
Noname manuscript No.
(will be inserted by the editor)

Characterizing the Efficiency of Multicore and Manycore
Processors for the Solution of Sparse Linear Systems

José I. Aliaga · Maŕıa Barreda · Ernesto Dufrechou · Pablo Ezzatti ·
Enrique S. Quintana-Ort́ı

Received: date / Accepted: date

Abstract We analyze the efficiency of servers equipped

with state-of-the-art general-purpose multicore proces-

sors as well as platforms based on accelerators such as

graphics processing units (GPUs) and the Intel Xeon

Phi. Following the proposal recently advocated in the

High Performance Conjugate Gradient (HPCG) bench-

mark, we leverage for this purpose efficient implemen-

tations of ILUPACK, a preconditioned solver for sparse

linear systems that comprises numerical kernels and

data access patterns analogous to those of HPCG. Our

study analyzes the (computational) performance and

energy efficiency, with two different metrics for each:

time/floating-point throughput for the former; and ener-

gy/floating-point throughput-per-Watt for the latter.

Keywords Sparse linear algebra · preconditioned

iterative solvers · ILUPACK · energy efficiency ·
multicore processors · hardware accelerators.

1 Introduction

For over two decades, the LINPACK benchmark [9] has

been employed to compile performance and throughput-

per-power unit rankings of most of the world’s fastest

supercomputers twice per year [2]. Unfortunately, this

test boils down to the LU factorization [7], a compute-

bound operation that may not be representative of the

J. I. Aliaga, M. Barreda, E. S. Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores
Universitat Jaume I, 12.071–Castellón, Spain
E-mails: {aliaga,mvaya,quintana}@icc.uji.es

E. Dufrechou, P. Ezzatti
Instituto de Computación
Universidad de la República
11.300–Montevideo, Uruguay
E-mails: {edufrechou,pezzatti}@fing.edu.uy

performance and power dissipation experienced by many

of the complex applications running in current high per-

formance computing (HPC) sites.

The alternative High Performance Conjugate Gra-

dients (HPCG) benchmark [1,6] has been recently in-

troduced with the specific purpose of exercising com-

putational units and producing data access patterns

that mimic those present in an ample set of important

HPC applications. This attempt to change the reference

benchmark is crucial because such metrics may guide

computer architecture designers, e.g. from AMD, ARM,

IBM, Intel and NVIDIA, to invest in future hardware

features and components with a real impact on the per-

formance and energy efficiency of these applications.

The HPCG benchmark consists of basic numeri-

cal kernels such as the sparse matrix-vector multipli-

cation (SpMV) and sparse triangular solve; basic vec-

tor operations as e.g. vector updates and dot prod-

ucts; and a simple smoother combined with a multigrid

preconditioner. The reference implementation is writ-

ten in C++, with parallelism extracted via MPI and

OpenMP [1]. However, in an era where general-purpose

processors (CPUs) as well as the Intel Xeon Phi acceler-

ator contain dozens of cores, the concurrency level that

is targeted by this legacy implementation may be too

fine-grain for these architectures. Furthermore, the ref-

erence implementation is certainly not portable to het-

erogeneous platforms equipped with graphics process-

ing units (GPUs) comprising thousands of simple arith-

metic processing units (e.g., NVIDIA’s CUDA cores).

In this paper we investigate the performance and en-

ergy efficiency of state-of-the-art multicore CPUs and

many-core accelerators, using optimized multi-threaded

iterative sparse linear system solvers. For this purpose,

we leverage task-parallel and data-parallel versions [3,4]



2 J. I. Aliaga, M. Barreda, E. Dufrechou, P. Ezzatti, E. S. Quintana-Ort́ı

of ILUPACK1 (Incomplete LU PACKage), a CG solver

enhanced with a sophisticated algebraic multilevel fac-

torization preconditioner. Compared with the HPCG

benchmark, these multi-threaded implementations of

ILUPACK are composed of the same sort of numerical

kernels and, therefore, exhibit analogous data access

patterns and arithmetic-to-memory operations ratios.

