Improving the Availability of Supercomputer Job Input Data Using Temporal Replication
Chao Wang Zhe Zhang Xiaosong M&f Sudharshan S. Vazhkudai Frank Muellet

Abstract adopted by RAID systems to make reconstruction yield to ap-

Supercomputers are stepping into the Peta-scale and Exayplication requests. This causes a RAID group to be more vul-
scale era, wherein handling hundreds of concurrent systemnerable to additional disk failures during reconstruc{2oi.
failures is an urgent challenge. In particular, storage teys According to recent studies?], disk failures are only
failures have been identified as a major source of service in-part of the sources causing data unavailability in storgge s
terruptions in supercomputers. RAID solutions alone canno tems. RAID cannot help with storage node failures. In next-
provide sufficient storage protection as (1) average diskve generation supercomputers, thousands or even tens of thou-
ery time is projected to grow, making RAID groups increas- sands of 1/0 nodes will be deployed and will be expected to
ingly vulnerable to additional failures during data recans- endure multiple concurrent node failures at any given time.
tion, and (2) disk-level data protection cannot mask higher Consider the Jaguar system at Oak Ridge National Labora-
level faults, such as software/hardware failures of enitie tory, which is on the roadmap to a petaflop machine (currently
nodes. This paper presents a complementary approach baseflo. 5 on the Top500 list with 23,412 cores and hundreds of
on the observation that files in the supercomputer scratch|/O nodes). Our experience with Jaguar shows that the ma-
space are typically accessed by batch jobs, whose executiofority of whole-system shutdowns are caused by I/0O nodes’
can be anticipated. Therefore, we propose to transparently software failures. Although parallel file systems, suchas-L
selectively, and temporarily replicate "active” job inpdtita, tre [7], provide storage node failover mechanisms,our expe
by coordinating the parallel file system with the batch job rience with Jaguar again shows that this configuration might
scheduler. We have implemented the temporal replicationconflict with other system settings. Further, many supercom
scheme in the popular Lustre parallel file system and eval- puting centers hesitate to spend their operations budget on
uated it with both real-cluster experiments and trace-énv replicating I/O servers and instead purchase more FLOPS.

simulations. Our results show that temporal replicatiOH al Figure 1 gives an overview of an event timeline describing
lows for fast online data reconstruction, with a reasonably g typical supercomputing job’s data life-cycle. Users stag

low overall space and I/O bandwidth overhead. their job input data from elsewhere to the scratch space, sub
1 Introduction mit their parallel jobs using a batch script, and offload the

) _))) output files to archival systems or local clusters. For bette
Coping with failures is a key issue to address as we scalegpace ytilization, the scratch space does not enforce gjuota
to Peta- and Exa-flop supercomputers. The reliability and us ¢ purges files after a number of days since the last access.

ability of these machines rely primarily on the storage sys- Moreover, job input files are often read-only (also readejnc
tems providing the scratch space. Almost all jobs need to 5, output files are write-once.

read input data and write output/checkpoint data to the sec-
ondary storage, which is usually supported through a high-

_pgrformance paralk_al file sys_tem. Jobs are interruptedranre 1,4 input data availability problem poses two unique issues
if input/output data is unavailable or lost. First, input operations are more sensitive to server fedur
Storage systems have been shown to consistently rankotput data can be easily redirected to survive runtimager
as the primary source of system failures, according to logstsjjyres usingeager offloading[13, 16]. As mentioned ear-
from large-scale parallel computers and commercial data ce |jgr, many systems like Jaguar do not have file system server
ters [12]. This trend is only expected to continue as indiald fajlover configurations to protect against input data uitava
disk bandwidth grows much slower than the overall super- ability. In contrast, during the output process, parallig fi
computer capacity. Therefore, the number of disk drived use systems can more easily skip failed servers in striping a new
in a supercomputer will need to increase faster than the overjje or perform restriping if necessary. Second, loss of tnpu
all system size. Itis predicted that by 2018, a system at thegata often brings heavier penalty. Output files already-writ
top of the top500.0rg chart will have more than 800,000 disk e can typically withstand temporary 1/O server failures o
drives with around 25,000 disk failures per year [20]. RAID reconstruction delays as job owners have days to per-
Currently, the majority of disk failures are masked by hard- form their stage-out task before the files are purged from the
ware solutions such as RAID [17]. However, it is becom- scratch space. Input data unavailability, on the other hiand
ing increasingly difficult for common RAID configurationsto curs job termination and resubmission. This introduces the
hide disk failures as disk capacity is expected to grow by 50% high cost of job re-queuing, typically orders of magnitude
each year, which increases the reconstruction time. The re{arger than the input I/0 time itself.
construction time is further prolonged by the “polite” i Fortunately, unlike general-purpose systems, in supercom
- _ _ ~_ puters we can anticipafature data accesses by checking the
{mhfoe’pzt'z ha?]fg Sﬁgggfegﬁ"e{”ﬁ:” nsglrﬁherc}ag!r_]icitjti dldn"’ers'ty job scheduling status. For example, a compute job is only abl

t Computer Science and Mathematics Division, Oak Ridge Natibab- to_ read it.S input data during its execution. By coordinating
oratory {vazhkudai ss}@r nl . gov 1 with the job scheduler, a supercomputer storage system can

Although most supercomputing jobs performing numerical
simulations are output-intensive rather than input-isies

Compute Nodes Scratch Space Archival System

inpur) | T]
===

Parallel 1/0 8 folsep T ==
@ Batch Job Queue ———

/home 7 —— —
Implemented Replication Interval : Ideal Replication Interval

%

1 6 7 8 Time
Input Job Input 0utput Job Output Puree
Staging Submissi L" patch Compl Comp Completi Offload &

