
Distrib. Comput. (2002) 15: 97–107

c© Springer-Verlag 2002

Handling message semantics with Generic Broadcast protocols

F. Pedone1, A. Schiper2

1 Hewlett-Packard Laboratories, Software Technology Laboratory, Palo Alto, CA 94304, USA (e-mail: pedone@hpl.hp.com)
2 Communication Systems Department, EPFL – Ecole Polytechnique F´edérale de Lausanne, 1015 Lausanne, Switzerland
(e-mail: andre.schiper@epfl.ch)

Received: August 2000 / Accepted: August 2001

Summary. Message ordering is a fundamental abstraction in
distributed systems. However, ordering guarantees are usually
purely “syntactic,” that is, message “semantics” is not taken
into consideration despite the fact that in several cases seman-
tic information about messages could be exploited to avoid
ordering messages unnecessarily. In this paper we define the
Generic Broadcastproblem, which orders messages only if
needed, based on the semantics of the messages. The seman-
tic information about messages is introduced by conflict rela-
tions.We show that Reliable Broadcast andAtomic Broadcast
are special instances of Generic Broadcast. The paper also
presents two algorithms that solve Generic Broadcast.

Keywords: Semantics-aware primitives – Group communi-
cation – Fault-tolerance –Atomic broadcast – Reliable broad-
cast – Asynchronous systems

1 Introduction

Message ordering is a fundamental abstraction in distributed
systems. Total order, causal order, and view synchrony are
examples of widely used ordering guarantees. These order-
ing guarantees, however, rely only on “syntactic” information
about themessages, ignoring their “semantics.” In general, or-
dering messages without taking their semantics into consider-
ation leads to orderingmoremessages than actually necessary
to ensure the correctness of the application. Moreover, as or-
dering messages has a cost, ordering messages unnecessarily
penalizes the application. Consider for example a replicated
object implemented using active replication – also called state
machine approach [12]. By distinguishing messages contain-
ing read operations from messages containingwrite opera-
tions, one could design a protocol that does not order all mes-
sages, since read operations do not need to be ordered with
respect to other read operations.

A preliminary version of this paper appeared inProceedings of the
13th International Symposium on Distributed Computing(DISC’99,
pp. 94–108).

This paper introducesGeneric Broadcast, a message or-
dering abstraction that allows applications to specify order
requirements based on the semantics of messages. Message
ordering requirements are formalized by amessage conflict
relationdefined over the set of messages. Roughly speaking,
two messages have to be delivered in the same order only if
they conflict. The definition of message ordering based on a
conflict relation allows for a very powerful message ordering
abstraction. For example, the Reliable Broadcast problem is
an instance ofGeneric Broadcast in which no pair ofmessages
conflict. TheAtomic Broadcast problem is another instance of
Generic Broadcast in which all pairs of messages conflict.

The interest in taking application semantics into account
to define more flexible message ordering primitives in group
communication was first pointed out in [5]. In [8], the authors
consider the issue of ordering messages from the viewpoint of
database concurrency control. The notion of message conflict
is introduced to capture application semantics, and is used to
extend the definitions of FIFO, causal, and total ordermessage
delivery to include message semantics. Serialization graphs
areused to reasonaboutapplicationcorrectnessalong thesame
lines of database concurrency control [2]. The authors also
briefly discuss how one could implement such specifications
in a distributed system where processes do not fail. Contrary
to [8], we consider here a systemmodel with process failures.

Any algorithm that solves Atomic Broadcast trivially
solves any instance of Generic Broadcast (i.e., specified by
a given conflict relation): it just orders too many messages.
However, such an algorithm goes against the main motivation
of Generic Broadcast, which is to allow for efficient message
delivery by not ordering messages unnecessarily. We present
two algorithms that solve Generic Broadcast, calledGB and
GB+; both algorithms are more efficient than Atomic Broad-
cast when messages do not conflict.GB andGB+ rely on
Consensus [4] when conflicts are detected, but can deliver
non-conflicting messages without using Consensus.GB+ im-
proves the performance ofGB by being able, in some cases,
to deliver conflicting messages without Consensus. This last
result is very interesting, as it exhibits an algorithm that can
sometimes solve Atomic Broadcast (an instance of Generic
Broadcast) in an asynchronous system with process crashes.

98 F. Pedone, A. Schiper

OurGenericBroadcastalgorithms requiref < n/3,where
n is the total number of processes andf themaximumnumber
of faulty processes. If messages do not conflict, the algorithms
GB andGB+ have a time complexity of2δ, whereδ is the
maximum network message delay [1]. In case of conflicts, the
time complexity is4δ in the best case, and7δ in the worst
case. These results are to be compared with the time complex-
ity of Atomic Broadcast algorithms in the model we consider:
3δ in the best case and5δ in the worst case. These results,
which show the advantage of Generic Broadcast over Atomic
Broadcast if message conflicts are not too frequent, have been
validated by a small prototypical implementation.

The work in [1] is close to the one presented in this pa-
per: actually, [1] builds upon [10], the preliminary version of
this paper. The work presented in [1] uses an Atomic Broad-
cast oracle (instead of Consensus, as we do) as the building
block forGenericBroadcast, and formalizesclassesofGeneric
Broadcast algorithms according to how they use this oracle.
Informally, an algorithm solving Generic Broadcast isnon-
trivial w.r.t. an oracle if, when no conflicting messages are
g-Broadcast, the oracle is not used; an algorithm isthrifty
w.r.t. an oracle if it is non-trivial w.r.t. the oracle and guar-
antees the following property: if there is a time after which
messages g-Broadcast do not conflict with each other, then
eventually the oracle is no longer used. Non-trivial and thrifty
implementations of Generic Broadcast are given in [1]. The
two Generic Broadcast algorithms given in this paper are also
thrifty implementations of Generic Broadcast, if we extend
the oracle in the definitions of [1] to include a Consensus or-
acle. From the point of view of time complexity, [1] does not
improve our results. The best algorithm in [1] has a time com-
plexity of 2δ and also requiresf < n/3; [1] also gives an
algorithm for Generic Broadcast withf < n/2, which has a
time complexity of3δ.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the system model and defines the Generic
Broadcast problem. Sections 3 and 4 present the two Generic
Broadcast algorithmsGB andGB+, and Sect.5 contains their
proofs of correctness. Section 6 evaluates the time complex-
ity of the two algorithms, and points out the cost ofGB and
GB+ with respect to Atomic Broadcast algorithms. Section 7
concludes the paper.

