Distrib. Comput. (2002) 15: 97-107 @USEE’&D@FE@
QUIMPUTTING

(© Springer-Verlag 2002

Handling message semantics with Generic Broadcast protocols

F. Pedoné, A. Schiper?

! Hewlett-Packard Laboratories, Software Technology Laboratory, Palo Alto, CA 94304, USA (e-mail: pedone@hpl.hp.com)
2 Communication Systems Department, EPFL — Ecole Polytechnigd&r&lé de Lausanne, 1015 Lausanne, Switzerland
(e-mail: andre.schiper@epfl.ch)

Received: August 2000 / Accepted: August 2001

Summary. Message ordering is a fundamental abstractionin ~ This paper introduce&eneric Broadcasta message or-
distributed systems. However, ordering guarantees are usuallyering abstraction that allows applications to specify order
purely “syntactic,” that is, message “semantics” is not takenrequirements based on the semantics of messages. Message
into consideration despite the fact that in several cases semanrdering requirements are formalized byressage conflict
tic information about messages could be exploited to avoidelation defined over the set of messages. Roughly speaking,
ordering messages unnecessarily. In this paper we define theo messages have to be delivered in the same order only if
Generic Broadcasproblem, which orders messages only if they conflict. The definition of message ordering based on a
needed, based on the semantics of the messages. The semeonrflict relation allows for a very powerful message ordering
tic information about messages is introduced by conflict rela-abstraction. For example, the Reliable Broadcast problem is
tions. We show that Reliable Broadcast and Atomic Broadcaséan instance of Generic Broadcast in which no pair of messages
are special instances of Generic Broadcast. The paper alsmnflict. The Atomic Broadcast problem is another instance of
presents two algorithms that solve Generic Broadcast. Generic Broadcast in which all pairs of messages conflict.
The interest in taking application semantics into account
Keywords: Semantics-aware primitives — Group communi- to define more flexible message ordering primitives in group
cation — Fault-tolerance — Atomic broadcast — Reliable broadeommunication was first pointed out in [5]. In [8], the authors
cast — Asynchronous systems consider the issue of ordering messages from the viewpoint of
database concurrency control. The notion of message conflict
is introduced to capture application semantics, and is used to
extend the definitions of FIFO, causal, and total order message
delivery to include message semantics. Serialization graphs
are usedtoreason about application correctness along the same
1 Introduction lines of database concurrency control [2]. The authors also
briefly discuss how one could implement such specifications
Message ordering is a fundamental abstraction in distributedn & distributed system where processes do not fail. Contrary
systems. Total order, causal order, and view synchrony art0 [8], we consider here a system model with process failures.
examples of widely used ordering guarantees. These order- Any algorithm that solves Atomic Broadcast trivially
ing guarantees, however, rely only on “syntactic” information Solves any instance of Generic Broadcast (i.e., specified by
about the messages, ignoring their “semantics.” In general, o2 given conflict relation): it just orders too many messages.
dering messages without taking their semantics into considetlowever, such an algorithm goes against the main motivation
ation leads to ordering more messages than actually necessayGeneric Broadcast, which is to allow for efficient message
to ensure the correctness of the application. Moreover, as oflelivery by not ordering messages unnecessarily. We present
dering messages has a cost, ordering messages unnecessam@ algorithms that solve Generic Broadcast, callétiand
penalizes the application. Consider for example a replicate5+; both algorithms are more efficient than Atomic Broad-
objectimplemented using active replication — also called stat€ast when messages do not confl@t8 and G5+ rely on
machine approach [12]. By distinguishing messages containConsensus [4] when conflicts are detected, but can deliver
ing read operations from messages containingte opera- non-conflicting messages without using Consengigst: im-
tions, one could design a protocol that does not order all mesProves the performance 63 by being able, in some cases,
sages, since read Operations do not need to be ordered witA deliver conflicting messages without Consensus. This last
respect to other read operations. result is very interesting, as it exhibits an algorithm that can
sometimes solve Atomic Broadcast (an instance of Generic
A preliminary version of this paper appearedAroceedings of the Broadcast) in an asynchronous system with process crashes.
13th International Symposium on Distributed Compu(iDgSC’99,
pp. 94-108).

98 F. Pedone, A. Schiper

Our Generic Broadcast algorithms requfre: n/3, where We assume that our asynchronous system is augmented
n is the total number of processes gfitthe maximum number with further abstractions (e.g., failure detectors) allowing us
of faulty processes. If messages do not conflict, the algorithmso solve Uniform Consensus [4]. Uniform Consensus is de-
GB andGB+ have a time complexity 024, whered is the fined by the primitivegropose(v) anddecide(v), and the
maximum network message delay [1]. In case of conflicts, thdollowing properties: (i) every correct process eventually de-
time complexity is4¢ in the best case, arith in the worst cides some valugermination)
case. These results are to be compared with the time complexi) every correct process decides at most ofu@form in-
ity of Atomic Broadcast algorithms in the model we consider: tegrity); (iii) no two processes decide different{yaniform
36 in the best case an@h in the worst case. These results, agreement)and (iv) if a process decidas thenv was pro-
which show the advantage of Generic Broadcast over Atomigosed by some proce@siform validity)
Broadcast if message conflicts are not too frequent, have been
validated by a small prototypical implementation.

The work in [1] is close to the one presented in this pa-2.2 Generic Broadcast
per: actually, [1] builds upon [10], the preliminary version of
this paper. T_he work presented in [1] uses an Atomic Br(_)a(_j'Generic Broadcast is defined by the two primitives g-
cast oracle (mstead of Consensus, as we do) as the bu'ld”,‘@roadcas(tm) and g-Delivefm).t When a process invokes
block for Generlq Broadcast, a_nd formalizes classes que”e”ﬁ-Broadcast with a message we say thap g-Broadcasts,
Broadcast algorithms according to how they use this oracle,,q wherp returns from the execution of g-Deliver with mes-

Informally, an algorithm solving Generic Broadcastisn- sagemn, we say thap g-Deliversm. Messagen is taken from
trivial w.r.t. an oracle if, when no conflicting messages are, et to which all messages belong. Generic Broadcast de-
g-Broadcast, the oracle is not used; an algoriththisty s on a (symmetric and non-reflexive) conflict relation on
w.r.t. an oracle if it is non-trivial w.r.t. the oracle and guar- ', « . \{ denoted by~ (i.e.,~ C M x M).2If (m,m’') € ~

antees the following property: if ther_e is a time after which (han we say that andm’ conflict. To simplify, we use here-
messages g-Broadcast do not conflict with each other, theQgar the infix notationm ~ m’ instead of(m,m’) € ~.

eventually the oracle is no longer used. Non-trivial and thrifty 5o neric Broadcast is specified by (1) a conflict relatioand
implementations of Generic Broadcast are given in [1]. TheéZ) the following conditions:
two Generic Broadcast algorithms given in this paper are als

thrlﬁy implementations of Generic Broadcast, if we extend (VALIDITY) If a correct procesg g-BroadcastS amessage
the oracle in the definitions of [1] to include a Consensus or- thenp eventually g-Deliversn.

acle. From the point of view of time complexity, [1] does not (Unirorm AGREEMENT) If a proces g-Delivers a message
impr_ove our results. The best algorithm in [1] has atlme com- m, then every correct procesgventua”y g-De"\/ergn_
plexity of 26 and also requireg’ < n/3; [1] also gives an (Unirorm INTEGRITY) FOr any message:, every process
algorithm for Generic Broadcast with < n/2, which has a g-Deliversm at most once, and only if was previously
time complexity of34. g-Broadcast by some process.