On the other hand, our task-parallel version of ILU-

PACK is likely better suited to exploit the hardware

parallelism of both general-purpose processors and the

Intel Xeon Phi, while our data-parallel implementation

targets the large volume of CUDA cores in NVIDIA’s

architectures. The main contribution of this work thus

lies in the experimental evaluation of these solvers, from

the point of views of performance and energy efficiency,

which exposes important insights that are summarized

at the end of this paper.

The rest of the paper is structured as follows. In

Section 2 we review the task-parallel and data-parallel

versions of ILUPACK for multi-threaded architectures

based, respectively, on x86-based processors and GPUs.

In Section 3 we describe the experimental setup (servers

and system/application software), and we briefly intro-

duce some relevant architecture-specific details of our

parallel ILUPACK versions. Finally, in Section 4 we

perform the analysis from the perspectives of execution

time, performance (in terms of GFLOPS; i.e., billions of

floating-point operations, or flops, per second), energy-

efficiency (GFLOPS/W) and energy-to-solution (ETS).

We close the paper in Section 5 with some remarks.

2 Multi-threaded Versions of ILUPACK

2.1 Overview

Given a linear system Ax = b, where A ∈ Rn×n is

sparse, b ∈ Rn and x ∈ Rn is the sought-after solution,

ILUPACK integrates an “inverse-based approach” into

the incomplete factorization of A, in order to obtain

an algebraic multilevel preconditioner. In analogy with

the HPCG benchmark, in this paper we only consider

linear systems with symmetric positive definite (s.p.d.)

coefficient matrix A, on which the preconditioned CG

(PCG) solver underlying ILUPACK is applied.

Figure 1 describes the PCG method algorithmically.

The first step of the solver (O0) corresponds to the

computation of the preconditioner M , while the subse-

quent iteration involves a SpMV (O1), the application

of the preconditioner (O5), and several vector opera-

tions (dot products, axpy-like updates, vector norm;

in O2–O4 and O6–O8). We emphasize that the same

1 http://ilupack.tu-bs.de

PCG iteration is the basis of the HPCG benchmark. In

the remainder of the paper, we focus on the paralleliza-

tion of the PCG iteration in general (i.e., the operations

in the loop of Figure 1), and the multi-threaded applica-

tion of ILUPACK’s preconditioner in particular (O5).

For the numerical details, see [5].

2.2 Exploiting task-parallelism in ILUPACK’s PCG

Our task-parallel version of ILUPACK employs the task-

based programming model embedded in the OmpSs2

framework to decompose the solver into tasks (routines

annotated by the user via OpenMP-like directives) as

well as to detect data dependencies between tasks at

execution time (with the help of directive clauses that

specify the directionality and size of the task operands).

With this information, OmpSs implicitly generates a

task graph during the execution, which is utilized by

the CPU threads in order to exploit the task parallelism

implicit to the operation via a dynamic out-of-order but

dependency-aware schedule.

Let us consider the PCG iteration. The variables

that appear in these operations define a partial order

which enforces an almost strict serial execution. Specif-

ically, at the (k + 1)-th iteration,

. . .→ O7→
(k + 1)-th iteration

O1→ O2→ O4→ O5→ O6→ O7→ O1→ . . .

must be computed in that order, but O3 and O8 can be

computed any time once O2 and O4 are respectively

available. Further concurrency can be exposed by di-

viding some of these operations into subtasks of finer

granularity. As we will expose next, this is especially in-

volved for the application of the preconditioner; see [5].

Our multi-threaded version of the preconditioner ex-

tracts the task parallelism implicit to this procedure via

nested dissection [10]. To illustrate the approach, con-

sider a graph-based symmetric reordering, defined by a

permutation matrix P̄ ∈ Rn×n, such that

P̄TAP̄ =

[
A00 0 A02

0 A11 A12

A20 A21 A22

]
. (1)

Computing a partial incomplete Cholesky (IC) factor-

izations of the two leading blocks, A00 and A11, yields

the approximationL00 0 0

0 L11 0

L20L21 I

D00 0 0

0 D11 0

0 0 S22

LT
00 0 LT

20

0 LT
11 L

T
12

0 0 I

+E01 (2)

2 https://pm.bsc.es/ompss



Characterizing the Efficiency of Multicore and Manycore Processors for Sparse Linear Systems 3

