
Comput Sci Res Dev (2015) 30:321–331
DOI 10.1007/s00450-014-0273-9

SPECIAL ISSUE PAPER

Design for future: managed software evolution
The DFG priority programme for long-living software systems

Ursula Goltz · Ralf H. Reussner · Michael Goedicke ·
Wilhelm Hasselbring · Lukas Märtin · Birgit Vogel-Heuser

Published online: 8 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Innovative software engineering methodologies,
concepts and tools which focus on supporting the ongoing
evolution of complex software, in particular regarding its
continuous adaptation to changing functional and quality
requirements as well as platforms over a long period are
required. Supporting such a co-evolution of software sys-
tems along with their environment represents a very chal-
lenging undertaking, as it requires a combination or even
integration of approaches and insights from different soft-
ware engineering disciplines. To meet these challenges, the
PriorityProgramme1593Design forFuture—ManagedSoft-
ware Evolution has been established, funded by the German

We would like to thank Zoya Durdik, Gregor Engels, Christof Momm,
Andreas Rausch, and Stefan Sauer for their contributions and all
projects of the priority programme for providing details on their goals
and collaborations.

U. Goltz · L. Märtin (B)
TU Braunschweig, 38106 Braunschweig, Germany
e-mail: maertin@ips.cs.tu-bs.de

U. Goltza
e-mail: goltz@ips.cs.tu-bs.de

R. H. Reussner
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
e-mail: reussner@kit.edu

M. Goedicke
University of Duisburg-Essen, 45127 Essen, Germany
e-mail: michael.goedicke@paluno.uni-due.de

W. Hasselbring
Kiel University, 24098 Kiel, Germany
e-mail: hasselbring@email.uni-kiel.de

B. Vogel-Heuser
TU München, 85748 Garching bei München, Germany
e-mail: vogel-heuser@ais.mw.tum.de

Research Foundation, to develop fundamental methodolo-
gies and a focused approach for long-living software sys-
tems, maintaining high quality and supporting evolution dur-
ing the whole life cycle. The goal of the priority programme
is integrated and focused research in software engineering to
developmethods for the continuous evolution of software and
software/hardware systems for making systems adaptable
to changing requirements and environments. For evaluation,
we focus on two specific application domains: information
systems and production systems in automation engineering.
In particular two joint case studies from these application
domains promote close collaborations among the individ-
ual projects of the priority programme. We consider several
research topics that are of common interest, for instance co-
evolution of models and implementation code, of models and
tests, and among various types of models. Another research
topic of common interest are run-time models to automati-
cally synchronise software systems with their abstract mod-
els through continuous system monitoring. Both concepts,
co-evolution and run-time models contribute to our vision to
which we refer to as knowledge carrying software. We con-
sider this as a major need for a long life of such software
systems.

Keywords Software life cycle · Design, maintenance and
operation · Legacy systems · Co-evolution · Knowledge
carrying software

1 Introduction: today’s challenges of the software
industry

Software has become an enabling factor in many ground
breaking developments across the board. In this role soft-
ware is considered to provide a degree of flexibility which

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-014-0273-9&domain=pdf

322 U. Goltz et al.

is breathtaking—especially for software developers. Ama-
zon, for instance, releases a new version, release etc. of their
services and products every eleven seconds on average [7].
If this phenomenon is an indicator of the general direction
software development will look like in the future it shows
good processes for this particular systems of this company.
However, it is and will be a major challenge to sustain such a
pace in general software development, even if change is less
frequent.

This role of software makes it necessary to address the
fast pace new emerging opportunities, changing customer
needs, environmental changes just to name a few. The ques-
tion is what are the challenges and how to address them.
The effect of such a fast pace is usually that a software sys-
tem shows quickly signs of ageing. Thus, software quality
often decreases during the lifetime of long-living software
systems in various aspects, e.g., conformance to user and
system requirements, functionality, performance, reliability,
and maintainability. This is ageing not by wear and tear but
by accommodating the required changes quickly in order
not be become obsolete by being too slow. As a result such
changes to the software system are done in a hurry with-
out considering the quality control and management, which
was in place in the original development. Since decades,
software engineering experts have been well aware of this
phenomenon, called software deterioration [11,14]. Further-
more, the requirements software has to meet and the under-
lying hardware and infrastructure (e.g., execution platform)
constantly change. If software does not continuously adapt,
it will age relative to its environment. In the field of busi-
ness information systems, we are very familiar with these
problems, referred to by the term legacy systems. Software
industry still has to cope with large-scale business applica-
tions based onopaque andmonolithic FORTRANorCOBOL
systems, which cannot be substituted due to their enormous
complexity and—even worse—lack of knowledge on how
they work. The same problem arises in the embedded soft-
ware systems sector where software engineering has to deal
with the problem of providing complex software for poten-
tially long-living technical devices and systems.