~ The remainder of the paper is structured as follows. Sec- (Unirorm OrDER) If processeg andq both g-Deliver con-
tion 2 describes the system model and defines the Generic flicting messages: andm’, thenp andq g-Deliverm and

Broadcast problem. Sections 3 and 4 present the two Generic ,,,/ in the same order.

Broadcast algorithmg53 andG B+, and Sect. 5 contains their

proofs of correctness. Section 6 evaluates the time complexfhe conflict relation~ determines the pair of messages that

ity of the two algorithms, and points out the costd and are sensitive to order, that is, the pair of messages for which

G B+ with respect to Atomic Broadcast algorithms. Section 7the g-Deliver order should be the same at all processes that

concludes the paper. g-Deliver the messages. The conflict relatiorrenders the
above specification generic, as shown next.

2 System model and definitions

2.1 Model assumptions 2.3 Reliable and Atomic Broadcast as instances

_ of Generic Broadcast
We consider an asynchronous system composeg@uaicesses

I = {ps,... ’p”}'Whi.Ch commu.nicate by message pass@ng,We consider in the following two special cases of conflict
A process can only fail by crashing (i.e., we do not considerg|ations: (1) the empty conflict relation, denoted-ay (i.e.,
Byzantine failures). A process that never crashesisect

herwise it isaul « . b ~g = 0), and (2) the cross product conflict relation, denoted by
otherwise it ifaulty. We make no assumptions about Process i (i.e..~nix m = Mx M). Incase (1), no pair of mes-
speeds or message transmission times.

- sages conflict, that is, the uniform order property of Generic
Processes are connected through quasi-reliable channelgy,,cast imposes no constraints on the order of messages,
defined by the primitivesend(m) andreceive(m). Messages

X P which is calledReliable Broadcasf7] — or, more precisely,
are unique and taken from a sét. Quasi-reliable channels | jni¢orm Reliable Broadcast. In case (2), any péin, m’)
have the following properties: (i) if procegseceives message ot messages conflict, that is, the uniform order property of
m from p, thenp sentm to ¢ (no creation) (ii) ¢ receivesn
from p at most oncdno duplication) and (iii) if p sendsm ! g-Broadcast has no relation with the GBCAST primitive defined
to ¢, andp andq are correct, then eventually receives: (no in the Isis system [3].
loss) 2 The operand- was introduced in [1].

Handling message semantics with Generic Broadcast protocols 99

Generic Broadcast requires that all pairs of messages be oprocesses g-Delivers. In arun in which no process falls into
dered, which is calledtomic Broadcas{7] — or, Uniform case 3 above, all correct processes eventually recejve
Atomic Broadcast. In other words, Reliable Broadcast andmessageslC K (m) and g-Delivenn.
Atomic Broadcast lie at the two ends of the spectrum defined In case 3p; launches an instance of Consensus to decide
by Generic Broadcast. In between, any other conflict relatioron the g-Delivery order ofn andm’. This should be done
defines an instance of Generic Broadcast. carefully because if some process has already g-Delivefed
Conflict relations lying in between the two extremes of thenp; should g-Delivern’ beforem. Thus, before executing
the conflict spectrum can be better illustrated by an exampleConsensus, every processsends to all processes a message
Consider a replicatedccountobject, defined by the opera- — hereafter denotechk, containing all messages such that
tionsdeposit(xjandwithdraw(x) Clearly,deposit operations ~ACK(m) was send by,. Procesp; then waits forcak mes-
commute with each other, whiteithdraw operations do not sages from,;, processes.
— neither with each other nor wittheposit operations. Let Upon receivingn,.,, messagesHk, process; builds a
M denote the set of messages that camigpositoperation, set of messages, denoted/ygSet;. SetmsgSet; contains
and M., the set of messages that carnwighdrawoperation. messagen if m is in a majority of then.;;, messages of type

This leads to the following conflict relatioR 4ccoun:: cHk received byp;. As shown next, this ensures that if some
, , process has g-Delivered, m € msgSet;.
~Account = { (m,m’) + m € My orm’ € My}. To understandnsgSet;, considem = 4, ngex = Neng =

3, and assume that procgsshas g-Deliveredn. Sop; has
receivedn, .. messagedC' K (m), i.e., 3 processes have sent
"ACK (m). So, if p; waits forn.,, messages of typesk, it
will get at least 2 messages containimg Sop; includesm
&n msgSet;.

After building set msgSet;, p; executes Consensus
proposing (msgSet;, conflictSet;), where conflictSet;
contains all messages that R-delivered and are not in
msgSet; —thatiscon flictSet; = {m’}.Let(NCset, Cset)
be the Consensus’ decisionV<' stands for Non-Conflicting,
In this section and in the next one, we present two Generi@S this set never contains conflicting messages(aatands

Broadcast algorithmsg B and G+, respectively. Both al- for Conf_licting. Procesp; g.-DeIivers first the messages in.
gorithms are parameterized by two constants;, andn.ns. NCset, it has not yet g-Delivered, and then the messages in

From the relationship between,, andn.;,; —explained later ~ C's¢t-

— both algorithms require at leagtn + 1)/3 correct pro- Generalizing for. messagesA run of algorithmg 5 is decom-
cesses, which corresponds to the case where = nce = posed into a sequence of typbasesthe first phase — phase
[(2n+1)/3]. — lasts as long as no conflicting messages are R-delivered; the
second phase — phase handles the g-Delivery of conflicting
. _ messages thanks to the execution of a Consensus algorithm.
3.1 Overview of thg 5 algorithm These two phases definestage So, processes progress in a
sequence of stages, numbeted. . , k,.... In the run con-

We start by illustrating th€ 5 algorithm with a run in which sidered in the previous paragraph (2 messages), we have one
only two messages are g-Broadcast, and then generalize for t (ﬁ,]gle stage. When some processstarts stage: i't is ini-
case ofn messages. The algorithm uses Reliable Broadcasha"y in phaéel. Phase terminates at procegs'iff i R-

defined by the primitives R-broadcast and R-deliver[7]. delivers two conflicting messages. In phasef stagek, pro-
Run with 2 message€£onsider a run in which only messages ces; first buildsmsgSet; andcon flictSet;, as described in

m andm’ are g-Broadcast. The g-Broadcast of message the previous paragraph, and then executes a Consensus with
leads to the execution of R-broadcas)(Upon R-delivery of ~ (msgSet;, con flictSet;) as the initial value. When Consen-

Generic Broadcast with the 4...un: CONflict relation defines
aweaker ordering primitive than Atomic Broadcast (e.g., mes
sages inM, are not required to be ordered with respect to
each other), and a stronger ordering primitive than Reliabl
Broadcast (e.g., messages.i,, have to be ordered with
each other).