Fig. 1: Event timeline with ideal and implemented replication intervals
selectively provide additional protection only for the dtion at any given time. To estimate the extra space requirement,
when the job data is expected to be accessed. we examined the sizes of the aggregate memory space and
Contributions: In this paper, we propogemporal file repli- the scratch space on state-of-the-art supercomputers. The
cation, wherein a parallel file system performs transparent premise is that with today’s massively parallel machines an
and temporary replication of job input data. This faci®t with the increasing performance gap between memory and
fast and easy file reconstruction before and during a job’s ex disk accesses, batch applications are seldom out-of-this.
ecution without additional user hints or application modifi also agrees with our observed memory use pattern on Jaguar
cations. Unlike traditional file replication techniquedjiah (see below). Parallel codes typically perform input at the
have mainly been designed to improve long-term data per-beginning of a run to initialize the simulation or to read in
sistence and access bandwidth or to lower access latercy, thdatabases for parallel queries. Therefore, the aggregate m
temporal replication scheme targets the enhancementdf sho ory size gives a bound for the total input data size of active
term data availability centered around job executionspesu jobs. By comparing this estimate with the scratch space size
computers. we can assess the relative overhead of temporal replication

We have implemented our scheme in the popular Lustre Table 1 summarizes such information for top five super-
parallel file system and combined it with the Moab job sched- computers, on the Top500 list [24]. We see that the memory-
uler by building on our previous work on coinciding input to-storage ratio is less than 8%. Detailed job logs withjpbr-
data staging alongside computation [30]. We have also im-peak memory usage indicate that the above approximation of
plemented a replication-triggering algorithm that conedes using the aggregate memory size significantly overestisnate
with the job scheduler to delay the replica creation. Ushig t the actual memory use (discussed later in this subsection).
approach, we ensure that the replication completes intime t While the memory-to-storage ratio provides a rough esti-
have an extra copy of the job input data before its execution. mation of the replication overhead, in reality, howevenimn

We then evaluate the performance by conducting real-ber of other factors need to be considered. First, when analy
cluster experiments that assess the overhead and sdglabili ing the storage space overhead, queued jobs’ input filesotann
of the replication-based data recovery process. To ewsitsat be ignored, since their aggregate size can be even larger tha
space overhead, we performed a trace-driven simulatietbas that of running jobs. In the following sections, we propode a
on three years’ worth of detailed job logs obtained from the ditional optimizations to shorten the life span of replicésc-
ORNL Jaguar system (No. 5 in TopS00 supercomputers). Ourond, when analyzing the bandwidth overhead the frequency
experiments indicate that (1) replication and dataregov@n of replication should be taken into account. Jaguar’s j@s lo
be performed quite efficiently and (2) less than 1% of the to- show an average job run time of around 1000 seconds and an
tal disk scratch space is required to create one extra capy fo average aggregate memory usage of 31.8GB, which leads to
the input data of active or about-to-be-dispatched jobsisTh a bandwidth consumption of less than 0.1% of Jaguar’s total
our approach presents a novel way to bridge the gap betweegapacity of 284GB/s. For this reason, in the following discu
parallel file systems and job schedulers, thereby enabkng u sions we primarily focus on the space overhead.
to strike a balance between an HPC center resource consump- Next, we discuss a supercomputer’'s usage scenarios and
tion and serviceability. configuration in more detail to justify the use of replicatio
2 Temporal Replication Design improve job input data availability.

Supercomputers are heavily utilized. Most jobs spend sig- Even though replication is a widely used approach in
nificantly more time waiting in the batch queue than actually many distributed file system implementations, it is seldom
executing. The popularity of a new system ramps up as it goesadopted in supercomputer storage systems. In fact, manry pop
towards its prime time. For example, from the 3-year Jaguarular high-performance parallel file systems (e.g., Lustré a
job logs, the average job wait-time:run-time ratio incesas PVFS) do not even support replication, mainly due to space
from 0.94 in year 2005, to 2.86 in 2006, and 3.84 in 2007. concerns. The capacity of the scratch space is important in
2.1 Justification and Design Rationale (1) allowing job files to remain for a reasonable amount of

A key concern about the feasibility of temporal replica- time (days rather than hours), avoiding the loss of precious
tion is the potential space and I/O overhead replicatiorhinig job input/output data, and (2) allowing giant “hero” jobs to
incur. However, we argue that by replicating selected “ac- have enough space to generate their output. Blindly raplica
tive files” during their “active periods”, we are only refie ing all files, even just once, would reduce the effectivetstra
ing a small fraction of the files residing in the scratch spafe capacity to half of its original size.

System # Cores | Aggregate Memory (TB) | Scratch Space (TB) | Memory to Storage Ratio | Top 500 Rank
RoadRunner (LANL) 122400 98 2048 4.8% 1
BlueGene/L (LLNL) 106496 73.7 1900 3.8% 2

Blue Gene/P (Argonne) 163840 80 1126 7.1% 3
Ranger (TACC) 62976 123 1802 6.8% 4
Jaguar Cray XT3/4(ORNL 23412 46.8 600 7.8% 5

Table 1: Configurations of several leading supercomputers as of Jur2008

Temporal replication addresses the above concern by Ieveryvhere@i| 's the number of nodes requested by ifieranked

aging job execution information from the batch scheduler. J(?f?emntjhr?]l?:regfef(;Zet:eu?eaé(lbm utﬁesir;?li'é?t:unnﬁﬁ fqgg;mt
This allows it to only replicate a small fraction of “activées” y 9 9]

. . AN) . the total number of nodes in the system, and the replication
in the scratch space by letting the “replication windowtisli :)

. factora(0 < «) is a controllable parameter to determine the
as jobs flow through the batch queue.

