
Comput Sci Res Dev (2013) 28:331–344
DOI 10.1007/s00450-013-0251-7

S P E C I A L I S S U E PA P E R

Quantitative reactive modeling and verification

Thomas A. Henzinger

Published online: 5 October 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Formal verification aims to improve the quality
of software by detecting errors before they do harm. At the
basis of formal verification is the logical notion of correct-
ness, which purports to capture whether or not a program
behaves as desired. We suggest that the boolean partition
of software into correct and incorrect programs falls short
of the practical need to assess the behavior of software in a
more nuanced fashion against multiple criteria. We therefore
propose to introduce quantitative fitness measures for pro-
grams, specifically for measuring the function, performance,
and robustness of reactive programs such as concurrent pro-
cesses.

This article describes the goals of the ERC Advanced In-
vestigator Project QUAREM. The project aims to build and
evaluate a theory of quantitative fitness measures for reactive
models. Such a theory must strive to obtain quantitative gen-
eralizations of the paradigms that have been success stories
in qualitative reactive modeling, such as compositionality,
property-preserving abstraction and abstraction refinement,
model checking, and synthesis. The theory will be evaluated
not only in the context of software and hardware engineer-
ing, but also in the context of systems biology. In particular,
we will use the quantitative reactive models and fitness mea-
sures developed in this project for testing hypotheses about
the mechanisms behind data from biological experiments.

Keywords Formal methods · Program verification ·
Embedded systems · Systems biology

T.A. Henzinger (B)
IST Austria, Klosterneuburg, Austria
e-mail: tah@ist.ac.at

1 Introduction

This article describes the goals of the ERC Advanced In-
vestigator Project QUAREM. The project aims at rebuild-
ing a central part of the formal foundation of computing by
replacing the classical, boolean notion of program correct-
ness with a new, quantitative measure of program fitness.
In the platonic, boolean world of classical computer sci-
ence, programs can only be correct or incorrect.1 In the real
world, one program is often preferred over another, even if
both are technically correct (for example, one may be more
robust against faulty inputs than the other), or if both are
technically incorrect (one may misbehave less often, or less
severely, than the other). Such behavioral preferences can
be formalized by quantitative measures of fitness between
programs and specifications. We believe that by putting the
formal modeling of computational processes on a quantita-
tive foundation, we can pave the way for an increased use
of such models, not only in software and system develop-
ment but also in the natural sciences. In particular, in biol-
ogy the use of computational models for testing mechanistic
hypotheses has been hampered by the lack of quantitative
measures of fitness between models and experimental data.

1.1 From proving system correctness to measuring system
fitness

Discrete thinking has dominated computer science from its
very beginnings and is, in fact, what distinguishes computer
science from most other engineering disciplines. This is be-
cause every digital computational process can be idealized

1The platonic view of programs as (purely) mathematical objects has
a long and storied tradition in computer science, going back to John
McCarthy, Tony Hoare, Edsger Dijkstra, and many others.

mailto:tah@ist.ac.at


332 T.A. Henzinger

as a discrete system, which transforms inputs to outputs or
interacts with other computational processes in a sequence
of discrete steps. Moreover, it is tempting to insist that a
hardware and/or software system be correct, in the sense
that it always behaves as desired, for example, by computing
the expected results for all permissible inputs. Discreteness
implies that even the smallest change in the code can cause
a correct program to become incorrect, and vice versa. This
crisp view of computational processes as discrete mathemat-
ical objects, and correctness as a boolean, two-valued prop-
erty, has been one of the cornerstones of the field called for-
mal verification.

In verification, we are given descriptions of a system S

and requirement r , and a binary correctness relation S |= r

asserting that the system S satisfies the requirement r . Al-
ready the notation is suggestive of a logical interpretation,
namely, that a computational process S defines a mathemat-
ical structure in which the statement r is true or false. In a
less isolated context, we often describe a system at several
different levels of detail using, for instance, the code S of a
program, a UML model S′ of the software, a more abstract
model S′′ which specifies the interfaces of various compo-
nents but not their internals, etc. We are then interested in
reasoning chains of the form

S � S′ � S′′ � · · · |= r

where the binary refinement relation � has the property that
if S′ satisfies r , and S refines S′, then S satisfies r as well;
in other words, the refinement relation is requirements pre-
serving. In an idealized setting, software development would
proceed top-down in a series of refinement steps, from the
requirement r to the code S, and if that is not possible, the
code S would be verified against the requirement r , and the
intermediate models can be used to divide the verification
problem into subproblems of smaller complexity.

We submit that typical situations that arise in software
engineering practice, as well as in the formulation of bio-
logical and physical hypotheses using computational mod-
els, are fundamentally different from the idealized setting
described above. Real-world requirements are rarely com-
plete and real-world programs are rarely correct, not only
because of programming errors but also because of unspeci-
fied assumptions and the like. Typically, we are given a num-
ber of alternative systems, say, S1, . . . , Sm, and a number
of requirements r1, . . . , rn of interest, some of them func-
tional, some of them performance goals and resource con-
straints, and others about less tangible attributes such as re-
liability, trustworthiness, and robustness. Then, with respect
to each of the requirements, some of the systems may ex-
hibit more desirable behavior than others. Such a “degree
of behavioral desirability,” or fitness, can be measured by a
directed distance function d between systems and require-
ments, and between systems. The classical setting is one of

strictly boolean distances, with d(S, r) = 0 if S |= r else
d(S, r) = 1, and d(S,S′) = 0 if S � S′ else d(S,S′) = 1.
We suggest that in general distances should be real-valued,
as long as they satisfy certain laws such as the triangle in-
equality

d(S, r) ≤ d(S,S′) + d(S′, r)

which generalizes the boolean property of requirements
preservation by refinement (if S′ satisfies r , and S refines S′,
then S satisfies r). Given a computable distance function, an
engineer can measure the fitness of alternative system imple-
mentations with respect to various requirements, and select
an implementation that fits best to her preferences. Similarly,
a scientist can measure the fitness of alternative models for
a biological or physical phenomenon with respect to vari-
ous experimental observations, and choose the model that
fits best to the data.

1.2 Qualitative reactive modeling and verification

A main motivation behind verification is the double realiza-
tion that, in theory, it can be very difficult (even technically
impossible) to make precise statements about the run-time
behavior of programs and, in practice, it is very difficult to
write error-free software, even for expert programmers. This
motivation has become vastly more urgent with the rise of
concurrent computation (first time sharing, then multipro-
cessors and networks, now multicores and clouds) because
concurrency bugs can be extremely subtle and hard to detect
by traditional means such as program testing. The behavior
of a concurrent process that interacts with other computa-
tional processes is captured by a reactive model. More gen-
erally, reactive modeling is the mathematical formalization
of behavior that consists of interdependent discrete events
in time; it has a rich theory based on behaviors as infinite
computation histories and/or infinite computation trees, with
various canonical formalisms for specifying systems (e.g.,
finite automata, process algebras), requirements (e.g., tem-
poral logics), and refinement (e.g., simulation relations).

Transcending any particular formalism or language, the
theory of reactive modeling has introduced several funda-
mental paradigms whose impact goes far beyond the de-
scription of concurrent computational processes, towards of-
fering a universal methodology for complexity management
in discrete systems. These paradigms include

model composition which supports the construction of a
complex model from standard components that may in-
teract synchronously or asynchronously, while preserving
certain conditional properties of the individual components
(assume-guarantee compositionality);

model abstraction and its dual, model refinement, which
support the description of a complex system at multiple



Quantitative reactive modeling and verification 333

levels of detail while preserving certain properties across
different levels;

model execution which allows the simulation of a reactive
system by executing a virtual machine whose instructions
correspond to atomic steps and may be defined inductively
on the model description (structured operational seman-
tics);

model checking which determines the truth values of tem-
poral requirements over reactive models by automatically
and systematically exploring the state space of the model;

model synthesis which allows the automatic construction of
a finite-state reactive model that satisfies a given require-
ment or experiment (if such a model exists).

All of these benefits of reactive models have proved useful
not only in the design of complex artificial systems, such
as hardware and software systems, but also for representing
natural systems and testing biological hypotheses [1]. We
aim to preserve as many of these benefits as possible when
moving towards a quantitative framework for reactive mod-
eling.