3 GB: a Generic Broadcast algorithm

m by some process;, there are three cases to consider: sus terminates with a decisidV C'set, C'set), p; g-Delivers
. messages itV Cset not yet g-Delivered, then those @iset
1. p; has not R-delivered message, _ not yet g-Delivered, and proceeds to phaséstagek + 1.
2. p; has R-delivered messag€, andm’ does not conflict
with m, or The parameters,, ., andn.,,. The GB algorithm requires

3. p; has R-delivered messagé, andm’ conflicts withm. (1) nack > n/2, (2) nen > 1/2, (3) 2nack + Nenk > 2n +
1, and (4)max(nack, nenk) COrrect processes. Condition (1)

In cases 1and 2;,,: sends a message to all processes aC!‘”"W'guarantees that ifn andm’ conflict, at most one of them
edging the R-delivery of — hereafter such a message is de-can pe g-Delivered without Consensus. Condition (2) ensures
notedAC'K (m). A process that receivesC' K (m) fromnack thatmsgSet;, constructed by; before Consensus, does not

3 This is the case for instance if we consider thatithdraw(x) ~ contain conflicting messages. Condition (3) ensures that if
operation can only be performed if the current balance is larger tha§Ome process, sy, has g-Deliveredn before Consensus,
or equal tax. andm conflicts withm/, then for every process; we have

4 Reliable Broadcast satisfies the validity, agreement (if a processn € msgSet;. Thus, after Consensus, every process first g-
R-delivers a message, then every correct process eventually R- Deliversm. Condition (4) ensures that no wait statementin the
deliversm) and uniform integrity properties (Sect. 2). algorithm lasts forever. The minimum of condition (4) is for

100

F. Pedone, A. Schiper

nack = Nehk- Fromthis and (3), we get that that our algorithm in phase of stagel . Assume that later in phasef stagel, pro-

requires at leadt(2n + 1)/3] correct processes.

3.2 TheG B algorithm in detail

cessp; R-deliversm/. In this case, withG B, procesy; starts
phaser to terminate the current stage by an instance of Con-
sensus. However, this is not necessary as the Consensus de-
cision is known beforehand: has already been g-Delivered,
beforem’. So, whilep; executingGB proceeds to phase,

We present now thg3 algorithm (see Fig. 1). Messages are With GB+, procesg; remains in phaseand may g-Deliver
g-Broadcast at line 7 and g-Delivered at lines 22, 23, and 31’ in phaser even thoughn andm' conflict. So,GB+ can
The algorithm consists of three concurrent tasks. Progess sometimes g-Deliver conflicting messages without Consen-

in stagek manages the following sets of messages:

e R delivered: set of messages R-delivered fayup to the
current time,

e G delivered: set of messages g-Delivered by in all
stages’ < k,

e pending”: set of messages R-delivered pyup to the
current time in phaseof stagek and acknowledged to the
other processes, and

e g_Deliver®: set of messages that has g-Delivered in
phasa of stagek, up to the current time.

Let proces®; be in phaseof stagek. Whenp,; wants to g-
Broadcast a message, p; executedR-broadcagtn) (Fig. 1,
line 8). Afterm is R-delivered (line 10)n is included in the
sequenceR_delivered (line 11). Procesp; then eventually
evaluates lines 12 and 13; there are two cases to consider.

Case 1: no message iR.delivered \ (G.delivered U
pending®) conflicts withm. In this casep; includesm in
pending® (line 14), and sends message pending”, AcK)

to all other processes (line 15), acknowledging thatloes
not conflict with any previous message R-delivereghlyyout
not g-Delivered so far. When a procgssreceives messages
of the type(k, pending®, ack), with m € pending®, from
nack Processes (lines 28-29); g-Deliversm, if it has not
done so (line 31).

Case 2: some messagé in R.delivered \ (G.delivered U
pending®) conflicts withm. Inthis casep; proceeds to phase
1 (lines 17-27). If one process proceeds to phagben the

Sus.

4.1 TheGB+ algorithm

In addition to the sets of messag8sjelivered, G_delivered,
andpending® of GBB, theG B+ algorithm (see Fig. 2) uses also
g-Deliver®, which is a “sequence” of messages. This vari-
able keeps track of the order in which messages are locally
g-Delivered at a process. Besides the traditional set operands,
we also use the operand to append messageg.Beliver”.
Tasks 1 and 2 are the same for bgthandG5+. In Task 3
GB andGB+ are similar, except for the following differences:

e Processes executing3+ ignore messages that have al-
ready been locally g-Delivered in the current stage (lines
13-14) to detect whether Consensus is needed. Moreover,
in GB+, messages of typeck have one additional field
(g-Deliver®), to carry the messages that a process has lo-
cally g-Delivered so far in the current stage (line 16). This
leads to a difference in the@henclause that treatack
messages (lines 21-23).

e With GB+, itis possible that some process detects a situ-
ation where Consensus is needed, and the other processes
do not. This happens because the condition to start Con-
sensus depends on the the order in which messages are
locally R-delivered (which may not be the same for all
processes). Thus, a process can start Consensus in two cir-
cumstances: either (a) because it detected that Consensus
is needed (line 14), or (b) because it received a message of
type cuk from some process (line 27), who has detected
that Consensus is needed.

e Messages of typenk (lines 19 and 30) also include an

algorithm ensures that all correct processes eventually also
proceed to phase In phasai, proces®,; sends a message of
the type(k, pending®, cuk) to all processes (line 17), where
pending® contains all messages that where acknowledged by
pi, and waits for the receipt of messages of the same type
from n.;, processes. Based on thak messages received,

p; determines which messages could have been g-Delivered
in phasa by some process (line 19), and executes Consensus
(lines 20-21). Messages decided by Consensus and not g-
Delivered yet by, are g-Delivered (lines 22—23), apgstarts
the next stage in phas€lines 25-27).

additional field _Deliver®) containing the sequencer of
messages g-Delivered so far by the sender in the current
stage. Whenever a process receives a message of the type
(k, g_Deliver® pending®, cuk), it g-Delivers all mes-
sages ing_Deliver” that it has not g-Delivered so far,
following the order ing_Deliver” (lines 31-33). Variable
chk_flag is used to make sure that a process only sends a
message of typeHk once in a stage.

