
Comput Sci Res Dev (2011) 26: 325–337
DOI 10.1007/s00450-011-0165-1

S P E C I A L I S S U E PA P E R

Experiments with the Fresh Breeze tree-based memory model

Jack B. Dennis · Guang R. Gao · Xiao X. Meng

Published online: 20 April 2011
© Springer-Verlag 2011

Abstract The Fresh Breeze memory model and system ar-
chitecture is proposed as an approach to achieving signif-
icant improvements in massively parallel computation by
supporting fine-grain management of memory and process-
ing resources and utilizing a global shared name space for
all processors and computation tasks. Memory management
and the scheduling of tasks are done by hardware realiza-
tions, eliminating nearly all operating system execution cy-
cles for data access, task scheduling and security. In partic-
ular, the Fresh Breeze memory model uses trees of fixed-
size chunks of memory to represent all data objects, which
eliminates data consistency issues and simplifies memory
management. Low-cost reference-count garbage collection
is used to support modular programming in type-safe pro-
gramming languages.

The main contributions of this paper are: (1) a pro-
gram exection model for massively parallel computing as
the Fresh Breeze application programming interface (API)
comprising a radical memory model and a scheme for ex-
pressing concurrency; (2) an experimental implementation
of the API through simulation using the FAST simulator of
the IBM Cyclops 64 many-core chip; (3) simulation results

J.B. Dennis (�)
Computer Science and Artificial Intelligence Laboratory, MIT,
Room 32-G868, 32 Vassar Street, Cambridge, MA 02139, USA
e-mail: dennis@csail.mit.edu

G.R. Gao · X.X. Meng
Department of Electrical and Computer Engineering,
University of Delaware, 140 Evans Hall, Newark, DE 19716,
USA

G.R. Gao
e-mail: ggao@capsl.udel.edu

X.X. Meng
e-mail: meng@capsl.udel.edu

that demonstrate that (a) fine-grain hardware-implemented
resource management mechanisms can support massive par-
allelism and high processor utilization through the latency-
hiding properties of multi-tasking; and (b) hardware imple-
mentation of a work stealing scheme incorporated in our
simulation can effectively distribute tasks over the proces-
sors of a many-core parallel computer.

Keywords Memory models · Storage system · Massive
parallelism · Concurrency model · System simulation

1 Introduction

The current crisis regarding choice of architecture and pro-
gramming models in support of massively parallel compu-
tation demands new efforts toward understanding the pos-
sibilities and advantages of new programming models and
hardware structures that support their efficient operation.

The Fresh Breeze memory model and system architecture
[1, 2] is proposed in response to this demand and provides a
system-wide one-level store supporting fine-grain resource
management of processing and memory resources that is
compliant with the capability model for implementing pri-
vacy and security [3–5].

In the Fresh Breeze vision, the entire memory hierarchy
is treated as a unified one-level store, from processor cache
memories through the main memory and on to the disk stor-
age units. A single naming scheme is used throughout the
hierarchy: a handle uniquely identifies a fixed-size chunk
of program or data. Memory allocation and data transfer
is performed entirely by hardware mechanisms so there is
zero involvement of operating system software in data ac-
cess and memory management. The handles of the Fresh
Breeze memory model are equivalent to capabilities [3–6],

mailto:dennis@csail.mit.edu
mailto:ggao@capsl.udel.edu
mailto:meng@capsl.udel.edu

326 J.B. Dennis et al.

providing a basis for realizing advanced security and privacy
properties in a Fresh Breeze system.

The Fresh Breeze vision also includes hardware imple-
mentation of activity scheduling, which is simplified by
use of a memory model that provides a uniform view of
memory throughout all jobs and processors of a massively
parallel computer system. The combination of the chunk-
based memory model and hardware for fine-grain proces-
sor switching provides an ability for modular composition
of parallel programs well beyond what is possible with any
existing computer system.

The main contributions of this paper are:

1. A program exection model for massively parallel com-
puting as the Fresh Breeze application programming in-
terface (API) comprising a radical memory model and a
scheme for expressing concurrency;

2. An experimental implementation of the API through sim-
ulation using the FAST simulator of the IBM Cyclops 64
many-core chip;

3. Simulation results that demonstrate that (a) fine-grain
hardware-implemented resource management mecha-
nisms can support massive parallelism and high pro-
cessor utilization through the latency-hiding properties
of multi-tasking; and (b) hardware implementation of a
work stealing scheme incorporated in our simulation can
effectively distribute tasks over the processors of a many-
core parallel computer.

Synopsis: In Sect. 2 the Fresh Breeze memory model is
presented. Section 3 describes Fresh Breeze support for col-
lections of parallel tasks. A vision of future computer sys-
tem organization utilizing Fresh Breeze principles is pro-
vided in Sect. 4, and its application programming interface
(API) discussed. Sections 5 through 7 describe the experi-
mental implementation of the Fresh Breeze API using the
Cyclops 64 simulation software. Section 8 presents results
and a discussion of their significance. The paper concludes
with paragraphs on future plans, related work, conclusions
and acknowledgments.

2 The Fresh Breeze memory model

In the Fresh Breeze Memory Model [3, 20] information ob-
jects and data structures are represented using fixed size
chunks, which are 128 bytes in the present design. Each
chunk has a unique 64-bit identifier, its handle, equivalent to
a capability, that serves to locate the chunk within the stor-
age system, and is a globally valid means of reference to the
chunk. Each chunk can hold up to 16 elements that are either
64-bit data values or handles of other chunks. A collection
of chunks organized as a directed acyclic graph (DAG) can

Fig. 1 Data objects as trees of chunks

represent structured information as illustrated in Fig. 1. For
example, a three-level tree of chunks can represent an array
of 4096 elements. Data objects and data structures may be
represented by unbounded trees of chunks.