Over the past two decades, reactive models have been
extended by quantitative aspects, for example, to capture
real time and/or probabilistic behavior.2 As a result, reactive
models have proved useful to analyze not only functional
but also timing requirements of computational systems; not
only worst-case but also average-case behavior. Yet the re-
sulting theories have usually remained boolean at their core:
in real-time verification, it is normally checked whether or
not a timed reactive model satisfies a timing requirement; in
probabilistic verification, it is normally checked whether or
not a stochastic reactive model satisfies a functional (or tim-
ing) requirement with a certain probability. Sometimes log-
ical queries are used to obtain quantities (or “parameters”)
that identify the boundary between the satisfaction and non-
satisfaction of a requirement. Inherently quantitative inter-
pretations of requirements, while attempted [2, 3], have re-
mained rare and often fall short of important properties such
as compositionality. We believe that a radical paradigm shift
from boolean to quantitative evaluations of models is needed
in order for reactive modeling to reach its full application
potential both inside and outside of computer science.

1.3 Quantitative reactive modeling and verification

To systematically rebuild the theory of reactive modeling on
a quantitative foundation, we start with the following steps.

2Sometimes the very term “quantitative modeling” is used synony-
mously with probabilistic modeling, and within probabilistic analysis,
the term “quantitative” distinguishes reasoning about general probabil-
ities from reasoning about 0 and 1 probabilities. We view probabilistic
models as one (important) kind of quantitative models, but other, non-
probabilistic quantitative measures can be useful for modeling real-
valued system attributes such as resource consumption and reliability.

Fitness measures We replace boolean-valued correctness
relations S |= r which state whether a system S satisfies
a requirement r , by real-valued distance functions d(S, r)

which measure the fitness of S with respect to r . Consider,
for example, the reactive requirement that every client re-
quest is followed by a system response. The system de-
signer may prefer systems that ignore few requests, or is-
sue few unnecessary responses, or issue responses quickly,
or any combination thereof, all of which can be measured
by appropriate distance functions.

Approximation measures We replace boolean-valued re-
finement relations S � S′ which state whether a system
S faithfully implements a more abstract system descrip-
tion S′, by real-valued distance functions d(S,S′) which
measure differences in the behaviors of S and S′. For ex-
ample, distance functions can measure how much the im-
plementation S must be changed in order to conform to the
specification S′, and/or how much S can be changed with-
out violating conformance with S′; the latter is a measure
of robustness for the implementation S.

Computing preferences between systems and synthesizing
optimal systems Given a system S and a requirement r (or

another system description S′), qualitative model check-
ing asks if S |= r (or S � S′), whereas quantitative model
checking requires the (possibly approximate) computation
of the distance d(S, r) (respectively, d(S,S′)). Given a re-
quirement r , qualitative model synthesis asks for the auto-
matic construction of a system S such that S |= r , whereas
quantitative model synthesis requires the construction of
an optimal system S, which minimizes the distance d(S, r)

among all possible systems S. Using quantitative synthesis,
we can derive a preferred implementation from all possi-
ble implementations of a requirement. In this way, reactive
synthesis is lifted from a constraint-solving problem to an
optimization problem.

The project is organized in the form of six technical re-
search topics, each of which contributes to the project in
three stages: (i) to develop a quantitative theory of reac-
tive modeling and verification; (ii) to develop algorithms and
software tools that implement the theory; and (iii) to apply
and evaluate the tools on examples from systems engineer-
ing and cell biology.

Topic 1: Quantitative foundations of reactivity The theory
of the ω-regular languages, whose words represent infi-
nite computation histories, provides a semantic foundation
for qualitative reactivity. We strive to generalize this the-
ory to several quantitative settings, including probabilistic
languages, whose words represent probability spaces on
computation histories; discounted languages, whose words
reflect the discounted use of a resource along computation
histories, such as time to first failure; and limit-average
languages, whose words reflect the long-run average use



334 T.A. Henzinger

of a resource, such as mean time between failures. Dis-
counted languages, with their emphasis on the finite pre-
fixes of computations, are generalizations of safety prop-
erties; limit-average languages, with their emphasis on the
infinite tails of computations, are quantitative analogues of
liveness properties.

Topic 2: Defining and computing distance measures A ca-
nonical structural refinement relation between reactive
models is Robin Milner’s simulation relation. We general-
ize this relation to several quantitative distances, including
simulation failure distance, which measures the frequency
with which a system violates a requirement; simulation tol-
erance distance, which measures the degree to which the
system is more constrained than the requirement; and sim-
ulation robustness distance, which measures the degree to
which the system can be relaxed without violating the re-
quirement. Each of these simulation distances define quan-
titative measures of fitness with respect to both functional
and nonfunctional system requirements.

Topic 3: Composing and refining distance measures As-
sume-guarantee proof decomposition, requirements pre-
serving abstraction and abstraction refinement, as well as
symbolic data structures are some of the most important
principles for organizing the qualitative analysis of reactive
models with large and unbounded state spaces. We gen-
eralize these paradigms to the quantitative setting where
distances need to be added when composing, and approxi-
mated monotonically when abstracting or refining.

Topic 4: Measuring system robustness and designing ro-
bust systems The (informal) notion of robustness is an im-
portant design criterion for artificial systems, as well as a
characteristic attribute of many natural systems. One of the
main benefits of a quantitative theory of systems is that ro-
bustness can be formalized as mathematical continuity, in
the sense that a system is robust iff small changes in the
input cause only small changes in the output [4]. A varia-
tion of this theme is that, in a robust system, few violations
of input assumptions should cause only few violations of
output requirements. We develop and study such theories
of system robustness.

Topic 5: Quantitative measures in multicore and cloud
computing We define and evaluate quantitative measures
that attempt to capture modern aspects of concurrent com-
putation. For multicore applications, we wish to quantify
the performance of various thread synchronization princi-
ples, such as the trade-off between fine-grained atomicity,
which offers greater flexibility by permitting many inter-
leavings of different threads, and coarse-grained atomicity,
which causes lower overheads for context switching. For
data center and cloud applications, we want to quantify the
resource cost and utilization of various processor assign-
ment and job scheduling policies.

Topic 6: Quantitative models in systems biology While
there have been several widely noticed attempts to unleash

the enormous potential of reactive modeling in biology, the
most commonly used mechanistic models in cell biology
are still primitive by the standards of computer science.
We believe that a quantitative framework for reactive mod-
eling will not only increase acceptance by biologists, but
also provide techniques for measuring the fitness of reac-
tive models with respect to experimental data, and for syn-
thesizing models of maximal fitness. We collaborate with
systems and cell biologists to accomplish this task.

2 The state of the art

We build on work from many different subdisciplines of
computer science. First, there is a large body of mature
research in qualitative reactive modeling and verification.
Second, the qualitative setting has been extended in sev-
eral quantitative directions, most notably in the directions
of (i) real-time and hybrid systems, (ii) probabilistic sys-
tems, and (iii) weighted and resource-constrained systems.
Third, the need for quantitative modeling and analysis has
always been evident in networking, performance analysis,
and reliability analysis. Fourth, also quantitative measures
of software quality have long been advocated in software
engineering, albeit generally not on a behavioral level. Fifth,
formal metrics for measuring distances between process be-
haviors have been proposed for giving a mathematical se-
mantics to reactive processes and programming languages.
Sixth, quantitative objective functions have a strong tradi-
tion in game theory in general, and specifically in games that
relate to reactive synthesis. Seventh, approaches to quantita-
tive and imprecise reasoning have become central to modern
artificial intelligence as alternative to classical logic-based
frameworks. Last, we are indebted to the pioneers of apply-
ing reactive models to biological systems. We cannot pos-
sibly survey the literature and state-of-the-art in all of these
areas in detail; the following must therefore be understood
as a personal, biased selection of some related work.

Qualitative reactive modeling, verification, and synthesis
The main elements of the classical boolean framework
that we touch on in this proposal include the theory of ω-
automata [5], temporal logics [6], simulation relations [7],
model checking [8], compositionality [9], abstraction [10],
and reactive synthesis [11].