In the wake of these problems an initiative called DevOps
emerged. In DevOps development and operations are work-
ing together in order to avoid too much separation between
the twodepartments.However, this is barely awish and a high
level management strategy. It remains to be seen what a sys-
tematic approach has to be. We address this in our research
programme by providing appropriate detailed models and
processes. Indeed, several areas of software engineering need
to be considered and their respective contributions have to be
evaluated. Furthermore, huge investments need to bemade in
retaining software quality for long-living software systems.
The following three problem areas in developing long-living
software systems are of particular interest:

– A lack of understanding of the mutual dependencies
between functional and quality requirements, of the inter-
nal structure of software systems, and dependencies on
other hardware and software system components pre-
vents the efficient and effective evolution of software
systems. This causes major shortcomings in the produc-
tivity of the users of a software system and finally leads
to acceptance problems.

– There are various methods and techniques for specific
aspects of software evolution available. However, a con-
sistent and comprehensive methodology which covers
development, operation, and quality assurance at the
same time does not exist. This, of course, includes and
addresses model based approaches in particular.

– The complexity and timing of the development of appli-
cations on the one hand and the development of platforms
and technologies on the other hand, frequently interfere
each other and prevent a focused and continuous devel-
opment.

To address these challenges, in August 2012 the German
Research Foundation (DFG) launched the Priority Pro-
gramme 1593 (SPP1593) to encourage the German software
engineering community to develop approaches for evolution
in software and software/hardware systems.

Section 2 introduces the evolutionary life cycle of software
systems that includes both design and construction phases as
well as operation phases and involves different disciplines,
before Sect. 3 presents our vision of managed software evo-
lution. The joint case studies are essential to promote close
collaborations among the individual projects, see Sect. 4. The
priority programme projects, their collaboration and a clus-
tering are presented in Sect. 5, before Sect. 6 concludes the
paper.

2 Evolutionary software life cycle

Traditional release cycles, where software is updated as a
whole, vanish.Nowadays, software relies on several indepen-
dent or loosely coupled components using complex technol-
ogy stacks comprising hardware, middleware and reusable
software components and other (software) systems. Regard-
ing software evolution, we have to find ways to deal with a
co-evolution of these different parts taking place at differ-
ent release cycles. The challenges in integrating the oper-
ation and development at different levels are depicted in
Fig. 1 for the context of a technical system in automation
engineering.

The evolutionary life cycle of the system includes both
design and construction phases as well as operation phases
and involves various disciplines. The life cycle starts with the
original design and construction of infrastructure and soft-

123

Design for future: managed software evolution 323

Fig. 1 Integration of
development and operation of
hardware/software systems [12]

ware. Before operation starts, a commissioning of the entire
system (i.e., a consolidation of all disciplines) is necessary.
During operation mechanical construction phases take con-
siderably more time than designing the platform and soft-
ware, especially in area of production automation systems.
Often technical systems or platforms are running for many
years, resulting in a smaller change frequency than in soft-
ware engineering. As changes, adaptations and updates may
affect necessary parts of the system, the system may have to
be shut down in order to commission the entire re-engineered
system. In automation of production systems, it is usually
an important requirement to keep these downtime phases
extremely short. In Fig. 1 the various areas (software, plat-
form and technical system) are depicted in different grey
scales and the height of each curve indicates the amount of
effort required in these areas. As one can see each of these
areas have their own dynamics and the challenge is tomanage
the effort in such a way that the entire system will develop
and operate in a meaningful manner.

In fact, we need a tight integration of construction/design,
deployment and operation phases. As sketched in Fig. 1 this
means we need for new compositional software life cycle
management approaches, which reflect the complex technol-
ogy stack of modern service-oriented systems, production
automation systems etc. In addition, further integration of
design-time and run-time information about the software is
required. For instance, during systemoperation and evolution
a great deal of design-time information about the operated
software is missing. On the one hand, development artefacts
are not kept up-to-date after the design phases and, on the
other hand, relations between run-time management infor-
mation and design-time artefacts are barely considered. As
a consequence, development processes should take the oper-
ation and evolution of the software systems explicitly into
account [1].

3 Managed software evolution

In the Priority Programme 1593 the continuous co-evolution
of software and software/hardware systems is addressed by
making systems adaptable to changing requirements and
environments. Several fields in the discipline of software
engineering contribute to this vision and may be focused and
integrated to reach the goal of a new development methodol-
ogy for long-living software systems, maintaining high qual-
ity and supporting evolution during the life cycle. However,
these approaches need to be further developed and integrated
with a special focus on long-living software systems. For this,
we propose the new paradigm where (1) development, adap-
tation and evolution of software and their platforms aswell as
(2) operation,monitoring andmaintenance are no longer sep-
arated but integrated. The goal is to define meta-models for
preserving and accessing the knowledge provided and gained
during the system development process. Furthermore, meth-
ods and process models, as well as suitable infrastructures,
will be provided to comprehensively support the integration
of software development and evolution.

Three guiding themes have been proposed as research
structure for the priority programme and its projects:

GuidingTheme I:KnowledgeCarrying Software.Theknowl-
edge contained in software or underlying its design needs to
be integrated and made accessible in the resulting artefacts,
both for functional and for quality requirements. Appropri-
ate meta-models with specific support for continuous evolu-
tion of software and software/hardware systems need to be
developed, in particular—but not necessarily exclusively—
for advancing model-based and model-driven software engi-
neering.