The Fresh Breeze memory model is a write-once model
meaning that chunks may be created and written by a user
of the memory model, but access to a chunk is not permitted
for more than one computing activity (task) until it is ren-
dered read-only. The life-cycle of a chunk may be summa-
rized as follows: (1) A free chunk is acquired by a producer
task from the memory system; (2) The chunk is then written
and sealed by the producer task; (3) Once sealed, the chunk
may be shared with consumer tasks; (4) When usage of the
chunk becomes low, it will be evicted from higher levels
of the memory hierarchy until it only resides in the lowest
level; (5) It is deleted once no references to the chunk ex-
ist.

A major benefit of a write-once memory model for mas-
sively parallel computation is that cache memories may be
used without coherence issues: Several computing tasks run-
ning in separate parts of a system may access data with no
concern that it might be stale. Adopting the write-once prop-
erty leads to a functional view of memory: A computing step
involves accessing existing data values and creating fresh
memory chunks to receive results. To work effectively, very
efficient mechanisms for allocating memory and collecting
chunks that no longer contain accessible data are required.
Use of a fixed-size unit of memory allocation and the write-
once principle makes this feasible. It also permits use of
low-overhead reference counts to identify garbage chunks
for reclaiming their memory.

The Fresh Breeze memory model provides a global ad-
dressing environment, a virtual one-level store, shared by all
user jobs and all processors of a many-core computing sys-
tem. It can extend to the entirety of online storage, replacing
the separate access means for files and databases of conven-
tional systems.

Experiments with the Fresh Breeze tree-based memory model 327

Fig. 2 Fresh Breeze parallelism using Spawn and Join

3 Fresh Breeze tasking

In Fresh Breeze tasking [7], the basic unit of parallelism is
the task, which is the activity of performing a single execu-
tion of a function instantiation, corresponding typically to a
single call of a Java method. The organization of multiple
tasks is expressed in a way similar to the spawn/join model
for parallel programming in Cilk [8].

As shown in Fig. 2, a master task may spawn one or more
worker tasks executing independent instances of the same or
different functions. Worker tasks may receive data objects
(scalar values or handles) as arguments provided by the par-
ent task, and each worker task contributes the results of its
activity to a continuation task using a join mechanism [7].
Through repeated use of this scheme, a program can gener-
ate an arbitrary hierarchy of concurrent tasks corresponding
to available parallelism in the computation being performed.
The spawn/join mechanism is implemented by special ma-
chine level instructions of the Fresh Breeze API, providing
a fine-grain parallel processing capability.

To illustrate, consider the dot product computation which
is the focus of the experiments reported in this paper. The
complete computation consists of constructing two vectors
and then computing their dot product. Straightforward code
for this computation may be written as follows:

vector BuildVector (long length, long seed) {
long[] vector = new long[length];
for (int i = 0; i < length; i++)

vector [i] = generate (length, seed);
return vector;

}
long DotProduct (

long[] vector_a,
long[] vector_b,
long length) {

long sum = 0;
for (int i = 0; i < length; i++)

sum += vector_a[i] * vector_b[i];
return sum;

}
void main () {

long length = N;
long[] vector_a = BuildVector (length, seed_a);
long[] vector_b = BuildVector (length, seed_b);
long result = DotProduct (

vector_a, vector_b, length);
}

For execution by a Fresh Breeze computer, this code will
be compiled into machine code that uses the chunk-based
memory model and instructions for spawning and joining
tasks. A pseudo-code version of the Fresh Breeze machine
code for the DotProduct method of the FunJava program
given above follows. The handle data type is used for the
capability codes of chunks.

long DotProductMain (
handle vector_a,
handle vector_b,
long length) {

// Calculate tree size
long tree_size = ... ;
DotProduct (

vector_a, vector_b,
length, tree_size);

return result;
}
void DotProduct (

handle vector_a,
handle vector_b,
long length),
long tree_size) {

chunk chunk_a = chunk_read (vector_a);
chunk chunk_b = chunk_read (vector_b);
if (tree_size > CHUNK_SIZE) {

// Process internal nodes
chunk join_ticket =

join_init (count, DotProductDone);
for (int ix = 0; ix < count; ix++) {

// Calculate node size and subtree size
node_size = ... ;
tree_size = ... ;
spawn_one (ix, DotProduct (

chunk_a[ix], chunk_b[ix],
size, tree_size));

}
exit ();

} else {
// Process a leaf node
long sum = 0;
for (int ix = 0; ix < count, ix++) {

sum += chunk_a[ix] * chunk_a[ix];
}
join_update (sum);

}
}

328 J.B. Dennis et al.

void DotProductDone (int count) {
handle data = join_fetch ();
chunk join_data = chunk_read (data);
long sum = 0;
for (int ix = 0; ix < count; ix++) {

sum += join_data [ix];
}
join_update (sum);

}

The phrases spawn_init, spawn_one, join_fetch and
join_update are the special Fresh Breeze instructions to
support concurrency. The instruction spawn_init creates a
join ticket that holds a join counter and the name of a
function that defines the task for execution by a worker;
spawn_one creates a new task for execution with the spec-
ified index; join_ fetch is used after a join chunk has been
filled by worker tasks using the join_update instruction. It
provides the handle of the (now filled) join data chunk. Exe-
cution of a join_update causes a worker task to quit, turning
the processor over to other tasks.