Modeling time, probability, and cost Reactive models and
corresponding verification techniques have been extended
by quantitative aspects such as (i) transition times [12]
and continuous variables [13]; (ii) transition probabilities
[14, 15]; and (iii) transition weights [16] that may rep-
resent costs, rewards, or the consumption of a resource
(e.g., power) [17]. There are theories of timed automata
and timed temporal logics; theories of Markov processes



Quantitative reactive modeling and verification 335

and probabilistic temporal logics; theories of weighted au-
tomata and corresponding quantitative temporal logics; and
many combinations thereof, such as probabilistic timed au-
tomata [18] and priced timed automata [19]. These theo-
ries often include composition operations and refinement
relations, model checking and synthesis algorithms, and
abstraction principles. Yet most remain essentially boolean
theories, addressing boolean questions such as the Yes/No
question “in a Markov decision process, is there a sched-
uler which ensures that a certain state is reached with prob-
ability 1?,” and parametric questions such as “what is the
maximal probability with which a scheduler can ensure
that a certain state is reached?” In this project we aim at
a theory where properties have quantitative values, rather
than boolean values, over systems.

Performance and reliability analysis Quantitative methods
lie at the center of performance analysis [20] and reliabil-
ity analysis [21], especially of computer networks. Most
of these methods are based on average-case analysis, e.g.,
of throughput and quality-of-service. While some reactive
models are popular in this context, such as Petri nets, by
and large the emphasis is on analytical (usually equational)
models rather than operational (i.e., machine-based) mod-
els.3 We focus instead on executable reactive models of
programs and components, and primarily on a quantitative
assessment of the worst case, rather than the average case.
The reason is that, while probabilistic assumptions about
loads are reasonable for networks, probabilistic assump-
tions about the inputs to individual software artifacts are
much harder to justify.

Metrics in software engineering A main motivation for a
quantitative theory of systems is to measure alternative
implementations against different criteria. This is exactly
the raison d’être for software metrics [23]. While software
metrics measure mostly the software development process
and the static complexity of code, our aim is more ambi-
tious: our distances between programs, and between pro-
grams and specifications, take into account the dynamic
behavior of programs.

Metrics in process semantics While software metrics live at
the extreme practical end of computer science, at the ex-
treme theoretical end, there have been attempts to give
a mathematical semantics to reactive processes which is
based on quantitative metrics rather than boolean preorders
[24, 25]. In particular for probabilistic processes, it is natu-
ral to generalize bisimulation relations to bisimulation met-
rics [26, 27], and similar generalizations can be pursued if
quantities enter not through probabilities but through dis-
counting [28] or continuous variables [29] (this work uses
the Skorohod metric on continuous behaviors to measure

3Recent efforts have built bridges between verification and perfor-
mance analysis [22].

the distance between hybrid systems). While all of these
theories are close in spirit and inspiring by technique to
our objectives, they have had little practical impact. We be-
lieve that by not starting with inherently quantitative sys-
tems such as probabilistic and hybrid systems, which are
complex mathematical objects, but by first defining quanti-
tative measures for simpler, qualitative systems and proper-
ties such as plain finite automata, we can give new impulses
to the quantitative agenda.

Quantitative objectives in graph games Quantitative objec-
tive functions, probabilistic strategies, and discounting be-
long to the standard repertoire of game theory [30]. Re-
active synthesis requires the solution of games played
on graphs [31], and for such graph games, the quantita-
tive mean-payoff objective has been studied extensively
[32]. Our approach builds on quantitative games in two
ways. First, we define distances between systems using
simulation games with quantitative objectives, such as
discounted-sum and mean-payoff objectives. Second, we
apply these quantitative measures also to infinite runs of
automata, which are used to specify requirements and tech-
nically represent “single-player” games.

Formalisms for quantitative and imprecise reasoning In ar-
tificial intelligence there was a shift from predominantly
logical reasoning to predominantly quantitative reason-
ing, similar to the shift that we now advocate for reac-
tive modeling and verification. In modern AI, probabilis-
tic approaches [33] play a central role; fuzzy logics [34]
are used in some engineering applications; and genetic
and evolutionary programming rely on quantitative notions
such as fitness [35]. We look neither for an “imprecise”
nor for a primarily probabilistic theory of reactive mod-
eling, nor do we aim at constructing heuristic or approx-
imate optimization schemes. On the contrary, we try to
precisely measure and compute the differences between
system behaviors, based on formally stated preferences
about quantifiable attributes such as failure rate or response
time.

Reactive modeling in systems biology Recently, reactive
modeling languages that were originally designed for rep-
resenting computational and manufacturing/control pro-
cesses, such as process calculi, Petri nets, statecharts,
and hybrid automata, have been used to represent bio-
logical networks [36–40]. The benefits of this approach,
which was dubbed “Executable Biology,” are summa-
rized in [1]. Encouraged by biologists, computer scien-
tists have also begun to design bio-specific reactive lan-
guages [41, 42]. We believe that our quantitative agenda
will accelerate progress in this interdisciplinary direc-
tion.



336 T.A. Henzinger

3 Selected research topics

3.1 Building a quantitative foundation for reactive systems
theory

Every behavior of a reactive system is an infinite word
whose letters represent observable events. The foundations
of reactive models distinguish between the linear-time and
the branching-time view [6].

The linear-time view In the linear-time view, the set of
possible behaviors of a system are collected in a language,
which is a set of infinite words. Formally, we consider a
language over an alphabet Σ to be a boolean-valued func-
tion L: Σω → B, rather than a set (think of w ∈ L iff
L(w) = 1), to make the connection to quantitative gener-
alizations self-evident. Such languages, which are infinite
objects, can be defined using finite-state machines with in-
finite runs, so-called ω-automata, whose transitions are la-
beled by letters from Σ . For an ω-automaton A, let L(A) be
the language accepted by A. There is a rich and robust theory
of finite-state acceptors of languages, namely, the theory of
the ω-regular languages [5]. In particular, the ω-regular lan-
guages are closed under boolean operations, and the inter-
esting questions about ω-automata—specifically language
emptiness, language universality, and language inclusion—
can all be decided algorithmically. In the linear-time view,
the language inclusion question is the basis for checking if a
system satisfies a requirement, and for checking if one sys-
tem description refines another one: given two ω-automata
A and B , the system A satisfies the requirement B (respec-
tively, refines the system B) iff L(A) ⊆ L(B).

There are two obvious and popular, but orthogonal, quan-
titative generalizations of languages. In both cases, the gen-
eral language inclusion problem is open, i.e., we do not even
know under which circumstances it can be decided. As the
language inclusion problem lies at the heart of all linear-
time verification, this is an obviously unsatisfactory situa-
tion. Therefore a natural direction to start building a quanti-
tative theory for reactive modeling is to obtain a better un-
derstanding of the quantitative language inclusion problem,
in all of its formulations.

Probabilistic languages The first quantitative view is prob-
abilistic. A probabilistic word, which represents a behav-
ior of a probabilistic system, is a probability space on the
set Σω of infinite words. We write D(Σω) for the set of
probabilistic words. A probabilistic language is a set of
probabilistic words, i.e., a function L: D(Σω) → B. Prob-
abilistic words can be defined by Markov chains, and prob-
abilistic languages by Markov decision processes (MDPs),
whose transitions are labeled by letters from Σ . MDPs
generalize ω-automata by distinguishing between nonde-
terministic states, where an outgoing transition is chosen

by a scheduler, and probabilistic states, where an outgo-
ing transition is chosen according to a given probability
distribution. Unlike in ω-automata, the scheduler may in
general be probabilistic. Given an MDP A and a sched-
uler, the outcome is a probabilistic word, and by collect-
ing the outcomes of all schedulers in a set, we obtain a
probabilistic language L(A). The language inclusion ques-
tion for MDPs—given two finite-state MDPs A and B , is
L(A) ⊆ L(B)—is open, even if schedulers are required to
be nonprobabilistic and if B has no nondeterministic states.
A solution is known only for the special case where both A

and B have no nondeterministic states; this special case is
the equivalence problem for Markov chains [43].4

Weighted languages In the second quantitative view, a lan-
guage is a function from words to real values. The value
L(w) ∈ R of a word w may measure the cost or resource
(e.g., power) consumption of the behavior represented
by w. Formally, a weighted language is a function L:
Σω → R. Weighted languages can be defined by weighted
automata [16], which are finite-state machines whose tran-
sitions are labeled by both letters from Σ and real-valued
weights. When assigning values to words, given a weighted
automaton, we must make two decisions: (i) how to ag-
gregate the infinite sequence of weights along a run of the
automaton into a single value, and (ii) if the automaton is
nondeterministic, how to aggregate the values of all possi-
ble runs over the same word. Canonical choices for (i) are
discounted-sum, limit-average (mean payoff), and energy
(sum) values; a canonical choice for (ii) is to take the supre-
mum of the values of all runs over the same word. We will
motivate these choices below. Here it suffices to say that the
language inclusion question L(A) ⊆ L(B) for weighted
automata A and B is undecidable in the limit-average and
energy cases [45, 46], and open in the discounted-sum case.
Solutions are known only for the special case where B is
deterministic [47].