Temporal replication is further motivated by several ongo- eagerness of replication.
. poralrep . . y se 9 One problem with the above approach is that job queues
ing trends in supercomputer configurations and job behavior

First, as mentioned earlier, Table 1 shows that the memory too e quite dynamic, as strategies such as backfilling are typ-

. . 2 Tically used with an FCFS or FCFS-with-priority scheduling
scratch space ratio of the top 5 supercomputers is rehativel . : . :
low. Second, it is rather rare for parallel jobs on these ma- policy. Therefore, jobs do not necessarily stay in the queue

. . . in their arrival order. In particular, jobs that require aadim
chines to fully consume the available physical memory on .
: . . number of nodes are likely to move ahead faster. To address
each node. A job may complete in shorter time on a larger

number of nodes due to the division of workload and data, re-thls’ we augment the above replication window selectioh wit

L : a “shortcut” approach and define a threshdld) < 7' < 1.
sulting in lower per-node memory requirements at a compa- . o .
! . Jobs that reque8t - S nodes will have their input data repli-
rable time-node charge. Figure 2 shows the per-node memory

. . cated immediately regardless of the current replica window
usage of bothrunning and queuedjobs over one month on . . .
. . This approach allows jobs that tend to be scheduled quickly
the ORNL Jaguar system. It backs our hypothesis that jobs : . . ; . .
X . . to enjoy early replica creation. Our experiments in Section
tend to be in-core, with their aggregate peak memory usage . s :
- . ; . 4.5 provide an empirical study of the choicecondT.
providing an upper bound for their total input size. We also 3 E Replica R I
found the actual aggregate memory usage averaged over thg' ager ~eplica hemova . .
. N We can also shorten the replicas’ life span by removing the
300 sample points to be significantly below the total amount

of memory available shown in Table 1: 31.8GB for running gXtr?o;c():Eyi:?ge ;vr?ol:rzomelt ;Zr;]gf/gle:td% ?) cﬁr;el?etlt\i/oerl\ytisri];e
jobs and 49.5GB for queued jobs. bp P J P '

. . Although users sometimes submit additional jobs using the
2.2 Delayed Replica Creation J))

Based on the above observations about job wait times andsa.Ime Input Qata, th_e primary data copy will again be protecte
! S with our offline availability check and recovery [30]. Fueth
cost/benefit trade-offs for replication in storage spaeepro-

. . i g .. subsequent jobs will also trigger replication as they pesgr
Fnoesceh;hneisfrzllowmg design of an HPC-centric file replication toward the head of the job queue.

. — . - Overall, we recognize that the input files for most in-core
When jobs spend a significant amount of time waiting, : LT . .
. ot : . . - parallel jobs are read at the beginning of job execution and
replicating their input files (either at stage-in or subrioiss

. ' never re-accessed thereafter. Hence, we have desigresd an
time) wastes storage space. Instead, a parallel file systam ¢ . .
obtain the current queue status and determimepéication ger replica removalstrategy that removes the extra replica

: . : . . . once the replicated file has been closed by the application.
trigger pointto create replicas for a given job. The premise

here is to have enough jobs near the top of the queue, stocke his significantly shortens the replication duration, esie/

up with their replicas, such that jobs dispatched next veilldn or Ipng-_runnmgjobs. Sth an aggressive removal policy ma
. " S . subject input files to a higher risk in the rare case of a subse-
extra input data redundancy. Additional replication wid b

triggered by job completion events, which usually result in guent access further down in its execution. However, we con-

: . . . _sider the reduced space requirements for the more common

the dispatch of one or more jobs from the queue. Since jobs : S
. .~ ~~case outweighs this risk.

are seldom interdependent, we expect that supplementing & Implementation Issues

modest prefix of the queued jobs with a second replica of their

.) o i p A Lustre [7] file system comprises of three key compo-
input will be sufficient. Only one copy of a job’s input data

,) e y = v X nents: clients, a MetaData Server (MDS), and Object Storage
will be available till its replication trigger point. Howev, — gerers(0SS). Each OSS can host several Object Storage Tar-
this primary copy can be protected with periodic avail@pili 46t (OST) that manage the storage devices. All our modifi-
checks and remote data recovery techniques previously-deve caions were made within Lustre and do not affect the POSIX
oped and deployed by us [30]. file system APIs. Therefore, data replication, failover agd

Completion of a large job is challenging as it can activate covery processes are entirely transparent to user afiphieat
many waiting jobs, requiring instant replication of mulép 3.1 Replica Management Services

datasets. As a solution, we propose to query the queue status |, o, implementation, a supercomputer's head node dou-
from the job scheduler. Let the replication window, be a5 55 4 replica management service node, running as a Lus-
the length of the prefix of jobs at the head of the queue thatyg cjient, Job input data is usually staged via the head node
should have their replicas readys should be the smallest aying it well suited for initiating replication operatisn

integer such that- 10| > maz(R, aS) Replica management involves generating a copy of the
1))

et input dataset at the appropriate replication trigger point

rnning
Prys ‘ queued —— -

Amount of memory (MB)

0 50 100
Sample points

Fig. 2: Per-node memory usage from 300 uniformly sampled time poirst
over a 30-day period based on job logs from the ORNL Jaguar sysm.
For each time point, the total memory usage is calculated a$ie sum of
peak memory used per job, i.e., aggregated across all jobs guestion.

DL Bl [e[e8] w]s]
File Size = 16MB, Stripe Count = 4, Stripe Size = IMB
OST1 OST2 OST3 OST4 OST5 OST6 OST7 OST8

obj0 objl obj2 obj3 obj0' objl' objZ obj3 objl"

Original File| 50 1,2, 3 Original File | objo, 1', 2, 3
(foo) @ (foo)
Replica (foo')| obj0', 1, 2', 3' Replica (foo') | obj0', 1", 2', 3'

Fig. 3: Objects of an original job input file and its replica. A failur e
occurred to OST1, which caused accesses to the affected atij¢o be
redirected to their replicas on OST5, with replica regeneraion on OST8.

scheduling periodic failure detection before job exeautio
and also scheduling data recovery in response to reconstru

tion requests. Data reconstruction requests are initiayed

the compute nodes when they observe storage failures dur
ing file accesses. The replica manager serves as a coomdinat

that facilitates file reorganization, replica reconstiarttand

streamlining of requests from the compute nodes in a non-

redundant fashion.
3.1.1 Replica Creation and Management

c

3.1.3 Object Failover and Replica Regeneration

Upon an I/O node failure, either detected by the head node
as part of the periodic offline check or by a compute node
through an 1/O error, the aforementioned file and failure in-
formation is sent to the head node. The replica management
service modules on the head node will query Lustre using sev-
eral new commands that we have developed, to identify the
appropriate objects in the replica file that can be used to fill
the holes in the original file. The original file’s metadata is
updated subsequently to integrate the replicated objets i
the original file for seamless data access failover. Sindame
data updates are inexpensive, the head node is not expected t
become a potential bottleneck.