A→M O0. Preconditioner computation
Initialize x0, r0, z0, d0, β0, τ0; k := 0
while (τk > τmax) Loop for iterative PCG solver

wk := Adk O1. SpMV
ρk := βk/dTk wk O2. dot product
xk+1 := xk + ρkdk O3. axpy
rk+1 := rk − ρkwk O4. axpy
zk+1 := M−1rk+1 O5. Apply preconditioner
βk+1 := rTk+1zk+1 O6. dot product
dk+1 := zk+1 + (βk+1/βk)dk O7. axpy-like
τk+1 :=‖ rk+1 ‖2 O8. vector 2-norm
k := k + 1

endwhile

Fig. 1 Algorithmic formulation of the preconditioned CG method. Here, τmax is an upper bound on the relative residual for
the computed approximation to the solution.

of P̄TAP̄ , where

S22 = A22 − (L20D00L
T
20)− (L21D11L

T
21) + E2 (3)

is the approximate Schur complement. By recursively

proceeding in the same manner with S22, the IC factor-

ization of P̄TAP̄ is eventually completed.

The block structure in (1) exposes a coarse-grain

concurrency during these computations. Concretely, the

permuted matrix there can be decoupled into two sub-

matrices, so that the IC factorizations of the leading

block of both submatrices can be concurrently obtained:

A22 = A0
22 + A1

22, (4)

with[
A00 A02

A20 A0
22

]
=

[
L00 0
L20 I

][
D00 0

0 S0
22

][
LT

00 L
T
20

0 I

]
+E0,

[
A11 A12

A21 A1
22

]
=

[
L11 0
L21 I

][
D11 0

0 S1
22

][
LT

11 L
T
21

0 I

]
+E1.

(5)

Then, we can also compute in parallel the Schur com-

plements corresponding to both partial approximations

S0
22 = A0

22 −
(
L20D00L

T
20

)
+ E0

2 ;

S1
22 = A1

22 −
(
L21D11L

T
21

)
+ E1

2 .
(6)

However, (3) involves a synchronization before the ad-

dition of these two blocks can be computed

E2 ≈ E0
2 + E1

2 → S22 ≈ S0
22 + S1

22. (7)

To unveil increasing amounts of task parallelism, we

can identify a larger number of independent diagonal

blocks, by applying permutations analogous to P̄ on the

two leading blocks. For example, a reordering and re-

naming of blocks yields a block structure similar to (1),

from which four submatrices can be disassembled:
A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46

0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

 (8)

The factorization of the diagonal blocks in this expres-

sion are done using a multilevel approach as well, yield-

ing a recursive calculation of the preconditioner and its

application during the PCG iteration.

Figure 2 illustrates the dependency tree for the fac-

torization of the diagonal blocks in (8) during the com-

putation of the preconditioner (O0). The edges of the

preconditioner directed acyclic graph (DAG) define the

dependencies between the diagonal blocks (tasks), i.e.,

the order in which these blocks of the matrix have to

be processed. On the other hand, at each iteration of

the PCG, the preconditioner DAG has to be traversed

two times per solve zk+1 := M−1rk+1, once from bot-

tom to top and a second time from top to bottom (with

dependencies/arrows reversed in the DAG), in order to

complete the recursion step in the task-parallel case;

see [5].

The task-parallel version of ILUPACK partitions

the original matrix into a number of decoupled blocks,

and then delivers a partial multilevel IC factorization
during the computation of (5), with some differences

with respect to the sequential procedure [5]. Concretely,

although the recursive definition of the preconditioner is

still valid in the task-parallel case, some recursion steps

are now related to the edges of the corresponding pre-

conditioner DAG. Different preconditioner DAGs thus

involve distinct recursion steps yielding distinct pre-

conditioners, which nonetheless exhibit close numerical

properties to that obtained with the original (sequen-

tial) version of ILUPACK [5].

2.3 Data-Parallel ILUPACK

In [4], we introduced a data-parallel implementation of

ILUPACK that off-loads the application of the multi-

level preconditioner to the GPU, performing this oper-

ation via ad-hoc kernels and the CUDA, CUBLAS and

cuSPARSE libraries [8]. Concretely the residual rk+1 is

transferred to the GPU when the preconditioner is to



4 J. I. Aliaga, M. Barreda, E. Dufrechou, P. Ezzatti, E. S. Quintana-Ort́ı

T0 T1 T2 T3

T5T4

T6

Fig. 2 Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj .

be applied, the application (all levels) proceeds in the

accelerator yielding zk+1 := M−1rk+1, and the residual

zk+1 is retrieved back to the CPU upon completion.