2 System model and definitions

2.1 Model assumptions

Weconsider anasynchronoussystemcomposedofnprocesses
Π = {p1, . . . , pn}, which communicate by message passing.
A process can only fail by crashing (i.e., we do not consider
Byzantine failures). A process that never crashes iscorrect,
otherwise it isfaulty. We make no assumptions about process
speeds or message transmission times.

Processes are connected through quasi-reliable channels,
definedby theprimitivessend(m)andreceive(m).Messages
are unique and taken from a setM. Quasi-reliable channels
have the following properties: (i) if processq receivesmessage
m from p, thenp sentm to q (no creation); (ii) q receivesm
from p at most once(no duplication); and (iii) if p sendsm
to q, andp andq are correct, thenq eventually receivesm (no
loss).

We assume that our asynchronous system is augmented
with further abstractions (e.g., failure detectors) allowing us
to solve Uniform Consensus [4]. Uniform Consensus is de-
fined by the primitivespropose(v) and decide(v), and the
following properties: (i) every correct process eventually de-
cides some value(termination);
(ii) every correct process decides at most once(uniform in-
tegrity); (iii) no two processes decide differently(uniform
agreement); and (iv) if a process decidesv, thenv was pro-
posed by some process(uniform validity).

2.2 Generic Broadcast

Generic Broadcast is defined by the two primitives g-
Broadcast(m) and g-Deliver(m).1 When a processp invokes
g-Broadcast with amessagem, we say thatp g-Broadcastsm,
and whenp returns from the execution of g-Deliver with mes-
sagem, we say thatp g-Deliversm. Messagem is taken from
a setM to which all messages belong. Generic Broadcast de-
pends on a (symmetric and non-reflexive) conflict relation on
M × M denoted by∼ (i.e.,∼ ⊆ M × M).2 If (m,m′) ∈ ∼
then we say thatm andm′ conflict. To simplify, we use here-
after the infix notationm ∼ m′ instead of(m,m′) ∈ ∼.
Generic Broadcast is specified by (1) a conflict relation∼ and
(2) the following conditions:

(Validity) If a correct processp g-Broadcasts a messagem,
thenp eventually g-Deliversm.

(Uniform Agreement) If a processp g-Delivers a message
m, then every correct processq eventually g-Deliversm.

(Uniform Integrity) For any messagem, every process
g-Deliversm at most once, and only ifm was previously
g-Broadcast by some process.

(Uniform Order) If processesp andq both g-Deliver con-
flicting messagesm andm′, thenp andq g-Deliverm and
m′ in the same order.

The conflict relation∼ determines the pair of messages that
are sensitive to order, that is, the pair of messages for which
the g-Deliver order should be the same at all processes that
g-Deliver the messages. The conflict relation∼ renders the
above specification generic, as shown next.

2.3 Reliable and Atomic Broadcast as instances
of Generic Broadcast

We consider in the following two special cases of conflict
relations: (1) the empty conflict relation, denoted by∼∅ (i.e.,
∼∅ ≡ ∅), and (2) the cross product conflict relation, denotedby
∼M×M (i.e.,∼M×M ≡ M×M). In case (1), no pair ofmes-
sages conflict, that is, the uniform order property of Generic
Broadcast imposes no constraints on the order of messages,
which is calledReliable Broadcast[7] – or, more precisely,
Uniform Reliable Broadcast. In case (2), any pair(m,m′)
of messages conflict, that is, the uniform order property of

1 g-Broadcast has no relation with the GBCAST primitive defined
in the Isis system [3].
2 The operand∼ was introduced in [1].

Handling message semantics with Generic Broadcast protocols 99

Generic Broadcast requires that all pairs of messages be or-
dered, which is calledAtomic Broadcast[7] – or, Uniform
Atomic Broadcast. In other words, Reliable Broadcast and
Atomic Broadcast lie at the two ends of the spectrum defined
by Generic Broadcast. In between, any other conflict relation
defines an instance of Generic Broadcast.

Conflict relations lying in between the two extremes of
the conflict spectrum can be better illustrated by an example.
Consider a replicatedAccountobject, defined by the opera-
tionsdeposit(x)andwithdraw(x). Clearly,deposit operations
commute with each other, whilewithdraw operations do not
– neither with each other nor withdeposit operations.3 Let
Md denote the set of messages that carry adepositoperation,
andMw the set of messages that carry awithdrawoperation.
This leads to the following conflict relation∼Account:

∼Account = { (m,m′) : m ∈ Mw orm′ ∈ Mw}.
Generic Broadcast with the∼Account conflict relation defines
aweaker ordering primitive thanAtomic Broadcast (e.g., mes-
sages inMd are not required to be ordered with respect to
each other), and a stronger ordering primitive than Reliable
Broadcast (e.g., messages inMw have to be ordered with
each other).

3 GB: a Generic Broadcast algorithm
In this section and in the next one, we present two Generic
Broadcast algorithms:GB andGB+, respectively. Both al-
gorithms are parameterized by two constants,nack andnchk.
From the relationship betweennack andnchk – explained later
– both algorithms require at least(2n + 1)/3 correct pro-
cesses, which corresponds to the case wherenack = nchk =
�(2n+ 1)/3
.

3.1 Overview of theGB algorithm

We start by illustrating theGB algorithm with a run in which
only twomessagesareg-Broadcast, and thengeneralize for the
case ofn messages. The algorithm uses Reliable Broadcast,
defined by the primitives R-broadcast and R-deliver [7].4

Run with 2 messages.Consider a run in which only messages
m andm′ are g-Broadcast. The g-Broadcast of messagem
leads to the execution of R-broadcast(m). Upon R-delivery of
m by some processpi, there are three cases to consider:

1. pi has not R-delivered messagem′,
2. pi has R-delivered messagem′, andm′ does not conflict
withm, or

3. pi has R-delivered messagem′, andm′ conflicts withm.

In cases 1 and 2,pi sends a message to all processes acknowl-
edging the R-delivery ofm – hereafter such a message is de-
notedACK(m).A process that receivesACK(m) fromnack

3 This is the case for instance if we consider that awithdraw(x)
operation can only be performed if the current balance is larger than
or equal tox.
4 Reliable Broadcast satisfies the validity, agreement (if a process

R-delivers a messagem, then every correct process eventually R-
deliversm) and uniform integrity properties (Sect.2).

processes g-Deliversm. In a run in which no process falls into
case 3 above, all correct processes eventually receivenack

messagesACK(m) and g-Deliverm.
In case 3,pi launches an instance of Consensus to decide

on the g-Delivery order ofm andm′. This should be done
carefully because if some process has already g-Deliveredm′,
thenpi should g-Deliverm′ beforem. Thus, before executing
Consensus, every processpi sends to all processes a message
– hereafter denotedchk, containing all messagesm such that
ACK(m)was send bypi. Processpi then waits forchkmes-
sages fromnchk processes.

