
DOI 10.1007/s00450-009-0063-y

S P E C I A L I S S U E P A P E R

CSRD (2009) 24: 153–170

In-network detection of anomaly regions in sensor networks
with obstacles

Conny Franke · Marcel Karnstedt · Daniel Klan · Michael Gertz · Kai-Uwe Sattler ·
Elena Chervakova

Received: 10 October 2008 / Accepted: 11 March 2009 / Published online: 21 April 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In the past couple of years, sensor networks have
evolved into an important infrastructure component for
monitoring and tracking events and phenomena in several,
often mission critical application domains. An important
task in processing streams of data generated by these net-
works is the detection of anomalies, e.g., outliers or bursts,
and in particular the computation of the location and spatial
extent of such anomalies in a sensor network. Such informa-
tion is then used as an important input to decision making
processes.

In this paper, we present a novel approach that facilitates
the efficient computation of such anomaly regions from in-
dividual sensor readings. We propose an algorithm to derive
regions with a spatial extent from individual (anomalous)
sensor readings, with a particular focus on obstacles present
in the sensor network and the influence of such obstacles on

C. Franke
Department of Computer Science,
University of California at Davis,
Davis, USA
e-mail: franke@cs.ucdavis.edu

M. Karnstedt · D. Klan · K.U. Sattler (�)
Databases and Information Systems Group,
Ilmenau University of Technology,
Ilmenau, Germany
e-mail: kus@tu-ilmenau.de
e-mail: marcel.karnstedt@deri.org
e-mail: daniel.klan@tu-ilmenau.de

M. Gertz
Institute of Computer Science, University of Heidelberg,
Heidelberg, Germany
e-mail: michael.gertz@informatik.uni-heidelberg.de

E. Chervakova
Institute of Microelectronics- and Mechatronics Systems,
Ilmenau, Germany

anomaly regions. We then improve this approach by describ-
ing a distributed in-network processing technique where the
region detection is performed at sensor nodes and thus leads
to important energy savings. We demonstrate the advantages
of this strategy over a traditional, centralized processing
strategy by employing a cost model for real sensors and sen-
sor networks.

Keywords Sensor networks · Data streams ·
Outlier detection · Distributed computation

1 Introduction

Driven by major advancements in sensor technology, sensor
networks have been and are being deployed in various appli-
cation domains such as the monitoring of traffic, buildings,
rivers, and the environment in general. Typical examples
for environmental monitoring include precision agriculture
(e.g., observing the humidity of the soil) and monitoring
particles in urban areas to react to changes in air quality. In
applications like these, an important objective in processing
sensor data is the detection of anomalies that occur, e.g., in
the form of outliers or bursts of sensor readings. Focusing
on such anomalies rather than all sensor data greatly reduces
the volume of data reaching end user applications and it also
simplifies the further processing of the sensor data. End user
applications, in interaction with humans, are then used to
make decisions based on the observed anomalies. Such de-
cisions may range from near real-time notifications to the
public, e.g., in case of hazardous events such as wildfires,
flooding, or smoke plumes, to reconfigurations of the net-
work by deploying additional sensors at locations close to
where the anomalies have been observed.

By analyzing individual and aggregated sensor measure-
ments, one can obtain important information about the loca-

1 3

154 Franke et al.

tions where anomalous events and phenomena occur. Loca-
tion information clearly is a key component in any decision
making processes that employs sensor networks. Such loca-
tion information can be visualized on a map and interpreted
for individual sensors as well as groups of neighboring sen-
sors. More importantly, and also the focus of our work,
information about sensors that show anomalous readings
can be used to determine anomaly regions. Such regions
are composed of neighboring sensors that all show anoma-
lous readings, and they are suitably aggregated to describe
anomaly regions in the form of polygons. While there has
been a significant amount of work on anomaly detection in
sensor networks and data streams (see Sect. 3), only a few
approaches also consider the derivation of region informa-
tion from individual sensor readings. Compared to informa-
tion about only individual (anomalous) sensors, providing
users with such region information, including their spatial
extent, clearly has several advantages:

• Anomaly regions represent a natural and intuitive way
of event aggregation and correlation as needed in many
monitoring applications, for example, in the context of
impact analysis.

• The location information associated with sensor data and
regions allows for a direct processing of the results, e.g.,
for tracking regions over time while new data from the
sensor network are streaming in.

• By approximating the region boundaries in the unob-
served space between sensors that show normal readings
and those that show anomalous readings, one can deter-
mine boundaries that more closely reflect the true bound-
aries of an event detected by a group of sensors. For this,
one can also take propagation characteristics of detected
events as well as natural and artificial obstacles occurring
in the sensor network region into account. Obstacles ob-
viously may have an impact on readings of neighboring
sensors.

The following is an example that further illustrates the mo-
tivation of our work towards the computation of anomaly
regions from individual sensor readings, here in the context
of environmental monitoring. In such application scenarios,
anomaly regions not only allow for the presentation of in-
dividual anomalous sensor readings as points on a map but
they also describe where related anomalous sensor readings
occur, here in the form of one or more spatial regions. This
aspect is illustrated in Fig. 1. It shows part of the CIMIS
weather station network in Northern California [2]. These
stations record, among other values, wind speed and direc-
tion, temperature, humidity, and solar radiation.

The sensor locations are indicated by (blue) dots. What
is shown too are obstacles, here ridges indicated by thick
gray lines. Natural and artificial obstacles such as buildings,
ridges, rivers, and valleys obviously need to be taken into

Fig. 1 Example showing sensors (dots), obstacles (thick lines) and
resulting anomaly region (polygon described by thin lines)

account for determining region boundaries and the poten-
tial propagation of anomaly regions. In the figure, obstacles
are indicated by thick (gray) lines. The resulting anomaly
region, computed from the individual sensor readings and
information about the obstacles, is represented by the thin
(red) lines that make up a polygon. Obviously, the presen-
tation of region information together with boundary sensors
provides easier to interpret information than just individual
(anomalous) sensors.

For computing anomaly regions, obstacles clearly are an
important aspect that needs to be taken into account when
computing region boundaries or predicting the movement of
an anomaly region over time. However, none of the exist-
ing approaches for detecting anomaly regions consider the
aspect of obstacles. In our approach, we suitably model ob-
stacles by means of damping factors, which describe the
effect an obstacle has on neighboring sensors and which
are input for determining region boundaries from anomalous
sensor readings.

Another important aspect of practical relevance when
processing and analyzing sensor data is the energy con-
sumption of individual sensors and sensor nodes. This is
especially true in the context of battery-powered, wireless
sensor networks where data and messages need to be trans-

1 3

In-network detection of anomaly regions in sensor networks with obstacles 155

mitted via radio communication among sensor nodes and
applications. There are several works that describe energy
saving approaches for processing data in sensor networks
(see Sect. 3), which aim at extending the battery lifetime
by sophisticated protocols. In such approaches, processing
of sensor data is often performed locally and intermediate
results from groups of sensors are propagated in a hierarch-
ical fashion. As the detection of anomaly regions in sensor
networks is a special case of data analysis, energy efficient
approaches for determining such regions is of concern in
our approach, too. In this paper, we therefore extend the
basic region anomaly detection framework by introducing
a distributed approach for region detection. A key aspect for
our methodology here is that spatial aggregation of anoma-
lous sensor readings and the detection of anomaly regions
is much more efficient if the event aggregation is performed
locally at the affected sensor nodes or their close neighbor-
hood, respectively.

In summary, the main contributions of the work presented
in this paper are as follows:

1. We present a framework for anomaly region detection in
sensor networks that decouples the (typically threshold-
based) detection of individual anomalous sensor readings
from the anomaly region detection technique. Compared
to existing approaches, this provides our approach with
more flexibility in terms of employing alternative outlier
or burst detection approaches for individual sensors.

2. In our approach for determining anomaly regions, we
explicitly model and consider natural and man-made ob-
stacles that might damp the effect of an event and thus
need to be considered appropriately in determining re-
gion boundaries and the spread of (potential) anomaly
regions.

3. We present a distribution strategy for the in-network de-
tection and processing of anomalous sensor readings and
the derivation of anomaly regions. This strategy can lead
to significant savings in power consumption. We demon-
strate the capabilities of the in-network detection ap-
proach using an evaluation based on real sensor network
characteristics.

This remainder of the paper is organized as follows: In
Sect. 2, we introduce the scenario and goals of this pa-
per. We also present our framework for the detection of
anomaly regions. Section 3 summarizes related work in the
areas of anomaly detection, region detection, the handling
of obstacles, and in-network processing of sensor data. In
Sect. 4, we present our techniques and algorithm for detect-
ing anomaly regions in the presence of obstacles. We discuss
the benefits of the in-network computation of anomalies and
anomaly regions in Sect. 5. The corresponding evaluation
and experimental results are presented in Sect. 6. Section 7
summarizes the paper and outlines ongoing and future work.