Guiding Theme II: Methods and Processes. Design and evo-
lution of software need to be supported by methods ensuring

123

324 U. Goltz et al.

Fig. 2 Guiding themes of the
priority programme related to
current research in software
engineering

Methods
and

Processes

Knowledge Carrying Software

Platforms and
Environments for Evolution

Operation and
Infrastructure

Evolution and
Reengineering

Model-Based and
Model-Driven
Development

Quality
Management

Software Architecture
Design and

Management

Requirements
Management

Methods and
Process Models

Artefact
Management

that knowledge is preserved and integrated. A newmodel for
the life cycle of software or software/hardware systems needs
to be developed, allowing and considering differing evolution
cycles on different levels of the software/platform/hardware
stacks.

Guiding Theme III: Platforms and Environments for Evo-
lution. Infrastructure for the evolution of software or soft-
ware/hardware systems in terms of suitable middleware and
robust run-time environments, for monitoring and changing
during operation, needs to be provided. Design- and run-time
information needs to be made accessible wherever needed
during the operation of systems.

Figure 2 summarises the relevant fields of today’s software
engineering research and shows how the overall structure of
the priority programme relates to these fields of software
engineering.

The priority programme is designed for two periods of
funding, each with a duration of three years. Figure 3 shows
the orientation both funding periods. In the first period, we
are focused on guiding themes I and II to lay the foundations
by defining new concepts for software system evolution. In

1st funding period:
basics

(principles, processes,
methods, models)

2nd funding period:
consolidation

(infrastructures, tools,
validation)

methods
and processes

platforms and
environments for evolution

knowledge carrying
software

Fig. 3 Focuses in funding periods of the priority programme

the second period wewill have a stronger focus on evaluation
and appropriate infrastructures w.r.t. guiding theme III.

4 Case studies

Several of the projects in the priority programme develop
methods and approaches tailored to the domain of produc-
tion systems in automation engineering. They evaluate their
results using thePick&Place Unit [8], a lab-size demonstra-
tor at the Institute of Automation and Information Systems1

at the Technische Universität München. Another group of
projects concentrates on information systems and embedded
systems. For those projects, we provide a joint case study
based on CoCoME [15] in terms of a cash desk with an
associated stock management for supermarkets, supervised
by the Chair for Software Design and Quality2 at the Karl-
sruher Institute for Technology. This case study has already
been deployed as an international benchmark for component-
based modelling approaches, but is now adapted to the goals
of the priority programme.

Sections 4.1 and4.2 introduce the twocase studies, respec-
tively. Later, Sect. 5 will present how the individual projects
work and collaborate on these case studies.

4.1 Pick and place unit

The engineering of automation software for manufacturing
systems differs from traditional software design for embed-
ded systems. Run-time environments, implementable in the
programming languages standardised in IEC 61131-33 (e.g.,
Sequential Function Charts), abstract from several techni-

1 http://www.ais.mw.tum.de/en.
2 http://sdq.ipd.kit.edu.
3 Open international standard for programmable logic controllers,
http://www.iec.ch.

123

http://www.ais.mw.tum.de/en
http://sdq.ipd.kit.edu
http://www.iec.ch

Design for future: managed software evolution 325

cal details of the platform. However, a dependency between
automation software and physical hardware, i.e., context and
platform, still exists. The complexity of manufacturing sys-
tems with typically thousands of input and output signals of
sensors and actuators used within one plant is nonetheless
high. Furthermore, reuse is handicapped by several aspects:
Nearly each plant is customised individually to technical
requirements, local standards, local qualification of main-
tenance personnel and requested components.

In this context, model-driven development of automa-
tion software for manufacturing systems grows in impor-
tance. First tool prototypes are available using object-
oriented mechanisms and integrating the UML into tradi-
tional IEC 61131-3 environments [17] being the program-
ming and development standard for manufacturing systems
since years. Furthermore, service-oriented approaches are
well applied in manufacturing systems on the level of sen-
sor and actuator integration, the so-called device description
languages [2,3] as well as on the level of dynamic adapta-
tion during run-time using agent-based approaches to replace
sensors by a soft sensor [16] or adjust control behaviour [4] in
case of failures. Nevertheless, a major drawback still exists:
unstructured legacy code from existing plants and mecha-
tronic libraries is frequently reused. Therefore an approach
is required to analyse legacy code and develop migration
concepts tomodel-driven development or service-orientation
applicable for new plants. Evolution of automation soft-
ware of manufacturing systems is not always applicable in
a model-driven way as a planned change. At plant site, in
case of downtime phases, software code is frequently adapted
unplanned under high time pressure with limited access to all
engineering data and limited knowledge. Both of these chal-
lenges are addressed by projects of the priority programme
using the manufacturing automation demonstrator. Product
line approaches and delta engineering seem to be promising
ways to support evolution ofmanufacturing system software,
but requires changes to the standardised and established pro-
gramming languages as well as adaptations in engineering
and run-time platforms.