4.2 GB+ as a solution to Atomic Broadcast

By considering an instance 63+ where any two messages
conflict, we can us&g B+ to solve Atomic Broadcast. Tak-

ing into account the properties g5+, we have an Atomic
Broadcast algorithm that, in some runs, orders messages with-
out Consensus and without any other assumptions about the
model (e.g., failure detectors). Notice that even though this
leads to situations where some messages can be ordered in a

4 GB+: Improving the GB algorithm

We present nowy B+, an improved version of thé 5 algo-
rithm. To understand the difference betwaggi and G5B+,
consider a run in which only two conflicting messageand
m' are g-Broadcast, and is g-Delivered by some procegs

Handling message semantics with Generic Broadcast protocols

1: Initialization:

101

2: R.delivered + 0
3: G delivered < 0
4: pending' « 0
5. g_Deliver! « 0
6: k+1
7: To execute g-Broadcast(m): {Task 1}
8: R-broadcast(m)
9: g-Deliver{m) occurs as follows:
10: when R-deliver(m) {Task 2}
11: R _delivered « R_delivered U {m}
12: when (R delivered \ (G-delivered U pending®) # 0) {Task 3}
13: if [for all m,m’ € (R_delivered \ G_delivered) : m o m'] then
14: pending® + R_delivered \ G_delivered
15: send(k, pending®, ACK) to all
16: else
17: send(k, pending®, CHK) to all
18: wait until | for nepp processes p; : received (k, pending}”, CHK) from pj]
19: msgSet® « {m | for ["é—ﬂl‘ﬂ] processes p; : received (k, pending;-‘, CHK) from p; and m € pending]’?}
20: propose(k, msgSet*, (R.delivered \ (G delivered U msgSet®)))
21: wait until decide(k, NCset®, Cset”k)
22: for each m € NCset* \ (g_Deliver® U G_delivered) do g-Deliver(m)
23: in ID order: for each m € Cset* \ (9_Deliver® U G_delivered) do g-Deliver(m)
24: G delivered + G delivered U NCset® U Cset®
25: k+—k+1
26: pending® « §
27: g_Deliver® «
28: when (receive(k, pending®, ACK) from p;)
29: while 3 m such that [for nacx processes p; : received (k, pendingJ’?, ACK) from p; and
m € (pending} \ g_Deliver*) | do
30: g-Deliver® « g_Deliver® U {m}
31: g-Deliver(m)

Fig. 1. Generic Broadcast algorithng 3)

pure asynchronous model, it is not in contradiction with the (1 — ncpx)/2 + nene = (nene + 1)/2 (a). By defini-
FLP impossibility result [6], and the fact that Atomic Broad- tion, |chkSet(m,p;)| = |ackSet*(m) N chkSetk(p;)|

cast and Consensus are equivalent [4], since it does not appBnd |ackSet®(m) N chkSet*(p;)| =

to all runs.

5 Proof of correctness

5.1 Proof of correctness of3

We initially define the following notation, used in Lemmas 1

and 2. Given message, we denote byickSet®(m) the set
of processes that execigendk, pending®, ack) (line 17) in
stagek, with m € pending®. Given proces®;, we denote
by chkSet* (p;) the set of processes from whigh receives
messages of the tydé, pending”, cux) (line 18) in stagék.

Lemma 1. (Assume&ng i + nepk > 2n + 1.)
If |ackSet*(m)| = naer and [chkSet® (p;)| = nenr, then
there are at leasf(n.x +1)/2] processes in the sebkSet*

(m, p;) © ackSett (m) N chkSet* (p;).

Proof. Because2ng.. + nenr > 2n + 1, we have
Nagck — N Z (1 - nchk:)/Q- SO, Nack — N + Nehk Z

lackSet*(m)| +
|chkSet®(p;)| — |ackSetk(m) U chkSet*(p;)| > naer +
Nenk — 1. SO We havéchkSet* (m, p;)| > nack + nenk — 1
(b). From (a) and (b), we havehkSet® (m,p;)| > (nenr +
1)/2, and since|chkSetk(m,p;)| € N, it follows that
|chkSet®(m,p;)| > [nenk +1)/2]. O

Lemma 2. (Assume&n,cr + nepk > 2n + 1.)

If messagen is g-Delivered by procegs in the first phase of
stagek, and (k, NCset®, Cset") is the value decided in the
k-th execution of Consensus, thenc N Cset*.

Proof. (uses Lemma 1) Before g-Deliveringr, p; re-
ceivedn,., messages of the typg, pending®, ack) with
m € pending® (line 15). Let (k, NCset®, Cset*) be the
decision of Consensus of stage From uniform valid-
ity of Consensus, there is some procggsthat has pro-
posed valudk, msgSet®, —) = (k, NCset*, —) at line 20.
Before executingoroposék, msgSet*, —), p; has received
nenk Messages of the typgk, pending®, cHk) in stagek.
From Lemma 1]ackSet* (m) N chkSet* (p;)| > [(nenk +
1)/2], and so,p; has includedn in msgSet*. Thus,m €
NCset". a

102 F. Pedone, A. Schiper

1: Initialization:

R _delivered +
G delivered < 0
pending' + 0
g_Deliver! ¢
k+1

chk_flag + false

8: To execute g-Broadcast(m): {Task 1}
9: R-broadcast(m)

10: g-Deliver(—) occurs as follows:

11: when R-deliver(m) {Task 2}
12: R _delivered + R_delivered U {m}
13: when (R._delivered \ (G.delivered U g_Deliver® U pending®) # 0) {Task 8}
14: if [for all m,m’ € (R.delivered \ (G_delivered U g_Deliver®)) : m # m' | then
15: pending® « R_delivered \ (G_delivered U g_Deliver®)
16: send(k, g-Deliver*, pending®, ACK) to all
17: else
18: chk_flag + true
19: send (k, g_Deliver*, pending®, CHK) to all
20: when (receive(k, g_Deliver;?, pending}‘, ACK) from p;) and not(chk_flag)
21: in sequence order: for each m € g Deliver} \ (¢9_Deliver® U G delivered) do
22: g_Deliver® « g_Deliver* @ (m)
23: g-Deliver(m)
24: while 3 m such that | for ngcx processes p; : received (k, —, pending;?, ACK) from p; and
m € (pending} \ g_Deliver*)] do
25: g-Deliver® « g_Deliver® @ (m)
26: g-Deliver(m)
27: when (receive (k,g_Deliver?, pending¥, CHK) from p;)
28: if not(chk_flag) then
29: chk_flag + true
30: send (k, g_Deliver®, pending®, CHK) to all
31: in sequence order: for each m € g_Deliver;? \ (g-Deliver® U G_delivered) do
32: g-Deliver® «+ g_Deliver® @ (m)
33: g-Deliver(m)
34: if [for ncpy processes p; : received (k,g_Deliverf, pending?, cHK) | then
35: msgSetF «— {m | for [22:+1] processes p; : received (k, g-Deliver¥, pending®,cHk) and m € pending®}
36: propose(k, msgSet®, (R_delivered \ (G _delivered U msgSet*)))
37: wait until decide(k, NCset®, Cset*)
38: for each m € NCset* \ (g_-Deliver® U G delivered) do g-Deliver(m)
39: in ID order: for each m € Cset® \ (g_Deliver® U G_delivered) do g-Deliver(m)
40: G delivered + G _delivered U g_Deliver®
41: k+—k+1
42: pending® < 0
43: g_Deliver® «+ ¢
44: chk_flag «+ false