4 The Fresh Breeze vision and its API

The envisioned organization of a Fresh Breeze computer
system is illustrated in Fig. 3. The main components are a
multitude of many-core processing chips coupled to a multi-
level off-chip storage system. Each many-core processing
chip uses processor cores similar to those of the Cyclops 64
chip [10], coupled to the top levels of a memory hierarchy
consisting of L1 instruction and data cache memories at each
processor, and a shared on-chip L2 cache.

Many-Core Chip. The distinguishing features of the
many-core processor chip are:

– The cache memories are organized around chunks instead
of typical cache lines to benefit from the locality provided
by the chunk-based memory model.

– There is no TLB because capabilities (handles) are held
in chunks and in processor registers.

– Processor registers are tagged to flag those holding han-
dles of chunks.

– A new load/store unit will be used to support creating
(writing) and reading of memory chunks.

– A hardware task scheduler that implements fast switching
among active tasks and a task stealing scheme for load
distribution.

Storage System. The Storage System is a hierarchical
memory system in which the higher levels (closer to the
processors) cache data chunks actively involved in on-going
computations [11].

In Fig. 3, two off-chip storage levels are illustrated for
simplicity; the architecture may be extended to further lev-
els as demanded by the device technology available and the
storage capacity required by a system.

There is no relation of the 64-bit number that encodes the
handle of a chunk, to the physical location where the chunk
is held in the Storage System. This property permits new
data to be stored in proximity to the location in the system
where they are generated. Hardware-supported associative
search is used to map handles to the physical locations where
the designated chunks are to be found.

Another function performed by the Storage System is to
supply codes of free handles to the processing chips for as-
signment to newly created chunks. A data structure is main-
tained, that keeps a record of available codes. Handle codes
are assigned from the free pool and returned to the pool
when a reference count shows they are no longer in use.

The principal components at each level of the Storage
System are multiple storage devices to hold data chunks,
and an associative directory for mapping chunk handles to
locations where chunks reside. At the lowest level, the set of
storage devices is sufficient to hold all data in the computer
system, and is partitioned according to a division of the set
of possible handle codes. At each level each directory must

Fig. 3 Vision of a massively
parallel Fresh Breeze system

Experiments with the Fresh Breeze tree-based memory model 329

map handles to a sufficiently large physical space to accom-
modate all data in its part, and its implementation must be
able to handle the anticipated traffic.

4.1 The Fresh Breeze API

The Fresh Breeze API is the interface through which users
express computations for execution by a Fresh Breeze sys-
tem. In the Fresh Breeze vision, the API is a set of machine
instructions that invoke hardware to perform various actions
on behalf of a user program. This paper is concerned with
two sets of instructions: those that express memory actions
and those concerned with concurrent tasks. The instructions
of interest in the present paper are:

Memory instructions

chunk_write (private task memory location);
Obtain a fresh chunk and write into it the data
at the specified location.

chunk_read (handle);
Read into task private memory the
chunk specified by handle.

Tasking instructions

join_init (count, function identifier);
Return a join ticket with the specified count
using the specified function as the continuation
task.

spawn_one (idx, function)
Spawn a new task with the specified index
to execute the specified function.

exit ();
Terminate the task.

join_update (value);
Store the result value of a worker task
in the join data chunk.

join_fetch ();
Get the handle of the join data chunk
for the continuation task.

For simplicity, instructions for ensuring correct opera-
tion of reference-count garbage collection have been omit-
ted. Also, the intention is to include additional instructions
to support further functions such as implementing indepen-
dent user jobs, secure sharing of objects, resource quotas and
exception events.

For modeling a simplified form of the envisioned system,
the above API has been implemented as a set of runtime
routines for the Cyclops multi-core chip.

5 Simulation

For evaluating the proposed system structure and API we
have chosen to employ a unique facility available at the Uni-

versity of Delaware. This is the FAST simulation tool devel-
oped built by a collaboration of IBM and E.T. International,
for testing and evaluating the IBM Cyclops 64 many-core
chip [10]. This chip contains 80 processing assemblies, each
consisting of two independent Thread Units (TUs) sharing a
64-bit floating point unit. Each TU has an associated 30 KB
block of SRAM. There are several instruction cache mem-
ories, each serving a group of ten TUs. The chip incorpo-
rates a cross-bar switching network that interconnects all
160 TUs, allowing each TU to access the SRAM of any
other TU. The TUs have access to 1 Gb of off-chip DRAM
memory through four additional ports of the X-bar network.

In our Fresh Breeze simulation, 40 thread units (labeled
EUs and TSUs in Fig. 4) can execute 40 concurrent appli-
cation tasks and simulate the L1 Cache units; most of the
remaining 120 thread units are used to implement a simu-
lation of the Shared Memory. Runtime software has been
written to schedule user tasks on the EUs and to implement
the Storage System simulation. Test programs are written in
C and compiled by the Cyclops C compiler.

In the future, we expect Fresh Breeze programs to be
written in a high level language related to Java and compiled
to the Fresh Breeze API.

To utilize this simulation tool, a scheme was adopted
for modeling each component of the system to be modeled
(Fig. 3) using resources available in the Cyclops chip. Keep
in mind that many Cyclops processing cores (Thread Units)
are used to model memory components of the modeled sys-
tem and do not correspond to the envisioned Fresh Breeze
processor cores of the modeled system.

6 Scheduling and work stealing

The Fresh Breeze simulation models a hardware scheduling
mechanism in each of the EUs. The elements of this mech-
anism are the Active Task List (ATL) and the Pending Task
Queue (PTQ). The ATL contains an entry for each of several
tasks that the EU switches among when a task in execution
becomes blocked (usually due to a chunk_read instruction).
An entry in the ATL holds the complete processor state for
resuming the task when the reason for being blocked is re-
solved. (A blocked task is never resumed on another proces-
sor; it runs on its assigned processor until the work of the
task is complete.)