The current version is enhanced to also off-load the

SpMV present in the solver to the GPU. This requires

that, at the beginning of each PCG iteration, dk is

transferred from the CPU to the GPU, the SpMV wk :=

Adk is computed there, and the result wk is then recov-

ered to the CPU. Matrix A is transferred to the GPU

memory before the PCG iteration commences and re-

sides there, together with the preconditioner data, for

the duration of the solve. The matrix is stored in CSR

format [10] and the SpMV is performed via the im-

plementation of this kernel in cuSPARSE. In general,

the vector operations contribute little to the computa-

tional cost of the solver. Therefore, these operations are

performed in the CPU.

To close this brief review, we emphasize that the

data-parallel version of ILUPACK proceeds exactly in

the same manner as the sequential implementation and,

therefore, preserves the semantics of a serial execution.

This implies that both codes roughly require the same

number of iterations to converge and perform the same

number of arithmetic operations (with any differences

due to rounding errors).

3 Experimental Setup and Implementation

3.1 Hardware and software configurations

All the experiments employed ieee 754 real double-

precision (DP) arithmetic on the following four plat-

forms:

– sandy: A server equipped with two hexacore Intel

Xeon E5-2620 (“Sandy Bridge”) processors (total

of 12 cores) running at 2.0 GHz with 32 Gbytes of

DDR3 RAM. The compiler is gcc 4.4.7.

– haswell: A system with two hexacore Intel Xeon

E5-2603v3 (“Haswell”) processors (total of 12 cores)

at 1.6 GHz with 32 Gbytes of DDR4 RAM. The

compiler is gcc 4.4.7.

– xeon phi: A board with an Intel Xeon Phi 5110P

co-processor. (The tests on this board were ran in

native mode and, therefore, the specifications of the

server are irrelevant.) The accelerator comprises 60

x86 cores running at 1,053 MHz and 8 Gbytes of

GDDR5 RAM. The Intel compiler is icc 13.1.3.

– kepler: An NVIDIA K40 board (“Kepler” GK110B

GPU with 2,880 cores) with 12 Gbytes of GDDR5

RAM, connected via a PCI-e Gen3 slot to a server

equipped with an Intel i7-4770 processor (4 cores at

3.40 GHz) and 16 Gbytes of DDR3 RAM. The com-

piler for this platform is gcc 4.9.2, and the codes are

linked to CUDA/cuSPARSE 6.5.

Other software included ILUPACK (2.4), the Mercurium

C/C++ compiler/Nanox (releases 1.99.7/0.9a for sandy,

haswell and xeon phi) with support for OmpSs, and

METIS (5.0.2) for the graph reorderings.

Power/energy was measured via RAPL in sandy

and haswell, reporting the aggregated dissipation from

the packages (sockets) and the DRAM chips. For xeon

phi we leveraged routine mic get inst power readings

from the libmicmgmt library to obtain the power of the

accelerator. In kepler, we use RAPL to measure the

consumption from the server’s package and DRAM, and

NVML library to obtain the dissipation from the GPU.

Matrix Size #Nonzeros Row density
(n) (nz) (nz/n)

A171 5,000,211 19,913,121 3.98
A252 16,003,008 63,821,520 3.98
A318 32,157,432 128,326,356 3.98

Table 1 Laplace matrices employed in the evaluation.

For the analysis, we employed a s.p.d. linear sys-

tem arising from the finite difference discretization of

a 3D Laplace problem, with three instances of different

size; see Table 1. In the experiments, all entries of the

right-hand side vector b were initialized to 1, and the

PCG was started with the initial guess x0 ≡ 0. For the

tests, the parameters that control the fill-in and con-

vergence of the iterative process in ILUPACK were set

as droptool = 1.0E-2, condest = 5, elbow = 10, and

restol = 1.0E-6.