Fig. 2. Improved Generic Broadcast algorith@Gf-+)

Lemma 3. (Assume&ng i + nenk > 2n + 1.) sider: (a) Ifp; g-Deliversm in the first phase of stage from
If messagen is g-Delivered by some process in stageghen Lemma 2,n € NCset®. (b) If p; g-Deliversm in the second
every process that terminates stag@.e., executes line 24 in phase of stagg, thenm € NCset® U Cset®. In both cases,
stagek) g-Deliversm. p; g-Deliversm. O

Proof. (uses Lemma 2) Lét be the smallest stage in which

some process, say, g-Deliversm (at lines 22, 23, or 31), Lemma 4. (ASSUME&Nck + Nenk > 21 + 1, nepr > n/2,
and letp; # p; be a process that terminates stagdhus, n,,, correct processes.)

p; executes Consensus in stdgand g-Delivers all messages For all stagek > 0, if some procesg; terminates stagg (i.e.,

in NCset*® U Oset®, where(NCset®, Cset®) is the value executes line 24 in stage, then every correct process also
decided in Consensus in staigeThere are two cases to con- terminates stagé.

Handling message semantics with Generic Broadcast protocols

103

Proof. (uses Lemma 3) The proof is by induction; however, asthere aren,.; correct processeg, receivesn,.; messages
the base step is very similar to the inductive step, we only give k, pending®, ack) with m € pending® (line 28), andp;

the proof of the inductive step. Assume the result holds:for
and let procesg; terminate stagé + 1. Sop; has terminated

g-Deliversm at line 31. a

stagek, and by the induction hypothesis every correct procest.emma 5. (Assumesi ., > n/2.)

also terminates stage

Before terminating stage+ 1, p; has received..,, mes-
sagegk + 1, pending® ', cuk) (line 18). As there are..,
correct processes and.,; > n/2, at least one message
(k+1, pending®*+!, cuk) was sent (line 17) by a correct pro-
cess, say,. Before executing line 17, has evaluated the
condition of line 13 tofalse that is,p; has R-delivered two
conflicting messages: andm’ that are not inG_delivered,
and sop; has not g-Deliveredr andm’ in some stagé’ <

Letm andm’ be two conflicting messages, ahdny stage.
If processp; g-Delivers message: in the first phase of stage
k, then no process g-Delivers’ in the first phase of stage

Proof. For a contradiction, assume that in the first phase of
stagek proces; g-Deliversm andp; g-Deliversm/’. So,p;
(resp.,p;) has received (line 28),.. messages of the type
(k, pending®, ack), such thatn € pending” (resp.,m’ €

pending®). By the condition of line 13, andm’ cannot be in

k+ 1. By the agreement property of Reliable Broadcast, everyjthe same setending”, and so, there must exit,, .. different

correct procesg, eventually also R-delivers: andm’. By
Lemma 3, ap; has not g-Deliveredh andm’ in some previ-
ous stageé’ < k + 1, the same holds fas,.. So every correct

processes that have seiit, pending”, ack) at line 15 — a
contradiction sincev,., > n/2.]

procesg, eventually also evaluates the condition of line 13 Lemma 6. (Assumes.pi > n/2.)

to false and sends at the messaget 1, pending®+!, cuk)

For any stagek > 0, the setNCset* decided in Consensus

(line 17). As there are.;,;, correct processes, every correct in stagek cannot include two conflicting messages.

process eventually receives (line 18),;, such messages and

proceed to line 19. So every correct process eventually staftr0of. Letm andun” be two conflicting messages. For a con-
Consensus at line 20. By the termination of Consensus everjfadiction, assume that we have, m’ € NCset". By the

correct process eventually decides, and terminates ktage
at line 25. |

Proposition 1. (UNIFORM AGREEMENT).

(Assumesigcr, nerk > 1/2, max(Ngek, Nenk) COrrect pro-
CesseSMnack + Nenk > 2n + 1.)

If a processp; g-Delivers a message:, then every correct
processp; eventually g-Deliversn.

Proof. (uses Lemmas 2, 3, and 4) Procgsg-Delivers mes-
sages at lines 22, 23 and 31.pf g-Deliversm at line 22
(m € NCset®) or at line 23 fn € Cset®), thenp; termi-
nates stagé, and from Lemma 4p; also terminates stage
k. Before terminating stage, p; decides for Consensus at
line 21; by uniform agreement of Consenspisalso decides
with m € NCset® orm € Cset*, and so, also g-Delivers,

at line 22 or 23.

validity property of Consensus some procgskas proposed
at line 20 (k, msgSet*, —) (k, NCset*, —) such that
m,m’ € msgSet®. Thusp, receives atline 182<2:+1] mes-
sagesk, pending®, cHK) suchthapending® includesn, and
[2enbtl] messagesk, pending”, cHk) such thapending”
includesm’. By the condition of line 13pending” cannot in-
clude conflicting messages, and so there must xig;, dif-
ferent processes that have sétpending”, cuk) at line 19
— a contradiction since.; > n/2. O

Proposition 2. (UNIFORM ORDER).

(Assumesiq ek, Nenk > 1/2, 2Ngek + Nenk > 20+ 1.)

If processep; andp; both g-Deliver conflicting messages
andm/, thenp; andp, g-Deliverm andm’ in the same order.

Proof. (uses Lemmas 2, 3, 5, and 6) Without loss of generality,
assume that; g-Deliversm beforem’. If p; g-Deliversm in

Thus, assume that; does not execute Consensus at stageStagek andm’ in stagek’ > £, it follows from Lemma 3 that

k, that is,p; g-Deliversm in the first phase of stagk (at

p; also g-Deliversn in stagek andm’ in stagek’ > k and

line 31). We claim that no process evaluates the condition athe result holds.

line 13 tofalsein stagek. The proof is immediate from the
fact thatp; does not terminate stageand from Lemma 4.

So, assume thak; g-Deliversm andm’ in stagek. From
Lemma 5m andm’ cannot be g-Delivered by; in the first

As p; g-Deliversm at line 31,p; has received messages Phase of stagé. So, either (1)p; g-Deliversm in the first

(k, pending®, ack) with m € pending® fromn,.;, processes
(line 28). Since there are,.;, correct processes andg ., >
n/2, p; has receivedk, pending®, ack) from at least one cor-
rect process, say.. Atline 15,p, has sentk, pending”, Ack)
with m € pending”, thus at line 14 we have fgs, m €
R delivered,. \ G.delivered,, andp, has R-deliveredn at

line 10. Sincep,. is correct, by the agreement property of Re-

liable Broadcast every correct procgsseventually also R-
deliversm. By Lemma 3,p, has not g-Deliveredn in any
stagek’ < k, so every correct proceps evaluates the condi-
tion of line 12 totrue and starts Task 3.

phase of stage andm’ in the second phase of staggeor (2)

p; g-Deliversm andm’ in the second phase of stage

In case (1), from Lemma &y; cannot g-Delivern’ in
the first phase of stage From Lemma 2, whep; decides at
line 21, we haven € NCset*. By Lemma 6N Cset® cannot
containm andm’. Som’ € Cset®, andp; also g-Deliversn
(at line 22) beforen’ (at line 23).