2 Background and setup

We assume a sensor network S comprised of m stationary
sensors, S = {s1, . . . , sm}. Each sensor s ∈ S has a spatial
attribute, 〈xs, ys〉, which defines its location in 2D space.
Our approach is also applicable to a 3D setting, where nodes
in the network are given by their xs, ys, and zs coordinate
to account for different elevations. For ease of presenta-
tion, we focus on 2D scenarios. The sensors are distributed
non-uniformly in the network. Each sensor monitors en-
vironmental variables such as temperature, humidity, or
wind speed. In the proposed framework, we assume one-
dimensional sensor data, i.e., the same variable is monitored
by all sensors. However, the proposed method can be ex-
tended to multi-dimensional data as well, e.g., by normaliz-
ing all attribute values with respect to their standard devia-
tion and then computing a (weighted) sum of the values, as
done by Anguilli and Fassetti in [3].

For a sensor s, a measurement of a variable is de-
noted rs,t , with the timestamp t indicating when the variable
reading was obtained. The network in our setting is synchro-
nized, i.e., a set of m new measurements is processed in the
network each time period. Depending on the type of sen-
sors, such a period can range from a few seconds to several
hours. Synchronous processing is not a strict requirement
for our method, but streamlines the processing of measure-
ments and eases the discussion of the functionality of our
proposed techniques.

Based on the spatial attribute of sensors a spatial neigh-
borhood Nf (si) ⊆ S can be defined for each sensor si ∈ S.
A suitable neighborhood function f allows for different
metrics, such as distance-based neighbors (given a max-
imum distance r) or k-nearest neighbors.

2.1 Degree-based anomalies

Anomaly detection is a broad field that comprises areas like
outlier detection, deviation detection, and burst detection.
Anomalies of any kind are, by definition, data points that
appear anomalous when compared to other data points in
a data set or stream. For example, bursts are characterized
as “abnormal aggregates in data streams” by Zhu et al. [30].
An outlier is described as “a data point that is significantly
different from the rest of the data points” in [4].

Traditionally in anomaly detection algorithms, a binary
decision is made about whether or not a data point is anoma-
lous. This is called a threshold-based approach, because
a threshold is used to separate two categories of data points,
anomalous and normal ones. In contrast, some algorithms in
the field of outlier detection use the notion of degree-based
outliers, e.g., [10, 23], to better capture the intensity of the
observed anomaly. In this context, an anomaly degree, AD
∈ [0, 1], is determined for each data point. By using an AD

1 3

156 Franke et al.

value to describe a data point, it is taken into account that
some data points are more clearly anomalous than others.
When analyzing a data stream, each sensor s and meas-
urement rs,t , respectively, is assigned a value AD ∈ [0, 1],
which can change with each new measurement obtained by
the sensor. An AD value of 0 indicates that the measurement
obtained by s at time t is normal. The AD value provides
immediate feedback about the intensity of a phenomenon at
a certain location. The change of a sensor’s AD value over
time indicates how the phenomenon evolves. By comparing
the AD values of several sensors in a spatial neighborhood,
detailed information about the distribution and spread of an
event can be obtained.

A reference is necessary to answer the question “rs,t is
anomalous with respect to which other measurements?”. In
a spatial setting, it is common to use the spatial neigh-
borhood Nf (s) as reference. If only previous values of s
are used to determine the AD of sensor s at time t, then
Nf (s) = ∅. The other extreme is to set Nf (s) = S. Then
measurements from all nodes in the network are used as
reference. Between these two extremes, other definitions of
Nf (s) are possible, as indicated above.

At time t, an anomaly detection algorithm is applied to
each of the m new measurements. The output of the anomaly
detection algorithm is a stream of tuples (si, t, AD), i.e., at
time t sensor si has anomaly degree AD. Thus, the anomaly
detection algorithm can be seen as a membership function
on the set S of all sensors, and it determines the membership
of sensors in the fuzzy set of anomalous sensors at time t.
Formally, the signature of the anomaly detection algorithm
is defined as follows:

Input: stream of sensor measurements rs,t , and for all sen-
sors s ∈ S their neighborhood Nf (s)

Output: stream of tuples (s, t, AD), where AD > 0.

In the following, we use two different approaches for
anomaly detection, a degree-based outlier detection algo-
rithm [10] and a burst detection algorithm [14]. Both algo-
rithms determine the AD value of a measurement with the
help of two threshold parameters klow and khigh. If the meas-
urement is between the two thresholds klow and khigh, its AD
value is computed based on its distance to klow, i.e., the far-
ther from klow the measurement is, the higher is its assigned
AD value. Otherwise, the measurement is assigned AD = 0
or AD = 1 depending on whether it is above or below the
thresholds.

Every anomaly detection algorithm matching the signa-
ture defined above can be used in our framework. In the
following sections, we briefly introduce the two approaches
we use for anomaly detection, one based on outlier detection
and one based on burst detection.
Outlier detection. In [3] Angiulli and Fassetti propose a dis-
tance-based outlier detection algorithm for data streams,

called STORM (STream OutlieR Miner). The algorithm
works on a sliding window of the most recent sensor meas-
urements. In distance-based outlier detection, the number k
of measurements in the sliding window that have a dis-
tance of at most r from a sensor reading rs,t is determined,
based on some distance measure. The STORM algorithm is
threshold-based, i.e., it only distinguishes between normal
and anomalous data points. Thus, if less than k measure-
ments in the sliding window have a distance of at most r
from rs,t , then rs,t is anomalous, otherwise it is normal.

Franke and Gertz extended the STORM algorithm and
propose a degree-based outlier detection algorithm for data
streams in [10]. The technique is called DSTORM, standing
for degree-based STORM. A sensor’s AD value is deter-
mined based on a sliding window over the measurements of
all sensors in Nf (s). By adjusting the definition of a sensor’s
spatial neighborhood Nf (s), DSTORM can use arbitrary
references for computing a sensor’s AD value.

The AD value of s at time t is then computed based on k.
Lower values for k result in higher AD values, because the
fewer measurements are similar to rs,t , the more anomalous
the measurement and thus the sensor itself is at time t.
Burst detection. Bursts are “abnormal aggregates in data
streams” [30]. Detecting bursts is essential for identifying
situations like a fire or heat-ups, where alarms should be
triggered (for instance, to actuate a fire alarm or starting
a sprinkler system).

The naive approach of inspecting all interesting window
sizes in a data stream for a burst is not scalable and not
suitable for data streams. Shasha et al. proposed in [20] an
incremental one-pass algorithm, which can identify bursts
over a variety of dynamically chosen window sizes. The pre-
sented technique is called elastic burst detection.

In [28] Zhang et al. introduced a synopsis structure,
called aggregation pyramid and an algorithm for elastic
burst detection. An aggregation pyramid is a triangular
data structure over N stream elements with N levels. The
presented aggregation pyramid offers some interesting prop-
erties. For instance, each subsequence of the data stream that
passes through the bottom of the pyramid is covered by at
least one node inside the pyramid. With this it is sufficient
to check if the top of the pyramid succeeds a given thresh-
old. If a burst is discovered a detailed search on the shadow
of the cell that exceeded the threshold is necessary.

The original approach by Zhang et al. is only applica-
ble to stationary data. The problem is that the threshold for
identifying bursts is only adapted very slowly with evolv-
ing input data. This does not perform well in the pres-
ence of trends or periods. To dynamically identify a suit-
able threshold for triggering bursts, Klan et al. [14] used
techniques known from time series forecasting (exponen-
tial smoothing) in order to compute a time series dependent
threshold.

1 3

In-network detection of anomaly regions in sensor networks with obstacles 157

It is straightforward to extend the burst detection algo-
rithm presented in [14] to detect degree-based bursts by
computing two time series dependent thresholds instead of
just one. The algorithm is designed to work on time se-
ries, i.e., streams of data from an individual sensor, and thus
∀s ∈ S : Nf (s) = ∅.

2.2 Anomaly regions and obstacles

2.2.1 Anomaly regions

Anomaly regions are time-variant spatial regions in a sensor
field where unusual phenomena or events are taking place at
some point in time. Detecting event regions and their bound-
aries has been studied in, e.g., [10, 15], but so far obstacles
in the sensor field have not been taken into account when
constructing such regions.