We use GFLOPS and GFLOPS/W to assess, re-

spectively, the performance and energy consumption



Characterizing the Efficiency of Multicore and Manycore Processors for Sparse Linear Systems 5

of the parallel codes/platforms. ILUPACK is in part a

memory-bound computation. Therefore, an alternative

performance metric could have been based on the at-

tained memory transfer rate (Gbytes/s). Nevertheless,

given that the data matrices are all off-chip, and ILU-

PACK performs a number of flops that is proportional

to the volume of memory accesses, we prefer to stand

with the more GFLOPS metric. This measure has the

advantage of being more traditional among the HPC

community.

3.2 Optimizing performance in the OmpSs version

The task-parallel version of ILUPACK based on OmpSs

applies two architecture-aware optimization strategies:

– For multisocket servers, (e.g. sandy and haswell,)

we accommodate a NUMA-aware execution via the

NANOS3 environment variable NX ARGS with the ar-

gument --schedule=socket combined with a care-

ful modification of the ILUPACK code. Concretely,

our code records in which socket each task was exe-

cuted during the initial calculation of the precondi-

tioner. This information is subsequently leveraged,

during all iterations of the PCG solve, to enforce

that tasks which operate on the same data that was

generated/accessed during the preconditioner cal-

culation are mapped to the same socket where they

were originally executed.

– A critical aspect in the Intel Xeon Phi is how to bind

the OmpSs threads to the hardware threads/cores in

order to distribute the workload. In our executions,

this mapping is controlled using the NANOS run-

time environment variable NX ARGS, passing the ap-

propriate values via arguments --binding stride,

--binding start and --smp workers. In our ex-

periments we evaluate several configurations of these

parameters to balance the workload distribution and

achieve an optimal saturation of the hardware cores.

3.3 Saving energy in the OmpSs version

The OmpSs runtime allows the user to trade off per-

formance for power (and, hopefully, energy) consump-

tion by controlling the behaviour of idle OmpSs threads,

setting it to a range of modes that vary between pure

blocking (idle-wait) and polling (busy-wait). To exe-

cute our application in blocking mode, we set the argu-

ments --enable-block and --spins=1 in the NX ARGS

NANOS environment variable. The first parameter en-

ables the blocking mode while the second one indicates

3 http://pm.bsc.es/nanox

the number of spins before an idle thread is blocked.

For the polling mode, we simply do not include the op-

tion --enable-block; we set --enable-yield, which

forces threads to yield on an idle loop and a conditional

wait loop; and we set --yields=1000000 to specify the

number of yields before blocking an idle thread.

3.4 Saving energy in the data-parallel version

On heterogeneous platforms, consisting of a CPU and

a GPU, our data-parallel version off-loads a significant

part of the computations to the graphics accelerator

rendering the CPU idle for a significant fraction of the

execution. In this scenario, a potential source of energy

savings is to operate in the CUDA blocking synchro-

nization mode, which allows that the operating system

puts the CPU to sleep (i.e., to promote it to a deep

C-state) when idle.

4 Experimental Evaluation

4.1 Tuning the parallel execution

There exists a considerable variety of factors that af-

fect the efficiency of a parallel application on a target

hardware. Among these, we next analyze the following

configuration parameters:

– Degree of software concurrency, i.e., the number of

threads that execute the application.

– Operation “behaviour” of idle threads (CPU power

states or C-states). A thread without work can re-

main in an active state, polling for a new job to ex-

ecute. Alternatively, it can be suspended (blocked)

and awakened when a new job is assigned to it.

The polling mode favors performance at the ex-

pense of higher power consumption in some plat-

forms. The blocking mode, on the other hand, can

produce lower power consumption, by allowing the

operating system to promote the suspended core

into a power-saving C-state, but may negatively im-

pact the execution time because of the time it takes

to reset the core into the active C0 state. The effect

of these two modes on energy efficiency is uncertain,

as energy is the product of time and power.

– Operation frequency of active threads (CPU perfor-

mance states or P-states). Active threads can oper-

ate on a range of frequency/voltage pairs (P-states)

that, for the Intel platforms evaluated in this work,

can only be set on a per socket basis (i.e., for all

cores of the same socket). These modes are con-

trolled by the operating system, though the user

can provide some general guidelines via the Linux



6 J. I. Aliaga, M. Barreda, E. Dufrechou, P. Ezzatti, E. S. Quintana-Ort́ı

governor modes. In general, the P-states provide a

means to trade off performance for power dissipa-

tion for active cores/sockets.