The PTQ is a queue of tasks generated by Spawn instruc-
tions, that are available for execution. An entry in the PTQ
just contains: (1) the address of the function to be applied
by the new task, (2) the handle of an argument structure
(chunk) containing argument values for use by the new task,
and (3) the handle of the join_ticket used by the new task to
record its result. The PTQ entry does not include any proces-
sor register contents because a new task is assumed to start

330 J.B. Dennis et al.

fresh and not depend on any register contents; The program
counter is implicitly set to zero (indicating the first instruc-
tion of the method for the spawned task). Any application
processor can perform any pending task just by loading the
contents of a PTQ entry, a consequence of the global valid-
ity of handles and their power to provide access to arbitrarily
large data objects.

In the experiments (Sect. 8), the ATL in each EU has five
entries and the PTQ has 64 entries. The chip area required
for the ATL and PTQ would be a small fraction of the silicon
area of a processor.

Actions performed by an EU to simulate a Fresh Breeze
Processor are:

1. Execute a task from the ATL.
2. Perform a storage system chunk_read or

chunk_write instruction issued by a task.
3. On a join_init instruction, initialize a join_ ticket chunk.
4. On a spawn_one instruction, add an entry to the PTQ

and continue task execution.
5. On a task_exit instruction, delete the task from the ATL

and select a task from the PTQ to make active.

Additional actions are used for implementing the join
mechanism:

1. On a join_update instruction executed by a worker
task, write the result value (scalar or handle) into the
join_data chunk, update the join count, and terminate
the task.

2. On a join_fetch instruction executed by a continuation
task, return the handle of the join_data chunk to the con-
tinuation task and mark the join_ticket chunk as garbage.

The scheduling mechanism described above does not
provide for distributing spawned tasks over the large num-
ber of processors of a massively parallel system. The current
Fresh Breeze simulation includes a work stealing scheme
that is a variation on work stealing in Cilk [15]. It is de-
signed to model a low-cost hardware mechanism.

Task stealing is used by a processor to maintain the num-
ber of entries in its PTQ between two limits; if the number
of entries is less than the lower limit, this processor is not
willing to give away any of its tasks; if the upper limit is
exceeded, the processor will not try to fetch a task from the
global deferred task queue (see below).

Task stealing uses two tables located in memory globally
accessible to all processors of a domain (the 40 EUs in the
present simulations). The mechanism to be described may
be extended hierarchically as needed in a massively multi-
core system. The two tables are managed by a reserved Steal
Daemon processor (thread unit SU) in the simulation. The
work of the Steal Daemon is sufficiently simple that it could
readily be implemented in hardware in the envisioned Fresh
Breeze system.

One table, the Steal List, contains an entry for each pro-
cessor of its domain/cluster. The entry specifies the identity
(processor number) of some processor of the domain that
has tasks available for stealing. The entry is undefined if the
Steal Daemon judges that stealing has no benefit for the task
processor at this time. A processor accesses its entry in the
table using a read/replace memory operation that sets the
entry to undefined and provides the identity of a processor
with available tasks in its PTQ; the processor then removes
the task from the target processor’s PTQ. If stealing fails,
the requesting processor will do other work and make a new
request after a preset time interval.

The second table, the Load Table, is provided so the Steal
Deamon can know the load status of each processor of the
domain. It contains simply a boolean value maintained by
each processor to indicate whether or not the processor’s
PTQ has more entries than its lower limit. The steal Daemon
maintains the Steal Table continuously based on its knowl-
edge of the load on each processor. The rule is: initialize all
entries of the Steal Table to undefined; then, for each proces-
sor, if its entry is undefined, set it to the identifier of some
processor with more than the lower limit of entries in its
PTQ.

An additional problem arises when so many tasks are
generated that there is insufficient room in the PTQs of all
processors. The scheduler must somehow retain records of
them so they may be scheduled at a future time when the
overload condition has subsided. This is done in the present
simulations by means of a global deferred task queue held
in the memory system.

7 System modeling with simulation

In this section the relation between the system being mod-
eled and the simulation of it is discussed. First, the system
studied by our modeling experiments is described. It is lim-
ited to a two-level memory hierarchy by the design of the
present simulation capability. Extension to a more extensive
memory hierarchy is planned. Then the issues in relating ac-
tions in the modeled system to simulation events are dis-
cussed, together with the solution adopted to obtain accurate
modeling of the timing of actions in the modeled system

7.1 The system modeled

Figure 4 shows the system modeled in our simulations
which has two memory levels. We take the upper level as
modeling an L1 cache unit which is private to each proces-
sor. The lower memory level is a shared memory, we will
call the Shared Memory, that may be regarded either as a
shared L2 cache accessible to all processors, or as a main
memory level. The two choices differ in their access times,

Experiments with the Fresh Breeze tree-based memory model 331

Fig. 4 Fresh Breeze system
model with two memory levels

so we use the Shared Memory access time as the principal
parameter varied in our experiments. In both levels, memory
is allocated in units of one chunk. Reference count garbage
collection is used to reclaim memory chunks no longer ac-
cessible. The hardware implementation of garbage collec-
tion is not expected to have a significant impact on the per-
formance results reported below.

For the present experiments, only data objects are held
as trees of chunks. The program instructions are held just as
code is held for normal Cyclops 64 simulation. This should
not affect our experiments other than by Cyclops instruction
cache misses as discussed in Sect. 8.