For anomaly region detection, we use the TWISI (Trian-
gulated WIreframe Surface Intersection) approach proposed
in [10], where polygonal anomaly regions are constructed
with respect to an intensity threshold ϕ. At each point in
time, the currently detected anomalous sensors are used for
region construction. A user specified value ϕ ∈ [0, 1] is used
to select a subset of all detected anomalous sensors, i.e.,
only those sensors having AD ≥ ϕ should be included in an
anomaly region. A region’s boundary is placed in the unob-
served space between anomalous and normal sensors. It is
placed in such a way that we assume a measurement taken
at a location next to the boundary would have an AD value
close to ϕ. In Sect. 4 we briefly outline how region detection
using the TWISI approach works.

We use the TWISI approach as the basis for our anomaly
region detection because TWISI’s boundary placement is
very accurate. To illustrate this, we use the Intel lab sen-
sor data [1], which provide temperature measurements from
54 sensors deployed in the Intel Berkeley Research lab. Fig-
ure 2 shows a section from the region detected by TWISI.
The black lines are part of the region boundary, and each of
the sensors is labeled with its current AD value. The gray
sensor at the right side of the figure is a control point that
does not contribute to the region boundary detection. It is
used to check if the boundary placement is accurate. When

Fig. 2 Accuracy of boundary placement using ϕ = 0.25

setting the intensity threshold ϕ to 0.25, it can be seen that
the control point having AD = 0.27 is located fairly close
to the region boundary and inside the anomaly region. This
shows that the boundary placement is meaningful with re-
spect to the values that could be measured by new sensors,
like the gray sensor in Fig. 2, which are placed in the un-
observed space between existing sensors, like the sensors
having AD values 0.0 and 0.32 in Fig. 2.

2.2.2 Obstacles

Obstacles in a sensor field are typically physical barriers
like walls, buildings, rivers, or mountains. In 2D, obstacles
are commonly modeled as simple polygons (see, e.g. [22]),
but can be as simple as line segments when modeling walls
within a building. To accommodate a 3D setting, obstacles
can be modeled as planes in 3D or complex polyhedra. In
this paper, we model obstacles as line segments in 2D, al-
though the use of polygons is possible as well. Polygonal
obstacles would slightly increase the runtime of our algo-
rithms due to the more complex computation when checking
for intersections of outlier regions with obstacles.

Obstacles might damp the effects of a phenomenon, but
do not necessarily stop its spread completely. A wall in
a building will damp the effect of a cold room on the adja-
cent rooms, but the adjacent rooms’ temperature will never-
theless be affected. In contrast, a draft in one room will not
spread through walls to adjacent rooms. Thus, obstacles pro-
vide different damping factors for different phenomena. As
the damping factor of large obstacles can vary, e.g., a moun-
tain does not provide the same damping everywhere, we
assign a damping factor d f(si, sj) ∈ [0, 1] to each pair of
sensor nodes, according to the obstacle(s) between the two
sensors. This way, we are able to take geometric properties
of the obstacles into account. Obstacles do not necessarily
have to be physical barriers, as the air between two sensor
locations can act as an obstacle as well, thereby damping the
effect of an event due to the distance. Our approach is not
limited to symmetric damping factors between two sensors,
i.e., it is possible to define d f(si, sj) �= d f(sj , si).

By taking obstacles into account, we select a subset of
all anomalous sensors detected at time t to be included in
the anomaly region. This step uses the stream of anoma-
lies as input, and works on a jumping window such that the
most recent AD values of all m sensors are considered. The
main purpose of detecting anomaly regions is to indicate the
spread of events. We therefore use information about ob-
stacles to extend the regions by also including anomalies
having AD < ϕ.

An anomalous sensor s with ADs < ϕ is included in a re-
gion if there is an obstacle between the source of an event
and sensor s that damped the effect of this event. Assume
ϕ = 0.45 and two sensors s1 and s2 with ADs1 = 0.29 and

1 3

158 Franke et al.

ADs2 = 0.51. Also assume an obstacle between s1 and s2

that incurs a damping factor of d f(s1, s2) = 0.2. Sensor s2

is clearly included in the anomaly region, as ADs2 ≥ 0.45.
The event spreads from s2 to s1, but is damped by the obsta-
cle. We therefore expect the AD value of s2 to be lower than
it would be without the obstacle, and decrease the thresh-
old ϕ for including s2 in the region by the damping factor.
This step is called threshold propagation. By doing so, s2

is now only required to have AD ≥ ϕ−d f(s1, s2) = 0.45 −
0.2 = 0.25 in order to be included in the anomaly region. As
ADs1 = 0.29 ≥ 0.25, the detected region includes s1 and s2.
This example is illustrated in Fig. 4b.

By taking obstacles into account, we select a subset of
all anomalous sensors detected at time t to be included in
the anomaly region. This step uses the stream of anomalies
as input, and works on a sliding window such that the most
recent AD values of all m sensors are considered. The inter-
face of this step is as follows:

Input: stream of tuples (s, t, AD), threshold ϕ, damping fac-
tors ∀si, sj ∈ S : d f(si , sj) and d f(sj , si)

Output: stream of tuples (s, t, AD) that is a subset of the tu-
ples in the input stream.

2.3 Three tier framework

All three steps, anomaly detection, threshold propagation,
and anomaly region detection are combined into a three tier
framework, as illustrated on the left hand side of Fig. 3.
Within this framework, the incoming stream of sensor meas-
urements is piped through the different algorithms, which
in the end output a stream of anomaly regions over time.

Fig. 3 Conceptual and physical
architecture of our framework

Note that this framework comprises three modular process-
ing steps, and therefore each of the three components can
be replaced independently. For example, anomaly detec-
tion can be done using the burst detection or outlier detec-
tion approach mentioned above. Also, in an obstacle-free
sensor field the second tier, threshold propagation, can be
omitted without any changes to the remaining framework.
The left hand side of Fig. 3 shows the conceptual archi-
tecture of our framework, whereas the physical architec-
ture is depicted on the right hand side. The latter consists
of a hierarchically organized sensor network and a central
server. Details about the physical architecture are presented
in Sect. 5.

We propose data stream processing on the basis of com-
plex query plans. Each (mining) task is represented by an
according operator. Thus, faulty sensor readings should be
filtered by an operator for data cleaning preceding the oper-
ator for anomaly region detection.

3 Related work

Anomaly detection. Wu et al. [23] and Zhang et al. [26]
propose degree-based outlier detection algorithms for static
data sets. Franke and Gertz [10] do the same for data
streams. The output of such algorithms is the basis for the
threshold propagation and region detection we propose in
this paper. Other anomaly detection methods can be used as
well, for example, the burst detection algorithm proposed by
Klan et al. in [14]. Their approach can be easily modified to
detect degree-based anomalies by adding a second thresh-
old khigh and computing AD values as described in Sect. 2.1.

1 3

In-network detection of anomaly regions in sensor networks with obstacles 159

Similar modifications can be applied to other anomaly de-
tection algorithms, e.g. [21, 28].
Region detection. Existing work on region and boundary
detection in sensor fields, e.g. [5, 8, 15, 18, 19] is not mainly
concerned with the precise placement of the region bound-
ary according to the intensity of an observed phenomenon.
For example, the algorithms proposed in [5, 8, 15] place the
region boundary right next to the sensors that are on the
edge of a region having distinct properties. Some papers,
e.g., [8], define the region boundary as the set of sensors
that are in the interior of a region but close to sensors out-
side the region. In contrast, our boundary placement is more
considerate. We place the boundary between anomalous and
normal sensors in a meaningful way, and its exact location
depends in the intensity of an event at different locations.

Using spatial clustering algorithms, e.g., those discussed
by Han et al. in [13], to partition the sensor field in anoma-
lous and normal regions would not result in an accurate
boundary placement either. This is because clustering aims
at finding distinct groups of sensors rather than the exact
location of the boundary between each pair of groups.
Obstacles. Many publications deal with various data min-
ing techniques in the presence of obstacles, e.g. [9, 22, 27].
However, in these methods obstacles are considered im-
penetrable objects that need to be bypassed, for example,
to compute the distance between two objects as done by
Zhang et al. in [27]. In contrast, we consider obstacles to be
permeable albeit having different properties than their sur-
roundings. We achieve this by defining a damping factor for
pairs of sensors that are separated by one or more obstacles.
This way, our definition subsumes existing definitions of ob-
stacles, as a damping factor of 1 results in a impenetrable
obstacle, providing absolute damping.
In-network computation. Sensor networks presents a com-
parative new research area. In last years most of the re-
searchers are focused on low level development, like the
wireless communication and efficient routing protocols. The
increasing spread of real deployments results in more fo-
cus of efficient data accumulation and computation. Several
publications [6, 29] have shown that sending messages is
one of the most power expensive operations. Main solutions
to minimize expensive message sending is to compute data
as soon as possible within the network.

