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Abstract Safety requirements are an important arti-
fact in the development of safety critical systems. They
are used by experts as a basis for appropriate selec-
tion and implementation of fault detection mechanisms.
Various research groups have worked on their formal
modeling with the goal of determining if a system can
meet these requirements.

In this paper, we propose the application of for-
mal models of safety requirements throughout all con-
structive development phases of a model-driven devel-
opment process to automatically generate appropriate
fault detection mechanisms. The main contribution of
this paper is a rigorous formal specification of safety
requirements that allows the automatic propagation,
transformation and refinement of safety requirements
and the derivation of appropriate fault detection mech-
anisms. This is an important step to guarantee consis-
tency and completeness in the critical transition from
requirements engineering to software design, where a
lot of errors can be introduced into a system by using
conventional, non-formal techniques.
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1 Introduction

During software development, there is usually a logi-
cal gap between requirements specification and software
design specification. This is typically the step where in-
formal, human-readable requirements have to be trans-
formed into a formal system design. In the develop-
ment of safety critical systems, this gap in the develop-
ment chain also exists for safety requirements. Safety
requirements are requirements that are dealing with
system safety. Safety of a system is defined as the ab-
sence of catastrophic consequences on the users and
the environment of the system [5]. During system op-
eration, occurring failures may violate safety require-
ments and the system design has to assure that this
has no catastrophic consequences. However, safety re-
quirements may already be violated during system de-
velopment: the gap between requirements specification
and software design specification is one of the key points
where system safety can be violated by the introduction
of design faults.

Therefore we propose a fully automatic approach
that uses formally modeled safety requirements to au-
tomatically generate appropriate fault detection mecha-
nisms in the system. Thus, they can be fulfilled without
human interaction.

The two main contributions of this paper are, first, a
rigorous formal specification of safety requirements that
allows an automatic propagation, transformation and
refinement of safety requirements and the derivation
of appropriate fault detection mechanisms. The second
main contribution is the definition of the according, au-
tomated workflow.

This automation is an important step to guaran-
tee consistency and completeness in the transition from
requirements engineering to software design. The ap-
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proach aims at accompanying traditional safety enhanc-
ing techniques like the selection and implementation of
appropriate hardware and software architectures.

To show the validity of our work, we implemented
the approach in FTOS [8], a tool for model-based de-
velopment of fault tolerant embedded systems that we
developed.

Section 2 will present the background of this ap-
proach. In Section 3, our approach will be described in-
formally to give the reader a basic understanding of the
technique. Section 4 illustrates the whole workflow with
an example. Section 5 gives an evaluation of the spe-
cific implementation in FTOS and Section 6 will com-
pare our approach to the related work. Finally, Section
7 concludes this paper and presents some possible areas
for future work.

2 Background

This Section gives background information on model-
driven development and safety-critical systems. More-
over, it describes the basic idea of our approach and its
formal foundation.

2.1 Overview of Model-Driven Development

Model-driven development (MDD) is a software engi-
neering paradigm that consists of multiple layers. Mostly
all of the existing model-driven development method-
ologies, like Model Driven Architecture (MDA) [30],
share the same structure: Metamodels are on the most
abstract layer, which define the semantics of the models
on the layer below. The most widely-used metamodel
is the one of the Unified Modeling Language (UML),
which has been developed by the Object Management
Group, using their Meta Object Facility [31].

However, other MDD approaches propose the cre-
ation of domain-specific metamodels for every use case,
to maximize the amount of source code that can be
generated automatically in the end of the software de-
velopment process [27].

Typically, a software developer that follows a model-
driven development approach, works on the model layer
to create application models. These models can au-
tomatically be transformed to new models (model-to-
model transformation) or to source code (model-to-code
transformation). Model-to-model transformations can
be used, for example, to merge different models like a
hardware model and a software model of an embedded
system. The automation of this step helps to reduce
errors that might occur because of a lack of software
knowledge from the hardware design engineers or a lack

Metamodel layer

Model layer

Source code layer

Model-to-Code transformation

Instantiation

Meta-meta Model

Meta Model

Model

Source Code

Instantiation

Instantiation

Instantiation

Fig. 1 The principle of MDD

of hardware knowledge from the software developers.
Model-to-code transformations are used to transform a
modeled software program into real source code on the
lowermost level. This basic idea is illustrated in Fig. 1.

The main advantage of MDD is that the whole soft-
ware development process is lifted to a more abstract
level, which makes it more comprehensible and there-
fore less error-prone. Moreover, a higher level of ab-
straction also accelerates the software development pro-
cess, a phenomenon which could already be monitored
at the transition from low level programming languages
(e.g. Assembler) to high level programming languages
(e.g. C) and at the transition from there to object-
oriented programming languages (e.g. Java).

Furthermore, depending on the selected modeling
language, the system modeling can happen on a plat-
form independent layer. The mapping from models to
source code can be hidden from the developer in the
model-to-code transformation and therefore it is more
easy to change details of the used platform or even com-
pletely migrate from one platform to another.

2.2 Safety-Critical Systems

Safety-critical systems stand out due to their character-
istic that their failures may result in damage to their
environment. This damage may be monetary, environ-
mental or even lethal. To take care of these failures and
to protect oneself against liability lawsuits, the devel-
opment of safety-critical systems is handled with more
care than the development of non-safety-critical sys-
tems. A common denominator for the development of
safety-critical systems are safety standard norms, which
are adopted by various standardization bodies.

Safety standards are of great importance, because
they describe the state of the art in safety engineering.
In this role, they are a valuable source of information
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and a way to align specific development projects with
the world of safety engineering practitioners.

By law, there is typically no direct need to comply
with a certain safety standard. However, a lot of coun-
tries possess laws that regulate liability issues, like in
Germany the Produkthaftungsgesetz (ProdHaftG) (prod-
uct liability law), which rule that a system developer is
legally liable for damage that was caused by the system,
if it was not developed according to the state of the art.
As the state of the art is usually very difficult to grasp,
the fulfillment of safety standards is generally accepted
as a necessary (but not sufficient!) requirement to the
fulfillment of the state of the art.