In case (2), from Lemma 6p andm’ cannot both be in
NCset* decided byp;. Therefore, either (2a), € NCset,
m/ € Cset* decided by Consensus, or (2b) m’ € Cset®
decided by Consensus. In case (2g)also g-Deliversn €

From our claim above, no process evaluates the conditiolV Cset* (line 22) beforen’ € Cset® (line 23). In case (2b),

of line 13 tofalse and so, every correct procegs sends
(k, pending®, ack) to all with m € pending® (line 15). As

because; g-Deliversm beforem’, m has a smallest ID than
m’. Sop; also g-Deliversn beforem’.]

104 F. Pedone, A. Schiper

Proposition 3. (VALIDITY). e Lemmas 1, 2 and 6 hold f@B+ with the same proof.
(AssumeSigc, nenk > 1n/2, max(Naek, Nenk) COrrect pro- e Lemma 3 holds foiG5+, but the proof requires a tiny
cesseSMngcr + Nenk > 2n + 1.) adaptation. Indeed, witi3-+, messages can additionally

If a correct procesy; g-Broadcasts a message, thenp; be g-Delivered at lines 23 and 33. However, this does not
eventually g-Deliversn. require changes in the arguments of the proof of Lemma 3.

Proof. (uses Lemma 4 and Proposition 1) For a contradic-Lémma 4 also holds fag 5+, but the proof is not the same.
tion, assume that; g-Broadcastsn but never g-Delivers it.
From Proposition 1, no correct process g-DeliversTo g-
Broadcastm, p; R-broadcasts it (line 8), and by validity of
Reliable Broadcasy, eventually R-deliversn. From agree-
ment of Reliable Broadcast, every correct process eventuall
R-deliversmn (line 10). Since no correct process g-Delivers
there is a time after which, for every correct process, we Proof. (uses Lemma 3) The proof is by induction; how-
havem € (R.delivered \ G_delivered). ever, as the base step is very similar to the inductive step,
Let#' > t be a time such that at all faulty processes we only give the proof of the inductive step. Assume the re-
have crashed. Let be the highest stage reached by somesult holds fork, and let procesy; terminate stagé: + 1.
process, say;, attimet’. From Lemma4 all correct processes Sop; has terminated stage and by the induction hypothe-
eventually start stagl. Sis every correct process also terminates stad@efore ter-
Since no correct process g-Delivers no correct pro- minating stagek + 1, p; has receivecd,;,, messagesk +
cess g-Deliversn in the first phase of stage Therefore, no 1, g_Delivert+!, pending®*!, cHK) (line 34).
correct process receives,.;, messagesk, pending®, ACK) As there aren,;,;, correct processes angy, > n/2, at
(line 28) such that € pending”. Since there are,.;. correct |east one message (kK + 1,g.Deliver**!,
processes, at least one correct processpsagoes not send pending®*!, cuk) was sent (line 19 or 30) by a correct pro-
the messagék, pending®, ack) to all with m € pending® cess, say;. So every correct process eventually receives mes-
(line 15). Sop; evaluates the condition at line 12fadsg and sage(k + 1, g_Deliver**! pending®*', cux) (line 27) and
sendsthe messagfe pending”, cuk) toall (line 17), whichis sends messagé + 1, g_Deliver®!, pending®*!, cHK) to
only possible ifp; has R-delivered a messagéthat conflicts all (line 30). As there are.;;, correct processes, every correct
with m. As p; is correct, by the agreement property of Reli- process eventually evaluates the condition of line 34t
able Broadcast, every correct process eventually R-deliverand starts Consensus at line 36. By the termination of Consen-
m’, evaluates the condition at line 13falseand sends mes- sus every correct process eventually decides, and terminates
sage(k, pending®, cHk) to all. As there are..,;, correct pro- stagek + 1 at line 40. a
cesses, all correct processes eventually stop waiting at line 18 .
and executpropose(k, s, s'), withm € sUs’ (line 19). From ~ Proposition 5. (UNIFORM AGREEMENT).

Lemma 4. (Assume&n,ck + Nenk > 2n + 1, nepr > n/2,
Nenk COrTECt processes.)

For all stagek > 0, if some procesg; terminates stage (i.e.,
executes line 40 in stage, then every correct process also
Yerminates stagé.

Consensus, we have at line 21 NCset* U Cset*. Soall ~ (ASSUMESiqep, nenk > n/2, max(nack, nenk) correct pro-
correct processes g-Deliver at line 22 or 3 — a contradic- C€SS€S2nack + ek > 2n + 1)
tion. O If a processp; g-Delivers a message:, then every correct

procesgp; eventually g-Deliversn.
Proposition 4. (UNIFORM INTEGRITY). FOr any messager,
each process g-Delivers. at most once, and only if: was
previously g-Broadcast.

Proof. (uses Lemmas 2, 3, and 4) Procesg-Delivers mes-
sagesatlines 23, 26, 33, 38, and 39, f-Deliversm atline 38

or 39 after the execution of Consensus, the result holds with
Proof. Assume thatn is never g-Broadcast. So is never R- the same arguments as thosedé# (Proposition 1). Thus, as-
broadcast, and by the uniform integrity of Reliable Broadcastsume thap; does not execute Consensus at staghat is,p;

m is never R-delivered (line 10). Soa is notin anypending® 9-Deliversm atline 23, 26, or 33. If; g-Deliversm atline 23

set, and it follows thatn can never be g-Delivered, either at Or 33, there exists a process, gy that has g-Delivered:

line 31 or at lines 22, 23. at line 26 after having received, ., messages of the type
Itis not hard to see, from the delivery condition (lines 22, 23, (k, —, pending®, ack). From here on, we can establish the
29), thatm is not g-Delivered more than once. O result by using the arguments of the proof of Proposition 1 for

the case wherg; g-Deliversm at line 31 (Fig. 1) after having
Theorem 1. Assume that there ar@az(nqcr, nenk) COrrect receivedn,., messages of the tygé, —, pending®, ack).O
processeSiack, Nekh > n/2, and2nger + nepk > 2n + 1.
The algorithm in Fig. 1 solves Generic Broadcast, or reduces Lemma 5 no longer holds f&tB+, asGB+ allows the g-
Generic Broadcast to a sequence of Consensus problems. Delivery of conflicting messages in the first phase of a stage.

. . We replace Lemma 5 with the following lemma:
Proof. Immediate from Propositions 1, 2, 3, and 4. o

Lemma 7. (Assumesi, ., > n/2.)

Letm andm’ be two conflicting messages, ahdny stage.
5.2 Proof of correctness ¢f5+ If processp; g-Deliversm in stagek before Consensus, and

p; g-Deliversm’ in stagek before Consensus, then either
Since the algorithn B+ is derived fromGB3, some results has g-Deliveredr’ beforem, or p; has g-Deliveredn before
established foG B hold for GB+: m'.