To maintain the desired data redundancy during the pe-
riod that a file is replicated, we choose to create a “secgndar
replica” on another OST for the failover objects after aager
failure. The procedure begins by locating another OST, giv-
ing priority to one that currently does not store any parhef t
original or the primary replica filé.Then, the failover objects
are copied to the chosen OST and in turn integrated into the
primary replica file. Since the replica acts as a backup, it is
not urgent to populate its data immediately. In our implemen
tation, such stripe-wise replication is delayed by 5 sesond
(tunable) and is offloaded to I/O nodes (OSSs).

3.1.4 Streamlining Replica Regeneration Requests

Due to parallel 1/0O , multiple compute nodes (Lustre
clients) are likely to access a shared file concurrently.rdhe

ore, in the case of a storage failure, we must ensure that
the head node issues a single failover/regeneration regeles

file and per OST despite multiple such requests from differ-
ent compute nodes. Also, all the concerned compute nodes
must receive the same object information to update the#l loc
data structure. We have implemented a centralized coordina

We use the copy mechanism of the underlying file systemtor inside the replica manager on the head node to handle the

to generate a replica of the original file. In creating thdicep

we ensure that it inherits the striping pattern of the o@din
file and is distributed on 1/0O nodes disjoint from the oridina

requests in a non-redundant fashion.

3.2 Coordination with Job Scheduler
As we discussed in Sections 1 and 2, our temporal replica-

file’s 1/0 nodes. As depicted in Figure 3, the objects of the tion mechanism is required to be coordinated with the batch

original file and the replica form pairs (objects ('), (1, 1),
etc.). To locate the replica and its objects, we utilize teist

job scheduler to achieve selective protection for “actiyata.

In our target framework, batch jobs are submitted tsub-

extended attribute mechanism. For a given input file, we addmission managen/vhich parses the SCfiptS, recognizes and

replica details using these attributes. This way, the cagh
associated with the original file for its lifetime.

3.1.2 Failure Detection

records input data sets for each job, and creates corresgpnd
replication operations at the appropriate time.
To this end, we leverage our previous work [30] that au-

tomatically separates out data staging and compute jobrs fro
a batch script and schedules them by submitting these jobs
to separate queues (“dataxfer” and “batch”) for better cmnt
This enables us to coordinate data staging alongside compu-
Ofation by setting up dependencies such that the compute job
only commences after the data staging finishes. The data op-
eration itselfis specified in the PBS job script as followsigsi
a special “STAGEIN” directive:
#STAGEIN hsi -q -A keytab -k

For persistent data availability, we perform periodic-fail
ure detection before a job’s execution. This offline faildes
tection mechanism was described in our previous work [30].

age failure detection and access redirection during a job ru

To do so, the POSIX file I/O APl is intercepted by our Lustre

patched VFS system call&.g, the read method of a Lustre

client will issue thell_file_read() function. Both I/O node

failures and disk failures will result in an I/O error immedi .
o) . . ny keytabfile -1 user

ately Wlthlnll_le_e_read(). Upon .capturln.g the 1/O error in “*get /scratch/user/destinationfile :

the system function, Lustre obtains the file name and the in-, nput file "’

dex of the failed OST. Such information is then sent by the _

client to the head node, which, in turn, initiates the objeet

organization and replica reconstruction procedures. 4

1in Lustre, file is across 4 OSTs by default. Since supercoenpuypi-
cally have hundreds of OSTs, an OST can be easily found.

@ up-front recovery overhead
M mid-way recovery overhead
Oup-front replica reconstruction cost
O mid-way replica reconstruction cost

70 | WERw/ 1MB chunk

WFR w/ 2MB chunk

60 WFR w/ 4MB chunk —K—
r RR w/ 1MB chunk —&—

40 RR w/ 2MB chunk

30 RR w/ 4MB chunk

cost (seconds)

e

Reconstruction cost (seconds)
wn
(=]

128MB 256MB 512MB 1GB 2GB

File size

128MB ngl.\/IB 51;\/IB lgB 2GB
File size
Fig. 4: Offline replica reconstruction cost with varied file size Fig. 5: MM recovery overhead vs. replica reconstruction cost .
We extend this work by setting up a separate queue,OST/OSS). We varied the file size from 128MB to 2GB. With
“ReplicaQueue”, that accepts replication jobs. We have als one OST failure, the data to recover ranges from 8MB to
implemented @eplication daemonhat determines “whatand ~ 128MB, causing a linear increase in RR overhead. Figure 4
when to replicate”. The replication daemon creates a newalso shows that the cost afhole file reconstruction (WFR)
replication job in the ReplicaQueue so that it completes in the conventional alternative to our more selective scheme
time for the job to have another copy of the data when it is where the entire file is re-copied, has a much higher overhead
ready to run. The daemon periodically monitors the batch Inaddition, RR costincreases as the chunk size decreases, d
queue status using thgstat tool and executes the delayed to the increased fragmentation of data accesses.
replica creation algorithm described in Section 2.2. These4.3 Online Recovery
strategies enable the coordination between the job schiedul 4,.3.1 Application 1: Matrix Multiplication
and the storage system, which allows data replication anly f ~ To measure on-the-fly data recovery overhead during a job
the desired window during the corresponding job’s life eycl run with temporal replication, we used MM, an MPI kernel
on a supercomputer. that performs dense matrix multiplication. It computes the
4 Experimental Results standard” = A x B operation, whered, B andC' aren *n
C matrices. A and B are stored contiguously in an input file.
To evaluate the temporal replication scheme, we (1) per- . . o
. We varyn to manipulate the problem size. Like in many ap-
formed real-cluster experiments and (2) conducted a trace-_,.” : . .
. . . . plications, only one master process reads the input filey the
driven simulation study. The former assesses our impleanent .
. AT . : broadcasts the data to all the other processes for parallgt m
tion of temporal replication in the Lustre file system, imber