A good overview over many standards with their
strengths and weaknesses is given in [17]. Some stan-
dards are of outstanding importance for our approach:

– IEC 61508 [20]: A general standard for the devel-
opment of electrical, electronic and programmable
electronic safety related systems, which is the basis
for many domain specific standards.

– ISO 26262 [21]: The derivation of the IEC 61508
for the automotive domain. Some flaws of the gen-
eral standard have been eradicated from it. More-
over, contrary to the general standard, it mentions
model-driven development.

– RTCA DO-178B/C [35]: A standard that is deal-
ing exclusively with software in airborne systems.
The standard is accompanied by various other stan-
dards for the development of airborne systems, so it
possesses a very clear structure. Because of the very
high risk that is involved in airborne systems, the
standard is considered to be one of the most strict
ones.

The common denominator of safety standards is
that they are dealing with the risks, which a developed
system presents to its environment. Therefore they en-
force the application of safety analysis techniques to
detect and evaluate risks. Moreover, they also enforce
the application of risk reducing techniques to handle
unacceptable risks. These risk reducing techniques are
manifold and include special development processes as
well as additional requirements to the developed system
itself, e.g. its software or hardware architecture.

2.3 Informal Description of the Approach

Safety requirements usually deal with the behavior of
the whole system and therefore are specified in nat-
ural language. Examples are “an airbag has to acti-
vate if there is an emergency” and “an airbag must
not activate if there is no emergency”. Due to safety re-
quirements being very application specific, specification
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Fig. 2 Metamodel for Safety Requirements and Assurances

techniques for them on system level are very powerful
and therefore only little information can be extracted
automatically from them. Thus we follow the current
industrial approach that requirements have to be re-
fined manually to an abstraction layer where they can
be handled in an algorithmic way, for example the ac-
tor level of actor-based models of computation [2], after
they have been identified.

On the actor level safety requirements consist of
a link to an actor and a list of failures whose occur-
rence has to be detected by this actor. To describe these
faults, McDermid [26] defined a comprehensive list of
basic failure modes for time-triggered systems, which
we extended to describe the time and value domain of
failures in more detail. These extended failure classes
are:

– Wrong value (with threshold for deviation)
– Wrong timing (with threshold for too early and too

late)
– No result
– Wrong values in subsequent time steps
– Multiple wrong values at the same time

A subset of the metamodel that we use in our ap-
proach is depicted in Fig. 2.

Safety requirements have to be propagated along
data flow paths in systems, because a single actor can-
not ensure the safety of the whole system. This propaga-
tion is visualized in Fig. 3. During this propagation, new
safety requirements with changed specifications may
have to be derived from the old ones automatically. This
is necessary, because some actors influence the failure
mode of safety requirements, e.g. voters. Therefore we
introduce the concept of safety assurances. Safety assur-
ances are specified for actors and describe how safety
requirements are transformed when they pass the speci-
fied actor. On the one hand, a safety assurance specifies
the further propagation path of a safety requirement by
mapping ports for “incoming safety requirements” to
ports for “outgoing safety requirements”. On the other
hand, a safety assurance describes how the failures that
are specified by a safety requirement are transformed.
Some safety assurances can automatically be extracted
from system models, but the majority of them has to
be specified manually, similar to safety requirements.
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After the propagation, safety requirements can be
refined from the actor level to the hardware level on
which appropriate fault detection mechanisms can be
automatically selected to fulfill the requirements.

2.4 Formal Foundation

The theory is based on the formal system model of
Buckl et al. [9]. Safety requirements, safety assurances
and fault detection mechanisms are added. Propaga-
tion, transformation and refinement of safety require-
ments are added and expressed in the notation of [9].

Definition 1 A system S = (V,Π) can be defined by
a finite set of variables V = {v1, ..., vn} and a finite set
of processes Π = {π1, ..., πn}. The domain Di is finite
for each variable vi. A state s of system S is the valu-
ation (d1, ..., dn) with di ∈ Di of the program variables
V. A transition is a function tr : Vin → Vout that trans-
forms a state s into the result state s′ by changing the
values of the variables in the set Vout ⊆ V based on the
values of the variables in the set Vin ⊆ V .

Definition 2 A system is build up from a set of com-
ponents C. A set of variables Vc ⊆ V is associated with
each component c ∈ C. Vc = Vc,internal ∪ Vc,interface ∪
Vc,environment is composed by 3 disjoint variable sets:
the set of internal variables Vc,internal, the set of in-
terface variables Vc,interface and the set of environment
variables Vc,environment, which can only be accessed by
exactly one component.

Environment variables can only be accessed and altered
by the set of processes associated with C : Πc ⊆ Π.
Interface variables are used for component interaction
and can be accessed by all interacting processes. Envi-
ronment variables are variables that are shared between
the component and the environment of the system. This
set can again be divided into the input variables Vc,input

that are read from the environment and the output vari-
ables that are written to the environment Vc,output.

Definition 3 A subsystem T = (VT , ΠT ) of S is de-
fined by a subset VT ⊆ V of the variables of S and by a
subset ΠT ⊂ Π of the processes of S. A subsystem is a
system itself, so it has to be self-contained apart from its
interface variables VT,interface and environment vari-
ables VT,environment, similar to definition 2.