Handling message semantics with Generic Broadcast protocols

Proof. For a contradiction assume thatg-Deliversm before
m/, andp; g-Deliversm’ beforem. Processes can g-Deliver
messages before Consensus at line 23, 26, or 33.

We first prove that there exists a processthat has g-
Deliveredm at line 26, and has not g-Delivered beforem.

If p; g-Deliversm at line 26, takep, = p;. If p; g-Delivers
m at line 23 or 33, there must exist a process,;sayhat has
g-Deliveredm at line 26. Ifp,. has g-Deliveredn’ beforem,
thenp; also g-Deliversn’ beforem at line 23 or 33 (since?’

is beforem in g_Deliver* received fronp,) — a contradiction
with the fact thaip; has not g-Deliveredr’ beforem. Sop,
has not g-Deliveredh’ beforem. By a similar argument, there
must exist a process, say, that has g-Delivered:’ at line 26,
andm’ beforem.

So there exists a procegs that g-Deliversn at line 26,
and notm’ beforem, and there exists a process that g-
Deliversm/’ at line 26, and notn beforem’. To g-Deliver
m at line 26, procesp, has received (line 20),., Mes-
sages of the typék, g_Deliver®, pending®, ack), such that
m € pending®. Similarly, to g-Deliverm’ at line 26, pro-
cessp, has received (line 20),., messages of the type
(k, g_Deliver® pending®, ack), such thatn’ € pending®.

105

Theorem 2. Assume that there at@ax(nqck, nenk) Correct
processeSiack, Nekh > n/2, and2ngcr + nepk > 2n + 1.
The algorithm in Fig. 2 solves Generic Broadcast, or reduces
Generic Broadcast to a sequence of Consensus problems.

Proof. Immediate from Propositions 5, 6, 7, and 8. O

6 Evaluation of the Generic Broadcast algorithms
6.1 Time complexity in good runs

To assess the cost of Generic Broadcast, we consider “good”
runs (i.e., runs with no failures and no failure suspicions). We
express the delivery cost of a message terms of the max-
imum network message deldy[1]. We show below that if
Consensus is not needé€l3 andG 5+ g-Deliver messages in

26. However, if Consensus is necessary, at léasre needed.

By comparison, known Atomic Broadcast algorithms, in the
model considered in the paper, can A-Deliver messages in
36,% which shows the potential benefit of Generic Broadcast
over Atomic Broadcast: if the message conflict rate is low, our

By the condition of line 14, the conflicting messages Generic Broadcast algorithms are an interesting alternative to

m andm’ cannot be in the same sptnding”, and there-

Atomic Broadcast algorithms. However, if the message con-

fore, there must exisin, . different processes that have sent flict rate is high our Generic Broadcast algorithms become less

(k, g_Deliver®, pending®, ack) at line 16 — a contradiction
sincenger > n/2. O

Proposition 6. (UNIFORM ORDER).

(Assumesiq ek, Nepk > 1n/2, and2nger + Nepk > 2n + 1.)

If processep; andp; both g-Deliver conflicting messages
andm/, thenp; andp; g-Deliverm andm’ in the same order.

efficient than known Atomic Broadcast algorithms.

6.2 Time complexity @5 andGB+

We evaluate now the time between the execution of g-
Broadcast{:) and g-Deliverfn), in terms of§, the maximum

Proof. (uses Lemmas 2, 3, 6, and 7) The proof is close themessage delay.

proof of the corresponding property 6f3 (Proposition 2).

The difference stems from the fact that Proposition 2 relies on
Lemma 5, which does not hold fGi3+ and has been replaced 6.2.1 Time complexity in the first phase

with Lemma 7.
Without loss of generality, assume thatg-Deliversm

For the first phase, we can do the same analysig ®and

beforem’. As in the proof of Proposition 2, the result holds GB+-. ConsiderGB, and let a procesg g-Broadcast some

immediately ifp; g-Deliversm in stagek andm’ in stage
k' > k. From Lemma 7 the result also holdgif g-Delivers

messagen (line 7). Messagen is first R-broadcast (line 8),
and upon R-delivery ofn at line 10 (in the absence of fail-

m andm’ before the Consensus. It remains to consider theures, this takes), every process sends aok message to all,

following cases: (1p; g-Deliversm before Consensus and
m’ after Consensus, and (2) g-Deliversm andm’ after
Consensus. In case (1), from Lemmapy cannot g-Deliver

with m € pending” (line 15). Upon reception okck mes-
sages fromm, ., processes (max delay §), m is g-Delivered
(line 31). So, the time complexity ¢fB3 andG 5+ for message

m' before Consensus. The rest of case (1) can be proved as ifelivery in the first phase &J.
the proof of Proposition 2. Case (2) can be proved as in the

proof of Proposition 2.]

Proposition 7. (VALIDITY).

(AssumeSigc, Nepk > 1n/2, max(Nack, Nenk) COrrect pro-
Cessesngck + Nenk > 2n + 1.)

If a correct proces; g-Broadcasts a message, thenp;
eventually g-Deliversn.

Proof. Similar to the proof of Proposition 3. m|

Proposition 8. (UNIFORM INTEGRITY). FOr any messagen,
each process g-Delivers at most once, and only i, was
previously g-Broadcast by sendet).

Proof. Similar to the proof of Proposition 4. a

6.2.2 Time complexity in the second phase

We discuss now the cost 618 andGB+ when Consensus is
needed. Time complexity is more difficult to evaluate here, as
the result depends on the interleaving of concurrent events.
We give for each algorithm the best-case and the worst-case
figures. For Consensus, we assume the algorithm in [11] that
has a time complexity dfé in good runs.

5 An exception is the Optimistic Atomic Broadcast algorithm [9],
which can deliver messagesiiif the spontaneous total order prop-
erty holds — that is, if messages are “spontaneously” received in the
same order.

106 F. Pedone, A. Schiper

Best case fog B. Attimet, let procesp g-Broadcast message Table 1.Generic Broadcasts.Atomic Broadcast
m (line 7). Message: is R-delivered at line 10 (at timet 6).

In the best case, upon R-delivery:af every process detects
a conflict with some other messagé (line 13), and sendsa 9B andgB+: Phasa only 26 -

Protocols Best Case Worst Case

message of typenk to all, withm € pending® (line 17). Al Phasa andu 44 76
processes receive the message at tim2) (line 18) and start Atomic Broadcast 39 55
Consensus. As Consensus castamessagen is g-Delivered

at timet + 44. 90 T T T '
Worst case foiG5. Let p again g-Broadcast: at time ¢. 80 I ‘i‘é‘;"sm’*i g:ﬁ:ﬂﬁ:ﬁ ==
At time ¢ + ¢ all processes have R-delivered, but not all 70

processes detect a conflict at that time. So, not all processes
send immediately a message of typex. However, at least &
one procesg detects a conflict with some messagé at
time ¢ + ¢ (otherwise Consensus is not needed); Ifas R-
deliveredm’ at timet + 4, then all processes R-deliver’ at
timet 4 24, detect the conflict withn, and send the message 30
of typecHk. So, all processes start Consensus at timeJ,
and end Consensustat 5. However, this analysis assumes
that between+ ¢ andt + 34, Task 3 is not involved in another 10 o 00 04 06 0 1
Consensus not related to messagéen which case, such an ’ message conflict rate (a))
execution of Consensus would have to terminate first, addin
26. Thus, in the worst case the g-Deliveryraftakes7s.