Consider an infinite sequence of real-valued weights vi , for
i ≥ 0, along a run of a weighted automaton. To aggregate
such an infinite sequence into a single value, one can take the
supremum supi≥0 vi (the largest weight that occurs along the
run), or limsupi≥0vi (the largest weight that occurs infinitely
often), or liminfi≥0. Note that if all transition weights of
an automaton are 0 or 1, then sup corresponds to the finite
(reachability) acceptance condition; limsup corresponds to
Büchi acceptance, and liminf to coBüchi acceptance. How-
ever in a truly quantitative setting, more general, real-valued
aggregation functions seem more interesting and useful, and
the following two have been studied extensively in game
theory.

4Even in the absence of nondeterminism, some questions about finite
generators of probabilistic words (Rabin’s “probabilistic automata”)
are undecidable [44].



Quantitative reactive modeling and verification 337

Discounted-sum values One mechanism for obtaining a fi-
nite aggregate value from an infinite sequence of weights
is discounting, which gives geometrically less weight to
weights that occur later in the sequence. Given a real-
valued discount factor λ ∈ (0,1), the discounted-sum value
is

∑
i≥0 λi · vi . Discounted-sum values depend strongly on

the initial part of an infinite run, and hardly at all on the
infinite tail. In a way, they are quantitative generalizations
of safety properties. They are useful, for example, to define
the time to failure of a system.

Limit-average values Another standard way of obtaining a
finite aggregate value from an infinite sequence of weights
is averaging, which gives equal weight to all weights that
occur infinitely often in the sequence (and no weight to
values that occur only finitely often). The limit-average (or
mean-payoff ) value is the limit of the average weights of
all prefixes: liminfn≥0

1
n

· ∑0≤i≤n vi (under some technical
conditions liminf coincides with limsup in this definition).
Limit-average values depend only on the infinite tail of a
run; they are quantitative analogues of liveness properties.
They are useful, for example, to define the mean time be-
tween failures of a system, or the average power consump-
tion of a system, etc.

There are isolated results [46–48] about the expressive-
ness, decidability, and closure properties of quantitative lan-
guages, in the probabilistic, discounted weight, and average
weight cases, but we lack a complete picture and, more im-
portantly, a compelling overall theory, i.e., a quantitative
pendant to the theory of ω-regular languages. We cannot
even be sure that the discounted-sum and limit-average ag-
gregation functions are in any way as canonical as Streett
and Rabin acceptance are in the qualitative case. A topo-
logical characterization of weighted languages, akin to the
topological characterization of safety and liveness as closed
and dense sets in the Cantor topology, and to the Borel char-
acterization of the ω-regular languages, may be helpful in
this regard.5

The branching-time view Given the wide open situation
of the quantitative linear-time view, it is natural to look also
at the branching-time view, which is algorithmically sim-
pler in many cases (for example, while language inclusion
checking is PSPACE-hard for finite-state machines, the ex-
istence of a simulation relation between two finite-state ma-
chines can be checked in polynomial time). Topic 2 will

5While probabilistic, discounted-sum, and limit-average values are
real-valued, there have also been integer-valued attempts at classifying
weighted languages. They often focus on the summation of the weights
along a run, by considering either finite runs [16] or upper and lower
bounds on sums of both positive and negative weights (so-called energy
values) [17]. The theory of regular cost functions abstracts quantitative
values, such as infinite sums, to the two boolean values bounded and
unbounded [49]. Another approach uses write-only registers to com-
pute values [50].

therefore explore the pragmatics of a quantitative branching-
time approach. However, we also wish to have a com-
pelling quantitative theory of branching time. Such a theory
is best based on tree automata [51]. This is because in the
branching-time view, the possible behaviors of a system are
collected in an infinite computation tree which, unlike the
set (language) of the linear-time view, captures internal de-
cision points of the system. In a tree, the values of different
infinite paths can be aggregated in at least two interesting,
fundamentally different ways.

Worst-case analysis Similarly to the linear-time case, we
can assign to a computation tree the supremum of the val-
ues of all infinite paths in the tree.

Average-case analysis We can interpret a computation tree
probabilistically, by assigning probabilities to all branch-
ing decisions of the system. Since a branching decision of-
ten depends deterministically on the (unknown) external
input that the system receives at that point, this approach
amounts to assuming a probability distribution on input
values or, more generally, on environment behavior. Given
such a probabilistic environment assumption, we can as-
sign to a computation tree the expected value over all infi-
nite paths in the tree.

There has been little work on probabilistic and weighted tree
automata in the context of reactive modeling and verifica-
tion. For tree automata that accept worst-case and average-
case computation trees whose infinite paths have sup, lim-
sup, discounted-sum, and limit-average values, their decid-
ability and closure properties, as well as connections to
quantitative temporal logics and model checking, remain to
be investigated. The aim is not only to obtain a complete pic-
ture but, which is more important from a practical perspec-
tive, to find at least one appealing and tractable quantitative
setting.

3.2 Defining, computing, and optimizing distance
measures between systems

A main practical goal of the project is to augment refinement
preorders between reactive processes with directed distances
that measure differences in the behavior of the processes. It
is tempting to start with processes that contain quantitative
information, such as transition probabilities and/or transi-
tion weights, which naturally suggest quantitative measure-
ments. Instead, we propose to first define and study several
quantitative distance measures between purely qualitative
reactive processes.

The canonical structural refinement relation between re-
active models is Robin Milner’s simulation relation [7]. We
generalize qualitative simulation between state machines to
quantitative distances [52]. Simulation can be viewed as a
game between system A, the implementation, and system B ,



338 T.A. Henzinger

the specification, which is played on the product of the two
state spaces. In a state pair (p, q) consisting of implemen-
tation state p and specification state q , first the implemen-
tation chooses a successor state p′ of p, and then the speci-
fication must choose a successor q ′ of q such that the tran-
sition of the specification matches (i.e., carries the same ob-
servation/letter as) the transition of the implementation. If
the game continues for infinitely many rounds, the specifi-
cation wins and is said to simulate the implementation; in
this case, every behavior of A is a behavior of B , that is,
L(A) ⊆ L(B). On the other hand, if the specification can-
not match an implementation move, then the implementa-
tion wins. (In this case, it may or may not be the case that
L(A) � L(B); in other words, simulation is a sufficient but
not necessary condition for language inclusion.) We propose
the following original quantitative generalizations of simu-
lation.

Simulation failure game Suppose that at a state pair where
the implementation would win the simulation game, i.e.,
where the specification has no matching move, we allow
the specification to “cheat” by choosing a transition that is
not permitted by the description of B . Moreover, whenever
the specification cheats, the implementation receives a pay-
off of 1 (all other moves carry a payoff of 0). In this new,
quantitative game, the implementation tries to maximize
the average payoff (i.e., to make the specification cheat as
often as possible), and the specification tries to minimize
the average payoff (i.e., to cheat as little as possible). The
value of the game is the maximal average payoff that the
implementation can achieve, no matter how the specifica-
tion plays. If A is simulated by B , written A � B , then
the value of the game is 0, because the specification never
needs to cheat. However, if A � B , then the value is a real
number that measures a behavioral difference between A

and B . The simulation failure distance d(A,B) between
two state machines A and B is the value of the game.

Simulation tolerance game While simulation failure dis-
tance measures the distance between an implementation
and a specification when there is no simulation relation,
simulation tolerance distance measures the distance be-
tween A and B if A is simulated by B . If A � B , then A

may have fewer behaviors and be more constrained than B;
the following quantitative game measures how much more
constrained. We invert the simulation game so that in each
round, the specification now moves first, and the imple-
mentation tries to match the move of the specification.
Whenever no match is possible, the specification gets pay-
off 1, otherwise 0. In this game the specification attempts to
maximize the average payoff, i.e., it makes the implemen-
tation “cheat” as often as possible. The value of the game,
and the resulting simulation tolerance distance, measures
how much additional behavioral freedom a specification
has when compared with an implementation.