Upon receivingnchk messageschk, processpi builds a
set of messages, denoted bymsgSeti. SetmsgSeti contains
messagem if m is in a majority of thenchk messages of type
chk received bypi. As shown next, this ensures that if some
process has g-Deliveredm,m ∈ msgSeti.

To understandmsgSeti, considern = 4, nack = nchk =
3, and assume that processpj has g-Deliveredm. Sopj has
receivednack messagesACK(m), i.e., 3 processes have sent
ACK(m). So, if pi waits fornchk messages of typechk, it
will get at least 2 messages containingm. Sopi includesm
inmsgSeti.

After building set msgSeti, pi executes Consensus
proposing (msgSeti, conflictSeti), where conflictSeti
contains all messages thatpi R-delivered and are not in
msgSeti – that is,conflictSeti = {m′}. Let(NCset, Cset)
be the Consensus’decision –NC stands for Non-Conflicting,
as this set never contains conflicting messages, andC stands
for Conflicting. Processpi g-Delivers first the messages in
NCset, it has not yet g-Delivered, and then the messages in
Cset.

Generalizing fornmessages.A runof algorithmGB is decom-
posed into a sequence of twophases: the first phase – phasei
– lasts as long as no conflicting messages are R-delivered; the
second phase – phaseii – handles the g-Delivery of conflicting
messages thanks to the execution of a Consensus algorithm.
These two phases define astage. So, processes progress in a
sequence of stages, numbered1, . . . , k, In the run con-
sidered in the previous paragraph (2 messages), we have one
single stage. When some processpi starts stagek, it is ini-
tially in phasei. Phasei terminates at processpi iff pi R-
delivers two conflicting messages. In phaseii of stagek, pro-
cesspi first buildsmsgSeti andconflictSeti, as described in
the previous paragraph, and then executes a Consensus with
(msgSeti, conflictSeti) as the initial value. When Consen-
sus terminates with a decision(NCset, Cset), pi g-Delivers
messages inNCset not yet g-Delivered, then those inCset
not yet g-Delivered, and proceeds to phasei of stagek + 1.

The parametersnack andnchk. TheGB algorithm requires
(1) nack > n/2, (2) nchk > n/2, (3) 2nack + nchk ≥ 2n +
1, and (4)max(nack, nchk) correct processes. Condition (1)
guarantees that ifm andm′ conflict, at most one of them
can be g-Delivered without Consensus. Condition (2) ensures
thatmsgSeti, constructed bypi before Consensus, does not
contain conflicting messages. Condition (3) ensures that if
some process, saypj , has g-Deliveredm before Consensus,
andm conflicts withm′, then for every processpi we have
m ∈ msgSeti. Thus, after Consensus, every process first g-
Deliversm. Condition (4) ensures that nowait statement in the
algorithm lasts forever. The minimum of condition (4) is for

100 F. Pedone, A. Schiper

nack = nchk. From this and (3), we get that that our algorithm
requires at least�(2n+ 1)/3
 correct processes.

3.2 TheGB algorithm in detail

We present now theGB algorithm (see Fig.1). Messages are
g-Broadcast at line 7 and g-Delivered at lines 22, 23, and 31.
The algorithm consists of three concurrent tasks. Processpi

in stagek manages the following sets of messages:

• R delivered: set of messages R-delivered bypi up to the
current time,

• G delivered: set of messages g-Delivered bypi in all
stagesk′ < k,

• pendingk: set of messages R-delivered bypi up to the
current time in phasei of stagek and acknowledged to the
other processes, and

• g Deliverk: set of messages thatpi has g-Delivered in
phasei of stagek, up to the current time.

Let processpi be in phasei of stagek.Whenpi wants to g-
Broadcast a messagem, pi executesR-broadcast(m) (Fig.1,
line 8). Afterm is R-delivered (line 10),m is included in the
sequenceR delivered (line 11). Processpi then eventually
evaluates lines 12 and 13; there are two cases to consider.

Case 1: no message inR delivered \ (G delivered ∪
pendingk) conflicts withm. In this case,pi includesm in
pendingk (line 14), and sends message(k, pendingk,ack)
to all other processes (line 15), acknowledging thatm does
not conflict with any previous message R-delivered bypi, but
not g-Delivered so far. When a processpj receives messages
of the type(k, pendingk,ack), with m ∈ pendingk, from
nack processes (lines 28–29),pj g-Deliversm, if it has not
done so (line 31).

Case 2: some messagem′ in R delivered \ (G delivered ∪
pendingk) conflictswithm. In this case,pi proceeds to phase
ii (lines 17–27). If one process proceeds to phaseii, then the
algorithm ensures that all correct processes eventually also
proceed to phaseii. In phaseii, processpi sends a message of
the type(k, pendingk, chk) to all processes (line 17), where
pendingk contains all messages that where acknowledged by
pi, and waits for the receipt of messages of the same type
from nchk processes. Based on thechk messages received,
pi determines which messages could have been g-Delivered
in phasei by some process (line 19), and executes Consensus
(lines 20–21). Messages decided by Consensus and not g-
Delivered yet bypi are g-Delivered (lines 22–23), andpi starts
the next stage in phasei (lines 25–27).

4 GB+: Improving the GB algorithm

We present nowGB+, an improved version of theGB algo-
rithm. To understand the difference betweenGB andGB+,
consider a run in which only two conflicting messagesm and
m′ are g-Broadcast, andm is g-Delivered by some processpi

in phaseiof stage1.Assume that later in phaseiof stage1, pro-
cesspi R-deliversm′. In this case, withGB, processpi starts
phaseii to terminate the current stage by an instance of Con-
sensus. However, this is not necessary as the Consensus de-
cision is known beforehand:m has already been g-Delivered,
beforem′. So, whilepi executingGB proceeds to phaseii,
with GB+, processpi remains in phasei and may g-Deliver
m′ in phasei even thoughm andm′ conflict. So,GB+ can
sometimes g-Deliver conflicting messages without Consen-
sus.

4.1 TheGB+ algorithm

Inaddition to thesetsofmessages,R delivered,G delivered,
andpendingk ofGB, theGB+ algorithm (see Fig.2) uses also
g Deliverk, which is a “sequence” of messages. This vari-
able keeps track of the order in which messages are locally
g-Delivered at a process. Besides the traditional set operands,
we also use the⊕ operand to appendmessages tog Deliverk.