We assume the upper memory level (L1) may be accessed
in two clock cycles and that reading one chunk of data into
processor registers takes 16 clocks. Since this combination
always occurs together in the Dot Product test program, we
treat the pair as a single action. This permits use of less
padding to equalize the times per clock of all actions and
provides a more practical duration of simulation runs.

The upper memory level is operated as a fully associative
cache where the cache tag is the handle of the referenced
chunk. Each L1 cache holds 128 chunks or 16 K bytes of
data.

For specificity we chose the system clock rate to be
500 MHz, a common choice for many-core chips such as
the Cyclops 64.

7.2 Events in simulation versus actions in an
implementation

The simulation code consists of routines that model vari-
ous actions in the modeled system. Unfortunately, there is a
large disparity among the numbers of Cyclops chip cycles
required for the various actions. Table 1 shows the several
actions exercised by the Dot Product test program. For each
action the table shows the clock cycles assumed needed in
the modeled system action and the simulation cycles used
by the corresponding simulation routine. For our experi-
ments, we made the simulation time exactly proportional to

Table 1 Cycle-accurate modeling of the system

Action System Simulation Padding Total

cycles cycles

Task 4 262 378 640

startup

Task 32 376 4744 5120

compute

Task switch 16 262 2298 2560

save/restore

L1 cache 32 3047 2073 5120

access

the modeled system time by choosing a ratio of simulation
cycles to system cycles and adding “padding” cycle to each
simulation action routine to provide a uniform ratio of 160.
In this way, cycle-accurate modeling of the subject system is
achieved. The padding cycles and total simulation cycles for
each action are shown in columns four and five of Table 1.

All of the actions listed in Table 1 are simulated by rou-
tines that run on the EUs of the simulated Cyclops 64 chip.
The simulation also includes actions that model the han-
dling of access requests to Shared Memory (instructions
chunk_read and chunk_write) that get queued for services
at the MSUs.

For each unit of the modelled Shared Memory the sim-
ulation routine run on the corresponding MSU maintains a
queue of access requests. In the modeled system a Shared
Memory access request must traverse the switch, with ar-
bitration, and then wait at the memory unit until it can be
served. Then the data transfer is performed in 16 cycles. The
switch, arbitration, and queuing delays make up the Access
Time, which is a parameter of the simulation runs. Instead
of padding each simulation routine to model the delay, time
stamps are used in the operation of each request queue so
that many requests may be entered while each requested data
transfer is not performed until the specified number of cycles

332 J.B. Dennis et al.

have elapsed. The actions simulated by the MSUs are suffi-
ciently simple that we are assured they will be completed
without slowing the overall simulation.

Simulation experiments were conducted for two scenar-
ios: In the first scenario, the Shared Memory models a
shared L2 cache memory. For this case, access times are rel-
atively short and performing chunk_read operations with-
out blocking the processor is the preferred mode of oper-
ation. For these tests the actions of Task Save and Task
Restore do not apply. In the second scenario, the Shared
Memory System models a main memory with longer ac-
cess times. For the modeled Fresh Breeze architecture, task
switching times are sufficiently short that it is beneficial to
use a blocking read wherein the processor is switched to a
different task while a chunk_read operation is performed.
For these experiments the Task Save and Task Restore ac-
tions model the retention of processor register state across
read operations.

8 Experiments

In our simulation runs, the Dot Product computation was run
for several vector lengths and various values of parameters
of the modeled system.

To begin, Table 2 shows the numbers of task executions
needed for processing leaf chunks and non-leaf chunks of
tree representations of the vectors. Since 16 multiplies and
15 adds are performed in processing a leaf chunk and 15
adds are performed for each non-leaf chunk, the totals of
adds and multiplies are readily calculated.

First presented are basic performance measures where
performance is presented as the average number of cycles
per task over all tasks executed in a simulation run. The
charts show the performance for three vector lengths and
various Shared Memory access times for the two cases of
interest. In Fig. 5 reads are non-blocking, modeling behav-
ior of an L2 shared cache; In Fig. 6 reads are blocking, with
suspension of the task and swapping processor state to run
an alternative task. This models a main memory where the
fine-grain task management of the Fresh Breeze architecture
serves to provide help with latency tolerance, even for typi-
cal main memory access times. In all of these runs a system
having 40 processors and 64 independent shared memory
units was simulated.

Table 2 Number of task executions and operations

Vector Leaf Non-leaf Total Adds or

length tasks tasks tasks multiplies

163 256 17 273 4096

164 4096 273 4369 65536

165 65536 4369 69895 1048576

The best performance shown in these runs achieves an av-
erage around 250 cycles per task for the non-blocking case
and 350 cycles in the blocking case. Using the numbers of
leaf and non-leaf tasks from Table 2 and the corresponding
counts of adds and multiplies, the number of operations per
task for vectors of length 165 is 30.0. For a processor oper-
ating at a 500 MHz clock rate, this corresponds to a perfor-
mance of (30∗500)/250 = 60 million operations per second
per processor or 2400 MOPS for the set of 40 processors.

In addition to average performance, the simulations have
demonstrated the effectiveness of hardware-supported work
stealing. Figure 7 shows how well the task processing load
is distributed over the 40 processors for the Main Memory
model for 100 cycles access time. Similar results were ob-
tained for the L2 Cache simulations, although load distribu-
tion was slightly less effective for vectors of length 164.