60

50

40

latency (mse

&ig. 3. Comparing Generic Broadcast to Atomic Broadcast 0:
only non-conflicting messages are g-Broadcast- 1: only con-

Best case fogB-+. Attimet, let procesy g-Broadcast mes- lcting messages are g-Broadcast)

sagem (line 8). Messagen is R-delivered at line 11 (at time
t + 9). In the best case, upon R-delivery of, every pro-
cess detects a conflict with some other messag@ine 14),
and sends a message of type to all, with m € pending”
(line 19). All processes receive the message at time2d
(line 27), and start Consensus. As Consensus Qostsies-
sagem is g-Delivered at time + 40.

6.4 Experimental validation

The results of Sect. 6.3 are confirmed by an experiment con-
ducted with 10 processes (= 10) running on Sun’s Ultra-
Sparc workstations interconnected by an Ethernet network (10
MBit/s) and communicating using TCP/IP (see Fig. 3). The ex-
Worst case fogB+. Letp again g-Broadcast at time¢. ~ Perimentmeasures the cost of the “Best Case” of Table 1. Pro-

At time ¢ + ¢ all processes have R-delivered, but not all ~ c€sses implement th@B algorithm withngck = nenr = 7.
processes detect a conflict at that time. So, not all processed1e vertical axis of Fig. 3 represents the time elapsed between
send immediately a message of typex. However, at least the events g-Broadcdst) and g-Delive(rn) at the sender of
one procesg detects a conflict with some messageat time /7% T_he honzo_ntal axis represents the message conflict rate,
¢+ & (otherwise Consensus is not needed). Upon detecting th€'at is, the ratio of the number of g-Broadcast messages that
conflict, procesg sends a message of typex to all (line 19). conflict to the total number of g-Broadcast messages.

Upon reception of this message (time- 26), the processes Thus,a = 0 means that only non-conflicting messages
that have not yet sent the message of tgpe do so, with ~ Were g-Broadcast, whilee = 1 means that only conflicting

m € pending® (line 30). These messages are received at imgnessages were g-Broadcast. In other words, 0 measures
t+36. So, all processes start Consensus attimgy, andend ~ the cost of the first phase 63, while a = 1 measures the
Consensus at+ 56. As for the worst case @53, the analysis ~ COSt of the first and the second phases. The Atomic Broadcast
ignores that at any time, between & andt + 35, Task 3 might aIgor!thm is th_e one mt_ent_loned in Sect.6.3 (notlc_e that this
be involved in another Consensus not related to message algorithm requires a majority of correct processes, i.e., 6). Ex-

which add2s. So, in the worst case the g-Deliveryaftakes periments were repeated to build a confidence interval of 95%,
75 and in each experiment, processes g-Broadcast messages at a

constant rate. From Fig. 3, if less than 60% of the messages
g-Broadcast conflict, thg B algorithm can g-Deliver mes-

.) sages more efficiently than the Atomic Broadcast algorithm
6.3 Generic Broadcast vs. Atomic Broadcast considered.

Table 1 summarizes the time complexity@s andGB+: 2§

in the first phase, and betwedn (best case) an@s (worst 7 Conclusion

case) if the second phase is needed. By comparison the time

complexity of Atomic Broadcast is betweséi (best case) and The paper has introduced the Generic Broadcast problem,

56 (worst casef. whose definition is based on a conflict relation on the set

of messages that are broadcast. The conflict relation can be
® We consider Atomic Broadcast solved by reduction to Consen-derived from the semantics of the messages, and only con-

sus [4] and the Consensus algorithm of [11]. flicting messages have to be delivered by all processes in the

Handling message semantics with Generic Broadcast protocols

same order. As such, Generic Broadcast is a powerful mes-4.
sage ordering abstraction, which includes Reliable and Atomic

Broadcast as special cases. Generic Broadcast algorilitims

andGB-+ have been shown to be more efficient than Atomic 5.
Broadcast algorithms if message conflicts are not too frequent.

This paper, together with [1], show a time complexity

vs.resilience tradeoff for Generic Broadcast algorithms. Our

Generic Broadcast algorithms requife< n/3 with a best
case time complexity o2 (if messages do not conflict). In

[1], the authors propose Generic Broadcast algorithms that re-

quire only f < n/2, with a time complexity of34 in the best

case. So additional resilience increases the best time com-
plexity. An interesting open question is whether there exist
Generic Broadcast algorithms that can — in the best case —

deliver messages 6, and still require only a majority of
correct processes.

Acknowledgementd/Ve would like to thank the anonymous review-

ers for their comments and suggestions that helped improve the papelrb

References

1. M.K.Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.

Thrifty generic broadcast. IRroceedings of the 14th Interna-
tional Symposium on Distributed Computing (DISC’2QGD%-
tober 2000.

2. P.Bernstein, V. Hadzilacos, and N. Goodnfaancurrency Con-
trol and Recovery in Database Systeiddison-Wesley, 1987.

3. K.P. Birman and T.A. Joseph. Exploiting virtual synchrony in
distributed systems. IRroceedings of the 11th ACM Symposium
on OS Principlespages 123-138, November 1987.

107

T.D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systemslournal of the ACM43(2):225—
267, March 1996.

D. Cheriton and D. Skeen. Understanding the limitations of
causally and totally ordered communication. Rrmoceedings

of the 14th ACM Symposium on Operating Systems Pringiples
Asheville (USA), December 1993.

6. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of

distributed consensus with one faulty processournal of the
ACM, 32(2):374-382, 1985.

. V.Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related

problems. InDistributed Systemghapter 5. Addison-Wesley,
2nd edition, 1993.

P.A. Jensen, N.R. Soparkar, and A.G. Mathur. Characterizing
multicast orderings using concurrency control theory.Aro-
ceedings of the 17th International Conference on Distributed
Computing Systems (ICDCS’9Baltimore (USA), May 1997.

. F. Pedone The Database State Machine and Group Commu-

nication Issues PhD thesisEcole Polytechnique é€érale de
Lausanne, Switzerland, December 1999. Number 2090.

. F. Pedone and A. Schiper. Generic broadcastPioceedings

of the 13th International Symposium on Distributed Computing
(DISC99, formerly WDAG)September 1999.

. A. Schiper. Early consensus in an asynchronous system with a

weak failure detectorDistributed Computing10(3):149-157,
1997.

. F.B. Schneider. Implementing fault-tolerant services using the

state machine approach: A tutorigdhCM Computing Surveys
22(4):299-319, December 1990.