Tasks 1 and 2 are the same for bothGB andGB+. In Task 3
GB andGB+ are similar, except for the following differences:

• Processes executingGB+ ignore messages that have al-
ready been locally g-Delivered in the current stage (lines
13–14) to detect whether Consensus is needed. Moreover,
in GB+, messages of typeack have one additional field
(g Deliverk), to carry the messages that a process has lo-
cally g-Delivered so far in the current stage (line 16). This
leads to a difference in thewhenclause that treatsack
messages (lines 21–23).

• With GB+, it is possible that some process detects a situ-
ation where Consensus is needed, and the other processes
do not. This happens because the condition to start Con-
sensus depends on the the order in which messages are
locally R-delivered (which may not be the same for all
processes). Thus, a process can start Consensus in two cir-
cumstances: either (a) because it detected that Consensus
is needed (line 14), or (b) because it received amessage of
typechk from some process (line 27), who has detected
that Consensus is needed.

• Messages of typechk (lines 19 and 30) also include an
additional field (g Deliverk) containing the sequencer of
messages g-Delivered so far by the sender in the current
stage. Whenever a process receives a message of the type
(k, g Deliverk, pendingk, chk), it g-Delivers all mes-
sages ing Deliverk that it has not g-Delivered so far,
following the order ing Deliverk (lines 31–33). Variable
chk flag is used to make sure that a process only sends a
message of typechk once in a stage.

4.2 GB+ as a solution to Atomic Broadcast

By considering an instance ofGB+ where any two messages
conflict, we can useGB+ to solve Atomic Broadcast. Tak-
ing into account the properties ofGB+, we have an Atomic
Broadcast algorithm that, in some runs, ordersmessages with-
out Consensus and without any other assumptions about the
model (e.g., failure detectors). Notice that even though this
leads to situations where some messages can be ordered in a

Handling message semantics with Generic Broadcast protocols 101

Fig. 1.Generic Broadcast algorithm (GB)

pure asynchronous model, it is not in contradiction with the
FLP impossibility result [6], and the fact that Atomic Broad-
cast and Consensus are equivalent [4], since it does not apply
to all runs.

5 Proof of correctness

5.1 Proof of correctness ofGB

We initially define the following notation, used in Lemmas 1
and 2. Given messagem, we denote byackSetk(m) the set
of processes that executesend(k, pendingk,ack) (line 17) in
stagek, with m ∈ pendingk. Given processpi, we denote
by chkSetk(pi) the set of processes from whichpi receives
messages of the type(k, pendingk, chk) (line 18) in stagek.

Lemma 1. (Assumes2nack + nchk ≥ 2n+ 1.)
If |ackSetk(m)| = nack and |chkSetk (pi)| = nchk, then
there are at least�(nchk +1)/2
 processes in the setchkSetk

(m, pi)
def
= ackSetk(m) ∩ chkSetk(pi).

Proof. Because2nack + nchk ≥ 2n + 1, we have
nack − n ≥ (1 − nchk)/2. So, nack − n + nchk ≥

(1 − nchk)/2 + nchk = (nchk + 1)/2 (a). By defini-
tion, |chkSetk(m, pi)| = |ackSetk(m) ∩ chkSetk(pi)|
and |ackSetk(m) ∩ chkSetk(pi)| = |ackSetk(m)| +
|chkSetk(pi)| − |ackSetk(m) ∪ chkSetk(pi)| ≥ nack +
nchk − n. So we have|chkSetk(m, pi)| ≥ nack + nchk − n
(b). From (a) and (b), we have|chkSetk(m, pi)| ≥ (nchk +
1)/2, and since|chkSetk(m, pi)| ∈ N, it follows that
|chkSetk(m, pi)| ≥ �nchk + 1)/2
. ✷

Lemma 2. (Assumes2nack + nchk ≥ 2n+ 1.)
If messagem is g-Delivered by processpi in the first phase of
stagek, and(k,NCsetk, Csetk) is the value decided in the
k-th execution of Consensus, thenm ∈ NCsetk.
Proof. (uses Lemma 1) Before g-Deliveringm, pi re-
ceivednack messages of the type(k, pendingk,ack) with
m ∈ pendingk (line 15). Let (k,NCsetk, Csetk) be the
decision of Consensus of stagek. From uniform valid-
ity of Consensus, there is some processpj that has pro-
posed value(k,msgSetk,−) ≡ (k,NCsetk,−) at line 20.
Before executingpropose(k,msgSetk,−), pj has received
nchk messages of the type(k, pendingk, chk) in stagek.
From Lemma 1,|ackSetk(m) ∩ chkSetk(pj)| ≥ �(nchk +
1)/2
, and so,pj has includedm in msgSetk. Thus,m ∈
NCsetk. ✷

102 F. Pedone, A. Schiper

Fig. 2. Improved Generic Broadcast algorithm (GB+)

Lemma 3. (Assumes2nack + nchk ≥ 2n+ 1.)
If messagem is g-Delivered by some process in stagek, then
every process that terminates stagek (i.e., executes line 24 in
stagek) g-Deliversm.

Proof. (uses Lemma 2) Letk be the smallest stage in which
some process, saypi, g-Deliversm (at lines 22, 23, or 31),
and letpj �= pi be a process that terminates stagek. Thus,
pj executes Consensus in stagek and g-Delivers all messages
in NCsetk ∪ Csetk, where(NCsetk, Csetk) is the value
decided in Consensus in stagek. There are two cases to con-

sider: (a) Ifpi g-Deliversm in the first phase of stagek, from
Lemma 2,m ∈ NCsetk. (b) If pi g-Deliversm in the second
phase of stagek, thenm ∈ NCsetk ∪ Csetk. In both cases,
pj g-Deliversm. ✷

Lemma 4. (Assumes2nack + nchk ≥ 2n + 1, nchk > n/2,
nchk correct processes.)
For all stagek > 0, if some processpi terminates stagek (i.e.,
executes line 24 in stagek), then every correct process also
terminates stagek.

Handling message semantics with Generic Broadcast protocols 103

Proof. (uses Lemma 3) The proof is by induction; however, as
the base step is very similar to the inductive step, we only give
the proof of the inductive step. Assume the result holds fork,
and let processpi terminate stagek+ 1. Sopi has terminated
stagek, and by the induction hypothesis every correct process
also terminates stagek.