To evaluate the applicability of their approaches regard-
ing automation software for manufacturing systems, nine
projects use the Pick & Place Unit (PPU) [8] as exemplary
lab-size demonstrator formanufacturing systems (see Fig. 4).
The evolution of themechanical, electrical and software parts
of the PPU over the last ten years is structured into 16 sce-
narios. Besides functionally driven evolution, i.e., processing
of other types of work pieces (colour, material), also qual-
ity requirements [9], e.g., precision, throughput, and depend-
ability, lead to these evolution steps. A detailed description of
the PPU’s evolution scenarios was elaborated for the priority
programme [10]. The final configuration of the PPU consists
of four modules: a stamp, a stack, a crane, and a sorter. After
separating work pieces (cylindrical chumps) at the stack with

Fig. 4 PPU lab-size demonstrator [8]

a pneumatic cylinder, chumps can be transported by the crane
either to the stamp for further processing or directly to the
sorter. For stamping material with different pressure profiles,
the stamp is also equipped with a pneumatic cylinder. A vari-
ety of sensors installed at the sorter enables the identification
of the type of the work piece (colour, material) and ejecting
them correctly by corresponding ramps using the pneumatic
cylinders.

As an interface to the projects, a full documentation for
each of the scenarios in SysML is available as well as corre-
sponding IEC 61131-3 programs. For evaluation purposes, a
MATLAB/Simulink model of all evolution steps is provided
which offers the opportunity to run the program code on a
PC-based logic controller (PLC) in loop with the simulation.
Furthermore, the customised control software of the project
can be evaluated in loop with the simulation as well as con-
nected to the PPU via OPC [13], a standardised interface in
automation engineering.

4.2 Common component modelling example

The case study Common Component Modelling Example
(CoCoME) describes a fictitious business information man-
agement system, originally developed and internationally
used as a benchmark system for several component-based
modelling approaches [6].CoCoME is anopen source system
with a comprehensive documentation including a detailed
requirement specification, architectural models in several
modelling languages and two runnable implementation ver-
sions: a component-based implementation.4 and a SOA-
based variant.5

The context of CoCoME is a trading system in a super-
market or a similar retail unit. System structure of CoCoMe
is illustrated in Fig. 5.

It consists of cash desks, store and enterprise. A cash desk
has several devices connected to it, such as a bar code scan-
ner or a receipt printer. Multiple cash desks are connected to

4 http://www.sourceforge.net/projects/cocome/develop.
5 http://www.sourceforge.net/apps/trac/sla-at-soi.

123

http://www.sourceforge.net/projects/cocome/develop
http://www.sourceforge.net/apps/trac/sla-at-soi

326 U. Goltz et al.

Fig. 5 CoCoME system
overview

Cash Desk PC

Cash Desk PC

Cash Desk PC

Store Client

Store Client

Store Client Enterprise Server

Enterprise Client

. . .

. . .

Cash Desk Barcode Printer

Cash Desk Line

Card Reader Bank
Cash
Desk

Store Line

Store Server

Store Enterprise

the CoCoME store server. These devices belong to the store
environment. Moreover, store servers are connected to the
enterprise server via store clients, comprising the enterprise
CoCoME environment. Cash desk applications, store server
applications, store clients, enterprise applications and enter-
prise clients can be installed on independent nodes and also
can be replicated. The communication runs via RMI in the
traditional implementation of CoCoME, and via WS calls in
the SOA-based variant. The SOA-based implementation is
also deployable in the cloud.

The usage scenario of the CoCoME system reflects cus-
tomers buying goods in a supermarket. Items the customer
wants to buy are scanned at the cash desk and can be paid
either by cash orwith a credit card.At the end of a transaction,
the customer receives a receipt. If the supply of certain goods
is coming to an end, the inquiry about resupply is sent via
the store client to the enterprise server. There it is processed,
and items are shipped to the supermarket.

The current variants of CoCoME are not intended to sup-
port evaluation of methods targeting evolution. Hence, we
propose the following evolution scenarios:

– Exchange of the AMPL [5] optimisation library
– Error-resistance and performance adaptation
– Introduction of an event channel into the system
– Exchange of communication protocol
– Home delivery service, payback and discount service
offers

– Implementation of a web shop support
– CoCoMe as a product line
– Platform or infrastructure change
– Migration to cloud infrastructures
– Model-driven development of CoCoME

The most relevant of these scenarios will be elaborated and
implemented for evaluation in the priority programme. The
CoCoME case study is relevant for seven projects of the pri-
ority programme.

5 Projects of the priority programme

Thepriority programmecomprises thirteen scientific projects
with 25 principal investigators from software and automa-
tion engineering. We present the individual project goals,
project collaborations and project clustering in the following
Sects. 5.1, 5.2 and 5.3.

5.1 Individual project goals

ADVERT6 addresses the challenge of capturing and evolv-
ing design decisions to keep development artefacts synchro-
nised (requirements, documentation, architecture specifica-
tion, and code). A vetical tool prototype for synchronisa-
tion of architectural design and implementation artefacts is
available. For evaluation, an empirical study on CoCoME
and some real-world case studies from former industry and
research projects are planned.

DAPS7 develops new high-level models for performance
specification and modelling of variability and evolution. The
work is motivated by the increasing complexity of software
in long-living systems, and the resulting number of variants
over time. New techniques for efficient performance analy-
sis both at design-time and at run-time are engineered, and
evaluated on the PPU case study.