8.1 Discussion

For the processor characteristics chosen for this study the
maximum possible performance for the Dot Product com-
putation for a 16-element vector is determined by the 32 cy-
cles to execute 32 pipelined arithmetic operations and 32
cycles to access vector elements from top-level cache or
(32 ∗ 500)/64 = 250 MOPS. The experiments show that the
Fresh Breeze architecture is able to achieve about 25 percent
of this maximum. This is satisfying as memory and storage
management functions are both performed entirely by the
system, with no involvement of application programmer or
a compiler. Without the degradation of simulation perfor-
mance due to instruction cache misses, we believe at least
twice the observed performance would be achieved. Given
that the processor utilization data show processors are idle
for very little time with long vectors, they must be perform-
ing the actions listed in Table 1. Future work using event-
driven simulation is expected to provide more reliable re-
sults.

8.2 Work stealing

A high processor utilization requires that the tree of parallel
tasks be distributed over the available processors as quickly
as possible. Under the modeled system structure shown in
Fig. 4, all of the shared storage units are equally accessible
to all the processors. It makes no difference which processor
gets to run any particular task. Under these conditions, the
goal of scheduling and task distribution is to ensure that if
there is a free processor and work to be done, the processor
gets some work assigned. The mechanism employed in the
system modeled in these experiments has been shown to be
effective at this job.

However, for much larger systems it becomes important
to recognize the non-uniform access characteristics of prac-

Experiments with the Fresh Breeze tree-based memory model 333

Fig. 5 Non-blocking read
scenario: system cycles per task

Fig. 6 Blocking read scenario:
system cycles per task

tical scalable architectures for memory hierarchies. It fol-
lows that the locations of data structures must be consid-
ered in the design of any scalable, general task distribution
scheme. This is expected to be a challenge for our continu-
ing research.

8.3 Caching

The traditional role of cache memories in computer systems
has been to reduce the idle time of processors by exploit-
ing temporal and spatial locality. However, the size of the

L1 cache played no role in these simulation results. Essen-
tially all memory references in runs of Dot Product resulted
in data transfers from the Shared Memory. This did not re-
sult in a big performance problem because of the inherent
spatial locality of data residing in one memory chunk: a
cache miss on a chunk_read instruction causes transfer of
the entire chunk and furthr accesses proceed at the L1 cache
rate.

Further system design study may exploit another local-
ity benefit of the tree-structured data model: if a node is ac-
cessed, it is likely that its children will also be accessed. This

334 J.B. Dennis et al.

Fig. 7 Load distribution
performance of work stealing
for Main Memory

Experiments with the Fresh Breeze tree-based memory model 335

suggests an implementation in which the system automati-
cally fetches the child chunks of a node to some memory
level when a request is received at that level for access to
the node.

The Dot Product test computation involved zero reuse of
data. This is not characteristic of most computations, for ex-
ample, matrix multiplication and other examples which are
being studied for the Fresh Breeze architecture. In general,
the cache mechanism will likely be important to overall per-
formance in future Fresh Breeze designs.

8.4 Excess parallelism

The fine-grained hardware-implemented scheduling of tasks
permits a user computation to offer much more parallelism
than can be actually exploited at any time by the system.
This generates a need for either “throttling” the generation
of tasks or providing a way for the system to remember the
tasks that need to be taken up when resources (processors)
become free.

In our experimental simulation, we chose to have each
processor maintain a 64-position queue of pending tasks.
With this choice the computation of the dot product for
vectors of length 165 generated 209,716 tasks for the main
memory model with 100 cycles of access latency (which is
a typical value for the current main memory technology).
All but 412 of these excess tasks were never sent to the de-
ferred pool but were either taken from the pending list by the
local processor, or were stolen from the pending list of an-
other processor. Thus it seems that managing deferred tasks
is manageable with suitable fine-grain hardware scheduling
support.

9 Future plans

To further explore and demonstrate Fresh Breeze principles
two lines of work will be followed.

First, our simulation facility must be augmented to en-
compass a more complete model of a realistic Fresh Breeze
computer system (as illustrated by Fig. 3). In particular, a
memory hierarchy of at least three levels is needed to show
the power of the memory model to replace conventional file
storage media. For this work, it is expected that event-driven
simulation will be used to achieve greater efficiency in ac-
curate modeling of a complex asynchronous system such as
the Fresh Breeze vision. Later, it is hoped that a demonstra-
tion system including a large capacity flash memory level
can be built using FPGA technology.

The second direction is to expand testing and evaluation
to representative computations from a variety of application
areas. It is expected that this will include stream process-

ing and transaction-oriented applications as well as more
ambitious codes for scientific computation. Codes for ma-
trix multiplication, the FFT, and solution of linear equa-
tion systems are under development. Applicability of the
trees-of-chunks model to computations on large graphs will
be tested. In support of code development for testing, and
eventual complete application codes, completion of usable
compilers for FunJava [9] and Habanero Java [28] is antici-
pated.

10 Related work

The idea of building a computer system with unique handles
for all data objects is central to the capability concept. It is
the logical extension of virtual memory ideas embodied in
Multics [13], and the successful commercial implementation
in IBM AS/400 systems [14]. A software implementation
of capabilities is available [6] and its successor Coyotos is
under development. However, the software implementations
do not have the tight security features of hardware-based ca-
pabilities. Use of the write-once storage concept in a parallel
programming model was proposed by Dennis in [2].

During the past two decades, techniques for dynamic load
balancing have been studied extensively in the context of
several multithreading implementations. These include Cilk
[8, 15], EARTH [16, 17] and the scheduling of parcels in
HTMT [18]. The Rice University proposal for the HPC lan-
guage Habanero Java includes the idea of place tree hierar-
chies as a means to offer programmers a range of options
from fully specifying the mapping of parallel tasks to pro-
cessors, to granting the system the responsibility of making
assignments. This work is a revision of the X10 program-
ming language, which uses the asynch/finish concurrency
control primitives [19–22]. Related work appears in the HPC
language Cascade [23].