– Binding of threads to hardware cores. The degree of

software concurrency translates into the exploita-

tion of a certain level of hardware parallelism de-

pending on the mapping of the software threads to

the hardware (physical) cores. For the execution of

numerical codes on general-purpose x86 CPUs, the

standard approach maps one thread per core. For

specialized hardware such as the Intel Xeon Phi (as

well as the IBM Power A2), better results may be

obtained by using 2 or 4 software threads per core.

The initial experiments in the remainder of this sub-

section aim to tune the previous configuration param-

eters for the execution of the task-parallel version of

ILUPACK on sandy, haswell and xeon phi. For this

purpose, we select the largest dataset that fits into the

memory of each platform (A318 for both sandy and

haswell, and A171 on xeon phi), and evaluate the

GFLOPS and GFLOPS/W metrics as the number of

threads grows. A direct comparison between the xeon

phi and the two general-purpose x86 platforms cannot

be done at this point. For the task-parallel version of

ILUPACK, the degree of software concurrency deter-

mines the number of tasks that should be present in the

bottom level of the dependency tree (see Section 2.2),

and the actual number of flops that is required for the

solution of each problem case.

Figure 3 reports the performance and energy effi-

ciency attained with the task-parallel version of ILU-

PACK, on sandy and haswell, when OmpSs is in-

structed to operate in either the polling and blocking

modes (see subsection 3.3). This first experiment re-

veals that the impact of these modes on both metrics is

minor when up to 8 threads are employed. However,

for 12 threads, we can observe quite a different be-

haviour depending on the target platform. Concretely,

for sandy, it is more convenient to rely on the blocking

mode, especially from the point of view of GFLOPS/W

while, for haswell, the polling mode yields superior

performance and energy efficiency over its blocking coun-

terpart. According to these results, in the following ex-

periments we select the blocking and polling modes for

sandy and haswell, respectively.

Figure 4 evaluates the impact of three Linux gover-

nors available in sandy and haswell: performance,

ondemand and userspace, with the latter set so that

the sockets operate in either the maximum or minimum

frequencies (fmax and fmin, respectively) of the corre-

sponding platforms (fmax=2.0 GHz and fmin=1.2 GHz

for sandy; and fmax=1.6 GHz and fmin=1.2 GHz for

haswell). The four plots in the figure reveal the small

impact of this configuration parameter on the perfor-

mance and energy efficiency of the task-parallel version

of ILUPACK on both servers, which is only visible when

12 threads/cores are employed in the execution. Given

these results, we select the userspace governor, with

the P0 state (i.e., maximum frequency), in the remain-

ing experiments with these two platforms.

The last experiment with the configuration param-

eters, in Figure 5, exposes the effect of populating each

hardware core of xeon phi with 1, 2, 4 (software) threads

(Binding=4,2,1, respectively). The best choice is clearly

the first option which, given a fixed number of threads,

maximizes the number of hardware cores employed in

the experiment. This will be the configuration adopted

for the following experiments with this platform.

4.2 Characterization of the platforms

Table 2 evaluates the task-parallel version of ILUPACK

running on sandy, haswell or xeon phi, compared

with the data-parallel version of the solver executed on

kepler, using four efficiency metrics: execution time,

GFLOPS, (total) energy-to-solution, and GFLOPS/W.

For the Intel-based platforms, we use 12 threads in both

sandy and haswell, and 64 for xeon phi.

A direct comparison of the platforms, using the same

problem case is difficult: First, due to the small mem-

ory of the xeon phi, the largest problem that could be

solved in this platform (A171) seems too small to ex-

ploit the large amount of hardware parallelism of this

accelerator. In addition, increasing the problem dimen-

sion shows different trends depending on the platform,

with a decline in the GFLOPS and GFLOPS/W rates

for sandy and haswell, but a raise for kepler. Fi-

nally, even if the problem case is the same, the solvers

do not necessarily perform the same amount of oper-

ations to converge as the exact number of flops de-

pends, e.g., of the level of task-parallelism tackled by

each solver/platform (12 tasks in the bottom level of

the DAG for sandy and haswell, 64 for xeon phi,

and a single task for kepler) as well as variations due

to rounding errors, which affect the convergence rate.