Simulation robustness game Another way to define a dis-
tance between an implementation A and a specification B

in the case that A is simulated by B , is to measure how
much the implementation may deviate from its description
A without violating the property that A is simulated by B .
This is a measure of robustness of the implementation A

with respect to the specification B . Roughly speaking, in
the simulation robustness game, the implementation is per-
mitted to “cheat” and receives payoff 1 each time it cheats
and the specification can match the move, payoff −∞ if
the specification cannot match the move of the implemen-
tation (whether or not it is a cheating move), and payoff 0
otherwise. The implementation tries to maximize the aver-
age payoff. The value of the resulting game is called simu-
lation robustness distance between A and B .

We defined all three quantitative versions of the simula-
tion game as games with mean-payoff objectives [32]. Other
variations are possible, for example, discounted versions
where cheating is worse the earlier it comes in the game,
or lexicographic combinations of qualitative and quantita-
tive objectives [53]. Furthermore, the precise definitions of
these games depend on which kind of “cheating” is permit-
ted for the players, e.g., may they consume an arbitrary letter
and jump to an arbitrary state, or only change the letter on
an existing transition, or consume any letter but not change
state, etc. Finally, if the implementation and/or specification
contain fairness assumptions, then corresponding variants of
the fair simulation game [54] need to be considered.

There are even more possibilities for defining distances
when the system descriptions contain time stamps (or clock
constraints) [55], probabilities [26], and/or costs. In contrast
to most semantic work on process metrics that can be found
in the literature, our primary concerns are computational
(i.e., algorithmic): we wish to find, within the large space
of possibilities, meaningful distances that (i) can be com-
puted, or at least effectively approximated and/or compared,
and (ii) can be used to synthesize optimal systems from re-
quirements. In other words, we want to solve the following
two basic problems:

Quantitative verification Given two systems A and A′, and
a requirement B , is d(A,B) ≤ d(A′,B)?

Quantitative synthesis Given a requirement B , construct a
system A such that d(A,B) ≤ d(A′,B) for all systems A′.

Consider, for example, the temporal requirement that ev-
ery request a must be followed by a response b, written in
temporal logic as �(a ⇒ ♦b). Classical reactive synthesis
uses graph games with qualitative objectives to automati-
cally construct a finite-state machine that satisfies such a
requirement [11]. But there are many correct implementa-
tions, and we have no control over which implementation is
produced by the synthesis algorithm. In quantitative synthe-
sis, by contrast, we specify a distance between any possi-
ble implementation and the requirement, and the algorithm



Quantitative reactive modeling and verification 339

is obliged to produce an implementation with minimal dis-
tance from the requirement. For the request-response exam-
ple, we may be interested in the following quantitative crite-
ria for synthesis, among many others:

• Minimize the maximal time between requests and re-
sponses, or minimize the maximal number of responses
between requests. (Note that it is not required that there
is any response between two consecutive requests, but
on the other hand, an implementation may have many
“unnecessary” responses between two consecutive re-
quests.) These objective functions can be expressed using
weighted sup automata (cf. Topic 1).

• Minimize the average time between requests and re-
sponses, or minimize the average number of responses
between requests. (Note that “average” does not refer to
any probabilities, but to the mean of the possibly infinite
number of response times along a run.) These objective
functions can be formalized using weighted limit-average
automata (cf. Topic 1).

• Minimize the expected maximal (or average) time be-
tween requests and responses, or the expected maximal
(or average) number of responses between requests. Such
objective functions can be stated only in a branching-
time framework, relative to a probabilistic assumption
about how the environment produces requests (again,
cf. Topic 1).

Each criterion leads to a different preference order between
systems, and to a different optimal implementation. Such
optimal implementations can be synthesized automatically
by solving graph games with suitable quantitative objec-
tives. We have already solved specific instances of the quan-
titative synthesis problem [56, 57], but many settings remain
to be investigated.

A particularly intriguing aspect of a quantitative frame-
work is that it permits the synthesis of implementations
from inconsistent or incompatible requirements [58]. Even
if there is no solution to the synthesis problem which satis-
fies all requirements in the boolean sense, we may still be
interested in a solution that comes as close as possible to
satisfying the requirements.

3.3 Composing and refining distance measures between
systems

It has been a long, and still incomplete, road from the
principle of (qualitative) reactive modeling to the practice
of reactive verification. Some critical milestones along this
way include symbolic state-space exploration [8], assume-
guarantee decomposition of model-checking tasks [9], and
counter-example guided abstraction refinement [59]. There
is every reason to expect that in order for a quantitative
framework to be of practical use, it must admit the symbolic

computation of distances, compositional reasoning about
distances, and the abstraction/approximation of distances.
In addition, it is of course desirable to build a quantitative
framework in such a way that the boolean case becomes a
special case of the quantitative case. In the past, data struc-
tures for symbolic reasoning about times and probabilities
have received much attention [18, 60], so we concentrate
here on compositional and abstract reasoning with quanti-
ties.

Quantitative compositional reasoning In the boolean set-
ting, the basic compositional inference rule states that A1 �
B1 and A2 � B2 together imply A1 ‖ A2 � B1 ‖ B2. This
rule is of practical importance because it ensures that the
refinement between two complex systems A1 ‖ A2 and
B1 ‖ B2 can be proved component by component. A quan-
titative analogue of the rule is

d(A1 ‖ A2,B1 ‖ B2) ≤ f (d(A1,B1), d(A2,B2))

for a suitable function f , such as addition [61]. More inter-
esting is assume-guarantee compositionality, which in the
boolean setting states that A1 ‖ B2 � B1 and B1 ‖ A2 � B2

together imply A1 ‖ A2 � B1 ‖ B2. This inference rule is
stronger than the basic compositional rule because to estab-
lish the premises, it suffices to prove that A1 refines B1 un-
der the assumption that the inputs of A1 are constrained by
the environment B2, and that A2 refines B2 under the envi-
ronment assumption B1. The assume-guarantee rule holds
for certain probabilistic systems [62], but it is open how
quantitative assume-guarantee reasoning can look like in
general.

Quantitative abstract and approximate reasoning Abstrac-
tion is perhaps the most vexing problem and greatest chal-
lenge in quantitative settings. Abstraction is a powerful
mechanism for relating models of different precision [10].
However, in the boolean setting, the theory of abstraction
is different from theories of approximation. A theory of
approximation measures the precision of a model in terms
of an error bound on how much a model may deviate from
the system, and such error bounds are usually quantitative.
For example, while discounted-sum automata cannot be
determinized precisely, they can be determinized approxi-
mately [63]. A theory of abstraction, by contrast, measures
the precision of a model in terms of which properties of
the system are preserved in the model. Consider, for exam-
ple, the property that event a is never followed by event b.
A model may preserve such a property despite possibly in-
troducing a large error. On the other hand, even a model
that introduces only a small error may violate the property
when the system does not. The preservation of properties
ensures that it suffices to check a property on a simple, ab-
stract model in order to prove the property for a complex
system. In the quantitative setting, we have no satisfactory,



340 T.A. Henzinger

general theory of abstraction, and it is likely that in order
to obtain such a theory, it needs to be combined with a
theory of approximation. Also, one might envision that a
generalized triangle inequality

d(A,B) ≤ g(d(A,A′), d(A′,B))

(for some function g) can form the basis for quantita-
tive reasoning with models of different precision: in order
to bound the distance between a model A and a require-
ment B , it should suffice to compute the distance between
A and a more abstract model A′, and the distance between
A′ and B .

A significant benefit of abstract models is that they can of-
ten be refined automatically exactly to the precision that is
needed to prove a desired property [59]. Such automatic
abstraction refinement lies at the heart of modern software
model checking [64] and has been pursued also for prob-
abilistic software [65]. In a quantitative setting, abstraction
refinement can be used to over- or underapproximate the un-
derlying, concrete values of individual runs, with monoton-
ically increasing precision [66]. This supports anytime ver-
ification, where additional refinement steps give better and
better estimates of, say, the resource consumption along a
run. The ultimate goal is to develop a comprehensive system
design methodology based on quantitative reactive models
which makes use of composition, approximation, abstrac-
tion refinement, and the interplay of these operations.