. - . plication using a BLOCK distribution. Since input operaiso
of the online data recovery efficiency. Two representatare p . .
- . are concentrated at the beginning of the run, and the code is
allel codes are used to measure the visible overhead of fail- S . -
. . computation-intensive, we focus on the visible recovemrov
ure detection and data reconstruction. The latter assdsses

) . head with 1 OST failure.
long-term, center-wide scratch space consumption of tempo : . o
L S . Figure 5 depicts the MM recovery overhead with different
ral replication for job input data based on three years of job

logs collected from the ORNL Jaguar system. problen_w sizes. Here, the MPI job ran on 16 cpmpute noqes,
) each with one MPI process. The total input size was varied

4.1 Experimental Framework from 128MB to 2GB by adjusting:.. The input filestripe

Our testbed comprised a 17-node Linux cluster at NCSU. countwas 4, and thetripe sizewas 1MB. We configured 9
The nodes were 2-way SMPs each with four AMD Opteron OSTs (1 OST/OSS), with the original file residing on 4 OSTs,
1.76 GHz cores and 2 GBs of memory, connected by a Giga-the replica on another 4, and the reconstruction of theviailo
bit Ethernet switch. The OS used was Fedora Core 5 LinuXobject occurring on the remaining one. Limited by our cluste
x86.64, with Lustre version 1.6.3. The cluster nodes were sjze, we let nodes double as both I/0 and compute nodes.
setup as /O servers, or compute nodes (Lustre clients), or To simulate random storage failures, we varied the point in
both, as discussed later. time where a failure occurs. In “up-front”, an OSTs failure
4.2 Failure Detection and Offline Recovery was induced right before the MPI job started running. Hence,

As mentioned in Section 3.1.2, before a job begins to run, the master process experienced an I/O error upon its firat dat
we periodically check for failures on OSTs that carry itsihp ~ access to the failed OST. With the other case, “mid-way”, one
data. As we configure all OSTs in the “fail-out” mode, OST OST failure was induced mid-way during the input process.
failure can be recognized without any timeout. The detectio The master encountered the I/O error amidst its reading and
cost is less than 0.1 seconds as the number of OSTs increas&§nt a recovery request to the replica manager on the head
to 256 (16 OSTs on each of the 16 OSSs) in our testbed. Sincdode. Figure 5 indicates that the application-visible veco
failure detection is performed when a job is waiting, it ircu ~ €ry overhead was almost constant for all cases (right around
no overhead on job execution itself. 1 second) considering system variances. This occurs becaus

When an OST failure is detected, the following two steps ©nly one object was replaced for all test cases while only one
are performed to recover the file from its replica: object Process was engaged ininput. Even though the replication re
failover and rep“ca reconstruction. The overhead of dbjec construction cost rises as the file size increases, this wlas h
failover is relatively constant (0.84-0.89 seconds) rdgms den from the application. The application simply progrelsse
of the number of OSTs and the file size. This is due to the factWith the failover object from the replica, while the replita
that the operation only involves the MDS and the client that Self was replenished in the background.
initiates the command. 4.3.2 Application 2: mpiBLAST

Figure 4 shows the replica reconstruction (RR) cost with To evaluate the data recovery overhead using temporal
different file sizes. The test setup consisted of 16 OSTss(lrepIication with a read-intensive application, we testathw

Recovery overhead / reconstruction

3

F o0 S, 4.5 Replication Simulation Results

5 g B mid-way recovery overhead : p

g . In our experiments, we replayed the job traces and simu-

§ 4 lated a job queue according to the submission and dispatch

g2 E. times of jobs. Several replication strategies, descrihekic-

g o tion 2.2, were used to evaluate our dynamic replica creation
13 2 4® 810 1416) algorithm to study the balance between enhanced data avail-

Number of workers (number of computer nodes)

) _ ability and increased space usage. The first one was FCFS,
Fig. 6: Recovery overhead of mpiBLAST

) where the replication window is calculated based on the ar-
mPIiBLAST [9], a well-known parallel sequence database rjya) time of jobs. The next two strategies used the shortcut
search tool. mpiBLAST splits a database into fragments andapnroach, using @ value of 0.01 (FCFS with small thresh-
performs BLAST search on the worker nodes in parallel. old) and 0.1 (FCFS with large threshold), respectively. Fi-
Since mpiBLAST is more input-intensive, we examined nally, as a reference, we used an offline algorithm (dispatch
the impact of a storage failure on its overall performanbe.T aware) that was aware of the actual dispatching order ofgobs
difference between the job execution times with and with- priori and calculate the replication window accordingyi§
out failure, i.e., the recovery overhead, is shown in Figiire offline algorithm indicates the best decision that can beenad
Since the version of mpiBLAST we used assigns one processyith the replication window approach.
as the master and another to perform file output, the number of Figure 7 compares the above algorithms using diffecent
actual worker processes performing parallel input is th@l to |evels. Theulpha value “inf’ corresponds to an infinite repli-
process number minus two. Each worker process read severalation window size, where all jobs’ input datasets are repli
database fragments. cated upon submission regardless of the replication gyate
The Lustre configurations and failure modes used in the (hence the convergence).
tests were similar to those in the MM tests. Overall, the im- Figure 7(a) shows the percentage of jobs that are “at risk”.
pact of data recovery on the application’s performance wasa job was considered at risk if its replica was not ready when
small. As the number of workers grew, the database was partithe job was dispatched. The replication time for each input
tioned into more files. Hence, more files resided on the failed dataset was calculated using the cost of a file copy, bench-
OST and needed recovery. As shown by Figure 6, the re-marked on Jaguar via the commaod. Due to the small
covery overhead grew with the number of workers.For this default Lustre stripe width, a large number of available §SS
application, recovery of the failed files was not conducted i and the low average number of concurrent replication oper-
parallel. Since each worker process performed input at itsations estimated in our simulation, we did not consider the
own pace and the input files were randomly distributed to the impact of concurrent replications on the copy bandwidth.
OSTs, the /O errors captured on the worker processes oc- \wjth the basic FCFS replication strategy, a large fraction
curred at different times. Hence, the respective recovty I of jobs are at risk with small levels, and even with a rel-
quests to the head node were notissued synchronously in partively large« level of 2, more than 60% of jobs will not
allel but rather in a staged fashion. With many applications have their replicas created early enough. The offline alyori
that access a fixed number of shared input files, we expecidispatch-aware), in contrast, is highly insensitivettoThis
to see much more scalable recovery cost with regard to thereveals that to have an appropriate level of data redungdancy
number of MPI processes. only a small portion of jobs in the queue needs to be selected
44 Trace and Simulation Overview for replication if we know the exact order of dispatch_ed jobs
The real-cluster results presented in the previous sextion 1€ dispatch-aware curve is almost flat due to the existeice o
demonstrated the efficient online data recovery due to tempo 0P that are scheduled immediately upon submission, which
ral replication by examining individual jobs. To assess the |82ves no time for data replication. Fortunately, these job