Definition 4 Components can be structured in a hier-
archical way. A component c ∈ C may consist of several
components c1, ..., cn ⊂ C. Moreover, c can be a soft-
ware component, a hardware component or a mixture of
both: type(c) ∈ {software, hardware,mixed}. On the
most concrete level, hardware components are instances
of the hardware component types:

HCT = {cpu, bus, rom, ram, sensor, actor,
digital hardware, interrupt, clock, communication,

mass storage}

Definition 5 The functional behavior of a compo-
nent c ∈ C is reflected by the corresponding processes
Πc. Let Vinterface = {v|v ∈ Vc′,interface ∧ c′ ∈ C} be
the set of all interface variables. Πc is specified as a fi-
nite set of operations of the form guard→ transition,
where guard : Vguard → bool is a boolean expression
over a subset Vguard ⊆ Vc ∪ Vinterface ∪ Vc,input and
transition : Vin → Vout is the appendant transition
with Vin ⊆ Vc ∪ Vinterface ∪ Vc,input and Vout ⊆ Vc ∪
Vinterface ∪ Vc,output.

Definition 6 A fault is a physical defect, an imper-
fection or a flaw that occurs within some hardware or
software component. An error is the manifestation of
a fault and a failure occurs, when the component’s be-
havior deviates from its specified behavior [5].

Depending on the level of abstraction where a system is
investigated, the occurrence of a malicious event may be
classified as a fault, error or failure. Therefore we define
all malicious events that might occur on a component’s
port c as errors Ec. Errors can alter the functional be-
havior of a component, which was defined in definition
5, in the time or value domain:

Ec ⊆ {early, late, omission, commission,
subtle incorrect, coarse incorrect}

This alteration can be expressed formally by the ad-
dition of new transitions s → serr to the functional
behavior of the system and by the removal of existing
transitions.

Definition 7 A state predicate P is a boolean func-
tion over a set of variables Vp ⊂ V . The set of state
predicates represents the specification of the system and
is therefore defined implementation independent. The



Deriving Fault-Detection Mechanisms from Safety Requirements 5

set of variables Vp ⊆
⋃

c∈C Vc,environment is a subset of
all variables that can be observed by the environment of
the system.

Definition 8 Fault detection mechanisms build on
the concept of detectors [3]. A fault detection mecha-
nism m = (E,C,O) is a state predicate used to check if
a specific error has occurred. Its attributes are a set of
errors that it is able to detect

E ⊆ {early, late, omission,
commission, subtle incorrect, coarse incorrect}

a set of component types where it is applicable C ⊆
HCT ∪ {software} and a set of optimization crite-
ria that can be used to compare different fault detection
mechanisms O = {cost, runtime,memory}.

Lemma 1 Following definition 2, the data flow be-
tween components is unambiguously defined by the sets
of interface variables of all components Vc,interface.

Lemma 2 Based on definitions 6, 7 and lemma 1, a
Safety Requirement src = (E) of a component c is a
state predicate and its attributes are a set of errors that
are not allowed to occur at c.

E ⊆ {early, late, omission, commission,
subtle incorrect, coarse incorrect}

A Safety Assurance sa = (EM,P ) of a component
is also a state predicate and it describes how a compo-
nent can influence errors. Safety assurances’ attributes
are error mappings EM : Ec → E′c, where E′c = Ec ∪
{correct} for the errors specified by safety requirements
and mappings of the interface variables of the compo-
nent, which define the paths where the effects of er-
rors propagate inside the system: P : vin → wout with
v, w ∈ Vc,interface., for a component c.

Lemma 3 A safety requirement sr is fulfilled by a fault
detection mechanism m (m∧sr ⇒ >), if (srE ⊆ mE)∧
(c ∈ mC). That means that m has to be able to detect
at least all errors, which sr requires and that m is ap-
plicable to the component where sr has been defined.

Definition 9 Back propagation: Safety requirements
src of a component c ∈ C can be back propagated to
the predecessors c1, ..., cn of c in the data flow: src ⇒
src ∧ src1 ∧ ... ∧ srcn

.

Back propagation of safety requirements is necessary,
because isolated components of a system cannot guar-
antee the safety of the complete system.

Lemma 4 Transformation: According to lemma 2,
safety assurances change the effects of errors that are
propagated inside a system. A transformation is the
mapping of a safety requirement sr and a safety assur-
ance sa to a new safety requirement sr′: (sr, sa)⇒ sr′.

Safety assurances influence safety requirements that are
propagated inside a system, which was described in def-
inition 9: a safety assurance sac on a component c may
shrink the set of predecessors in the data flow that have
to fulfill the safety requirements src on c. Moreover, the
set of errors that are not allowed to occur as defined
by src may also change for the predecessors of c. The
instantiation of a safety requirement src and a safety
assurance sac results in an altered safety requirement
src ∧ sac ⇒ sr′c.

Lemma 5 Refinement: According to definition 4, a
component c ∈ C may consist of several subcomponents
c1, ..., cn ⊂ C. Safety requirements can be refined along
this subcomponent relationship, which is orthogonal to
the propagation defined in definition 9: src ⇒ src1 ∧
...∧srcn

with sr ∈ SR (note that src does not exist any
more on the right side of the implication).

Refinement is necessary, because fault detection mech-
anisms are usually very specific to certain component
types where they can be applied. A Galpat test, for
example, can only detect errors in RAM. So safety re-
quirements have to be refined to an abstraction level
where appropriate fault detection mechanisms are avail-
able.

Mechanism Selection: Fault detection mechanisms
can be selected that guarantee that all safety require-
ments SR on a system S are fulfilled (see Lemma 3 for
the definition of the fulfillment relation). However, it is
very likely that there are multiple subsets of all avail-
able fault detection mechanisms Mi ⊆ M,Mj ⊆ M ,
with i 6= j, that are able to fulfill

∧
SR: (Mi∧

∧
SR⇒

>) ∨ (Mj ∧
∧
SR ⇒ >). Therefore, the optimization

criteria of the fault detection mechanisms can be ex-
ploited to find an optimal solution. As this is obvi-
ously a computationally complex multi-dimensional op-
timization problem, sophisticated techniques like branch-
and-bound should be used, because the fulfillment re-
lation is transitive: Mi ⊂ Mj ⊆ M ∧ (Mj ∧

∧
SR ⇒

⊥)⇒ (Mi∧
∧
SR⇒ ⊥). Algorithm 1 is an exemplified

solution for this problem.