ENSURE8 investigates the co-evolution of quality of ser-
vice (QoS)models and architectural models. Particularly, the
certification of QoS properties of evolving systems, includ-
ing run-time certification, is introduced and evaluated via
model-based safety and reliability evaluations of the evolv-
ing PPU (consistent models, model transformations, co-
evolution study). The model-based performance evaluation
of CoCoME is envisioned.

6 http://www.dfg-spp1593.de/advert.
7 http://www.dfg-spp1593.de/daps.
8 http://www.dfg-spp1593.de/ensure.

123

http://www.dfg-spp1593.de/advert
http://www.dfg-spp1593.de/daps
http://www.dfg-spp1593.de/ensure

Design for future: managed software evolution 327

EvoLine9 supports consistency checking between variability
models and artefacts during evolution. Employing the Linux
kernel and kconfig files as case studies, EvoLine identifies
modifications in a product line that lead to problems in single
products.

FYPA2C10 develops methods and processes for realising
knowledge carrying software for evolving production sys-
tems, especially in the context of undocumented changes.
This includes the automatic generation and scenario-based
evaluation of knowledge models and test cases for the PPU
case study on the basis of occurring low-level signal traces
within an active component architecture. A semi-automated
requirements verification process based on anomaly detec-
tion of changes as well as test cases and common usage sce-
narios has already been developed. Besides the PPU case
study, a local laboratory manufacturing plant evolution sce-
nario is under construction and a simulated benchmark plant
is planned.

IMoTEP11 investigates the co-evolution of software product
line (SPL)models and test artefacts, particularly the propaga-
tion of changes in SPL models into updates of model-based
SPL test artifacts. Via a case study of its associated partner
Eckelmann AG and the PPU case study, IMoTEP evaluates
quality assurance for (re-)configuration at run-time based on
dynamic SPL testing strategies as well as for unforeseen evo-
lution based on regression testing.

IMPROVE12 leverages advances in deductive program
verification for regression verification (formally proving
that software behaviour is sustained through its evolution).
IMPROVE develops powerful regression verification meth-
ods and tools for regression verification for Java and intends
to evaluate these on a collection of micro-benchmarks from
literature and on the CoCoMe case study.

iObserve13 investigates model-based observation, predic-
tion, forecasting and analysis of performance and privacy
in dynamic cloud contexts. In particular, new methods and
techniques for model-driven instrumentation, creation and
update of run-time models for verification of geo-location-
constraints are addressed. The techniques are evaluated on
the CoCoMe case study, particularly with the scenario of
moving a database from one cloud provider to another while
complying with data policy requirements.

9 http://www.dfg-spp1593.de/evoline.
10 http://www.dfg-spp1593.de/fypa2c.
11 http://www.dfg-spp1593.de/imotep.
12 http://www.dfg-spp1593.de/improve.
13 http://www.dfg-spp1593.de/iobserve.

MOCA14 develops a methodology and tools for specifying
and recognising changes in versions of models. The key idea
is to integratemodel-driven key technologies formodel trans-
formation and model versioning and to evaluate this with
managing and planing the evolution of SysMLmodels of the
PPU case study.

MoDEMAS15 investigates evolution challenges in automa-
tion engineering in practice. The MoDEMAS project
employs simulation and model checking to support evolu-
tion of automation systems. The approach is evaluated via
simulation of typical evolution scenarios on the PPU case
study. The goal is to identify and combine those viewpoints,
which are required to model an automation system holisti-
cally.

Pythia16 utilises various sources of information obtained
via product line analysis to improve the predictive power of
state-of-the-art prediction models for product line engineer-
ing. A product line dashboard that aggregates, integrates, and
visualises organisational, architectural, and implementation-
related information is developed to support decisions such as
whether to add a feature, remove a feature, or alter the organ-
isation, architecture, or implementation (refactoring). Pythia
is evaluated based on several open-source software systems,
several case studies from partners at Fraunhofer IESE, Keba,
and Siemens, as well as the source code of the PPU case
study.

SecVolution17 addresses the systematic co-evolution of
knowledge and software for security. Hereby, SecVolution
develops techniques, tools, and processes that support secu-
rity requirements and design analysis techniques for evolv-
ing, long-living systems in order to ensure lifelong compli-
ance to security requirements. The evaluation is planned both
on the CoCoME case study with the evolution scenario of
migrating the shop to the cloud and the PPU case study for
investigating relevant security vulnerabilities.

URES18 has the goal to support the documentation and usage
of decision knowledge during software evolution. URES
investigates the structures to represent decisions, the resulting
effort for developers and how to exploit decision knowledge
in order to support the system evolution. End user behav-
iour is reflected in evolution decisions to identify software
improvements through mismatches between expected and
observed user behaviour. These techniques are evaluated on
the UNICASE tool and both the CoCoME and the PPU case
studies.

14 http://www.dfg-spp1593.de/moca.
15 http://www.dfg-spp1593.de/modemas.
16 http://www.dfg-spp1593.de/pythia.
17 http://www.dfg-spp1593.de/secvolution.
18 http://www.dfg-spp1593.de/ures.