Before terminating stagek+1, pi has receivednchk mes-
sages(k + 1, pendingk+1, chk) (line 18). As there arenchk

correct processes andnchk > n/2, at least one message
(k+1, pendingk+1, chk)was sent (line 17) by a correct pro-
cess, saypj . Before executing line 17,pj has evaluated the
condition of line 13 tofalse, that is,pj has R-delivered two
conflicting messagesm andm′ that are not inG delivered,
and so,pj has not g-Deliveredm andm′ in some stagek′ <
k+1. By the agreement property of Reliable Broadcast, every
correct processpr eventually also R-deliversm andm′. By
Lemma 3, aspj has not g-Deliveredm andm′ in some previ-
ous stagek′ < k + 1, the same holds forpr. So every correct
processpr eventually also evaluates the condition of line 13
to false, and sends at the message(k + 1, pendingk+1, chk)
(line 17). As there arenchk correct processes, every correct
process eventually receives (line 18)nchk such messages and
proceed to line 19. So every correct process eventually start
Consensus at line 20. By the termination of Consensus every
correct process eventually decides, and terminates stagek+1
at line 25. ✷

Proposition 1. (Uniform Agreement).
(Assumesnack, nchk > n/2, max(nack, nchk) correct pro-
cesses,2nack + nchk ≥ 2n+ 1.)
If a processpi g-Delivers a messagem, then every correct
processpj eventually g-Deliversm.

Proof. (uses Lemmas 2, 3, and 4) Processpi g-Delivers mes-
sages at lines 22, 23 and 31. Ifpi g-Deliversm at line 22
(m ∈ NCsetk) or at line 23 (m ∈ Csetk), thenpi termi-
nates stagek, and from Lemma 4,pj also terminates stage
k. Before terminating stagek, pj decides for Consensus at
line 21; by uniform agreement of Consensus,pj also decides
withm ∈ NCsetk orm ∈ Csetk, and so, also g-Deliversm
at line 22 or 23.

Thus, assume thatpj does not execute Consensus at stage
k, that is,pi g-Deliversm in the first phase of stagek (at
line 31). We claim that no process evaluates the condition at
line 13 to false in stagek. The proof is immediate from the
fact thatpi does not terminate stagek and from Lemma 4.

As pi g-Deliversm at line 31,pi has received messages
(k, pendingk,ack)withm ∈ pendingk fromnack processes
(line 28). Since there arenack correct processes andnack >
n/2, pi has received(k, pendingk,ack) from at least one cor-
rect process, saypr.At line 15,pr has sent(k, pendingk,ack)
with m ∈ pendingk, thus at line 14 we have forpr m ∈
R deliveredr \ G deliveredr, andpr has R-deliveredm at
line 10. Sincepr is correct, by the agreement property of Re-
liable Broadcast every correct processps eventually also R-
deliversm. By Lemma 3,ps has not g-Deliveredm in any
stagek′ < k, so every correct processps evaluates the condi-
tion of line 12 totrueand starts Task 3.

From our claim above, no process evaluates the condition
of line 13 to false, and so, every correct processps sends
(k, pendingk,ack) to all withm ∈ pendingk (line 15). As

there arenack correct processes,pj receivesnack messages
(k, pendingk,ack) with m ∈ pendingk (line 28), andpj

g-Deliversm at line 31. ✷

Lemma 5. (Assumesnack > n/2.)
Letm andm′ be two conflicting messages, andk any stage.
If processpi g-Delivers messagem in the first phase of stage
k, then no process g-Deliversm′ in the first phase of stagek.

Proof. For a contradiction, assume that in the first phase of
stagek processpi g-Deliversm andpj g-Deliversm′. So,pi

(resp.,pj) has received (line 28)nack messages of the type
(k, pendingk,ack), such thatm ∈ pendingk (resp.,m′ ∈
pendingk). By the condition of line 13,m andm′ cannot be in
thesamesetpendingk, andso, theremust exist2nack different
processes that have sent(k, pendingk,ack) at line 15 – a
contradiction sincenack > n/2. ✷

Lemma 6. (Assumesnchk > n/2.)
For any stagek > 0, the setNCsetk decided in Consensus
in stagek cannot include two conflicting messages.

Proof. Letm andm′ be two conflicting messages. For a con-
tradiction, assume that we havem,m′ ∈ NCsetk. By the
validity property of Consensus some processpi has proposed
at line 20 (k,msgSetk,−) ≡ (k,NCsetk,−) such that
m,m′ ∈ msgSetk. Thus,pi receives at line 18�nchk+1

2
mes-
sages(k, pendingk, chk)such thatpendingk includesm, and
�nchk+1

2
 messages(k, pendingk, chk) such thatpendingk

includesm′. By the condition of line 13,pendingk cannot in-
clude conflicting messages, and so there must exist2nchk dif-
ferent processes that have sent(k, pendingk, chk) at line 19
– a contradiction sincenchk > n/2. ✷

Proposition 2. (Uniform Order).
(Assumesnack, nchk > n/2, 2nack + nchk ≥ 2n+ 1.)
If processespi andpj both g-Deliver conflicting messagesm
andm′, thenpi andpj g-Deliverm andm′ in the same order.

Proof. (uses Lemmas 2, 3, 5, and 6)Without loss of generality,
assume thatpi g-Deliversm beforem′. If pi g-Deliversm in
stagek andm′ in stagek′ > k, it follows from Lemma 3 that
pj also g-Deliversm in stagek andm′ in stagek′ > k and
the result holds.

So, assume thatpi g-Deliversm andm′ in stagek. From
Lemma 5m andm′ cannot be g-Delivered bypi in the first
phase of stagek. So, either (1)pi g-Deliversm in the first
phase of stagek andm′ in the second phase of stagek, or (2)
pi g-Deliversm andm′ in the second phase of stagek.

In case (1), from Lemma 5,pj cannot g-Deliverm′ in
the first phase of stagek. From Lemma 2, whenpj decides at
line 21, we havem ∈ NCsetk. By Lemma 6,NCsetk cannot
containm andm′. Som′ ∈ Csetk, andpj also g-Deliversm
(at line 22) beforem′ (at line 23).

In case (2), from Lemma 6,m andm′ cannot both be in
NCsetk decided bypi. Therefore, either (2a)m ∈ NCsetk,
m′ ∈ Csetk decided by Consensus, or (2b)m,m′ ∈ Csetk
decided by Consensus. In case (2a),pj also g-Deliversm ∈
NCsetk (line 22) beforem′ ∈ Csetk (line 23). In case (2b),
becausepi g-Deliversm beforem′,m has a smallest ID than
m′. Sopj also g-Deliversm beforem′. ✷

104 F. Pedone, A. Schiper

Proposition 3. (Validity).
(Assumesnack, nchk > n/2, max(nack, nchk) correct pro-
cesses,2nack + nchk ≥ 2n+ 1.)
If a correct processpi g-Broadcasts a messagem, thenpi

eventually g-Deliversm.