3 Approach

Even though our approach is based on a formal founda-
tion, it will be explained in an informal way for a better
understanding.
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3.1 Step 1: Propagation and Transformation

Safety requirements and safety assurances have to be
specified manually. Afterwards, the safety requirements
can automatically be back propagated along the data
flow paths. This is necessary because a system’s output
does not only depend on its output actor but on all
actors that form the data flow chain from the system’s
inputs to the output. Obviously, this back propagation
is an stepwise process because the safety requirements
have to be propagated not only once but until they
reach the input actors of the system.

During propagation, safety requirements may reach
an actor, which influences them (e.g. the voting compo-
nent of a triple-modular redundant system). We intro-
duce the concept of safety assurances to describe these
influences. A safety assurance may change the failures
that a safety requirement prohibits. Moreover, it may
also alter the propagation paths, which is useful because
it is not always necessary that a safety requirement has
to be propagated to all predecessors of an actor. The
interaction of safety requirements and safety assurances
is described more detailed in Section 3.4.

3.2 Step 2: Refinement

After the safety requirements have been propagated
along the actor chains in the system, the safety require-
ments on each actor can be processed further by refining
them to the different hardware components on which
the actor is executed. This transforms every safety re-
quirement for actors to safety requirements for hard-
ware components, e.g. CPUs, memories or buses.

3.3 Step 3: Mechanism Selection

On the hardware component refinement level of safety
requirements, they can be fulfilled automatically by se-
lecting fault detection mechanisms and fault handling
mechanisms based on them. A fault detection mecha-
nism is a software or hardware function that can detect
a defined set of faults of specific hardware components.
Moreover it is annotated with non-functional parame-
ters, e.g. worst-case execution time (WCET), memory
requirements and development costs. The mapping be-
tween failures and faults can be derived from safety
standards, e.g. IEC 61508 [20].

It is possible to create a library of fault detection
mechanisms L, from where they can be selected without
further preparation. For each actor a, a subset Sa ⊆ L

can be chosen so that each mechanism m ∈ Sa fulfills
at least one safety requirement req ∈ Reqa. With Reqa

being the set of all safety requirements on actor a. In a
second step, the power set P(Sa) has to be calculated.
This is necessary, because P(Sa) = Sa+ ∪ Sa−, where
Sa+ is the set of all subsets of P(Sa) that fulfill all safety
requirements Reqa and Sa− is the set of all subsets of
P(Sa) that do not fulfill all safety requirements Reqa.

The approach based on the power set of S is nec-
essary because some fault detection mechanisms may
be able to handle multiple faults in multiple hardware
components and therefore it is not sufficient to simply
select one fault detection mechanism for each safety re-
quirement. The final step of our approach is the se-
lection of an optimal subset of Sa+. This is obviously
a non-trivial multidimensional optimization task be-
cause the importance of the non-functional parameters
of fault detection mechanisms may differ tremendously
from application to application. For example, in some
applications, WCET may be the single determining fea-
ture, whereas in others, it may be a combination of
cost and memory consumption. As multidimensional
optimization is not the focus of our research, we pro-
pose a very straight forward solution to this problem,
which is a score based approach that can be adjusted
to the needs of the actual application. For each sub-

Input: Power set P of fault detection mechanisms
Output: optimal subset of P
foreach Subset s ∈ P do1

WCETs =
X

m∈s

wcetm ;
2

memorys =
X

m∈s

memorym ;
3

costss =
X

m∈s

costsm ;
4

scores = α ∗WCETs + β ∗memorys + γ ∗ costss ;5

end6

return s ∈ P : ∀s2 ∈ P \ {s} : scores ≤ scores2 ;7

Algorithm 1: Selection of Fault Detection Mech-
anisms

set s ∈ P(S), a score is calculated. The highest scor-
ing set is selected and the according fault detection
mechanisms can automatically be generated. Due to the
non-functional parameters being comparable numbers,
their values WCETs, memorys and costss can be inter-
preted as scores. Moreover, it makes sense to normalize
WCETs and memorys to the utilized runtime and uti-
lized memory of the specific system to make these values
more comparable. The final score can be calculated via

scores = α ∗WCETs + β ∗memorys + γ ∗ costss

with α, β and γ being weights for customizing the algo-
rithm for different application areas. To make different
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Fig. 4 Safety requirements, component types and fault de-
tection mechanisms

applications comparable, the sum of α, β and γ has to
be normalized: α + β + γ = 1. The set s with the low-
est final score scores can automatically be determined
and its fault detection mechanisms can be generated.
The respective algorithm is listed in algorithm 1. The
runtime of this algorithm is obviously not optimal. It
is only used in this paper to illustrate, which problem
has to be solved. A summary of the whole proposed
workflow is shown in algorithm 2.

Manual identification of system level safety1

requirements ;
Manual refinement of safety requirements to actor2

level ;
Manual determination of safety assurances ;3

foreach SafetyRequirement req do4

Propagation of req along the chain of actors from5

output to input ;
end6

foreach Actor a do7

foreach SafetyRequirement req on a do8

Refinement of req to the hardware level ;9

end10

Selection of appropriate fault detection11

mechanisms from library S ⊆ L ;
Generation of the power set P(S) ;12

Evaluation of all subset s ∈ S according to13

algorithm 1 ;
Source code generation for the result of algorithm14

1 ;
end15

Algorithm 2: Workflow Overview

3.4 Comparability of Safety Requirements and Fault
Detection Mechanisms

Section 3 showed that it is essential for our approach
that safety requirements and fault detection mecha-
nisms can be compared in a formal way. This compari-
son has to be performed on the attributes of safety re-
quirements and fault detection mechanisms. Safety re-
quirements consist of a list of failure classes and a link to
a component. The relationship between failure classes,
basic component types and fault detection mechanisms
is visualized exemplarily in Fig. 4, where a black slot in
the cube implies that the selected failure class on the
selected component type is detectable by the selected
fault detection mechanism. To achieve this relationship,
fault detection mechanisms have to be defined by the
following attributes:

1. Detectable failure classes (DFC)
2. Basic component types (BCT )
3. Worst case execution time (WCET )
4. Memory
5. Development costs

The attributes DFC and BCT are required to deter-
mine the suitability of the fault detection mechanism
for a given safety requirement, whereas the features
WCET , memory and costs can be used to choose the
optimal fault detection mechanism. The failure classes
of safety requirements and DFC are both subsets of
the comprehensive set of failure classes, which was de-
fined in this Section, they are comparable. Moreover,
the basic component types of safety requirements and
BCT are also subsets of the same super set.

Similar to the comparison of safety requirements
and fault detection mechanisms, the comparison of mul-
tiple fault detection mechanisms can also be performed
component-by-component. WCET , memory and costs
can be represented as integers and therefore be easily
compared.

3.5 Scheduling of Fault Detection Mechanisms

The benefits of an automatic generation of fault detec-
tion mechanisms come at the price of creating a new
problem: the synthesized fault detection mechanisms
have to be executed, obviously. This results in two key
questions:

– How often has a fault detection mechanism to be
executed to actually fulfill a safety requirement?

– Is there enough idle time on the processor to execute
all required fault detection mechanisms?
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The generation of appropriate schedules is a very
old problem of computer science and with the evolv-
ing computer technology, the problem is surfacing again
and again (e.g. nowadays for multi- and manycore sys-
tems) [34]. Even so, the problem of scheduling fault-
detection mechanisms within a normal task workload
appeared not until 2009 in academia and even then,
the focus was just on maximizing the effective fault-
detection utilization in a rate monotonic schedule [13].
This is remarkable, because [25] showed that hardware-
only fault detection is not sufficient.

The scheduling of automatically generated fault de-
tection mechanisms is a difficult task, because the devel-
oper of a specific application does not know what func-
tions are exactly generated and what their schedule-
relevant properties are. Therefore, a transformation has
to be found that is able to combine task functions and
fault detection functions so that standard scheduling
techniques can be applied afterwards.

Different classes of fault detection mechanisms - and
even more general: of tasks - exist that have to be han-
dled differently during model-to-model and model-to-
code transformations. On the most abstract level exist
three different types of them:

1. In-schedule tests have to be executed at a very
specific point in the schedule and their runtime is
usually very short, e.g. voting mechanisms or ac-
ceptance tests.

2. Runtime tests are comparable to standard tasks
regarding their runtime und deadline, e.g. test cal-
culations on a CPU.

3. Proof tests have to assure that the system is in
its initial state regarding faults and errors. Typi-
cally, some proof tests have a very long runtime (e.g.
memory tests) while other proof tests have to assure
that the runtime tests are working as intended (e.g.
by fault injection).

A specific fault detection mechanism usually does
not fall automatically into one of these three categories,
but the classification is application dependent. How-
ever, every test function has strict requirements if it is
interruptible or not. This attribute has to be taken care
of during scheduling.

On the level of the runtime environment, tests can
be separated into three different classes, again. Tests
that are...

1. ...completed in one execution time slot of the sched-
uler. These tasks have to be started completely new
every time when they are executed.

2. ...not completed in one execution time slot of the
scheduler. These tasks have to be stopped explicitly,

their state has to be kept in memory and they have
to be resumed in their next execution time slot.

3. ...not completed in one execution time slot of the
scheduler, but which have a fixed runtime. These
tasks have to be handled similar to the tasks from
(2), but after they finished their execution, they
have to be started completely new, similar to the
tasks from (1).

Taking these characteristics into account, the rela-
tionship between tasks and the different test classes is
visualized in Fig. 5. Tasks and in-schedule tests are ba-
sic classes, whereas runtime tests and proof tests can
be expressed as one class, which inherits all attributes
of tasks and in-schedule tests. Tasks are described by
worst case execution time (WCET), deadline and inter-
rupts points that mark timestamps in which the task
can safely be interrupted.

+run()

+pause()

-WCET : int

-deadline : int

Task

-duration : int

-periodic : bool

InterruptPoint 1*
InScheduleTest

+injectFault()

-Type

Test

type := {RUNTIME_TESTS, PROOF_TEST}

Fig. 5 Relationship between Tasks and Tests

As shown in [1], [4] and [6], (hierarchical) time-
triggered scheduling is the most common scheduling ap-
proach for safety-critical embedded systems, therefore
we propose also such a technique, even though it shall
be mentioned that the presented techniques can easily
be transferred to event-triggered scheduling. We pro-
pose a time-triggered, two-layered schedule. The more
abstract layer - the major cycle - has to be executed
only if the execution of non-transparent proof tests is
desired. On this layer, the execution of one proof test
slot alternates with multiple executions of the tasks and
all other test classes. Each of these executions is called
a minor cycle. On the more detailed scheduling layer,
during the proof test execution time slot, all proof tests
are executed and the readiness of all runtime tests is
checked. This runtime environment is visualized in Fig.
6.

The integration of tasks and fault detection mech-
anisms is a process that can be performed semi-auto-
matically. Three decisions have to be taken manually:

– Are proof tests desired?
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Proof Tests Tasks
End of 

majorcycle?

no

yes

PT1 PTN

RT1 RTN

Test Abstraction

Test Abstraction

!RT1 !RTN

Start
T1 TN

Fig. 6 Proposed Multilayer Schedule

– Should the proof tests be executed transparent to
the minor cycles? This might be necessary, if the
tasks are not allowed to miss their deadlines under
any circumstances.

– Should the proof tests be executed redundantly by
exploiting redundancy that exists in the system.
This might influence the system safety.