123

http://www.dfg-spp1593.de/evoline
http://www.dfg-spp1593.de/fypa2c
http://www.dfg-spp1593.de/imotep
http://www.dfg-spp1593.de/improve
http://www.dfg-spp1593.de/iobserve
http://www.dfg-spp1593.de/moca
http://www.dfg-spp1593.de/modemas
http://www.dfg-spp1593.de/pythia
http://www.dfg-spp1593.de/secvolution
http://www.dfg-spp1593.de/ures

328 U. Goltz et al.

5.2 Project collaboration

In order to achieve the intended integration between part-
ners of different fields of software engineering, and hence
to reach a focused approach towards a coherent methodol-
ogy, considerable efforts are necessary. Frequent information
exchange and discussion of research results in early stages
are absolutely essential. This is achieved on the one hand by
organising frequent meetings in suitable forms, not only for
information exchangewithin the priority programme but also
with national and international experts. On the other hand,
we build networks between related projects, both guided by
the joint case studies and by establishing working groups for
related research interests.

ADVERT and iObserve collaborate on the development
of CoCoME evolution scenarios, the integration of a mon-
itoring probe definition language into synchronised devel-
opment artefacts to gather and represent run-time deploy-
ment information. ADVERT and SecVolution collaborate
on capturing relevant security knowledge from architectures
and synchronising that knowledge between model and code.
DAPS collaborates with FYPA2C on measurements of the
PPU. ENSURE collaborates with MOCA on the PPU sys-
tem architecture and fault tree models, with FYPA2C on
probabilistic QoS models, and with iObserve on learning
performance attributes based on the CoCoME implementa-
tion for model update via dynamic analysis. FYPA2C col-
laborates with MoDEMAS on run-time verification of pro-
duction systems on basis of PLC signal traces, with DAPS
on the PPU regarding performance verification is planned
and with ENSURE on probabilistic models. IMoTEP col-
laborates with Pythia on SPL test case generation based on
symbolic model checking, withMoDEMAS on feature mod-
elling in the automation engineering domain, with MOCA
on consistency-preserving evolution of SPL test artefacts by
model differencing, and with DAPS on variability modelling
in SPL engineering. iObserve collaborates with ADVERT on
run-time and data modelling and with ENSURE, SecVolu-
tion,URES, andMOCAonmodel-driven code generation for
the CoCoME case study. MOCA collaborates with MoDe-
MAS on the comparison of SysML models of the PPU, with
IMoTEP on the comparison of featuremodels, with SecVolu-
tion on the change recognition of changes in security main-
tenance models, and with ENSURE on the comparison of
system architectures and fault tree models. Pythia collabo-
rates with DAPS on variability-aware performance analysis,
with IMoTEP on variability-aware test-case generation and
execution and with MOCA on structural differencing and
merging to compare tools. URES collaborates with SecVo-
lution on integrating heuristic analyses for requirements with
the decision editor in UNICASE as well as with iObserve,
ADVERT, and SecVolution on the development of CoCoME
evolution scenarios.

In particular the shared case studies promote close collab-
orations among the individual projects. We observe several
research topics that are of common interest, for instance:

Co-evolution of models and implementation code, of
models and tests, and among various types of models.
Run-timemodels to automatically synchronise software
systems with their abstract models through continuous
system monitoring.

Both, co-evolution and run-time models contribute to our
vision of knowledge carrying software which is a require-
ment for a long life of these software systems.

5.3 Project clustering

One of the goals in the first funding period of the priority
programme was to evenly cover our guiding themes I and
II as well as our application domains. The assignment of
projects is depicted in Fig. 6. We find that four projects con-
centrate solely on information systems, five projects solely
on automation engineering. Four projects areworking in both
domains. The width of each block in the figure illustrates the
intensity (one-, two- or three-thirds) of the assignment to a
guiding theme. In accordance with the focus in the first fund-
ing period, the majority of the projects contribute to guiding
theme I and II.

Besides these classifications, we identify seven important
themes from software engineering which are covered by our
projects, illustrated in Fig. 6.

In the projects concerned with Software Product Lines
(SPLs), performance and testability of variant-rich software
systems are examined. The projects in Verification & Vali-
dation develop sophisticated software approaches for qual-
ity assurance in practical application. Also formal methods
are part of this field. Meta Modelling covers approaches
with strong orientation to model-based/model-driven devel-
opment and analysis of systems on high level of abstraction.
Change Analysis is strongly related to the preservation of
knowledge in maintenance phases. Close to that,Monitoring
concepts support the integration of human and environmental
aspects into the development process. Highly flexible system
and software structures are investigated in the field of Archi-
tectures. Finally, the field Non-functional Properties focuses
on systemproperties on the level of qualitative ratings beyond
functional requirements.

6 Conclusions

In the Priority Programme 1593, we have the ambitious goal
to provide methods and tools for developing “forever-young
software”. This leads to software whose expenses in main-

123

Design for future: managed software evolution 329

Fig. 6 Clusterisation along the research structure of the priority programme

tenance are considerably lower than the maintenance costs
of current legacy systems and which will even improve in
quality over its life cycle. Thus, improvements regarding all
software development phases and software artefacts on the
various levels of abstraction in an evolutionary software life
cycle are required. Several research fields in software engi-
neering need to be combined for the development of inte-
grated approaches to reach our goals.