TinyDB [11] and Cougar [24, 25] are two well estab-
lished query processing systems for sensor networks. Both
systems support in-network processing with respect to data
quality and sensor node life time. The essential difference
is the aggregation strategy that is employed by these ap-
proaches. In TinyDB all sensor nodes are of the same
type, whereas Cougar distinguishes three classes of nodes:
sources nodes, intermediate nodes for data processing like
aggregations, and gateway nodes, which connect the user. In
order to decrease energy-consumption, both systems build

aggregation trees to aggregate sensor data in nodes at higher
levels within the routing tree. Building an optimal aggrega-
tion tree is NP-Hard. Krishnamachari et al. [17] investigated
the performance of aggregation in sensor networks and pre-
sented some heuristics to generate suboptimal aggregation
trees.

Sensor placement in a network can have a significant im-
pact on the communication costs of in-network processing.
Dhillon et al. [7] propose an algorithm that places sensors in
the network with the goal of effective coverage of the area.
The sensor placement generated by the pSPIEL algorithm
by Krause et al. [16] aims at minimizing communication
cost between sensors and placing sensors at the most in-
formative locations. In both papers obstacles are taken into
account when finding the optimal sensor placement.

4 Detecting anomaly regions

The basis for our anomaly region detection is the TWISI
method proposed in [10]. The TWISI approach assumes
a barrier-free network, where events spread unhindered be-
tween nodes. However, obstacles like buildings or moun-
tains can obstruct the direct spread of temperature, wind,
fine particles, etc. We therefore extend the TWISI approach
to take obstacles into account. In the next paragraph, we de-
scribe the original TWISI method as proposed in [10], and
then introduce our extensions.

The first step in TWISI is to construct a Delaunay trian-
gulation of the sensor network using sensors as nodes in the
triangulation. Then, a third dimension is added to the trian-
gulated network to represent the AD values of sensors, i.e.,
nodes are assigned a height according to their AD value.
This results in a 3D surface, called triangulated wirefame
surface, or TWS for short, where outlier regions stand out as
“hills”. The triangulation of the 2D sensor network is only
computed once, as we assume the network to be somewhat
stable. If nodes in the sensor field are added or removed fre-
quently, the triangulation has to be recomputed on a regular
basis to ensure that it reflects the spatial relations in the sen-
sor network accurately.

The height of each node is updated periodically when
new measurements are obtained by the sensor and conse-
quently its AD value is recomputed. To detect anomalous
regions, a plane parallel to the x/y plane is intersected with
the TWS at height ϕ, yielding a set of line segments where
the plane intersects the different triangles of the triangu-
lation. The projection of these line segments onto the x/y
plane represents the boundaries of anomaly regions, which
are polygons. The TWISI approach includes all anomalous
sensors with AD ≥ ϕ in the generated regions.

Now, we show how to extend the TWISI approach to
take obstacles into account. The goal is to propagate the ori-

1 3

160 Franke et al.

ginal intensity threshold ϕ through the network such that
also sensors having an AD < ϕ might be included in the fi-
nal anomaly region. This is motivated by the fact that the
effect of an event might be damped by the obstacles in the
network. By taking this damping factor between pairs of
sensors into account, the anomaly region is extended such
that one can observe the spread of a phenomenon taking
the effect of obstacles into account. When propagating the
threshold ϕ from s1 to s2, its value is lowered according to
the damping factor between both nodes.

After the threshold is propagated through the entire net-
work, the TWISI approach is applied. Due to the lowered
threshold at some of the nodes, not one plane is used to
intersect the TWS, but several planes at different heights,
according to the threshold propagated to each of the sen-
sor nodes. The resulting anomaly region is still a polygon,
constructed from the line segments generated by the inter-
section of the planes at different heights with the TWS.
Propagation Algorithm. The propagation algorithm works
as described by Algorithm 1 below, and it is iterative. All
nodes that will be included in the anomaly region and their
respective thresholds are stored in the data structure O. In
the initial iteration 0, we identify anomalies having AD ≥ ϕ,
add them to O, and mark these sensors as visited by adding
them to Smarked . We call these “level 0 anomalies”, and
their threshold is set to ϕ (lines 1–4). Then, in each sub-
sequent iteration i the threshold is propagated from each
node o ∈ O of the current level i to its direct neighbors, de-
noted Neigh(o), i.e., all nodes that are connected to o by
an edge in the triangulation of the network (line 7). This is
done as long as new nodes are added to O in one iteration
(line 5). If the neighbor n is an anomaly and has not been
marked yet (line 8), the damping factor d f between o and
n is determined (line 10). The propagated threshold ∆ of
n is computed by subtracting the damping factor from o’s
threshold, i.e., n.∆ = o.∆−d f . If n is a direct neighbor of
more than one level i anomaly, then we choose the largest
of the propagated thresholds to prevent over-damping (lines
11–13). If n is not in O yet, i.e., it is not a direct neigh-
bor of any of the level i anomalies checked so far, then n is
added to O at level i +1 (lines 14–15). After checking all
direct neighbors of all level i anomalies, we remove nodes
o from O where the AD value is less than their propagated
threshold ∆ (line 16). This way, only nodes with an AD
value above the propagated threshold are included in the fi-
nal anomaly regions.

Marking visited sensors after each iteration prevents cy-
cles, where the threshold of a node would initially be set in
iteration i and then overwritten in iteration j > i because of
a chain of direct neighbors being included in O. In combi-
nation with the iterative approach, marking visited sensors
causes the threshold to be propagated to each node in only
one iteration, and this iteration corresponds to the minimum

Algorithm 1 Centralized threshold propagation and region detection
algorithm

number of hops from the level 0 anomalies. That is, each
node is visited “as soon as possible”, starting at the nodes
that are initially above the threshold ϕ, and the propagated
threshold for each node can not be overwritten in later itera-
tions.

Figure 4 illustrates the effects of threshold propagation,
using the example we already discussed in Sect. 2.2. The
intensity threshold is set to ϕ = 0.45 in both figures. Each
sensor is labeled with its sensor id and AD value. The tri-
angulation of the nodes is shown in Fig. 4b by the thin gray
lines. The thick gray lines mark obstacles between sensors,
which induce damping factors of 0.2 between each pair of
sensors that is connected by an edge in the triangulation.
Figure 4a depicts the anomaly region that was detected with-
out threshold propagation. Sensor s1 is not included in the
region, although it is anomalous and fairly close to sensors
that are inside the region, i.e., it is a direct neighbor of sen-
sors s2 and s4, which are included in the anomaly region.
Due to this proximity we would like to include s1 in the re-
gion if its AD value, considering the damping factors to s2

and s4 respectively, is sufficiently high. This will be deter-
mined using threshold propagation.

In Fig. 4b threshold propagation was applied before con-
structing the anomaly region. The region in Fig. 4b spreads
to the area above the obstacle and includes the anomalous
sensor s1 there. This is what we wanted to achieve, as it pro-
vides us with additional information about the phenomenon

1 3

In-network detection of anomaly regions in sensor networks with obstacles 161

Fig. 4 Anomaly regions detected with and without using threshold propagation

we detected in the area below the obstacle. That is, the phe-
nomenon spreads to sensors in the proximity of affected
sensors in the lower area, i.e., to s1, although s1 is shielded
from the phenomenon by an obstacle. In contrast, the re-
gion and thus the phenomenon does not spread to the area on
the left of the obstacles, because the sensors s7 and s8 that
are in the close proximity of the anomalies s9 and s10 are
normal. The phenomenon in the lower area cannot spread
through normal sensors to the anomalous sensors. Techni-
cally speaking, sensors s9 and s10 were not included in the
region because they do not have a direct neighbor that has
been added to the data structure O and thus could have prop-
agated the threshold.

5 Distributed approach

In wireless networks, sending and receiving messages is
much more energy consuming than local processing [6]. As
energy consumption (measured in Joule J) is a crucial (if
not the most crucial) cost factor in wireless networks, the
number of messages should be minimized.

In the centralized approach described above, all data
sources, i.e., the sensors in the network, periodically send
their data to a central server where it is analyzed and pro-
cessed. Thus, a promising idea is to distribute the processing
cost and by this hopefully lower the number of messages
needed. This can be achieved by pushing (parts of) the pro-
cessing steps into the network, which is called in-network
processing. Actually, there is a choice on the degree of dis-
tribution. As an opposite to the centralized processing, all
processing steps are completely delegated to the sensors and
only detected anomalies are signalized to a central sever. As
we will show, this is straightforward for anomaly detection.