overall space overhead caused by temporal replication, we€nd t0 be debug or testing jobs that request a small number
need to examine the impact of this policy on all jobs for an ex- of nodes and run time, making them less vulnerable to falure

tended period, collectively. To this end, we conductedrexte and requesting a small resubmission cost.

sive trace-driven simulations. Our simulation was perfedm With the shortcut enhancement to FCFS, we see a very se-

using the operational data from the ORNL Jaguar supercomJ?Ct'Ve threshold of 0.01 V\{|II dramatically reduce the jalis

puter (currently No. 5 in the top500 list) with job logs col- n_sk. A t_hresr_lold of 0.1 W|_II generate a fault tolerarjce leve

lected from Apr. 2005 to Nov. 2007. Each job entry contains Virtually identical to the offline dispatch-aware algorith

timing information (such as submission, dispatch, and com- In Figure 7(b), we compare the space overhead of the

pletion times) and resource usage details (such as the mumbebove strategies by calculating the ratio of total scrapette

of cores requested and the peak memory usage per core). used for storing job inputfile replicas. This ratio was agew
One limitation of the Jaguar job log is that it is devoid of ©ver 300 snapshots, regularly sampled during the 32-menths

information on job input data size. This metric is needed to 109 Period. For each snapshot, the total replica size was es

determine the amount of storage space required for replicastimatéd as the sum of the peak aggregate memory usage of

However, as discussed in Section 2.1 and supported by thé!! jobs that have input data replicas created, includinghbo

memory usage pattern of jobs on Jaguar shown in Figure 2Unning and waiting jobs. The results indicate that, overal

we can safely estimate this information based on each job’sCréating one extra copy of active jobs’ input data consumes
peak aggregate memory usage. a very limited fraction of the entire scratch space on Jaguar

=

8

=
% FCFS K- % 8%
4 L 4 9]
‘; 100% shortcut(T=0.01) - E 1.4%
2 80% - shortcut(T=0.1) ACH “_5 1%+ |
.2, 60% dispatch-aware > 2 ¢ FCFS K-
B 40% J z 0.6% - shortcut(T=0.01) - |
2 20% § & shortcut(T=0.1) 4
0‘2 0 ; 02% ~ dispatch-aware > 1

0% 0.1 02 05 1 2 inf £ 0% 0.1 02 05 1 2 inf
a 5 a
. 2 .
.))) (a) Jobs at risk) o o (b) Replica storage overhead o
Fig. 7: Simulation results using a 3-year ORNL Jaguar log with replcation covering jobs up toa.S nodes; Infinity %nf) denotes replication for all Jobs.

Even with the most aggressive replication setting (an it€ini ments RAID systems by providing fast recovery, protecting

« level), the replicas will, on average, occupy less than 1.8% against non-disk and multiple disk failures.

of the scratch space. The space overhead significantlyesduc Recent work on popularity-based RAID reconstruc-

as thea value is lowered. The differences between different tion [23] rebuilds more frequently accessed data first,gbgr

strategies are quite small since they mainly differ in the-ha reducing reconstruction time and user-perceived pesaltie

dling of small jobs. The dispatch-aware algorithm has areedg However, supercomputer storage systems host transient job

due to its optimal job selection. data, where “unaccessed” job input files are often more im-
In summary, considering both aspects shown in Figure 7,portant than “accessed” ones. In addition, such optinonati

we regard that FCFS with small threshold as an effectivé-repl cannot cope with failures beyond RAID’s protection at the

cation strategy for our traces. A threshold of 0.1 will geter hardware level.

close-to-ideal data redundancy, which, in turn, allows alsm Replication: Data replication creates and stores redundant
replication window ofx levels such as 0.2and 0.5. Such small ¢opies (eplicag of datasets. Replication has stronger fault
windows will incur very low space overhead, lower than 0.5% tplerance than RAID because replicas of a dataset reside on

of the scratch space. _ ~ independent components in the system and have a smaller
~ Finally, Figure 8 demonstrates the behavior of the replica- chance of simultaneous failure. Various replication tech-
tion strategies under different job workload levels, bytfihgy niques have been studied [4, 8, 21, 27] in many distributed

the percentage of jobs at risk for the same month (August)file systems [1, 5, 10, 14].