We proposed a research structure of three guiding themes
to integrate all activities in development, operation, moni-
toring and maintenance. Two of these guiding themes reflect
that gathering, preservation and usage of knowledge during
development and operation, and the integration into methods
and processes, are key issues. In our third guiding theme,
adequate infrastructures for evolutionary platforms aswell as
process models are investigated. Furthermore, several fields
from current research in software engineering contribute to
our goals. We have shown that we have an excellent repre-
sentation of these fields in the priority programme, as well
as a good coverage of our guiding themes.

In order to stay close to application, we have identified two
particular important application domains: production sys-
tems in automation engineering and information systems.
For this purpose, two joint case studies for these domains are

broadly accepted in the priority programme, and promising
scenarios for evolution were already determined.

If this coordinated effort of software engineering research
will help to save only a fraction of the huge expenses spent
nowadays on the maintenance of long-living software sys-
tems, the situation might be considerably improved. How-
ever, we expect much more. We intend to provide the meth-
ods, processes and infrastructures to not only preserve, but
even to improve the quality of long-living software systems
over their whole life cycle.

Acknowledgments This work was partially supported by the DFG
(German Research Foundation) under the DFG Priority Programme
1593: Design For Future—Managed Software Evolution (SPP1593).

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Bencomo N, Blair G, France R, Muñoz F, Jeanneret C (2009) Pro-
ceedings of the 3rd international workshop on Models@run.time.
In: Models in software engineering. Springer, Berlin, pp 90–96

123

330 U. Goltz et al.

2. Diedrich C (2006) Integrating technologies of field devices in dis-
tributed control and engineering systems. In: Integration technolo-
gies for industrial automated systems, chap. 11. CRC Press, Boca
Raton

3. Evertz L, Epple U (2013) Laying a basis for service systems in
process control. In: Proceedings of the 18th international confer-
ence on emerging technologies & factory automation

4. Feldmann S, Loskyll M, Rösch S, Schlick J, Zühlke D, Vogel-
Heuser B (2013) Increasing agility in engineering and runtime of
automated manufacturing systems. In: Proceedings of 14th inter-
national conference on industrial technology

5. Fourer R, GayD,KernighanB (2002)AMPL: amodeling language
for mathematical programming. Duxbury, USA

6. GI-Dagstuhl Research Seminar: Modelling Contest: Common
Component Modelling Example (CoCoME). http://www.cocome.
org

7. Information Week Magazine: Amazon’s Vogels Challenges IT:
Rethink App Dev (Interview). http://www.informationweek.com/
d/d-id/1107599

8. Institute for Automation and Information Systems: The pick and
place unit-demonstrator for evolution in industrial plant automation
(2014). http://www.ppu-demonstrator.org/

9. Ladiges J, Haubeck C, Wior I, Arroyo E, Fay A, Lamersdorf W
(2013) Evolution of production facilities and its impact on non-
functional requirements. In: Proceedings of the 11th international
conference on industrial informatics

10. Legat C, Folmer J, Vogel-Heuser B (2013) Evolution in industrial
plant automation: a case study. In: Proceedings of the 39th inter-
national conference of the IEEE Industrial Electronics Society

11. LehmanM (1980) Programs, life cycles, and laws of software evo-
lution. Proc IEEE 68(9):1060–1076

12. Li F, Bayrak G, Kernschmidt K, Vogel-Heuser B (2012) Specifica-
tion of the requirements to support information technology-cycles
in the machine and plant manufacturing industry. In: Proceedings
of the 14th IFAC symposium on information control problems in
manufacturing, vol 14, pp 1077–1082

13. OPC Foundation: OPC Data Access Custom Interface Standard
Version 3.00 (2003). https://opcfoundation.org/developer-tools/
specifications-classic/data-access/

14. ParnasDL (1994) Software aging. In: Proceedings of the 16th inter-
national conference on software engineering. IEEEComputer Soci-
ety Press, New York , pp 279–287

15. Rausch A, Reussner R, Mirandola R, Plasil F (eds) (2008) The
common component modeling example: comparing software com-
ponent models [result from the Dagstuhl research seminar for
CoCoME, August 1–3, 2007]. Lecture Notes in Computer Science,
vol 5153. Springer, Berlin

16. Schütz D, Wannagat A, Legat C, Vogel-Heuser B (2013) Devel-
opment of PLC-based software for increasing the dependability
of production automation systems. IEEE Trans Ind Inform 9(4):
2397–2406. doi:10.1109/TII.2012.2229285

17. Witsch D, Vogel-Heuser B (2011) PLC-Statecharts: an approach
to integrate UML-Statecharts in open-loop control engineering—
aspects on behavioral semantics and model-checking. In: Proceed-
ings of the 18th IFAC World Congress

Ursula Goltz studied Computer
Science at the Technical Uni-
versity of Aachen and gradu-
ated there with a diploma degree
1982. She received their Ph.D.
degree from the TU Aachen in
the year 1988. She worked as
a scientific assistant at the TU
Aachen from 1982–1985 and at
the Institute on Methodologi-
cal Foundations of GMD, St.
Augustin from 1986-1992. After
teaching activities at the Uni-
versities of Munich, Erlangen-
Nürnberg, Mannheim and Bonn,

she became professor for Programming at the University of Hildesheim
in the year 1992. Since 1998 she is professor for Computer Science
at the Technical University of Braunschweig. There she is chair of the
Institute for Programming and Reactive Systems. Her main research
interests are specification and system design, reactive systems, concur-
rency, process algebras and semantics.