Other algorithms, like outlier detection comprising informa-
tion from a neighborhood or region detection, can only be
delegated to a set of (hierarchically organized) intermediate
peers.

We assume a multi-hop network having a hierarchical or-
ganization, similar to the one used by Subramaniam et al.
in [21]. The idea is to partition the network using virtual
grids. The network has several levels: at the lowest level sen-
sors in a local area are combined in one grid cell, and cells
at higher levels subsume multiple cells from lower levels.
At the highest level is one cell (the central server) represent-
ing the entire network. Each cell at each level (except the
highest level) has a leader node, which can be either chosen
from the nodes in the network or it can be a virtual node.
Like this, the hierarchy of nodes can be illustrated as a tree.
In our setup we assume the same tree for both, multi-hop
message passing and in-network processing (which is rather
intuitive). This implies that each node can reach its parent
node in one single hop.

In [16] Krause et al. give an algorithm that can be used to
partition a given sensor network into grid cells and to choose
leader nodes. The resulting partition takes obstacles in the
network into account, and thus it is unlikely that sensors
within one cell are separated by one or more obstacles. Such
an obstacle-aware partitioning of the network is desirable
for our distributed algorithms.

Figure 5 illustratively summarizes the focus of the fol-
lowing section. For anomaly detection, we have three
choices:

1. Send all data to a central server for processing
2. Choose leader nodes that collect data from all peers in

their neighborhood and process the data
3. Detect anomalies at each sensor separately.

1 3

162 Franke et al.

Fig. 5 Possibilities of in-network processing

Option 3 is only practicable if anomalies are independent
from neighboring sensors, because otherwise a full ex-
change between all sensors in a neighborhood is needed.

Threshold propagation and anomaly region detection
cannot be processed on the individual sensors or for each
neighborhood independently, because we also have to detect
regions that cross neighborhood boundaries. Thus, we only
have the options:

1. Send all data to a central server for processing
2. Use a hierarchy between chosen leader nodes that ex-

change data accordingly.

Obviously, threshold propagation and region detection can
only be processed in-network if anomaly detection is done
in-network as well. As all properties and statements made
in the following equally apply to threshold propagation and
region detection, from now on we use only region detection
when referring to both methods, threshold propagation and
region detection.

The choice of the degree of distribution depends on the
trade-off between processing and transmission costs. For
making the right decision on this, we will discuss an appro-
priate cost model. The crucial part is the energy consump-
tion observed at the data sources and hierarchy peers. Thus,
the factors influencing the total cost C (in µJ/s = W (Watt))
are:

• cmsg: constant cost for a single message (header etc.)
in µJ

• cbyte: additional cost for each byte in a message in µJ
• ccpu(op): cost for processing operation op on a node in

µJ
• rm : the rate of taking measurements in 1/s
• ra: the rate of events, i.e., the average rate an anomaly is

detected, in 1/s
• m: number of sources contained in the network
• ml: the number of leader nodes (the number of separated

neighborhoods, respectively)
• h: average number of hops from a source to the central

server (correlating with the shortest paths in the node hi-
erarchy)

For our cost model, we assume that nodes are organized in
a balanced binary tree.

In the following, we will develop general cost formulas
for the different options of in-network processing. In Sect. 6
we will use concrete cost values in order to analytically eval-
uate the different choices.

5.1 Central computation

Independent of the degree of distributed computing used,
each node samples its data periodically. The cost Csampl for

1 3

In-network detection of anomaly regions in sensor networks with obstacles 163

Table 1 Power consumption on real sensors

Measurement Time Energy

MCU wake up 115 µs 0.416 µJ
Sample humidity 71 ms 75.92 µJ
Sample temperature 221 ms 270.92 µJ
Sample light 18 ms 23.4 µJ
Sample CO2 0.5 s 237.5 µJ

the sampling are dependent of the used sampling rate rm ,
the microcontroller unit (MCU) wake up cost cwake and the
considered physical sensor measurement cost cmeasure:

Csampl = rm · cwake · cmeasure ·m

Please note that the used sampling rate rm dependents on the
used sensor type. Table 1 shows measurements for power
consumptions of different real sensors. The example shows
that a measurement of CO2 is more expensive than the
measurement of humidity or light. Additionally one can see
that the time necessary for a single measurement differs sig-
nificantly such that the sampling rate for instance for CO2

should be more than for light or humidity.
In the centralized approach, we consider the cost for

transmitting data. The cost for processing at the central
server ist not the focus of this work, because we assume
a powerful machine with external power supply for that.
Usually, not every node is in radio range to the central
server. Thus, messages are routed in a multi-hop manner
using the hierarchy of nodes.

Sending a message always results in a constant overhead
cmsg due to header information etc. Additionally, costs de-
pend on the size of the data contained, measured in bytes
(cbyte for each byte). A single measurement can be expressed
using 2 bytes. Thus, we obtain the following cost for send-
ing data in our central scenario

Csend
centr = h · rm · (cmsg +2 · cbyte) ·m

Receiving a message results in energy consumption as well.
In our experiments, we observed that this is about the same

Fig. 6 Message propagation in the different in-network processing approaches

cost as sending a message; see Sect. 6 for more details on
this. For receiving data, we obtain the following cost

Crecv
centr = (h −1) · rm · (cwake + cmsg +2 · cbyte) ·m

With this, the total cost for data measurement and transmis-
sion in the central approach is as follows:

Ccentr = Csampl +Csend
centr +Crecv

centr

If we assume a single-hop scenario where each source
sends data in a direct manner to the central instance, that is
Crecv

centr = 0 and h = 1, the resulting total cost is

Csingle = Csampl + rm · (cmsg +2 · cbyte) ·m

Even if there are techniques for collision prevention (based
on time slots or ready/clear signals), there is a small proba-
bility of colliding messages. For convenience, we omit this
in our cost function, as it would only result in a small frac-
tion of messages that need to be resent. Furthermore, we
assume that all sources have the same periodicity, i.e., all
sensors produce new measurements at the same frequency,
and that messages are forwarded directly without collecting
them at intermediate peers.

5.2 Distributed anomaly detection

Several detection algorithms can be directly mapped to the
data sources (of course, assuming that respective processing
capabilities exist on the sensors). This holds, for instance,
for the burst detection and outlier detection approaches dis-
cussed earlier in the case no information about the neighbor-
hood is involved.

Processing data on source nodes results in additional
computing cost ccpu(process), which can differ depending
on the used algorithm and its parameters. Since each meas-
ured item must be processed, we get the following comput-
ing cost

Cprocess
∗ = rm · ccpu(process) ·m

1 3

164 Franke et al.

Cprocess
∗ denotes the processing cost. In the following formu-

las ∗ is replaced by the according algorithm identifier.
In general, processing data will be done immediately

after the measurement, that is, there is no additional wake
up cost. The selectivity of the anomaly detection should
be less than 1 (just in this case an in-network processing
is reasonable). In our anomaly detection example we have
a selectivity of σ = ra/rm , where ra denotes the average rate
an anomaly is detected. Thus, we obtain the following cost
for sending and receiving data:

CforwAD
anomaly = h · ra · (cmsg +2 · cbyte) ·m

︸ ︷︷ ︸

send anomalies

+ (h −1) · ra · (cwake + cmsg +2 · cbyte) ·m
︸ ︷︷ ︸

receive anomalies

The overall cost for anomaly detection on individual sensors
thus is

Canomaly = Csampl +Cprocess
anomaly +CforwAD

anomaly

Obviously, this can only help to reduce energy consumption
if ra is significantly less than rm , that is σ
 1. This should
be the usual case, as we are dealing with anomalies rather
than normal situations. For most sensors, ccpu is orders of
magnitude lower than cmsg.

5.3 Neighborhood based anomaly detection

If we take information about neighboring sensors into ac-
count when determining anomalies, we make leader nodes
responsible for detecting anomalies in each neighborhood.
Sensors send messages containing single measurements to
the leader nodes of their neighborhood, and processing is
done there. The cost for sending and receiving a measure-
ment is

Cforw
lead = rm · (cmsg +2 · cbyte) · (m −ml)

︸ ︷︷ ︸

send measurements

+ rm · (cwake + cmsg +2 · cbyte) · (m −ml)
︸ ︷︷ ︸

receive measurements

In this approach leader nodes only send the resulting
anomaly degree to nodes higher in the routing tree. The
resulting communication cost thus is

CforwAD
lead = (h −1) · ra · (cmsg ·ml +2 · cbyte ·m)

︸ ︷︷ ︸

send anomalies

+ (h −2) · ra · ((cwake + cmsg) ·ml +2 · cbyte ·m)
︸ ︷︷ ︸

receive anomalies

Therefore, we obtain the following cost for the distributed
neighborhood based anomaly detection:

Clead = Csampl +Cprocess
anomaly +Cforw

lead +CforwAD
lead

As this assumes uniform distribution of all ra ·m anomalies
over the ml leader nodes, the cost Clead represents an upper
bound on the cost of anomaly detection at leader nodes.