When these questions are answered, the schedule
can automatically be generated according to the work-
flow that is visualized in Fig. 7.

4 Example

The exemplary system, visualized in Fig. 8, consists of
five actors A, B, C, D and E. Actor C is built on top of
the two basic hardware components CPU and RAM .
Moreover, the following directed data flows exist: A→
B, C → B, B → D, B → E. For a better readability,
the following safety requirements and safety assurances
are defined in natural language in this example: Safety
requirement req1 is annotated to actor D and is defined
by

req1:=“results of this actor have to be correct”.

Safety requirement req2 is annotated to actor E and is
defined by

req2:=“results of this actor always have to be on
time”.

Safety assurance assur1 is annotated to actor B and is
defined by

assur1:=“results of this actor are always on time and
their correctness depends only on the input from actor

C”.

4.1 Step 1: Propagation and Transformation

During the first iteration of the propagation and trans-
formation, req1 and req2 are both propagated to ac-
tor B. In the subsequent iteration, both of them are
transformed by assur1. The transformation of req1 and
assur1 leads to the result, that req1 is only propagated
to actor C. The transformation of req2 and assur1 re-
sults in req2 not being propagated any further. In the
final iteration of the propagation and transformation,
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Determination of the length of a 
minor cycle by calculation of the 

Least Common Multiple of all task- 
und runtime test-deadlines

Scheduling of tasks und runtime 
tests in the minor cycle via the 
earliest deadline first algorithm

Should proof tests 
be generated?

finish

no

Should proof tests be 
executed transparentlyyes Should proof tests be 

executed redundantly?no

Calculation of the 
CPU’s slack time

yes

Check if the proof 
tests’ deadlines 

can be met in the 
processors slack 

time

Integrate proof 
tests into the 

schedule

Distribute the 
execution of the 
proof tests to the 
redundant system 

components

yes

Calculate the 
impact on system 

safety

Create a major 
cycle for the proof 

test execution

no

Fig. 7 Schedule Generation Process

A B

SafetyRequirement req

SafetyRequirement req*

A

SafetyRequirement req*

CPU RAM ROM I/O

Refinement

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

propagation

SafetyAssurance assur1

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

SafetyAssurance assur1

{req1, req2}

req1

CPU RAM

CPU RAM

req1

Fig. 8 Example System before Application of the Workflow

req1 on actor C is not propagated any further, because
actor C does not possess any incoming data flow edges.

4.2 Step 2: Refinement

The first iteration of the refinement refines req1 on ac-
tor C to the two basic hardware components CPU and
RAM , on which C is built. The final iteration will per-
form no more refinements, because every safety require-
ment is already annotated to the most granular com-
ponents in the model.

4.3 Step 3: Mechanism Selection

After the refinement, the exemplified system is anno-
tated by two safety requirements for basic hardware
components. The result of consulting a library of fault
detection mechanisms is that there are various mech-
anisms to detect incorrect results from CPU , e.g. a
walking bit CPU test [18]. In addition to that, incorrect
results from RAM can be detected by various mecha-
nisms, e.g. a Galpat RAM test [18] or a transparent
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A B

SafetyRequirement req

SafetyRequirement req*

A

SafetyRequirement req*

CPU RAM ROM I/O

Refinement

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

propagation

SafetyAssurance assur1

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

SafetyAssurance assur1

{req1, req2}

req1

CPU RAM

CPU RAM

req1

Fig. 9 Example System after Application of the Workflow

Galpat RAM test [18]. The cheapest solution in this
case is the selection and generation of a walking bit
CPU test and a Galpat RAM test, which is more run-
time efficient than the transparent Galpat RAM test.

The exemplified system is visualized in Fig. 9 after
application of the workflow. As has been discussed in
Step 3, the two safety requirements on the basic hard-
ware components CPU and RAM can be fulfilled au-
tomatically. In the current system model, the safety re-
quirements that are annotated to the actors B,D and E
cannot be fulfilled automatically, because these actors
are not modeled with enough details. As a consequence,
either the model has to be enriched with more details or
the developer has to handle these safety requirements
manually.

5 Evaluation

We integrated our approach to prove its feasibility in
the model-driven development tool FTOS [8]. FTOS is
a tool for model-driven development of fault-tolerant
embedded systems. It focuses on the generation of code
for non-functional system aspects, e.g. fault tolerance
mechanisms and communication schemes. FTOS pro-
vides four different metamodels that can be used for
hardware modeling, software modeling, fault modeling
and modeling of fault tolerance mechanisms. The fault
tolerance metamodel is used to model mechanisms to
handle faults in the system, e.g. redundancy schemes
or test functions. The interdependencies between these
models are visualized in Fig. 10.

The generative workflow of FTOS starts with a model-
to-model transformation that combines and extends all
application models. Afterwards, a template-based code
generation is invoked.

We implemented safety requirements and safety as-
surances as new classes in the fault metamodel and the
combined metamodel. The fault detection mechanisms
were implemented only in the combined metamodel, be-

Pro-active Operations, Error Detection, Online Error Treatment, Offline Error 
Recovery

Hardware, Network Topology

Software Components, Interaction Schedule

Expected Faults, Effects on Hardware / Software Components

Fig. 10 Model Interdependencies of FTOS

cause they are handled automatically. Moreover, we ex-
tended the test functions, which are provided by FTOS,
to match our concept of fault detection mechanisms by
enriching them with information about detectable fail-
ure classes, basic component types where they are ap-
plicable and the non-functional parameters safety in-
tegrity level (SIL), WCET, memory consumption and
costs. We created a library of 11 additional fault detec-
tion mechanisms to the already existing test functions,
which we derived from the safety standard IEC 61508
[20]. For the description of failure classes, we mapped
our extension of McDermid’s failure classes to an al-
ready existing class Failure in the fault metamodel.