in three consecutive years. As mentioned earlier, most su- Most existing replication techniques treat all dataseth wi
percomputers tend to get crowded once into production. Forequal importance and each dataset with static, time-iamtri
our trace, the average job queue length increases from 1.5 ifmportance when making replication decisions. This indis-
08/2005, to 275 in 08/2006, al’ld to 45.5 in 08/2007 Undel’ acriminate rep“cation increases Storage Space Consumptio
lightload, most jobs can be scheduled quickly, without éisuf manifold, which is a significant burden for heavily loaded
cient enough waiting period required for just-in-time fe@t storage systems. An intuitive improvement would be to treat
tion regardless of strategies. As the system gets busfsr-di datasets with different priorities. To this end, BAD-FS&}-

ent strategies begin to diverge. While the naive FCFS glyate forms selective replication according to a cost-benefilyaig
produces a high at-risk rate, short cut with T=0.1 stayseclos pased on the replication costs and the system failure rate. S
to the offline dispatch-aware algorithm and is able to repic jjar to BAD-FS, our approach also makes on-demand replica-
most da’[asel‘S in t|me ThIS I’esult further justiﬁes the dea tion decisions. However, our tempora| rep"cation schese i
tage of temporal replication when the system is busier. Abus more “access-aware” rather than “cost-aware”. While BAD-
system implies longer wait times and, consequently, longergs stjll creates static replicas, our approach utilizedieikp
turnaround time for jObS that are required to be reSmeittedinformation from the]0b schedulerto ClOSEly Synchron'ﬂé a
due to input data unavailability as they get back at the endjimit replication to jobs in execution or soon to be executed
of the queue. However, the longer queue wait time prOVIOIesErasure coding: Another widely investigated technique is

enough room for just-in-time replication. erasure coding [6, 18, 28]. With erasure codikgparity
5 Related Work blocks are encoded intoblocks of source data. When a fail-
RAID recovery: Disk failures can often be masked by stan- .« occurs, the whole set af+ % blocks of data can be re-

dard RAID techniques [17]. However, RAID is geared to- ¢onstructed with any surviving blocks through decoding.

ward whole disk failures and does not address sector-level oo re coding reduces the space usage of replication
faults [2, 11, 19]. Itis further impaired by controller fales 1yt 5qds computational overhead for data encoding/degodin
and multiple disk failures within the same group. Without |, 156], the authors provide a theoretical comparison betwe
hot spares, reconstruction requires manual interventah & e pjication and erasure coding. In many systems, erasdre co
is time consuming. With RAID reconstruction, disk arrays jng provides better overall performance, balancing comput
e|ther'run in a degraded (not yielding to other. I/O requests) tion costs and space usage. However, for supercomputer cen-
or polite mode. In a degraded mode, busy disk arrays suf-igrg jts computation costs will be a concern. This is begaus
fer a substantial performance hit when crippled with migtip computing time in supercomputers is a precious commodity.
failed disks [29, 22]. This degradation is even more signifi- At the same time, our data analysis suggests that the amount
cant on parallel file systems, as files are striped over meltip storage space required to replicate data for active ptes-

disk arrays and large sequential accesses are common. Undefyely small compared to the total storage footprint. Baer

a polite mode, with rapidly growing disk capacity, the o0&l t4re compared to erasure coding, our approach is more suit-

construction time is projected to increase to days, SUBBCt 5pje for supercomputing environments, which is verified by
a disk array to additional failures [20]. Our approach coampl7 our experimental study.

average queue length: 1.5 average queue length: 27.5

100% | 1
80% |
. 60% I
40%
20% I
0%

100% |
80% |
. 60% I
40%
20% I
0%

jobs at risk
jobs at risk

a5]

FCFS =¥~ 1

shortcut(T=0.01) - {
shorteut(T=0.1) 4 |
dispatch-aware <

Ratio of
Ratio of

' Legen(i as in FigA‘S(u)

' Legen(j as in Fig.‘S(a)

average queue length: 45.5

100%
80%
60% |
40%
20% |

Ratio of jobs at risk

05 i 3
a

(a) August of 2005

02 nf

(b) August of 2006

0% — 05 |
a

(c) August of 2007

4%
0.2

b S
0.1

Fig. 8: The ratios of jobs at risk in the month of August in 2005, 2006 ad 2007.
References

Remote reconstruction: Some of our previous studies [15,
25, 30] investigated approaches for reconstructing ngssin
pieces of datasets (either due to cache miss or failures) fro
data sources where the job input data was originally staged
from. By modifying the parallel file system to record the data
source location as a file metadata item, such remote data re-[2]
construction can be performed on demand and in a transparent
fashion. We have shown in [30] that supercomputing centers’
data availability can be drastically enhanced by peridljica
checking and reconstructing datasets for queued jobs while [3]
the reconstruction overheads are barely visible to users.

Both remote patching and temporal replication will be able
to help with storage failures at multiple layers. While reeno
patching poses no additional space overhead, the patching
costs depend on the data source and the end-to-end networks;
transfer performance. It may be hard to hide them from appli-
cations during a job’s execution. Temporal replicationtlua
other hand, trades space (which, we argue, is relativelghe
at supercomputers) for performance. It provides high-dpee
data recovery and reduces the space overhead by only repli-[7]
cating the datawhen it is needed. Our optimizations present
in this paper aim at further controlling and lowering thecpa (8]
consumption of replicas.

(1]

(4]

(6]

[9
6 Conclusion

In this paper, we have presented a novel temporal repli-
cation scheme for supercomputer job data. By creating ad-
ditional data redundancy for transient job input data and
coordinating the job scheduler and the parallel file system,[11]
we allow fast online data recovery from local replicas with-
out user intervention or hardware support. This general-
purpose, high-level data replication can help avoid job fai
ures/resubmission by reducing the impact of both disk fegu
or software/hardware failures on the storage nodes. Our im-
plementation, using the widely used Lustre parallel file- sys
tem and the Moab scheduler, demonstrates that replication
and data recovery can be performed efficiently. Our simula-[14]
tion study, using a 32-month job trace collected from a top10
supercomputer, demonstrates that by limiting the reptioat
to active or about-to-be-dispatched jobs, we can affordde c
ate one extra copy for their input data using less than 1% of
the total disk scratch space.

Acknowledgment

[20]

[12]

(23]

[15]

[16]

This research is sponsored in part by the National Cen-(;7
ter for Computational Sciences at Oak Ridge National Lab-
oratory (ORNL), managed by UT-Battelle, LLC for the
U.S. Department of Energy under Contract No. DE-ACO05- (18]
000R22725.