The approaches for anomaly detection introduced in this
work have no requirements regarding how much process-
ing should be pushed into the in-network hierarchy. In fact,
the processing can be totally distributed or is done at the
individual leader nodes in case we have to handle neighbor-
hoods. This does not hold for distributed region detection,
where communication between leader nodes is mandatory.
Depending on the structure and extent of a detected anomaly
region, this can result in completely traversing a hierarchy of
leader nodes potentially up to the central server on the very
top of it. We discuss this approach of distribution and the
corresponding costs in the following subsection.

5.4 Distributed region detection

At time t, the AD values of all sensors in one cell are col-
lected at the cell’s leader node. Then, threshold propagation
is conducted as shown in Algorithm 2. At leader nodes of
the lowest level, this algorithm works very similar to the
centralized approach described in Algorithm 1, as can be
seen in the comments below line 1 and line 22 as well as
in lines 23–25 of Algorithm 2. Here, I contains only the
outliers contained in the cell, not all outliers in the sensor
network. All nodes that are direct neighbors of nodes in O
but are not in the local cell are collected in the set P , which
is later propagated upwards in the network hierarchy and the
next higher leader node will attempt to determine the thresh-
old for these nodes.

If P in the output of Algorithm 2 is empty, i.e., P = ∅,
propagation terminates and anomaly regions can be detected
at this level of the network hierarchy. Otherwise, ϕ, O, P ,
Smarked , and I of the current leader node are sent upwards to
the leader node of the next higher level. There, the incom-
ing data sets from all sub-cells are merged (line 4). Then,
all nodes that have been collected in P on lower levels are
considered for insertion into O. It is possible that the AD
value of a node p ∈ P is not known to the leader node, be-
cause either p is in a different cell on this level (line 14),
or the sub-cell containing p did not send any data upwards.
In the latter case, information about p is requested from the
corresponding sub-cell (line 12). Generally, nodes in P are
only considered for insertion into O if they have not been
previously considered, i.e., if they are not in Smarked . In the
distributed algorithm, this property results in a feature we
call “neighborhood preserving”. It means that if a node has
been checked by a leader node on a lower level already and
is thus in Smarked , it will not be checked again at higher lev-
els, even if this node appears in P with a lower level than
in Smarked . This way, decisions made by sub-cells, i.e., the
closer neighborhood of this node, about this node are not

1 3

In-network detection of anomaly regions in sensor networks with obstacles 165

Algorithm 2 Distributed threshold propagation and region detection
algorithm

overwritten at higher levels. Insertion of nodes from P into
O is similar to what happens in the centralized approach
(lines 15–22 in Algorithm 2). As we stored the potential
level for each node in P , the nodes can be inserted at the ap-
propriate level in O. To propagate the threshold from nodes
that have been newly inserted into O from P , all nodes in
the current level of O are checked again (comment below
line 22).

For approximating the costs of in-network region detec-
tion, we have to introduce some more cost factors:

• L: average number of hierarchy levels involved in region
detection

• mlR: average number of nodes over all levels where (parts
of) anomaly regions are handled

• maR: average number of anomalies handled over all lev-
els

• m f R: average number of anomaly regions detected and fi-
nalized over all levels – information about these regions
is only forwarded following the multi-hop protocol

• sizeR: average size of anomaly regions in bytes
• size{O,P ,I}: average size of information needed to propa-

gate regions upwards in the network hierarchy

This way, the number of regions is modeled by maR, mlR

and m f R. The size of regions is modeled by maR, mlR and L.
Further, we assume that the anomaly regions are distributed
uniformly over all cells.

We assume, that source nodes send the anomaly degree to
higher nodes within the routing tree in a direct manner, that
is, no additional forwarding is necessary. The one hop cost
for the anomaly forwarding is

CforwAD
region = ra · (cmsg +2 · cbyte) · (m −ml)

︸ ︷︷ ︸

send anomalies

+ ra · (cwake + cmsg +2 · cbyte) · (m −ml)
︸ ︷︷ ︸

receive anomalies

Processing regions is only handled by higher nodes within
the network hierarchy and will be done only if anomalies are
received, that is nodes have received an anomaly before and
are already in a wake up mode.

CupdReg
region = ra · L · ccpu(process) ·maR

After the successful region computation, the region infor-
mation is propagated within the sensor network. We as-
sume, that only those nodes wake up that can handle the
propagated regions (i.e. using multiple-frequency opera-
tions [12]). With this assumption we get for the region
propagation the following cost

CpropReg
region = ra · L · (cmsg + size{O,P ,I} · cbyte) ·mlR

︸ ︷︷ ︸

send regions

+ ra · L · (cwake + cmsg + size{O,P ,I} · cbyte) ·mlR
︸ ︷︷ ︸

receive regions

Forwarding finished regions to the central node results in the
following cost

CforwReg
region = ra ·h · (cmsg + sizeR · cbyte) ·m f R

︸ ︷︷ ︸

send regions

+ ra · (h −1) · (cmsg + sizeR · cbyte) ·m f R
︸ ︷︷ ︸

receive regions

1 3

166 Franke et al.

Based on these assumptions and the algorithm described
above, we obtain the total cost for the in-network distributed
region processing

Cregion = Csampl +Cprocess
anomaly +CforwAD

region

+CupdReg
region +CpropReg

region +CforwReg
region

In this formula, we assume anomaly detection is done at the
sources. If this is replaced by leader node-based detection,
the ra in the first line must simply be replaced by rm (each
measurement is sent, not only anomalies). ccpu(anomalies)
corresponds to the CPU cost of the chosen method. Note
that all listed cost formulas are worst case approximations,
as we use average values etc. Nevertheless, they are suited
for analytically evaluating in-network processing by com-
paring the cost of each option. This is done in the following
Sect. 6.

6 Evaluation

In the following, we focus on the evaluation of the dis-
tributed version of our approach. The centralized region de-
tection approach has been evaluated in [10], and we showed
the feasibility of the threshold propagation in Sect. 4. Here
we now present an analytical evaluation of the in-network
processing options introduced in Sect. 5. For this, we in-
stantiate the proposed cost formulas with values measured
on real sensors and vary several cost factors. The purpose
of this evaluation is to (1) identify the sensitive factors that
have most influence on the actual choice on the degree of
distribution, and to (2) determine the benefits one gets from
in-network processing and in which situations such ben-
efits occur. We expect the in-network methods to be less
energy consuming than the central approach up to a certain
rate of anomalies ra. The detection of anomalies on sources
should perform best from this point of view, followed by
the methods using leader nodes and hierarchy-based region
detection.

We measured some typical Tmote Sky sensor nodes
running TinyOS-1.x (16 bit MCU MSP430F1611, 4 MHz
clock rate, IEEE 802.15.4 compatible CC2420 transceiver
with 250 kBit/s). The MCU works on 16 bit integers, di-
visions are processed in software. For the sending oper-

Measurement Time Energy

Compute average of 10 values 52.3 µs 0.272 µJ
Compute average of 100 values 245 µs 1.274 µJ
Single addition 2 µs 0.010 µJ
Single division 27 µs 0.140 µJ
Single multiplication 16.2 µs 0.08 µJ
Sending 1 byte 4.85 ms (2.33–6.95 ms) 240.19 µJ (121–361 µJ)
Sending 10 bytes 4.9 ms (2.8–7.4 ms) 252.93 µJ (146–385 µJ)

Table 2 Average energy consumption
measured on real sensors

ations of the transceiver, we used maximal output power
(+0 dBm). We assumed a battery voltage of 2.6 V and
neglected any fluctuations that may occur in reality. All
processing was done using the standard packet format of
TinyOS-1.x, which means that for transmitting 1 byte raw
data there are 12 bytes sent, due to headers, checksums etc.
This corresponds to a raw sending time of about 0.384 ms.
Consequently, with 10 bytes raw data there are 21 bytes sent
(about 0.672 ms). Table 2 summarizes the most important
results of the tests.