The workflow that was described in Section 2.4 was
implemented in the model-to-model transformation right
after the combination of the four input models. The
rationale for this decision was that the generation of
safety-related functions has to deal with all parts of the
modeled system (hardware, software, faults and fault
tolerance). The propagation, transformation and refine-
ment steps of the workflow were implemented as de-
scribed in Section 3. The selection of appropriate fault
detection mechanisms was also implemented similar to
the description in Section 3, but for performance rea-
sons we used branch-and-bound for the power set cal-
culation.

After the implementation, we successfully introduced
safety requirements into existing sample applications
to assure that the fault detection mechanisms are de-
rived properly from the safety requirements and that
the appropriate fault detection mechanisms are gener-
ated. One example is a safe torque off application, which
we developed in cooperation with an industrial partner.
This dual-channel application reads input values that it
receives from an industrial drive. If these values purport
that the drive is erroneous, the safe torque off applica-
tions shuts it down. However, even the safe torque off
application is safety-critical and therefore we used our
approach to generate appropriate fault detection mech-
anisms to assure its safety. As has been shown in [38],
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our approach is able to generate a lot of the fault de-
tection mechanisms, mentioned in IEC 61508.

6 Related Work

To the best of our knowledge, our approach is original
work and there exists no related work that is dealing
with the idea of propagation, transformation and re-
finement of safety requirements. But obviously at lot of
work has been performed in various areas around safety
requirements (origin and formalization) and propaga-
tion. An overview of important ideas in these areas is
presented in this Section.

6.1 Origin of Safety Requirements

Safety requirements are a part of the system specifica-
tion. Hanmer [15] states that “a system without a spec-
ification cannot fail”. According to Leveson [24], safety
requirements are imposed on a system from its environ-
ment in a socio-technical process. On a more technical
layer safety requirements can be derived from system
states that are dangerous for the system’s environment.
These dangerous system states can be identified via
safety analysis techniques like hazard and operability
studies (HAZOP) [19], failure mode and effect analysis
(FMEA)1 and functional hazard analysis (FHA) [36].

6.2 Formalization of Safety Requirements

A lot of work has been performed to formalize safety re-
quirements and to derive benefits from it. Pap et al. [32]
identified 47 general safety criteria for the specification
of software systems with state charts. Due to this huge
variety they decided to use different formal techniques
to describe and check them. These techniques are the
Object Constraint Language (OCL) of UML [29], graph
transformations, reachability analysis and special pro-
grams. The approach of Pap et al. is very interesting
because it does not try to find the one silver bullet for
modeling and analyzing safety requirements but it uses
different techniques where they fit the best. However,
it also focuses only on functional system properties and
does, for example, not take non-deterministic behavior
into account that occurs frequently when a computer
system has to interact with its environment.
Many other approaches for the modeling of safety re-
quirements use only one description language of Pap’s
portfolio. The two most popular ones are on the one
hand the description by UML, like in [7] and on the

1 http://www.quality-one.com/services/fmea.php

other hand the description by (temporal) logics, like in
[10]. The modeling of safety requirements via (tempo-
ral) logics is very widely used for formal verification of
systems. Well-known representatives are the computa-
tional tree logic (CTL) [10] and the linear time temporal
logic (LTL) [10]. (Temporal) logics are a very powerful
way of describing safety requirements but they differ
widely from the typical modeling techniques that are
used for system modeling, which makes them difficult
to use.
Some research groups work on the development of do-
main specific languages for the description of safety re-
quirements, like the Requirements State Machine Lan-
guage (RSML*) [39] whose key advantages are that it
possesses a precise formal semantics and that it is ex-
ecutable. Its major drawback is, however, that the re-
quirements specified in RSML* cannot be linked syn-
tactically with the system model. The research groups
that deal with formal modeling of safety requirements
are mostly aiming for formal verification by trying to
prove that a modeled system complies to the modeled
safety requirements. This approach is taken for example
by [39], [32] and [22].

Schneider and Trapp [37] use a similar technique
as our mapping of safety requirements and fault detec-
tion mechanisms in their ConSert approach to assure
safety in dynamically reconfigurable systems by match-
ing “inport” and “outport” safety requirements of plug
and play services at runtime.

Other approaches formalize safety requirements in
graphs to develop and present safety arguments, e.g. the
Goal Structuring Notation [23] and Assurance Based
Development [14].

6.3 Propagation

The propagation of safety requirements in our approach
shows similarities to the research area of failure prop-
agation. The relationship between safety requirement
propagation and failure propagation is very similar to
the relationship between FMEA and fault tree analy-
ses (FTA) [11]: FTA is a top-down technique (safety
requirement propagation) whereas FMEA is a bottom-
up technique (failure propagation). The main difference
between the FTA/FMEA and safety requirement prop-
agation/failure propagation is the “dimension” in which
they operate: the first ones operate along a chain of
(hazard-) refinements and the later ones operate along
the data flow in a system.

Various research groups work on different aspects of
failure propagation, like [12] and [28]. The general goal
is to analyze the propagation paths of failures in sys-
tems to get an understanding of the overall emergent
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failure behavior. A very important insight is that fail-
ures may change their “appearance” while being prop-
agated, which was under investigation in [16] and [40].
We adopted this idea in our approach with the concept
of safety assurances.

Apart from failures, the concept of propagation can
also used for the automatic allocation of safety integrity
levels [33].

7 Conclusion and Future Work

In the development of safety critical systems, bridging
the gap between requirements specification and soft-
ware design specification is a very important step in as-
suring that safety requirements are fulfilled in the final
system. This paper presented our approach of automat-
ically deriving fault detection mechanisms and generat-
ing their source code directly from safety requirements.
The main contribution of this paper is a rigorous for-
mal specification of safety requirements that allows an
automatic propagation, transformation and refinement
of safety requirements and the derivation of appropri-
ate fault detection mechanisms. This is an important
step to guarantee consistency and completeness during
the transition from requirements engineering to soft-
ware design, where a lot of errors can be introduced
into a system by using conventional, non-formal tech-
niques.