Proof. (uses Lemma 4 and Proposition 1) For a contradic-
tion, assume thatpi g-Broadcastsm but never g-Delivers it.
From Proposition 1, no correct process g-Deliversm. To g-
Broadcastm, pi R-broadcasts it (line 8), and by validity of
Reliable Broadcast,pi eventually R-deliversm. From agree-
ment of Reliable Broadcast, every correct process eventually
R-deliversm (line 10). Since no correct process g-Deliversm,
there is a timet after which, for every correct processpj , we
havem ∈ (R delivered \G delivered).

Let t′ > t be a time such that att′ all faulty processes
have crashed. Letk be the highest stage reached by some
process, saypj , at timet′. FromLemma4all correct processes
eventually start stagek.

Since no correct process g-Deliversm, no correct pro-
cess g-Deliversm in the first phase of stagek. Therefore, no
correct process receivesnack messages(k, pendingk,ack)
(line28) such thatm ∈ pendingk. Since therearenack correct
processes, at least one correct process, saypj , does not send
the message(k, pendingk,ack) to all with m ∈ pendingk

(line 15). Sopj evaluates the condition at line 12 tofalse, and
sends themessage(k, pendingk, chk) to all (line17),which is
only possible ifpj has R-delivered amessagem′ that conflicts
with m. As pj is correct, by the agreement property of Reli-
able Broadcast, every correct process eventually R-delivers
m′, evaluates the condition at line 13 tofalseand sends mes-
sage(k, pendingk, chk) to all. As there arenchk correct pro-
cesses, all correct processes eventually stop waiting at line 18
and executepropose(k, s, s′), withm ∈ s∪s′ (line 19). From
Consensus, we have at line 21m ∈ NCsetk ∪ Csetk. So all
correct processes g-Deliverm at line 22 or 23 – a contradic-
tion. ✷

Proposition 4. (Uniform Integrity). For any messagem,
each process g-Deliversm at most once, and only ifm was
previously g-Broadcast.

Proof. Assume thatm is never g-Broadcast. Som is never R-
broadcast, and by the uniform integrity of Reliable Broadcast,
m is never R-delivered (line 10). Som is not in anypendingk

set, and it follows thatm can never be g-Delivered, either at
line 31 or at lines 22, 23.
It is not hard to see, from the delivery condition (lines 22, 23,
29), thatm is not g-Delivered more than once. ✷

Theorem 1. Assume that there aremax(nack, nchk) correct
processes,nack, nckh > n/2, and2nack + nchk ≥ 2n + 1.
The algorithm in Fig.1 solves Generic Broadcast, or reduces
Generic Broadcast to a sequence of Consensus problems.

Proof. Immediate from Propositions 1, 2, 3, and 4. ✷

5.2 Proof of correctness ofGB+

Since the algorithmGB+ is derived fromGB, some results
established forGB hold forGB+:

• Lemmas 1, 2 and 6 hold forGB+ with the same proof.
• Lemma 3 holds forGB+, but the proof requires a tiny
adaptation. Indeed, withGB+, messages can additionally
be g-Delivered at lines 23 and 33. However, this does not
require changes in the arguments of the proof of Lemma 3.

Lemma 4 also holds forGB+, but the proof is not the same.

Lemma 4. (Assumes2nack + nchk ≥ 2n + 1, nchk > n/2,
nchk correct processes.)
For all stagek > 0, if some processpi terminates stagek (i.e.,
executes line 40 in stagek), then every correct process also
terminates stagek.

Proof. (uses Lemma 3) The proof is by induction; how-
ever, as the base step is very similar to the inductive step,
we only give the proof of the inductive step. Assume the re-
sult holds fork, and let processpi terminate stagek + 1.
Sopi has terminated stagek, and by the induction hypothe-
sis every correct process also terminates stagek. Before ter-
minating stagek + 1, pi has receivednchk messages(k +
1, g Deliverk+1, pendingk+1, chk) (line 34).

As there arenchk correct processes andnchk > n/2, at
least one message (k + 1, g Deliverk+1,
pendingk+1, chk) was sent (line 19 or 30) by a correct pro-
cess, saypj . So every correct process eventually receivesmes-
sage(k + 1, g Deliverk+1, pendingk+1, chk) (line 27) and
sends message(k + 1, g Deliverk+1, pendingk+1, chk) to
all (line 30).As there arenchk correct processes, every correct
process eventually evaluates the condition of line 34 totrue
and starts Consensus at line 36. By the termination of Consen-
sus every correct process eventually decides, and terminates
stagek + 1 at line 40. ✷

Proposition 5. (Uniform Agreement).
(Assumesnack, nchk > n/2, max(nack, nchk) correct pro-
cesses,2nack + nchk ≥ 2n+ 1.)
If a processpi g-Delivers a messagem, then every correct
processpj eventually g-Deliversm.

Proof. (uses Lemmas 2, 3, and 4) Processpi g-Delivers mes-
sagesat lines23,26,33,38,and39. Ifpi g-Deliversmat line38
or 39 after the execution of Consensus, the result holds with
the same arguments as those forGB (Proposition 1). Thus, as-
sume thatpi does not execute Consensus at stagek, that is,pi

g-Deliversm at line 23, 26, or 33. Ifpi g-Deliversm at line 23
or 33, there exists a process, saypj , that has g-Deliveredm
at line 26 after having receivednack messages of the type
(k,−, pendingk,ack). From here on, we can establish the
result by using the arguments of the proof of Proposition 1 for
the case wherepi g-Deliversm at line 31 (Fig.1) after having
receivednack messages of the type(k,−, pendingk,ack).✷

Lemma 5 no longer holds forGB+, asGB+ allows the g-
Delivery of conflicting messages in the first phase of a stage.
We replace Lemma 5 with the following lemma:

Lemma 7. (Assumesnack > n/2.)
Letm andm′ be two conflicting messages, andk any stage.
If processpi g-Deliversm in stagek before Consensus, and
pj g-Deliversm′ in stagek before Consensus, then eitherpi

has g-Deliveredm′ beforem, or pj has g-Deliveredm before
m′.

Handling message semantics with Generic Broadcast protocols 105

Proof. For a contradiction assume thatpi g-Deliversm before
m′, andpj g-Deliversm′ beforem. Processes can g-Deliver
messages before Consensus at line 23, 26, or 33.

We first prove that there exists a processpr that has g-
Deliveredm at line 26, and has not g-Deliveredm′ beforem.
If pi g-Deliversm at line 26, takepr = pi. If pi g-Delivers
m at line 23 or 33, there must exist a process, saypr, that has
g-Deliveredm at line 26. Ifpr has g-Deliveredm′ beforem,
thenpi also g-Deliversm′ beforem at line 23 or 33 (sincem′
is beforem in g Deliverk received frompr) – a contradiction
with the fact thatpi has not g-Deliveredm′ beforem. Sopr

has not g-Deliveredm′ beforem. By a similar argument, there
must exist a process, sayps, that has g-Deliveredm′ at line 26,
andm′ beforem.