Roughly speaking, local processing is about 1000 times
cheaper than communication. This factor has also been iden-
tified in several other works, such as [6]. However, energy
consumption of MCU operations is much more determin-
istic than communication in wireless networks. More com-
plex routing protocols influence processing times and en-
ergy consumption. In our experiments, we did not apply
such sophisticated protocols. Moreover, they would result in
an overhead for both, processing and transmitting. The fluc-
tuations observed for sending messages are due to the used
CSMA protocol for radio transmissions, which uses random
backup times, among other things. This would not apply if
the TDMA protocol was used instead – but in turn there
would be more effort on synchronization etc. We also neg-
lected situations of high load in the network, which could
result in transmission delays as well. Furthermore, we did
not consider switching between active and idle modes and
techniques for optimizing energy consumption in this case
(e.g., by abstaining from the switch process in certain situ-
ations). Summarizing, we measured in a general but practi-
cally meaningful environment, which allows us to identify
meaningful differences between the in-network options.

Based on these observations, we can instantiate the for-
mulas from Sect. 5 with concrete values. For this, we de-
rived the average values from Table 2. Interestingly, we ob-
served that the number of sensors m and the rate of meas-
urements rm have no influence on the decision of in-network
processing. Of course, they influence the total energy con-
sumption, but all methods scale equally with them. The most
influential factor is clearly ra. This is illustrated in Fig. 7.
We show the costs in a m = 1000 sensor network, with a hi-
erarchy depth of h = 3 and one measurement per second
(rm = 1). The costs of the central approach are Ccentr and
those of the anomaly detection on source level are Cburst and

1 3

In-network detection of anomaly regions in sensor networks with obstacles 167

Fig. 7 Varying anomaly rate ra (m = 1000, ml = 200(150), h = 3, rm = 1)

Coutlier , respectively. The anomaly detection method using
leader nodes is referred to by Clead. Figure 7a shows that
message costs significantly outweigh processing costs. Only
with highest anomaly rates, the in-network costs are above
the central costs. Neighborhood-based anomaly detection on
leader nodes is cheaper for all rates. This is due to the im-
plicit aggregation of sensor messages on the lowest level of
the hierarchy.

The differences in Fig. 7b show that all methods scale
with the window size w, which is the size of the sliding
window on which anomaly detection is done (see Sect. 2.1).
Only the cost of the method using leader nodes is signifi-
cantly affected by w. With ml = 200 leader nodes the cost
of the in-network method is lower than the cost of the cen-
tral approach, up to an anomaly rate of ra = 0.5 (which is
still a very high rate). For larger neighborhoods (ml = 150)
and high values of w, the costs are higher even if there is no
anomaly detected at all.

This indicates that another sensitive factor is the ratio of
sensors to leader nodes, i.e., the size of the neighborhoods.
To illustrate this, we vary this ratio, as shown in Fig. 8. We
used an anomaly rate ra = 0.1. Further, we again show the
effect of the window size w. The figure reveals that only
for large window sizes (short terms up to an hour are com-
mon in streaming systems) the central approach should be
preferred if neighborhoods are rather large. The plots for
different ra with varying ml look similar, but in contrast they
are close for small ml and differ more for large ml – but not
as significantly as for different values of w.

Figure 8 also shows the rather weak effect of increasing
the depth of the hierarchy, i.e., the average hop count. In
contrast to Fig. 7 we used a hop count h = 4. Clearly, the
energy consumption of the central approach rises, caused
by the multi-hop protocol. The in-network methods rise as
well, but significantly slower. With 200 leader nodes, the en-

Fig. 8 Varying number of leader nodes ml (m = 1000, h = 4, rm = 1,
ra = 0.1)

ergy consumption of the method on leader nodes is at about
1.14 for ra = 0.1 in Fig. 7b. In Fig. 8 the energy consump-
tion for w = 5000 is at 1.17, whereas the central approach
increased by about 0.5 Watts.

Finally, we evaluated the in-network processing of
anomaly region detection. As this is based on anomaly de-
tection, we determined the cost for both steps in conjunction
(as we already did in the formula in Sect. 5). This only
concerns the CPU costs for each method and influences per-
formance of region detection negligible. In our experiments
we used the method for outlier detection on the sources ex-
emplarily. It is rather difficult to identify suitable values for
the used parameters maR, mlR and m f R without running tests
on real data. However, the purpose of the cost comparison is
to identify the sensitive parameters and to deduce the influ-
ence of region count and size. Thus, the effect of parameters
is more important than their concrete values. Intuitively, all
three depend on each other, and all three depend on ra as
well. We tested a wide range of concrete relations and con-

1 3

168 Franke et al.

Fig. 9 In-network region detection (m = 1000, ml = 200, h = 3, rm = 1, w = 5000)

cluded that the most influencing parameters are maR and L.
In Fig. 9 we illustrate the effect of both. According to other
tests we ran, a common average size of regions is about 6
sensors. Thus, we set mlR = maR/6. The higher L, the larger
are the regions and the smaller is m f R for constant mlR. We
chose to use m f R = mlR

L .
Figure 9 shows that, as expected, energy consumption for

in-network region detection is much higher than for just
anomaly detection. Furthermore, it does not scale linearly
and the point of “break even” concerning the central ap-
proach is earlier. However, in-network processing is still
worthwhile for rather small (and thus, usual) anomaly rates.
It can be seen in Fig. 9a that the anomaly rates where in-
network processing is worthwhile become smaller as the
number of regions increases (larger maR). Figure 9a also
shows that the more regions occur, the larger is the increase
of energy consumption. The size of the regions (larger re-
gions result in higher values for L) has a significant influ-
ence as well, but not as much as the number of regions (see
Fig. 9b).

Summarizing, in-network processing provides an excel-
lent opportunity to reduce energy consumption and thus
to increase life time of sensors. Anomaly detection on
sources should be delegated in principle. If leader nodes
are used to identify neighborhood-based anomalies, the
choice should depend on the crucial parameters like the
window size w. As expected, region detection can often
be better performed at the central instance (i.e. a pc with
a data stream engine). But in the case of low anomaly
rates it is still a good option for saving energy to per-
form the detection in-network. The benefit of in-network
region detection decreases with increasing number of re-
gions and size of these regions – due to the hierarchy-based
approach.

7 Conclusion and outlook

Detecting regions of anomalous phenomena in sensor net-
works is an interesting and challenging task. In this pa-
per we presented an anomaly region detection approach
that is aware of obstacles in a given sensor field. The
presented algorithm allows us to derive anomaly regions
with meaningful boundaries instead of regions described
only by grouping of measurement points. We use the
notion of a damping factor between pairs of sensors to
represent spatial obstacles like buildings or mountains.
With the help of the damping factor we are able to
describe the spread of a phenomenon though the sen-
sor field, taking the damping effect of obstacles into
account.

Transmitting data within a sensor network is one of the
most energy consuming sensor operations. In order to min-
imize communication costs and consequently improve the
network life time, we also presented an in-network pro-
cessing strategy for our detection approach. We developed
a formal cost model for both the intuitive centralized ap-
proach and the complete in-network computing. Finally, we
also showed analytical and experimental results to evaluate
our approaches.

As part of our ongoing work we plan to extend the frame-
work for supporting further anomaly detection techniques.
This includes other outlier models as well as support for
high-dimensional sensor data. This will facilitate region de-
tection in projected space, such that the detected regions
indicate in which spatial areas certain dimensions of the fea-
ture space are correlated. A second line of research is to
consider physical propagation models of the observed phe-
nomena. If we know how an event diffuses through a region
and along or around obstacles we could improve the accu-

1 3

In-network detection of anomaly regions in sensor networks with obstacles 169

racy of the boundary placement. Finally, we will integrate
the anomly detection algorithm into our data stream pro-
cessing system AnduIN1, which already supports distributed
sensor-local processing.