As an alternative, let us perform a comparison based

on the largest problem case that can be tackled on

each platform: A318 for sandy and haswell, A171

for xeon phi and A252 for kepler. Consider first the

two platforms equipped with general-purpose CPUs. As

the two system comprise 12 cores, in principle we could

expect better performance from haswell because the

floating-point units (FPUs) available in this recent ar-

chitecture can produce up to 16 DP flops/cycle com-

pared with the 8 DP flops/cycle of sandy. However,

the irregular data access patterns present in ILUPACK



Characterizing the Efficiency of Multicore and Manycore Processors for Sparse Linear Systems 7

 0

 0.5

 1

 1.5

 2

 2.5

1 4 8 12

G
FL

O
PS

Number of threads

Behaviour of idle threads: Polling vs blocking

SANDY-polling
SANDY-blocking

HASWELL-polling
HASWELL-blocking

 0

 0.005

 0.01

 0.015

 0.02

1 4 8 12

G
FL

O
PS

/W

Number of threads

Behaviour of idle threads: Polling vs blocking

SANDY-polling
SANDY-blocking

HASWELL-polling
HASWELL-blocking

Fig. 3 GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of ILUPACK on sandy and haswell,
using the blocking and polling modes for benchmark A318.

 0

 0.5

 1

 1.5

 2

 2.5

1 4 8 12

G
FL

O
PS

Number of threads

Frequency of active threads: Linux governor modes

Userspace fmax
Userspace fmin

Performance
Ondemand

 0

 0.005

 0.01

 0.015

 0.02

1 4 8 12

G
FL

O
PS

/W

Number of threads

Frequency of active threads: Linux governor modes

Userspace fmax
Userspace fmin

Performance
Ondemand

 0

 0.5

 1

 1.5

 2

 2.5

1 4 8 12

G
FL

O
PS

Number of threads

Frequency of active threads: Linux governor modes

Userspace fmax
Userspace fmin

Performance
Ondemand

 0

 0.005

 0.01

 0.015

 0.02

1 4 8 12

G
FL

O
PS

/W

Number of threads

Frequency of active threads: Linux governor modes

Userspace fmax
Userspace fmin

Performance
Ondemand

Fig. 4 GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of ILUPACK on sandy (top) and
haswell (bottom), using different Linux governors for benchmark A318.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 4 8 16 32 64

G
FL

O
PS

Number of threads

Binding of threads to hardware cores

Binding=1
Binding=2
Binding=4

 0

 0.002

 0.004

 0.006

 0.008

 0.01

1 4 8 16 32 64

G
FL

O
PS

/W

Number of threads

Binding of threads to hardware cores

Binding=1
Binding=2
Binding=4

Fig. 5 GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of ILUPACK on xeon phi, using
different binding options for benchmark A171.

turns the exploitation of the wide vector units (SIMD)

into a difficult task which, combined with the higher

maximum frequency of sandy, explains why this plat-

form outperforms haswell. Interestingly, the gap be-

tween the GFLOPS rates of these two platforms, a fac-

tor of about 2.21/1.66=1.30, is captured to high accu-

racy by the difference between their maximum frequen-

cies, 2.0/1.6=1.25. This variation is not reflected in the

ETS and GFLOPS/W metrics, where haswell is only

slightly behind sandy. These particular trends make



8 J. I. Aliaga, M. Barreda, E. Dufrechou, P. Ezzatti, E. S. Quintana-Ort́ı

Platform Matrix Time (s) GFLOPS Energy (J) GFLOPS/W

sandy A171 21.12 2.95 2,827.89 0.0221
A252 101.42 2.74 13,843.17 0.0201
A318 322.06 2.21 42,827.13 0.0166

haswell A171 31.89 1.95 3,277.67 0.0193
A252 154.04 1.80 15,933.05 0.0174
A318 421.13 1.69 43,419.49 0.0164

xeon phi A171 58.69 1.24 8,032.32 0.0090
kepler A171 23.09 2.49 2,909.34 0.0198

A252 83.82 3.16 11,449.81 0.0231

Table 2 Characterization of the four platforms obtained with the task-parallel and data-parallel versions of ILUPACK.