3.4 Measuring system robustness and synthesizing robust
systems

A universal challenge in systems design is the construction
of systems whose behavior is robust in the presence of per-
turbations. While robustness is understood for most physi-
cal engineering artifacts, and increasingly also for biological
systems [67], it is rarely heard of in connection with soft-
ware. This is because computer programs have traditionally
been idealized as discrete mathematical objects. We often
lose sight of the fact that the mathematical representation of
a software system is just a model, and that the actual sys-
tem executes on a physical, imperfect platform and interacts
with a physical, unpredictable environment. This physicality
has its extreme manifestation in embedded control systems
(say, of aircraft), yet many traditional models for timed, hy-
brid, and probabilistic systems do not even take into account
that in reality, event times and sensor input values can be
measured only with finite precision, and most probabilities
can only be estimated with large tolerances (if at all). This is
why the robustness of reactive systems has been recognized
as an important concern for some time now [68]. However,
the few, mostly theoretical approaches towards designing ro-
bust software systems [69] remain unconvincing and have
had little practical impact.

One of the advantages of a quantitative setting is that
we can formalize robustness as mathematical continuity [4]:
a system is continuous if continuous changes in the envi-
ronment (or execution platform) cannot cause discontinuous
changes in the system behavior. For a continuous reactive
system, for every positive real epsilon there must be a pos-
itive real delta such that delta changes in the input values
and input times cause at most epsilon changes in the output
values and output times. For example, a system that reads
a sensor value, adds a constant, and outputs the result af-
ter some constant time delay, behaves continuously. On the
other hand, a system that checks if the sensor value is greater
than a threshold, and depending on the result of the check,
invokes two different control algorithms with two different
execution times to compute the output, does not behave con-
tinuously. A preferred, continuous way to combine the two
control algorithms would be to execute both procedures if
the input value is near the threshold, interpolate the result,
and release the output after a predetermined delay. There
has been recent work on checking the continuity of systems
[70, 71], but we know of no systematic design or synthesis
methodology for continuous systems.

Another kind of robustness is resilience against faulty
environment assumptions. Assumptions about the environ-
ment can be wrong because the environment may change,
there may be malicious intent, or the specifier may simply
have incomplete or erroneous information about the envi-
ronment of a system. Traditionally, if the environment vi-
olates an assumption, then by definition, a system satisfies
any requirement, no matter what it does, because falsehood
on the left-hand side of an implication makes the implica-
tion true. Yet we wish robust systems to behave “reason-
ably,” and degrade gracefully, even if the environment mis-
behaves. For safety properties, we can quantitatively mea-
sure this kind of robustness as follows. Whenever the envi-
ronment violates its safety assumption, by extending a safe
finite behavior with an unsafe event/letter, we count an en-
vironment error. Similarly, whenever the system violates its
safety requirement, we count a system error. The smaller
the limit of the ratio of environment to system errors, the
more robust is the system. In such a quantitative framework,
we can synthesize robust systems by solving so-called ra-
tio games [72], an approach that remains to be extended to
general liveness properties.

3.5 Quantitative measures in multicore and cloud
computing

Concurrent programming is the area of software develop-
ment that is most prone to programming errors, yet least
amenable to testing, because the behavior of concurrent
programs is nondeterministic and therefore irreproducible.
Concurrent software is thus a prime candidate for formal



Quantitative reactive modeling and verification 341

verification; it is also a prime application area for reactive
modeling because the components of a concurrent program
(threads, actors, tasks) interact with each other. In addition,
there is tremendous urgency because concurrent software is
becoming ubiquitous both in the small, on multicore proces-
sors, and in the large, in data centers. New programming
paradigms, such as software transactions [73] for small-
scale concurrency and map-reduce [74] for large-scale con-
currency, are among the most discussed topics in comput-
ing today. It is therefore only natural that we target concur-
rent software, both in the small and in the large, as a testing
ground for our quantitative agenda. We will do so by de-
veloping and evaluating quantitative performance and cost
measures for thread concurrency on multiprocessors, and for
job and task concurrency in cloud computing.

Performance metrics for shared-memory concurrency
There are at least two compelling needs for such metrics.
First, a program, such as a new implementation of a con-
current data structure or transaction manager, is developed
on, say, an 8-core machine but will run, in the future, on 16,
32, and more cores. We need performance metrics that can
predict how concurrent programs scale to an ever increas-
ing number of cores. Second, synthesis methods are used
to add synchronization constructs, such as locks and/or
fences, to buggy concurrent programs in order to prevent
incorrect interleavings of threads [75, 76] and to structure
legacy software into atomic transactions [77]. We need
performance metrics that can predict how these synchro-
nizations should be placed in order to minimize damage
to performance. The measures that are currently used are
simple—such as the number and size of atomic sections,
the number of fences, the number of variables or objects
that are locked at any given time—but it is unclear how
predictive these measures are. It is also unclear to which
degree architectural aspects, such as caching, need to be
taken into account; they play an important role, for exam-
ple, in execution-time analysis [78].

Cost metrics for data center and cloud computing Cloud
computing aims to give users virtually unlimited pay-per-
use computing resources without the burden of managing
the underlying infrastructure [79]. We believe that, in or-
der to realize the full potential of cloud computing, the
user must be presented with a pricing model that offers
flexibility at the requirements level, such as a choice be-
tween different completion times and different levels of
fault tolerance, and the cloud provider must be presented
with a programming model that offers flexibility at the ex-
ecution level, such as a choice between different proces-
sor assignment and scheduling policies. In such a flexible
framework, with each job, the user purchases a virtual com-
puter with the desired speed, reliability, and cost character-
istics, and the cloud provider can optimize the utilization of
resources across a stream of jobs from different users. To

implement such a framework, we need quantitative mea-
sures that quickly and reliably estimate trade-offs between
deadlines, fault protection, and resource consumption for
networks of interacting tasks.

In both the multicore and cloud scenarios, theoretical perfor-
mance and cost measures need to be evaluated experimen-
tally, by building both simulators and prototype systems. For
the measures that, according to the evaluation, are most ac-
curate in predicting performance and/or resource needs, one
may develop game-based algorithms for synthesizing sys-
tems that are optimal with respect to the considered mea-
sures [80]. Such algorithms can be then used for optimal
lock synthesis, to add locks and other synchronization con-
structs to thread concurrent code, and for optimal schedule
synthesis, to assign the tasks of a job to the processors of a
data center.

3.6 Quantitative models in systems biology

An ultimate measure of success for a scientific paradigm
is whether it proves useful outside of the field in which it
originated. Reactive modeling has the potential for such a
success: as the theory behind describing interacting discrete
processes using syntax that can be executed, composed, and
refined, reactive modeling is useful wherever a dynamical
system is, at some level of granularity, best viewed as a sys-
tem of discrete, causally related events. This, for example, is
the case with metabolic pathways in the cell, and with other
biological networks [1].

In this project we will not primarily focus on designing
new reactive modeling languages or modeling styles for de-
scribing certain biological and/or biochemical phenomena
(although this would be a welcome side-effect), but we plan
to explore and increase the verification and analysis bene-
fits that become available when reactive models are used
in biology. In particular, we will pursue the following two
directions in close collaboration with experimental systems
biology groups, which will supply the biological data.

Quantitative measures of models and data Experiments
generate large amounts of data, and in cell biology, a re-
active model represents a hypothesis about the mechanism
behind the collected data. The hypothesis can be validated
by measuring the fit between the model and the data. In
other words, for a biological model, the data that results
from experiments plays the same role that, for a software
model, is played by the requirements. We plan to use the
quantitative techniques developed in this project to mea-
sure the fit between reactive models and biological data,
and to automatically synthesize best-fitting reactive mod-
els from data.

Quantitative techniques for state-space exploration A sec-
ond way for validating a reactive model of a biological net-
work is to use the model for predicting the outcome of new



342 T.A. Henzinger

experiments, and then compare the predicted outcomes
against the observed outcomes. For such predictions, one
may execute, or simulate, the model [81]; one simulation
run corresponds roughly to one “in-silico” experiment.
This, however, is a very inefficient way for analyzing a
model [82], akin to obtaining information about a software
system solely by testing the program. A main benefit of
reactive models in software is that they can be analyzed by
state-space exploration techniques (so-called model check-
ing), and the same benefit is offered by reactive models
in biology [83]. However, the state spaces of biological
systems are usually unbounded, and their transitions prob-
abilistic. This calls for the adaptation of proven state-space
exploration techniques, and the development of new tech-
niques and heuristics that are specifically targeted towards
biological and biochemical systems. We have started to
design such techniques—including on-the-fly state-space
generation, abstraction, and abstraction refinement—for
continuous-time Markov models of (bio)chemical reac-
tions [84, 85]. Also techniques from hybrid systems show
great promise, such as switching between discrete and con-
tinuous variable representations depending on the popula-
tion counts for different molecules/species.