Acknowledgement This work was in part supported by the Na-
tional Science Foundation under Award No. ATM-0619139 and by the
BMBF under grant 03WKBD2B.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. MIT Computer Science and Artificial Intelligence Lab (2004) In-
tel lab sensor data. http://db.csail.mit.edu/labdata/labdata.html

2. California Irrigation Management Information System (CIMIS)
(2008) http://wwwcimis.water.ca.gov

3. Angiulli F, Fassetti F (2007) Detecting distance-based outliers in
streams of data. In: Proc. 16th ACM Conference on Conference
on Information and Knowledge Management (CIKM’07), New
York, pp. 811–820

4. Basu S, Meckesheimer M (2007) Automatic outlier detection
for time series: an application to sensor data. Knowl Inf Sys
11(2):137–154

5. Kant Chintalapudi K, Govindan R (2003) Localized edge detec-
tion in sensor fields. In: Proc. 1st IEEE Int. Workshop on Sensor
Network Protocols and Applications, May 2003, pp. 59–70

6. Culler D, Estrin D, Srivastava M (2004) Overview of sensor net-
works. IEEE Comput 37(8):41–49

7. Singh Dhillon S, Chakrabarty K (2003) Sensor placement for ef-
fective coverage and surveillance in distributed sensor networks.
In: Proc. of IEEE Wireless Communications and Networking
Conference, pp. 1609–1614

8. Ding M, Chen D, Xing K, Cheng X (2005) Localized fault-
tolerant event boundary detection in sensor networks. In: Proc.
of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies INFOCOM 2005, March 2005, Vol. 2,
pp. 902–913

9. Estivill-Castro V, Lee I (2001) Fast spatial clustering with differ-
ent metrics and in the presence of obstacles. In: Proc. 9th ACM
Int. Symposium on Advances in Geographic Information Systems
(ACM-GIS’01), Atlanta, pp. 142–147

10. Franke C, Gertz M (2008) Detection and exploration of outlier re-
gions in sensor data streams. In Proc. Int. Workshop on Spatial
and Spatiotemporal Data Mining (SSTDM’08), Dec 2008

11. Gehrke J, Madden S (2004) Query processing in sensor networks.
IEEE Pervas Comput 3(1):46–55

12. Gu L, Stankovic JA (2005) Radio-triggered wake-up for wireless
sensor networks. Real-time Sys 29:157–182

1 http://www.tu-ilmenau.de/fakia/AnduIN.8598.0.html

13. Han J, Kamber M, Tung AKH (2001) Spatial Clustering Methods
in Data Mining: A Survey. In: Miller H, Han J (eds) Geographic
Data Mining and Knowledge Discovery. CRC Press, pp. 201–230

14. Klan D, Karnstedt M, Pölitz C, Sattler KU (2008) Towards burst
detection for non-stationary stream data. In: Proc. Workshop
on Knowledge Discovery, Data Mining, and Machine Learning
(KDML 2008)

15. Kolingerová I, Zalik B (2006) Reconstructing domain boundaries
within a given set of points, using delaunay triangulation. Comput
Geosci 32(9):1310–1319

16. Krause A, Guestrin C, Gupta A, Kleinberg J (2006) Near-optimal
sensor placements: maximizing information while minimizing
communication cost. In: Proc. of the 5th Int. Conference on In-
formation Processing in Sensor Networks (IPSN ’06), New York,
pp. 2–10

17. Krishnamachari B, Estrin D, Wicker SB (2002) The impact of
data aggregation in wireless sensor networks. In: ICDCSW ’02,
Washington, DC, pp. 575–578

18. Lu C-T, Kou Y, Zhao J, Chen L (2007) Detecting and tracking re-
gional outliers in meteorological data. Inf Sci 177(7):1609–1632

19. Nowak R, Mitra U (2003) Boundary estimation in sensor net-
works: Theory and methods. Inform Proc Sens Netw 2634:80–95

20. Shasha D, Zhu Y (2004) High Performance Discovery in Time
Series: Techniques and Case Studies. Springer, Berlin

21. Subramaniam S, Palpanas T, Papadopoulos D, Kalogeraki V,
Gunopulos D (2006) Online outlier detection in sensor data using
non-parametric models. In: Proc. Int. Conf. on Very Large Data
Bases (VLDB’06), pp. 187–198

22. Tung AKH, Hou J, Han J (2001) Spatial clustering in the pres-
ence of obstacles. In: Proc. 17th Int. Conference on Data En-
gineering (ICDE’01), Washington, DC, IEEE Computer Society,
pp. 359–367

23. Wu W, Cheng X, Ding M, Xing K, Liu F, Deng P (2007) Lo-
calized outlying and boundary data detection in sensor networks.
IEEE Trans Knowl Data Engin 19(8):1145–1157

24. Yao Y, Gehrke J (2003) Query processing for sensor networks. In:
Proc. of the 1st Biennial Conference on Innovative Data Systems
Research (CIDR’03), January 2003

25. Yao Y, Gehrke J (2002) The cougar approach to in-network query
processing in sensor networks. ACM SIGMOD Record 31(3):9–18

26. Zhang J, Lou M, Ling TW, Wang H (2004) Hos-miner: a sys-
tem for detecting outlyting subspaces of high-dimensional data.
In: Proc. Int. Conf. on Very Large Data Bases (VLDB’04), VLDB
Endowment, pp. 1265–1268

27. Zhang J, Papadias D, Mouratidis K, Zhu M (2004) Spatial queries
in the presence of obstacles. In: Proc. 9th Int. Conference on
Extending Database Technology (EDBT’04), Heraklion, Crete,
Greece, pp. 366–384

28. Zhang X, Shasha D (2006) Better burst detection. In: Proc. 22nd
Int. Conference on Data Engineering (ICDE’06), pp. 146–149

29. Zhao F, Liu J, Liu J, Guibas L, Reich J (2003) Collaborative
signal and information processing: An information directed ap-
proach. Proc IEEE 1199–1209

30. Zhu Y, Shasha D (2003) Efficient elastic burst detection in data
streams. In: KDD ’03, New York, pp. 336–345

1 3

http://db.csail.mit.edu/labdata/labdata.html
http://wwwcimis.water.ca.gov
http://www.tu-ilmenau.de/fakia/AnduIN.8598.0.html

170 Franke et al.

Conny Franke is a Ph.D. student
in the Department of Computer
Science at the University of Cal-
ifornia, Davis. She received her
Diploma (M.Sc.) in Computer Sci-
ence from the Ilmenau University
of Technology, Germany, in 2005.
Her current research interests in-
clude data mining on data streams,
spatial, and spatio-temporal data
as well as resource-adaptive and
quality-aware stream mining.

Marcel Karnstedt received
his Diploma (M.Sc.) from the
Martin-Luther-Universität Halle-
Wittenberg, Germany, at the end
of 2003. From January 2004 to
February 2009 he was employed
as research associate and teaching
assistant in the Databases &
Information Systems Group at the
Ilmenau University of Technology,
Germany. Since March 2009 he
is member of the Information
Mining and Retrieval Unit at
the Digital Enterprise Research
Institute, National University
of Ireland, Galway. His current
research interests are in large-scale

graph mining (particularly social network graphs), P2P databases,
and resource-adaptive and quality-aware stream mining.

Daniel Klan is a Ph.D. student
at the Database & Information
Systems group at the Faculty of
Computer Science and Automa-
tion of the Ilmenau University
of Technology, Germany. He
received his Diploma (M.Sc.)
in Computer Science from the
University of Jena, Germany. His
current research interests include
data mining on data streams and
sensor networks.

Michael Gertz is a full profes-
sor at the University of Heidel-
berg where he heads the database
systems group at the faculty of
Mathematics and Computer Sci-
ence. He received his diploma in
Computer Science from the Uni-
versity of Dortmund, Germany, in
1991 and his Ph.D. from the Uni-
versity of Hannover, Germany, in
1996. From 1997 until 2008 he
was a faculty at the University of
California at Davis. He currently
serves on the editorial board of the
VLDB Journal, and he is an asso-
ciate editor of the ACM Journal on
Data and Information Quality. His

research interests include the management and analysis of scientific
data, with a particular focus on streaming, spatial and spatio-temporal
data.

Kai-Uwe Sattler is full professor
and heads the Database and Infor-
mation Systems group at the Fac-
ulty of Computer Science and Au-
tomation of the Ilmenau Univer-
sity of Technology, Germany. He
received his Diploma (M.Sc.) in
Computer Science from the Uni-
versity of Magdeburg, Germany.
He received his Ph.D. in Computer
Science in 1998 and his Habilita-
tion (venia legendi) in Computer
Science in 2003 from the same
university. He has published five
textbooks and more than 100 re-
search papers. His current research
interests include autonomic fea-

tures in database systems and large-scale distributed data manage-
ment.

Elena Chervakova received the
B.Sc. degree in computer engin-
eering from the Moscow Power
Engineering Institute (Technical
University), Moscow, Russland,
the M.Sc. degree in computer
engineering from Ilmenau Uni-
versity of Technology, Germany.
She is currently working toward
the Ph.D. degree in electrical
and computer engineering at the
Ilmenau University of Technol-
ogy and is a researcher at the
Institute of Microelectronics- and
Mechatronics Systems, Ilmenau,
Germany. Her research interests
include signal processing, control

and automation, wireless sensor networks and localization.

1 3

	1 Introduction
	2 Background and setup
	2.1 Degree-based anomalies
	2.2 Anomaly regions and obstacles
	2.2.1 Anomaly regions
	2.2.2 Obstacles

	2.3 Three tier framework

	3 Related work
	4 Detecting anomaly regions
	5 Distributed approach
	5.1 Central computation
	5.2 Distributed anomaly detection
	5.3 Neighborhood based anomaly detection
	5.4 Distributed region detection

	6 Evaluation
	7 Conclusion and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