In contrast to these software approaches, the Japanese
Sigma 1 data flow computer included an interprocessor net-
work that automatically routes remote function invocations
to lightly loaded processors [24]. The work stealing tech-
nique proposed here for implementing the Fresh Breeze vi-
sion may be regarded as an implementation of Cilk ideas
using principles similar to those of the Sigma 1.

Tools for conducting system evaluation through simu-
lation and emulation is an area of active work [25, 26].
The RAMP project [27] at Berkeley is a FPGA-based many
core emulation platform. In employs Xilinx Vertex-II Pro
FPGAs on 16-21 BEE2 boards to implement a many core
system composed of 1000 plus processor cores. The pur-
pose of the RAMP project is to explore the architecture
design space for future many-core computer architecture
and enable early software development and debugging. It
is intended to define and create the next generation tools

336 J.B. Dennis et al.

for computer architecture and computer system research.
In contrast, the FAST simulation tool used in this paper is
an industrial-strength system that can simulate the entire
logic of the IBM Cyclops-64 chip with its 160 cores [12].
An implementation of a system emulation facility equiv-
alent to the FAST simulator has been constructed using
FPGA devices and is used for validation of both architec-
ture and system software implementation for the Cyclops
64 device.

11 Conclusion

The work reported here has suggested the merits of a new
memory model using trees of fixed size memory chunks
to represent all data objects. Furthermore, the advantages
of hardware implementation of scheduling and load distri-
bution functions have been demonstrated, albeit in a lim-
ited scenario. Further work is needed to extend the system
model and to study its performance for a variety of applica-
tions.

The Fresh Breeze architecture is an attractive basis for
building future multiuser computer system with excellent
security and protection properties by virtue of the equiva-
lence of handles of objects with capabilities.

Further exploration of novel approaches to the architec-
ture of highly parallel systems seems eminently justified.

Acknowledgements The authors thank the National Science foun-
dation for funding this work under Grant CCF-0937907. This re-
search was also partially supported by NFS Grants (CCF-0925863,
OCI-0904534, CCF-0833122, CNS-0720531), and other government
sponsors. In addition, we acknowledge our appreciation of the collab-
oration of IBM, University of Delaware and ET International that led
to development of the FAST simulation software used in our experi-
ments.

We thank the members of CAPSL group at University of Delaware
for providing a stimulating research environment and inspiration. In
particular, we also thank Elkin Garcia for careful proof reading and
editing the entire paper and to make sure all figures and tables are in-
cluded correctly, and Joshua Suetterlein for providing a number useful
comments on the presentation as well as corrections.

References

1. Dennis JB (1997) A parallel program execution model supporting
modular software construction. In: Massively parallel program-
ming models. IEEE Comput Soc, Los Alamitos, pp 50–60

2. Dennis JB (2003) Fresh breeze: a multiprocessor chip architecture
guided by modular programming principles. SIGARCH Comput
Archit News 31(1):7–15

3. Dennis JB, Horn ECV (1966) Programming semantics for multi-
programmed computations. Commun ACM, 9, Feb 1966

4. Levy H (1984) Capability-based computer systems. Butterworth-
Heinemann, Stoneham-London

5. Wilkes MV (1979) The Cambridge CAP computer and its oper-
ating system (Operating and programming systems series). Oper-
ating and programming systems series. North-Holland, Amster-
dam

6. Shapiro JS, Smith JM, Farber DJ (1999) Eros: a fast capability
system. In: Proceedings of the seventeenth ACM symposium on
operating systems principles, SOSP’99. ACM, New York, pp 170–
185

7. Dennis JB (2006) The Fresh Breeze model of thread execution.
In: Workshop on programming models for ubiquitous parallelism.
IEEE Comput Soc, Los Alamitos. Published with PACT-2006

8. Frigo M, Leiserson CE, Randall KH (1998) The implementa-
tion of the Cilk-5 multithreaded language. ACM SIGPLAN Not
33:212–223

9. Ginzburg I (2007) Compiling array computations for the Fresh
Breeze parallel processor. Thesis for the Master of Engineering
degree, MIT Department of Electrical Engineering and Computer
Science, May 2007

10. del Cuvillo J, Zhu W, Hu Z, Gao GR (2005) Tiny threads: a thread
virtual machine for the Cyclops 64 cellular architecture. In: In-
ternational parallel and distributed processing symposium. IEEE
Comput Soc, Los Alamitos, p 265

11. Schmidt B (2008) A shared memory system for Fresh Breeze.
Master’s thesis, MIT Department of Electrical Engineering and
Computer Science, May 2008

12. del Cuvillo J, Zhu W, Hu Z, Gao GR (2005) FAST: a functionally
accurate simulation toolset for the Cyclops 64 cellular architec-
ture

13. Bensoussan A, Clingen CT, Daley RC (1969) The Multics virtual
memory. In: Proceedings of the second symposium on operating
systems principles. ACM, New York, pp 30–42

14. Soltis FG (1996) Inside the AS/400. Duke Press, Loveland
15. Vee V-Y, Hsu W-J (1999) Applying Cilk in provably efficient task

scheduling. Comput J 42:699–712
16. Theobald KB (1999) EARTH: an efficient architecture for running

threads. PhD thesis, University of Delaware, May 1999
17. Hum HHJ, Maquelin O, Theobald KB, Tian X, Tang X, Gao GR

(1995) A design study of the EARTH multiprocessor. In: Confer-
ence on parallel architectures and compilation techniques, PACT.
IEEE Comput Soc, Los Alamitos, pp 59–68