So there exists a processpr that g-Deliversm at line 26,
and notm′ beforem, and there exists a processps that g-
Deliversm′ at line 26, and notm beforem′. To g-Deliver
m at line 26, processpr has received (line 20)nack mes-
sages of the type(k, g Deliverk, pendingk,ack), such that
m ∈ pendingk. Similarly, to g-Deliverm′ at line 26, pro-
cessps has received (line 20)nack messages of the type
(k, g Deliverk, pendingk,ack), such thatm′ ∈ pendingk.

By the condition of line 14, the conflicting messages
m andm′ cannot be in the same setpendingk, and there-
fore, there must exist2nack different processes that have sent
(k, g Deliverk, pendingk,ack) at line 16 – a contradiction
sincenack > n/2. ✷

Proposition 6. (Uniform Order).
(Assumesnack, nchk > n/2, and2nack + nchk ≥ 2n+ 1.)
If processespi andpj both g-Deliver conflicting messagesm
andm′, thenpi andpj g-Deliverm andm′ in the same order.

Proof. (uses Lemmas 2, 3, 6, and 7) The proof is close the
proof of the corresponding property ofGB (Proposition 2).
The difference stems from the fact that Proposition 2 relies on
Lemma5,which does not hold forGB+ and has been replaced
with Lemma 7.

Without loss of generality, assume thatpi g-Deliversm
beforem′. As in the proof of Proposition 2, the result holds
immediately ifpi g-Deliversm in stagek andm′ in stage
k′ > k. From Lemma 7 the result also holds ifpi g-Delivers
m andm′ before the Consensus. It remains to consider the
following cases: (1)pi g-Deliversm before Consensus and
m′ after Consensus, and (2)pi g-Deliversm andm′ after
Consensus. In case (1), from Lemma 7,pj cannot g-Deliver
m′ before Consensus. The rest of case (1) can be proved as in
the proof of Proposition 2. Case (2) can be proved as in the
proof of Proposition 2. ✷

Proposition 7. (Validity).
(Assumesnack, nchk > n/2, max(nack, nchk) correct pro-
cesses,2nack + nchk ≥ 2n+ 1.)
If a correct processpi g-Broadcasts a messagem, thenpi

eventually g-Deliversm.

Proof. Similar to the proof of Proposition 3. ✷

Proposition 8. (Uniform Integrity). For any messagem,
each process g-Deliversm at most once, and only ifm was
previously g-Broadcast by sender(m).

Proof. Similar to the proof of Proposition 4. ✷

Theorem 2. Assume that there aremax(nack, nchk) correct
processes,nack, nckh > n/2, and2nack + nchk ≥ 2n + 1.
The algorithm in Fig.2 solves Generic Broadcast, or reduces
Generic Broadcast to a sequence of Consensus problems.

Proof. Immediate from Propositions 5, 6, 7, and 8. ✷

6 Evaluation of the Generic Broadcast algorithms

6.1 Time complexity in good runs

To assess the cost of Generic Broadcast, we consider “good”
runs (i.e., runs with no failures and no failure suspicions). We
express the delivery cost of a messagem in terms of the max-
imum network message delayδ [1]. We show below that if
Consensus is not needed,GB andGB+ g-Deliver messages in
2δ. However, if Consensus is necessary, at least4δ are needed.
By comparison, known Atomic Broadcast algorithms, in the
model considered in the paper, can A-Deliver messages in
3δ,5 which shows the potential benefit of Generic Broadcast
overAtomic Broadcast: if the message conflict rate is low, our
Generic Broadcast algorithms are an interesting alternative to
Atomic Broadcast algorithms. However, if the message con-
flict rate is high ourGeneric Broadcast algorithmsbecome less
efficient than known Atomic Broadcast algorithms.

6.2 Time complexity ofGB andGB+

We evaluate now the time between the execution of g-
Broadcast(m) and g-Deliver(m), in terms ofδ, the maximum
message delay.

6.2.1 Time complexity in the first phase

For the first phase, we can do the same analysis forGB and
GB+. ConsiderGB, and let a processp g-Broadcast some
messagem (line 7). Messagem is first R-broadcast (line 8),
and upon R-delivery ofm at line 10 (in the absence of fail-
ures, this takesδ), every process sends anack message to all,
with m ∈ pendingk (line 15). Upon reception ofack mes-
sages fromnack processes (max delay= δ),m is g-Delivered
(line 31). So, the time complexity ofGB andGB+ formessage
delivery in the first phase is2δ.

6.2.2 Time complexity in the second phase

We discuss now the cost ofGB andGB+ when Consensus is
needed. Time complexity is more difficult to evaluate here, as
the result depends on the interleaving of concurrent events.
We give for each algorithm the best-case and the worst-case
figures. For Consensus, we assume the algorithm in [11] that
has a time complexity of2δ in good runs.
5 An exception is the Optimistic Atomic Broadcast algorithm [9],

which can delivermessages in2δ if thespontaneous total order prop-
ertyholds – that is, if messages are “spontaneously” received in the
same order.

106 F. Pedone, A. Schiper

Best case forGB. At time t, let processp g-Broadcastmessage
m (line 7). Messagem is R-delivered at line 10 (at timet+δ).
In the best case, upon R-delivery ofm, every process detects
a conflict with some other messagem′ (line 13), and sends a
message of typechk to all, withm ∈ pendingk (line 17). All
processes receive themessage at timet+2δ (line 18) and start
Consensus.As Consensus costs2δ, messagem is g-Delivered
at timet+ 4δ.

Worst case forGB. Let p again g-Broadcastm at time t.
At time t + δ all processes have R-deliveredm, but not all
processes detect a conflict at that time. So, not all processes
send immediately a message of typechk. However, at least
one processq detects a conflict with some messagem′ at
time t + δ (otherwise Consensus is not needed). Ifq has R-
deliveredm′ at timet+ δ, then all processes R-deliverm′ at
time t+ 2δ, detect the conflict withm, and send the message
of typechk. So, all processes start Consensus at timet+ 3δ,
and end Consensus att+ 5δ. However, this analysis assumes
that betweent+δ andt+3δ, Task 3 is not involved in another
Consensus not related to messagem, in which case, such an
execution of Consensus would have to terminate first, adding
2δ. Thus, in the worst case the g-Delivery ofm takes7δ.