A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, dudeur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSIFEd-
erated, available, and reliable storage for an incompletakted envi-
ronment. InProceedings of the 5th Symposium on Operating Systems
Design and Implementatioi2002.

Lakshmi Bairavasundaram, Garth Goodson, Shankar R#sypand
Jiri Schindler. An analysis of latent sector errors in diskek. In
Proceedings of the 2007 ACM International Conference onduezs
ment and Modeling of Computer Systems (SIGMETRICS {@des
289 — 300, June 2007.

J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseaund
M. Livny. Explicit control in a batch aware distributed filgstem.

In Proceedings of the First USENIX/ACM Conference on Netwbrke
Systems Design and Implementafibfarch 2004.

C. Blake and R. Rodrigues. High Availability, Scalablefge, Dy-
namic Peer Networks: Pick Two. Proceedings the 9th Workshop on
Hot Topics in Operating Systems (HotO3)03.

A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha: A peepter en-
hancement for the network file system. Pnoceedings of Supercom-
puting 2004.

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digitalintain
approach to reliable distribution of bulk data. Mmoceedings of the
ACM SIGCOMM Conferen¢d 998.

Cluster File Systems, Inc. Lustre: A scalable, hightpenance file
system. http://www.lustre.org/docs/whitepaper.pdQ20

E. Cohen and S. Shenker. Replication strategies in uctsired peer-
to-peer networks. liProceedings of the ACM SIGCOMM Conference
2002.

Aaron E. Darling, Lucas Carey, and Wu chun Feng. The aesigple-
mentation, and evaluation of mpiblast. @iusterWorld Conference &
Expo and the 4th International Conference on Linux Clustdre HPC
Revolution '03 June 2003.

S. Ghemawat, H. Gobioff, and S. Leung. The Google filgesys In
Proceedings of the 19th Symposium on Operating Systemsifieis
2003.

H Gunawi, V. Prabhakaran, S. Krishnan, A. Arpaci-Dasseand
R. Arpaci-Dusseau. Improving file system reliability with shepherd-
ing. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07)October 2007.

C. Hsu and W. Feng. A power-aware run-time system forhhig
performance computing. I8C 2005.

J. Lee, X. Ma, M. Winslett, and S. Yu. Active bufferinguslcompressed
migration: An integrated solution to parallel simulatibdata transport
needs. InProceedings of the 16th ACM International Conference on
Supercomputing2002.

Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Ratuidon, Liuba
Shrira, and Michael Williams. Replication in the Harp filesssm. In
Proceedings of 13th ACM Symposium on Operating Systemsijileig
pages 226-38. Association for Computing Machinery SIGAPS].
X.Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang, and SStott. Cou-
pling prefix caching and collective downloads for remotegatcess. In
Proceedings of the ACM International Conference on Supepeging
2006.

H. Monti, A.R. Butt, and S. S. Vazhkudai. Timely Offloadi of Result-
Data in HPC Centers. IRroceedings of 22nd Int'| Conference on Su-
percomputing/ C'S’08, June 2008.

D. Patterson, G. Gibson, and R. Katz. A case for redundarays

of inexpensive disks (RAID). IProceedings of the ACM SIGMOD
Conference1988.

J. Plank, A. Buchsbaum, R. Collins, and M. Thomason. |Bpaaity-
check erasure codes - exploration and observationsPrdgeedings
of the International Conference on Dependable Systems atwldxks
2005.

[19] Vijayan Prabhakaran, Lakshmi N. BairavasundaramjnNégrawal,
Haryadi S. Gunawi abd Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Iron file systems. Rroceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP pafles 206 —
220, October 2005.

[20] B. Schroeder and G. Gibson. Understanding failure tagmle com-
puters. InProceedings of the SciDAC Conferen2607.

[21] 1. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Baishnan.
Chord: A scalable peer-to-peer lookup service for inteapgtications.
In Proceedings of the ACM SIGCOMM Conferen2@01.

[22] Alexander Thomasian, Gang Fu, and Chungi Han. Perfocaaf
two-disk failure-tolerant disk arrayslEEE Transactions on Comput-
ers 56(6):799-814, 2007.

[23] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang Zengni
Chen, Zhikun Wang, and Zhenlei Song. Pro: a popularity-dbaselti-
threaded reconstruction optimization for raid-struaustorage sys-
tems. INFAST’'07: Proceedings of the 5th conference on USENIX Con-
ference on File and Storage Technologipages 32-32, Berkeley, CA,
USA, 2007. USENIX Association.

[24] Top500 supercomputer sites. http://www.top500.,08ghe 2007.

[25] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tamneide and
S. Scott. Freeloader: Scavenging desktop storage resofmcéulk,
transient data. IProceedings of Supercomputjri2p05.

[26] H. Weatherspoon and J. Kubiatowicz. Erasure codingegication: A
quantitative comparison. IRroceedings of the 1st International Work-
shop on Peer-to-Peer Syster2®02.

[27] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn.egh: A
scalable, high-performance distributed file system.Ptaceedings of
the 7th Conference on Operating Systems Design and Implaticen
(OSDI '06), November 2006.

[28] Jay J. Wylie and Ram Swaminathan. Determining fauéiremhce of xor-
based erasure codes efficiently. SN '07: Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependabjestéms
and Networks pages 206-215, Washington, DC, USA, 2007. IEEE
Computer Society.

[29] Q. Xin, E. Miller, and T. Schwarz. Evaluation of distuted recov-
ery in large-scale storage systems. Hroceedings of the 13th IEEE
International Symposium on High Performance Distributemirputing
(HPDC 2004) pages 172-181, June 2004.

[30] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike, J. Gadoid
F. Mueller. Optimizing center performance through cooatia data
staging, scheduling and recovery. Proceedings of Supercomputing
2007 (SCO07): Int'l Conference on High Performance Commtidet-
working, Storage and Analysislovember 2007.