Our aim is to demonstrate that the benefits of using quan-
titative reactive models in biology and other sciences are
not limited to the observation that these models can natu-
rally and unambiguously express mechanistic hypotheses,
but that they also can come with a set of computational anal-
ysis techniques and tools that are far more powerful than
simulation.

4 Summary

The high-level objective of this project is to provide, as
more nuanced alternative to the classical boolean framework
of reactive modeling and verification, a quantitative frame-
work. The boolean framework is based on binary satisfaction
relations between reactive systems and behavioral require-
ments, and on binary refinement relations between reactive
systems. A fully quantitative framework ought to be based
on directed distances between systems which measure dif-
ferences in their behavior, and directed distances between
systems and requirements which measure the fitness of a
system with respect to a requirement.

The practical objective is to increase the appeal and
scope of reactive modeling and verification techniques. Re-
active models have already proved their usefulness in many
fields of engineering, and recently also in the natural sci-
ences, specifically in cell biology [1]. Yet reactive model-
ing and verification techniques have also encountered limits
and revealed practical limitations of the boolean framework.
A quantitative framework will give a new impetus to reactive

modeling and verification, both inside and outside of com-
puter science, and open new perspectives and applications
for the reactive approach.

The theoretical objective, and main challenge, of the
project is to provide within a quantitative framework many
of the paradigms that have made the boolean framework ap-
pealing. These include modeling paradigms such as com-
positionality and abstraction refinement, and verification
paradigms such as model checking and reactive synthesis.
A quantitative framework offers special promise for syn-
thesis, where one naturally desires to synthesize, from be-
havioral specifications, implementations that are optimal ac-
cording to a chosen metric.

We have outlined several concrete challenges that need to
be overcome on the way towards a comprehensive quantita-
tive theory for reactive modeling and verification. While we
do not expect that all of the problems we discussed can be
solved, we are confident that some of them will be solved,
will lead to new questions, and ultimately to quantitative
methods of practical usefulness. We have also presented two
application areas that we plan to pursue in order to evaluate
the quantitative techniques and tools that will result from
this project, one in concurrent computing and the other in
systems biology. We believe that quantitative thinking about
the reactive modeling and analysis of systems will cause a
paradigm shift regarding how these techniques are viewed
and when they are used, especially if they are supported by
a powerful theory and easy-to-use software tools.

If successful, the project has the potential to significantly
increase the use of reactive modeling and verification tech-
niques in hardware and software engineering, and also in
the computational exploration of mechanistic models for bi-
ological systems. While current verification technology is
limited to checking reactive models of moderate size against
perfectly specified design requirements, a successful project
will allow us to compute, for a given model, quantitative
measures of fitness with respect to a wide variety of de-
sign criteria such as functionality, reliability, performance,
robustness, and cost. The computed measures can provide
quantitative information to the system designer when choos-
ing a system architecture and/or implementation. Second,
a successful project will allow us to guide the automatic syn-
thesis of a hardware or software component from a reactive
specification towards an implementation that is optimal with
respect to the specified criteria. Third, for scientists that use
reactive models to explore mechanisms behind biological
phenomena, a successful project will allow them to identify
the modeling hypotheses that best fit the experimental data.

Acknowledgements The author thanks the anonymous reviewers
for their valuable suggestions for improving this article. The author
thanks the European Research Council (ERC) for supporting this
project. Above all, the author thanks his many wonderful collaborators
on the topic of this project.



Quantitative reactive modeling and verification 343

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. Fisher J, Henzinger T (2007) Executable cell biology. Nat
Biotechnol 25:1239–1249

2. Morgan C, McIver A, Seidel K (1996) Probabilistic predicate
transformers. ACM Trans Program Lang Syst 18:325–353

3. Huth M, Kwiatkowska M (1997) Quantitative analysis and model
checking. Log Comput Sci 12:111–122

4. Henzinger T (2008) Two challenges in embedded systems design:
predictability and robustness. Philos Trans R Soc A 366:3727–
3736

5. Thomas W (1990) Automata on infinite objects. In: Handbook of
theoretical computer science, vol B, pp 133–192

6. Emerson EA (1990) Temporal and modal logic. In: Handbook of
theoretical computer science, vol B, pp 995–1072

7. Milner R (1990) Operational and algebraic semantics of concur-
rent processes. In: Handbook of theoretical computer science,
vol B, pp 1201–1242

8. Clarke E, Grumberg O, Peled D (2000) Model checking. MIT
Press, Cambridge

9. Alur R, Henzinger T (1999) Reactive modules. Form Methods
Syst Des 15:7–48

10. Cousot P, Cousot R (1977) Abstract interpretation. Princ Program
Lang 4:238–252

11. Pnueli A, Rosner R (1989) On the synthesis of a reactive module.
Princ Program Lang 16:179–190

12. Alur R, Dill D (1990) Automata for modeling real-time systems.
Autom Lang Program 17:322–335

13. Henzinger T (1996) The theory of hybrid automata. Log Comput
Sci 11:278–292

14. Hermanns H (2002) Interactive Markov chains. Springer, Berlin
15. Baier C, Haverkort B, Siegle M, Katoen J-P (eds) (2004) Valida-

tion of stochastic systems. Springer, Berlin
16. Droste M, Kuich W, Vogler H (eds) (2009) Handbook of weighted

automata. Springer, Berlin
17. Chakrabarti A, de Alfaro L, Henzinger T, Stoelinga M (2003) Re-

source interfaces. Embed Softw 3:117–133
18. Kwiatkowska M, Norman G, Sproston J, Wang F (2007) Sym-

bolic model checking for probabilistic timed automata. Inf Com-
put 205:1027–1077

19. Larsen K (2009) Priced timed automata. Found Softw Technol
Theor Comput Sci 28:417–425

20. Jain R (1991) The art of computer systems performance analysis.
Wiley, New York

21. Shatz S, Wang J-P, Goto M (1992) Task allocation for maximizing
reliability of distributed computer systems. IEEE Trans Comput
41:1156–1168

22. Baier C, Haverkort B, Hermanns H, Katoen J-P (2010) Perfor-
mance evaluation and model checking join forces. Commun ACM
53:76–85

23. Sommerville I (2001) Software engineering. Addison-Wesley,
Reading

24. van Breugel F (2001) An introduction to metric semantics. Theor
Comput Sci 258:1–98

25. de Alfaro L, Faella M, Stoelinga M (2009) Linear and branching
system metrics. IEEE Trans Softw Eng 35:258–273

26. Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2004) Met-
rics for labeled Mrkov processes. Theor Comput Sci 318:323–354

27. van Breugel F, Worrell J (2006) Approximating and computing be-
havioral distances in probabilistic transition systems. Theor Com-
put Sci 360:373–385

28. de Alfaro L, Henzinger T, Majumdar R (2003) Discounting the
future in systems theory. Autom Lang Program 30:1022–1037

29. Caspi P, Benveniste A (2002) Toward an approximation theory for
computerized control. Embed Softw 2:294–304

30. Kuhn H (ed) (1997) Classics in game theory. Princeton University
Press, Princeton

31. Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logics, and
infinite games. Springer, Berlin

32. Zwick U, Paterson M (1996) The complexity of mean-payoff
games on graphs. Theor Comput Sci 158:343–359

33. Koller D, Friedman N (2009) Probabilistic graphical models. MIT
Press, Cambridge

34. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353
35. Eiben A, Smith J (2003) Introduction to evolutionary computing.