us believe that haswell could match sandy’s per-

formance and outperform its energy efficiency if both

platform were operated with the same maximum fre-

quency. Let us include kepler and benchmark A252

in the comparison now. As the problems being solved

are different, we will perform the comparison in terms

of GFLOPS and GFLOPS/W, and obviate time and

ETS. In spite of the large number of FPUs in kepler,

we see that the difference in favor of this data-parallel

architecture is moderate, with a factor of 1.43 and 1.86

over sandy and haswell, respectively, in the GFLOPS

rate; and roughly 1.40 over any of the two systems in

the GFLOPS/W metric. Finally, we note that xeon

phi lags behind any of the other three platforms in both

GFLOPS and GFLOPS/W.

5 Concluding Remarks

We have conducted an analysis of recent multicore tech-

nology from Intel, an state-of-the-art many-core GPU

from NVIDIA, and the Intel Xeon Phi hardware accel-

erator. This study is relevant because it relies on ILU-

PACK, a package that features numerical kernels and

data access patterns analogous to those of HPCG; and

moreover we employ efficient implementations of this

iterative solver for sparse linear systems that exploit

either task-parallelism, when the target is an x86-based

multicore CPU or accelerator, or data-parallelism, when

the target is a GPU.

One key advantage of x86-based architectures over

GPUs is the presence of well-known parallel program-

ming interfaces, with standard tools such as OpenMP

and MPI more amenable to programmers. However, our

experience suggests that, for this particular class of ap-

plications, the difficulties of the data-parallel program-

ming model are partially overcome by the existence of

data-parallel numerical libraries. Furthermore, the con-

currency intrinsic in some applications may be easier to

extract at a data-parallel level, as we demonstrate for

ILUPACK, favoring the implementation on a GPU. On

the other hand, exploiting the concurrency at a task-

level, while doable, requires a significant rewrite of ILU-

PACK to maintain semantics close to those of the se-

quential version, but nonetheless results in slightly dif-

ferent (sometimes worse) convergence properties.

Finally, many-core accelerators such as the Intel Xeon

Phi and GPUs are generally preferred for their high per-

formance and appealing energy efficiency. However, re-

cent general-purpose processors, such as Intel’s Sandy-

Bridge and Haswell micro-architectures, have evolved

rapidly to integrate wider SIMD (vector) units and ag-

gressive energy saving mechanisms, blurring part of the

energy gap in favor of accelerators.

Acknowledgements This work was supported by the CI-
CYT project TIN2011-23283 of MINECO and FEDER, and
the EU Project FP7 318793 “EXA2GREEN”.

References

1. HPCG - high performance Conjugate Gradients (2015).
https://software.sandia.gov/hpcg

2. The TOP500 list (2015). http://www.top500.org
3. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhöfer, M.,

Quintana-Ort́ı, E.S.: Leveraging task-parallelism with
OmpSs in ILUPACK’s preconditioned CG method. In:
26th Int. Symp. on Computer Architecture and High Per-
formance Computing (SBAC-PAD), pp. 262–269 (2014)

4. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P.,
Quintana-Ort́ı, E.S.: Leveraging data-parallelism in ILU-
PACK using graphics processors. In: 13th Int. Symp.
Parallel Distr. Comp. (ISPDC), pp. 119–126 (2014)

5. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı,
E.S.: Exploiting thread-level parallelism in the iterative
solution of sparse linear systems. Parallel Computing
37(3), 183–202 (2011)

6. Dongarra, J., Heroux, M.A.: Toward a new metric for
ranking high performance computing systems. Sandia
Report SAND2013-4744, Sandia National Lab. (2013)

7. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd
edn. The Johns Hopkins Univ. Press, Baltimore (1996)

8. NVIDIA Corporation: cuSPARSE library. Version 7.0
(2015). http://docs.nvidia.com/cuda/cusparse/

9. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL
- a portable implementation of the high-performance
Linpack benchmark for distributed-memory computers
(2008). http://www.netlib.org/benchmark/hpl

10. Saad, Y.: Iterative Methods for Sparse Linear Systems.
SIAM (2003)