Best case forGB+. At time t, let processp g-Broadcast mes-
sagem (line 8). Messagem is R-delivered at line 11 (at time
t + δ). In the best case, upon R-delivery ofm, every pro-
cess detects a conflict with some other messagem′ (line 14),
and sends a message of typechk to all, withm ∈ pendingk

(line 19). All processes receive the message at timet + 2δ
(line 27), and start Consensus. As Consensus costs2δ, mes-
sagem is g-Delivered at timet+ 4δ.

Worst case forGB+. Let p again g-Broadcastm at time t.
At time t + δ all processes have R-deliveredm, but not all
processes detect a conflict at that time. So, not all processes
send immediately a message of typechk. However, at least
one processq detects a conflict with somemessagem′ at time
t+δ (otherwise Consensus is not needed). Upon detecting the
conflict, processq sends amessage of typechk to all (line 19).
Upon reception of this message (timet + 2δ), the processes
that have not yet sent the message of typechk do so, with
m ∈ pendingk (line 30). Thesemessages are received at time
t+3δ. So, all processes start Consensus at timet+3δ, and end
Consensus att+5δ. As for the worst case ofGB, the analysis
ignores that at any time, betweent+δ andt+3δ, Task 3might
be involved in another Consensus not related to messagem,
which adds2δ. So, in the worst case the g-Delivery ofm takes
7δ.

6.3 Generic Broadcast vs. Atomic Broadcast

Table 1 summarizes the time complexity ofGB andGB+: 2δ
in the first phase, and between4δ (best case) and7δ (worst
case) if the second phase is needed. By comparison the time
complexity ofAtomic Broadcast is between3δ (best case) and
5δ (worst case).6

6 We consider Atomic Broadcast solved by reduction to Consen-
sus [4] and the Consensus algorithm of [11].

Table 1.Generic Broadcastvs.Atomic Broadcast

Protocols Best Case Worst Case
GB andGB+: Phasei only 2δ –

Phasei andii 4δ 7δ
Atomic Broadcast 3δ 5δ

Fig. 3.Comparing Generic Broadcast to Atomic Broadcast (α = 0:
only non-conflicting messages are g-Broadcast;α = 1: only con-
flicting messages are g-Broadcast)

6.4 Experimental validation

The results of Sect.6.3 are confirmed by an experiment con-
ducted with 10 processes (n = 10) running on Sun’s Ultra-
Sparcworkstations interconnected by anEthernet network (10
MBit/s) and communicatingusingTCP/IP (seeFig.3).Theex-
periment measures the cost of the “Best Case” of Table 1. Pro-
cesses implement theGB algorithm withnack = nchk = 7.
The vertical axis of Fig.3 represents the time elapsed between
the events g-Broadcast(m) and g-Deliver(m) at the sender of
m. The horizontal axis represents the message conflict rate,
that is, the ratio of the number of g-Broadcast messages that
conflict to the total number of g-Broadcast messages.

Thus,α = 0 means that only non-conflicting messages
were g-Broadcast, whileα = 1 means that only conflicting
messages were g-Broadcast. In other words,α = 0 measures
the cost of the first phase ofGB, while α = 1 measures the
cost of the first and the second phases. TheAtomic Broadcast
algorithm is the one mentioned in Sect.6.3 (notice that this
algorithm requires amajority of correct processes, i.e., 6). Ex-
perimentswere repeated to build a confidence interval of 95%,
and in each experiment, processes g-Broadcast messages at a
constant rate. From Fig.3, if less than 60% of the messages
g-Broadcast conflict, theGB algorithm can g-Deliver mes-
sages more efficiently than the Atomic Broadcast algorithm
considered.

7 Conclusion

The paper has introduced the Generic Broadcast problem,
whose definition is based on a conflict relation on the set
of messages that are broadcast. The conflict relation can be
derived from the semantics of the messages, and only con-
flicting messages have to be delivered by all processes in the

Handling message semantics with Generic Broadcast protocols 107

same order. As such, Generic Broadcast is a powerful mes-
sageorderingabstraction,which includesReliable andAtomic
Broadcast as special cases. Generic Broadcast algorithmsGB
andGB+ have been shown to be more efficient than Atomic
Broadcast algorithms ifmessage conflicts are not too frequent.

This paper, together with [1], show a time complexity
vs.resilience tradeoff for Generic Broadcast algorithms. Our
Generic Broadcast algorithms requiref < n/3 with a best
case time complexity of2δ (if messages do not conflict). In
[1], the authors propose Generic Broadcast algorithms that re-
quire onlyf < n/2, with a time complexity of3δ in the best
case. So additional resilience increases the best time com-
plexity. An interesting open question is whether there exist
Generic Broadcast algorithms that can – in the best case –
deliver messages in2δ, and still require only a majority of
correct processes.

Acknowledgements.We would like to thank the anonymous review-
ers for their comments and suggestions that helped improve thepaper.

References

1. M.K.Aguilera, C. Delporte-Gallet, H. Fauconnier, andS. Toueg.
Thrifty generic broadcast. InProceedings of the 14th Interna-
tional Symposium on Distributed Computing (DISC’2000), Oc-
tober 2000.

2. P.Bernstein,V.Hadzilacos, andN.Goodman.ConcurrencyCon-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

3. K.P. Birman and T.A. Joseph. Exploiting virtual synchrony in
distributed systems. InProceedings of the 11thACMSymposium
on OS Principles, pages 123–138, November 1987.

4. T.D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, March 1996.

5. D. Cheriton and D. Skeen. Understanding the limitations of
causally and totally ordered communication. InProceedings
of the 14th ACM Symposium on Operating Systems Principles,
Asheville (USA), December 1993.

6. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of
distributed consensus with one faulty processor.Journal of the
ACM, 32(2):374–382, 1985.

7. V.HadzilacosandS.Toueg. Fault-tolerant broadcasts and related
problems. In:Distributed Systems, chapter 5. Addison-Wesley,
2nd edition, 1993.

8. P.A. Jensen, N.R. Soparkar, and A.G. Mathur. Characterizing
multicast orderings using concurrency control theory. In:Pro-
ceedings of the 17th International Conference on Distributed
Computing Systems (ICDCS’97), Baltimore (USA), May 1997.

9. F. Pedone.The Database State Machine and Group Commu-
nication Issues. PhD thesis,́Ecole Polytechnique F´edérale de
Lausanne, Switzerland, December 1999. Number 2090.

10. F. Pedone and A. Schiper. Generic broadcast. In:Proceedings
of the 13th International Symposium on Distributed Computing
(DISC’99, formerly WDAG), September 1999.

11. A. Schiper. Early consensus in an asynchronous system with a
weak failure detector.Distributed Computing, 10(3):149–157,
1997.

12. F.B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial.ACM Computing Surveys,
22(4):299–319, December 1990.