Springer, Berlin
36. Curti M, Degano P, Priami C, Baldari C (2004) Modeling bio-

chemical pathways through enhanced π -calculus. Theor Comput
Sci 325:111–140

37. Chaouiya C (2007) Petri net modeling of biological networks.
Brief Bioinform 8:210–219

38. Cardelli L (2005) Abstract machines of systems biology. Trans
Comput Syst Biol 3:145–168

39. Fisher J, Piterman N, Hubbard E, Stern M, Harel D (2005) Com-
putational insights into C elegans vulval development. Proc Natl
Acad Sci USA 102:1951–1956

40. Ghosh R, Tomlin C (2004) Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological
modeling. IEE Trans Syst Biol 1:170–183

41. Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-
based modeling of cellular signaling. Concurr Theory 18:17–41

42. Ciocchetta F, Hillston J (2009) Bio-PEPA: a framework for the
modeling and analysis of biological systems. Theor Comput Sci
410:3065–3084

43. Tzeng W-G (1992) A polynomial-time algorithm for the equiva-
lence of probabilistic automata. SIAM J Comput 21:216–227

44. Blondel V, Canterini V (2003) Undecidable problems for proba-
bilistic automata of fixed dimension. Theory Comput Syst 36:231–
245

45. Degorre A, Doyen L, Gentilini R, Raskin J-F, Torunczyk S (2010)
Energy and mean-payoff games with imperfect information. Com-
put Sci Log 24:260–274

46. Chatterjee K, Doyen L, Edelsbrunner H, Henzinger T, Rannou
P (2010) Mean-payoff automaton expressions. Concurr Theory
21:269–283

47. Chatterjee K, Doyen L, Henzinger T (2008) Quantitative lan-
guages. Comput Sci Log 17:385–400

48. Chatterjee K, Doyen L, Henzinger T (2009) Expressiveness and
closure properties for quantitative languages. Log Comput Sci
24:199–208

49. Colcombet T (2009) The theory of stabilisation monoids and reg-
ular cost functions. Autom Lang Program 36:139–150

50. Alur R, Raghothaman M (2013) Decision problems for additive
regular functions. Autom Lang Program 40:37–48

51. Kupferman O, Vardi M, Wolper P (2000) An automata-theoretic
approach to branching-time model checking. J ACM 47:312–360

52. Cerný P, Henzinger T, Radhakrishna A (2010) Simulation dis-
tances. Concurr Theory 21:253–268

53. Chatterjee K, Henzinger T, Jurdziński M (2005) Mean-payoff par-
ity games. Log Comput Sci 20:178–187

54. Henzinger T, Kupferman O, Rajamani S (2002) Fair simulation.
Inf Comput 173:64–81

55. Henzinger T, Majumdar R, Prabhu V (2005) Quantifying similari-
ties between timed systems. Form Model Anal Timed Syst 3:226–
241



344 T.A. Henzinger

56. Bloem R, Chatterjee K, Henzinger T, Jobstmann B (2009) Bet-
ter quality in synthesis through quantitative objectives. Comput-
Aided Verification 21:140–156

57. Chatterjee K, Henzinger T, Jobstmann B, Singh R (2010) Mea-
suring and synthesizing systems in probabilistic environments.
Comput-Aided Verification 22:380–395

58. Cerný P, Gopi S, Henzinger T, Radhakrishna A, Totla N (2012)
Synthesis from incompatible specifications. Embed Softw 12:53–
62

59. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003)
Counterexample-guided abstraction refinement for symbolic
model checking. J ACM 50:752–794

60. Larsen K, Larsson F, Pettersson P, Yi W (2003) Compact data
structures and state-space reduction for model checking real-time
systems. Real-Time Syst 25:255–275

61. Chatterjee K, de Alfaro L, Faella M, Henzinger T, Majumdar R,
Stoelinga M (2006) Compositional quantitative reasoning. Quant
Eval Syst 3:179–188

62. de Alfaro L, Henzinger T, Jhala R (2001) Compositional methods
for probabilistic systems. Concurr Theory 12:351–365

63. Boker U, Henzinger T (2012) Approximate determinization of
quantitative automata. Found Softw Technol Theor Comput Sci
31:362–373

64. Henzinger T, Jhala R, Majumdar R, Sutre G (2002) Lazy abstrac-
tion. Princ Program Lang 29:58–70

65. Kattenbelt M, Kwiatkowska M, Norman G, Parker D (2009) Ab-
straction refinement for probabilistic software. Verification Model
Checking Abstr Interpret 10:182–197

66. Cerný P, Henzinger T, Radhakrishna A (2013) Quantitative ab-
straction refinement. Princ Program Lang 40:115–128

67. Wagner A (2005) Robustness and evolvability in living systems.
Princeton University Press, Princeton

68. Gupta V, Henzinger T, Jagadeesan R (1997) Robust timed au-
tomata. In: Hybrid and real-time systems. LNCS, vol 1201.
Springer, Berlin, pp 331–345

69. De Wulf M, Doyen L, Markey N, Raskin J-F (2004) Robustness
and implementability of timed automata. Form Model Anal Timed
Syst 2:118–133

70. Majumdar R, Saha I (2009) Symbolic robustness analysis. IEEE
Real-Time Syst Symp 30:355–363

71. Chaudhuri S, Gulwani S, Lublinerman R (2010) Continuity anal-
ysis of programs. Princ Program Lang 37:57–70

72. Bloem R, Greimel K, Henzinger T, Jobstmann B (2009) Synthe-
sizing robust systems. Form Methods Comput-Aided Des 9:85–
92

73. Larus J, Rajwar R (2006) Transactional memory. Morgan-
Claypool, San Rafael

74. Dean J, Ghemawat S (2008) MapReduce: simplified data process-
ing on large clusters. Commun ACM 51:107–113

75. Burckhardt S, Alur R, Martin M (2007) CheckFence: checking
consistency of concurrent data types on relaxed memory models.
Program Lang Des Implement 12–21

76. Emmi M, Fischer J, Jhala R, Majumdar R (2007) Lock allocation.
Princ Program Lang 34:291–296

77. Guerraoui R, Henzinger T, Singh V (2009) Software transactional
memory on relaxed memory models. Comput-Aided Verification
21:321–336

78. Heckmann R, Langenbach M, Thesing S, Wilhelm R (2003) The
influence of processor architecture on the design and the results of
WCET tools. Proc IEEE 91:1038–1054

79. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A,
Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2009) Above
the clouds: a Berkeley view of cloud computing. White paper.
http://berkeleyclouds.blogspot.com

80. Cerný P, Chatterjee K, Henzinger T, Radhakrishna A, Singh R
(2011) Quantitative synthesis for concurrent programs. Comput-
Aided Verification 23:243–259

81. Gillespie D (1977) Exact stochastic simulation of coupled chemi-
cal reactions. J Phys Chem 81:2340–2361

82. Didier F, Henzinger T, Mateescu M, Wolf V (2009) Approxima-
tion of event probabilities in noisy cellular processes. Comput
Methods Syst Biol 7:173–188

83. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O
(2008) Probabilistic model checking of complex biological path-
ways. Theor Comput Sci 391:239–257

84. Henzinger T, Mateescu M, Wolf V (2009) Sliding-window ab-
straction for infinite Markov chains. Comput-Aided Verification
21:337–352

85. Didier F, Henzinger T, Mateescu M, Wolf V (2009) Fast adaptive
uniformization of the chemical master equation. High-Perform
Comput Syst Biol 1

Thomas A. Henzinger is president
of IST Austria (Institute of Science
and Technology Austria). He holds
a Dipl.-Ing. degree in Computer
Science from Kepler University in
Linz, Austria, an M.S. degree in
Computer and Information Sciences
from the University of Delaware,
a Ph.D. degree in Computer Sci-
ence from Stanford University, and
a Dr.h.c. from Fourier University
in Grenoble, France. He was As-
sistant Professor of Computer Sci-
ence at Cornell University, Profes-
sor of Electrical Engineering and

Computer Sciences at the University of California, Berkeley, Direc-
tor at the Max-Planck Institute for Computer Science in Saarbruecken,
Germany, and Professor of Computer and Communication Sciences at
EPFL in Lausanne, Switzerland. His research focuses on modern sys-
tems theory, especially models, algorithms, and tools for the design and
verification of reliable software, hardware, and embedded systems. His
HyTech tool was the first model checker for mixed discrete-continuous
systems. He is an ISI highly cited researcher, a member of Academia
Europaea, a member of the German Academy of Sciences (Leopold-
ina), a member of the Austrian Academy of Sciences, a Fellow of the
ACM, and a Fellow of the IEEE.

http://berkeleyclouds.blogspot.com

	Quantitative reactive modeling and veriﬁcation
	Abstract
	Introduction
	From proving system correctness to measuring system ﬁtness
	Qualitative reactive modeling and veriﬁcation
	Quantitative reactive modeling and veriﬁcation

	The state of the art
	Selected research topics
	Building a quantitative foundation for reactive systems theory
	Deﬁning, computing, and optimizing distance measures between systems
	Composing and reﬁning distance measures between systems
	Measuring system robustness and synthesizing robust systems
	Quantitative measures in multicore and cloud computing
	Quantitative models in systems biology

	Summary
	Acknowledgements
	References