We implemented our approach in the model-driven
development tool FTOS and tested it successfully on
various sample applications. A more extensive evalua-
tion will be performed in the future with the help of two
demonstrators, which are currently being developed.

One area of possible future work in our approach
is the missing link to the functional behavior of com-
ponents. Currently, we only consider the data flow be-
tween components and the user is required to model the
connections between functional behavior and safety re-
quirements by hand via safety assurances. However, if
the functional and temporal behavior of a component
are also modeled, e.g. by a more conventional model-
driven development approach like Matlab Simulink2,
then it might be possible to automatically derive safety
assurances from these descriptions. This would help to
guarantee consistency and completeness of safety assur-
ances, as our approach does for safety requirements.

A second important point for future work is a tighter
integration of safety standards. Most of these standards
were developed before the rise of model driven software
development, so it is not yet clear, in which ways these
“paradigms” can be connected with each other. Two

2 http://www.mathworks.com/products/simulink/

key requirements of many safety standards are trace-
ability of requirements and the possibility to perform
various safety analyses at different stages of the devel-
opment process. Future work has to explore how the
synthesis of fault detection mechanisms interacts with
these two requirements.

Finally, future work could also try to analyze the re-
sults of fault detection mechanisms. Usually, there is a
gap in the chain of reasoning between the real world and
the fault detection mechanism: if, for example, a mech-
anisms reports that a network connection to another
component of a distributed system has been lost, then
there can be various reasons for this, like message loss
or hardware failures at both ends of the communication
channel. A probabilistic evaluation of the occurrence of
certain errors would allow to reason about events in the
real world at runtime, which could help to initiate more
granular fault handling techniques.
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nique. TÜV Rheinland, 1984.

19. International Electrotechnical Commission. IEC 61882,
Hazard and operability studies (HAZOP studies) - Ap-
plication guide.

20. International Electrotechnical Commission. IEC 61508,
Functional safety of electrical/electronic/programmable
electronic safety-related systems, April 2010.

21. International Organization for Standardization. ISO
26262, Road vehicles: Functional safety, 2011.

22. Anjali Joshi, Steven P Miller, Michael Whalen, and Mats
P E Heimdahl. A Proposal for Model-Based Safety Anal-
ysis. Proceedings of the 24th Digital Avionics Systems
Conference, pages 13–25, 2005.

23. Tim Kelly and Rob Weaver. The Goal Structuring No-
tation - A Safety Argument Notation. Proceedings of the
Dependable Systems and Networks 2004 Workshop on
Assurance Cases, 2004.

24. Nancy Leveson. Engineering a Safer World. MIT Press,
2011.

25. Yanjing Li, Onur Mutlu, and Subhasish Mitra. Oper-
ating system scheduling for efficient online self-test in
robust systems. IEEE/ACM International Conference
on Computer-Aided Design - Digest of Technical Papers,
pages 201–208, 2009.

26. J A McDermid and D J Pumfrey. A Development of
Hazard Analysis to Aid Software Design. Proceedings of
the Ninth Annual Conference on Computer Assurance,
pages 17–25, 1994.

27. Marjan Mernik, Jan Heering, and Anthony M Sloane.
When and how to develop domain-specific languages.
ACM Computing Surveys (CSUR), pages 316–344, 2005.

28. Atef Mohamed and Mohammad Zulkernine. On Fail-
ure Propagation in Component-Based Software Systems.
Proceedings of the Eighth International Conference on
Quality Software, pages 402–411, 2008.

29. Object Management Group. Object Constraint Lan-
guage.

30. Object Management Group. Model driven architecture,
A technical perspective. Technical Report No. ab/2001-
02-04, Object Management Group, 2001.

31. Object Management Group. Meta Object Facility (MOF)
Core Specification, 2006.

32. Zsigmond Pap, Istvan Majzik, and Andras Pataricza.
Checking General Safety Criteria on UML Statecharts.
Lecture Notes in Computer Science, pages 46–55, 2001.

33. Y Papadopoulos, M Walker, M.-O. Reiser, M Weber,
D Chen, M Törngren, David Servat, A Abele, F Stap-
pert, H Lonn, L Berntsson, Rolf Johansson, F Tagliabo,
S Torchiaro, and Anders Sandberg. Automatic Allocation
of Safety Integrity Levels. Proceedings of the 1st Work-
shop on Critical Automotive applications: Robustness &
Safety, pages 7–10, 2010.

34. Michael L Pinedo. Scheduling: Theory, Algorithms and
Systems. Springer-Verlag, 2008.

35. Radio Technical Commission for Aeronautics. DO-178B,
Software Considerations in Airborne Systems and Equip-
ment Certification, 1992.

36. SAE International. ARP 4754, Certification Consider-
ations for Highly-Integrated Or Complex Aircraft Sys-
tems, November 1996.

37. Daniel Schneider and Mario Trapp. Conditional safety
certificates in open systems. Proceedings of the 1st Work-
shop on Critical Automotive applications: Robustness &
Safety, pages 57–60, 2010.

38. Dominik Sojer, Alois Knoll, and Christian Buckl. Syn-
thesis of Diagnostic Techniques Based on an IEC 61508-
aware Metamodel. In Proceedings of the 6th IEEE In-
ternational Symposium on Industrial Embedded Systems,
pages 59–62, 2011.

39. A C Tribble and S P Miller. Software intensive systems
safety analysis. IEEE Aerospace and Electronic Systems
Magazine, 19:21–26, 2004.

40. Malcolm Wallace. Modular Architectural Representation
and Analysis of Fault Propagation and Transformation.
Proceedings of the Workshop on Formal Foundations of
Embedded Systems and Component-based Software Ar-
chitecture, pages 53–71, 2005.