18. Theobald KB, Gao GR, Sterling TL (1999) Superconducting pro-
cessors for HTMT: Issues and challenges. In: ACM’87: the 7th
symp on the frontiers of massively parallel computation: today and
tomorrow. ACM, New York, pp 260–267

19. Charles P, Grotho C, Saraswat V, Donawa C, Kielstra A, Ebcioglu
K, von Praun C, Sarkar V (2005) X10: an object-oriented approach
to non-uniform cluster computing. In: 2005 conference on objec-
toriented programming. ACM, New York, pp 519–538

20. Sarkar V, Hennessy J (1986) Compile-time partitioning and
scheduling of parallel programs. In: 86 symposium on compiler
construction, SIGPLAN. ACM, New York, pp 17–26

21. Shirako J, Peixotto D, Sarkar V, Scherer W (2008) Phasers: a uni-
fied deadlock-free construct for collective and point-to-point syn-
chronization. In: Twenty-second international conference on su-
percomputing. IEEE Comput Soc, Los Alamitos

22. Guo Y, Barik R, Raman R, Sarkar V (2009) Work-first and help-
first scheduling policies for async-finish task parallelism. In: In-
ternational parallel and distributed processing symposium, IPDPS.
IEEE Comput Soc, Los Alamitos

23. Callahan D, Chamberlain BL, Zima HP (2004) The Cascade
high productivity language. In: Ninth international workshop on
high-level parallel programming models and supportive environ-
ments

24. Yuba T, Hiraki K, Shimada T, Sekiguchi S, Nishida K (1987) The
Sigma-1 dataflow computer. In: ACM’87: proceedings of the 1987
fall joint computer conference on exploring technology: today and
tomorrow. IEEE Comput Soc, Los Alamitos, pp 578–585

Experiments with the Fresh Breeze tree-based memory model 337

25. Darringer J, Davidson E, Hathaway D, Koenemann B, Lavin M,
Morrell J, Rahmat K, Roesner W, Schanzenbach E, Tellez G, Tre-
villyan L (2000) EDA in IBM: past present, and future. IEEE
Trans Comput-Aided Des Integr Circuits Syst 19:1476–1497

26. Dubois M, Jeong J, Song Y, Moga A (1998) Rapid hardware pro-
totyping on RPM-2. IEEE Des Test Comput, pp 112–118

27. Wawrzynek J, Patterson D, Oskin M, Lu S-L, Kozyrakis C, Hoe
J, Chiou D, Asanovic K (2007) RAMP: research accelerator for
multiple processors. IEEE MICRO 27:46–57

28. Cavé V, Budimlić Z, Sarkar V (2010) Comparing the usabil-
ity of library vs. language approaches to task parallelism. ACM
PLATEAU’10, evaluation and usability of programming lan-
guages and tools, pp 9.1–9.6

Jack B. Dennis is Professor of
Computer Science and Engineer-
ing, Emeritus, at MIT. Prof. Den-
nis received his education at MIT,
completing the doctorate in Electri-
cal Engineering in 1958. He joined
the MIT faculty in the Depart-
ment of Electrical Engineering and
was appointed full professor in
1969. As leader of the Computation
Structures Group, MIT Laboratory
for Computer Science, from 1963
through 1985, Professor Dennis de-
veloped aspects of computer archi-
tecture and programming languages

based on dataflow models of program representation and execution.
These developments led to dataflow projects at many universities and
research institutes around the world, and won the ACM/IEEE Eckert-
Mauchly Award for Professor Dennis in 1984. In 1994 he was inducted
as a Fellow of the ACM and elected member of the NAE in 2008. Since
1987 he has been working as an independent consultant and research
scientist on projects in parallel computer hardware and software.

Guang R. Gao is Endowed Dis-
tinguished Professor in the Depart-
ment of Electrical and Computer
Engineering at the University of
Delaware. Dr. Gao received both his
Masters and Ph.D. degrees in Elec-
trical Engineering and Computer
Science from the Massachusetts In-
stitute of Technology, in 1982 and
1986, respectively. He is the first
person from China to receive com-
puter science graduate degrees from
MIT. At University of Delaware,
Prof. Gao founded and directed the
Computer Architecture and Parallel

Systems Lab (CAPSL). Dr. Gao is a Senior Member of the IEEE and
has been elected Fellow of both ACM and IEEE. Dr. Gao’s main re-
search interest is in high-performance computer systems: architecture,
programming models, compilers, system software, and applications.
Gao is a founder and Chairman of ET International Inc., a spin off
from University of Delaware in 2000.

Xiao X. Meng is a post-doc re-
searcher in the Department of Elec-
trical and Computer Engineering
at University of Delaware, begin-
ning November, 2009. His research
interests include parallel comput-
ing architecture, large-scale net-
work storage systems, file systems
and storage virtualization. Dr. Meng
earned the Ph.D. degree in com-
puter engineering from the Institute
of Computing Technology, Chinese
Academy of Sciences (ICT, CAS) in
2009, and received his bachelor de-
gree in computer science from Nan-
jing University in 2002.

	Experiments with the Fresh Breeze tree-based memory model
	Abstract
	Introduction
	The Fresh Breeze memory model
	Fresh Breeze tasking
	The Fresh Breeze vision and its API
	The Fresh Breeze API

	Simulation
	Scheduling and work stealing
	System modeling with simulation
	The system modeled
	Events in simulation versus actions in an implementation

	Experiments
	Discussion
	Work stealing
	Caching
	Excess parallelism

	Future plans
	Related work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

