: Springer 1992

[BW90] Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge
University Press 1990

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Engle-
wood Cliffs, NJ: Prentice-Hall 1985

[Lar90] Larsen, K.G.: Compositional theories based on an operational
semantics of contexts. In: de Bakker, J.W., de Roever, W.P.,
Rozenberg, G. (eds.) Stepwise Refinement of Distributed Sys-
tems — Models, Formalisms, Correctness, Lecture Notes in
Computer Science, Vol. 430 pp. 487–518, Berlin Heidelberg
New York: Springer 1990

[Mil89] Milner, R.: Communication and Concurrency. Englewood Cliffs,
NJ: Prentice-Hall 1989

[Plo81] Plotkin, G.D.: A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, 1981

[vG93] van Glabbeek, R.J.: The linear time - branching time spectrum ii.
LectureNotes in Computer Science Vol. 715, pp. 66–81, Berlin
Heidelberg New York: Springer 1993

Ed Brinksma holds the chair of Formal Methods and Tools of the Faculty
of Computer Science at the University of Twente at Enschede, The Nether-
lands. His main research interest lies in the application of formal methods
to the design of distributed systems, including specification, verification,
implementation, testing and software tool support. Ed was chairman of the
ISO standardization committee of the formal specification language LOTOS
(ISO IS 8807). His current research focusses on testing (test derivation),
validation by model checking, formal methods for real-time systems, link-
ing performance models to formal specifications, and the introduction for-
mal methods into industrial working practices. He is leader of the Systems
Validation Centre at the Telematics Institute, a leading national research in-
stitute that is jointly funded by the Dutch government and major computer
science and telecom industries.