Ralf H. Reussner holds the
Chair for Software-Design and
-Quality at the KIT (formerly
University of Karlsruhe) since
2006. His research group works
in the area of component based
software design, software archi-
tecture and predictable software
quality. In addition, he acts as
a PC member or reviewer of
several conferences and jour-
nals, including IEEE TSE and
IEEE Computer. As Director and
Scientific Executive of Software
Engineering at the IT Research

Centre in Karlsruhe (FZI) he consults various industrial partners in the
areas of component based software, architectures and software qual-
ity. Since 2011 he is member of the executive board of the FZI and its
speaker since 2013. He is principal investigator or chief coordinator in
several grants from industrial and governmental funding agencies. He
graduated from University of Karlsruhe with a PhD in 2001. After this,
Ralf Reussner was a Senior Research Scientist and project-leader at the
Distributed Systems Technology Centre (DSTC Pty Ltd), Melbourne,
Australia. From March 2003 till January held the Juniorprofessorship
for Software Engineering at the University of Oldenburg, Germany, and
was awarded with a grant of the Emmy-Noether young investigators
excellence programme of the National German Science Foundation.

123

http://www.cocome.org
http://www.cocome.org
http://www.informationweek.com/d/d-id/1107599
http://www.informationweek.com/d/d-id/1107599
http://www.ppu-demonstrator.org/
https://opcfoundation.org/developer-tools/specifications-classic/data-access/
https://opcfoundation.org/developer-tools/specifications-classic/data-access/
http://dx.doi.org/10.1109/TII.2012.2229285

Design for future: managed software evolution 331

MichaelGoedicke studiedCom-
puter Science at the Techni-
cal University of Dortmund and
graduated there with a diploma
degree in 1980. He received his
Ph.D. degree from the TU Dort-
mund in the year 1985 and his
Habilitation in 1993 there as
well. He worked as a scientific
assistant at the TU Dortmund
from 1980-1989 and at the Uni-
versity of Duisburg-Essen from
1990. He was a research fellow
at Imperial College in 1989 and
became Professor for Specifica-

tion of Software Systems at the University of Duisburg-Essen (then
University of Essen) in 1994. In 2010 he was co-founder of paluno The
Ruhr Institute for Software Technology and serves as a Vice Direc-
tor since then. His main research interests are specification and system
design, semantics, software architecture and recently eAssessment for
programming tasks.

Wilhelm Hasselbring is a full
professor of software engineer-
ing at Kiel University, Germany,
and chair of the Kiel/Lübeck
KoSSE competence cluster on
software systems engineering.
His research interests include
software engineering and distrib-
uted systems. He received his
Ph.D. in computer science from
the University of Dortmund in
1994 and his diploma degree
in computer science from the
Technical University of Braun-
schweig in 1989. Before moving

to Kiel in 2008, he was full professor at the University of Oldenburg,
assistant professor at the University of Tilburg (NL), postdoc at the Uni-
versity of Dortmund, and Ph.D. student at the University of Essen. He’s
a member of the ACM, the IEEE Computer Society, and the German
Association for Computer Science.

Lukas Märtin studied Busi-
ness Informatics at TU Braun-
schweig in Germany. Since he
graduated with diploma degree
in May 2010, he is doing his
Ph.D. as research assistant at the
Institute for Programming and
Reactive Systems at the same
university. His main researches
focus on quality-oriented re-
configuration mechanisms for
fault-tolerant software architec-
tures of cyber-physical systems
in space domain. He is the man-
aging director of the DFG Prior-

ity Programme 1593 and responsible for supporting the collaborative
work between 13 scientific sub-projects. In this capacity, he organized
four workshops and one spring school over the last two years, each
venue with about 50 participants.

Birgit Vogel-Heuser graduated
in electrical engineering and
received the Ph.D. in mechani-
cal engineering from the RWTH
Aachen in 1991. She worked
for nearly ten years in indus-
trial automation in the machine
and plant manufacturing indus-
try. After holding different chairs
of automation she has been head
of the Institute of Automation
and Information Systems at the
TechnischeUniversitätMünchen
since 2009. Her research work is
focused on modeling and educa-

tion in automation engineering for distributed and intelligent systems.

123

	Design for future: managed software evolution
	The DFG priority programme for long-living software systems
	Abstract
	1 Introduction: today's challenges of the software industry
	2 Evolutionary software life cycle
	3 Managed software evolution
	4 Case studies
	4.1 Pick and place unit
	4.2 Common component modelling example

	5 Projects of the priority programme
	5.1 Individual project goals
	5.2 Project collaboration
	5.3 Project clustering

	6 Conclusions
	Acknowledgments
	References

