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Abstract The Intel Haswell-EP processor generation

introduces several major advancements of power con-

trol and energy-efficiency features. For computation-

ally intense applications using advanced vector exten-

sion (AVX) instructions, the processor cannot continu-

ously operate at full speed but instead reduces its fre-

quency below the nominal frequency to maintain op-

erations within thermal design power (TDP) limita-

tions. Moreover, the running average power limitation

(RAPL) mechanism to enforce the TDP limitation has

changed from a modeling to a measurement approach.

The combination of these two novelties have significant

implications. Through measurements on an Intel Sandy

Bridge-EP cluster, we show that previous generations

have sustained homogeneous performance across mul-

tiple CPUs and compensated for hardware manufac-
turing variability through varying power consumption.

In contrast, our measurements on a Petaflop Haswell

system show that this generation exhibits rather homo-

geneous power consumption limited by the TDP and

capped by the improved RAPL while providing inhomo-

geneous performance under full load. Since all of these

controls are transparent to the user, this behavior is

likely to complicate performance analysis tasks and im-

pact tightly coupled parallel applications.
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1 Introduction and Motivation

Intel processors code named “Haswell” introduce sig-

nificant architectural changes compared to the previous

Intel processor generations. This includes a distinct fre-

quency used for advanced vector extension (AVX) in-

structions, P-state transition windows, and a separate

uncore frequency [7]. One implication of the new mech-

anisms is the shift from focusing on a constant perfor-

mance across multiple processors to a common power

envelope, which is represented by the defined thermal

design power (TDP) [8]. Previous generations usually

exhibited a variable power consumption below the TDP

when operating at nominal frequency and therefore ex-

hibited a uniform performance across multiple proces-

sors or a whole cluster. It was only with turbo enabled

that the differences in efficiency had an effect on the

performance distribution due to the TDP limitations.

The homogeneity in performance has lead to significant

differences between processors regarding power dissi-

pation and energy consumption for a given workload

while guaranteeing a fairly homogeneous performance

pattern. These efficiency differences between processors

of the same model usually stem from hardware manu-

facturing variability [3,2].

Under the new policy, the processor is limited by its

power envelope even at nominal frequency and thus has

to scale its computational performance. This concept is

also known as AVX Turbo Boost [8]. For workloads that

utilize AVX instructions, only a defined frequency be-

low the nominal frequency is guaranteed (the AVX fre-

quency), while AVX Turbo Boost attempts to achieve

higher frequencies if the TDP permits [9]. However, in

contrast to traditional turbo, this behavior is trans-

parent to the user even for requested fixed frequencies

above the AVX frequency. This is a dramatic shift as
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it moves Intel processors from providing homogeneous

performance in a cluster towards much more hetero-

geneous performance characteristics at scale. However,

having predictable and similar performance across a set

of CPUs of the same processor model is vital to avoiding

artificial imbalances between tightly coupled processes

of a parallel application and to ensure reproducibility

of performance experiments.

In this paper, we survey the differences in perfor-

mance of the new Haswell-EP processor family in a

large-scale High Performance Computing (HPC) sys-

tem described in Section 3, and present our findings in

Section 4. In Section 5, we discuss potential effects on

applications and performance tuning efforts as well as

possible strategies to exploit this heterogeneity.

2 Related Work

We discuss power and performance variations of two

generations of Intel processors in this paper. Wilde et

al. describe node-level power variations for more than

260 nodes equipped with AMD Magny Cours executing

mprime [13] and Intel Sandy Bridge processors execut-

ing FIRESTARTER [6] in [15]. They propose to change

the batch systems partition to increase the utilization

of less power consuming nodes and decrease the utiliza-

tion of inefficient ones. Scogland et al. describe power

consumption variations over time and between nodes

for several systems based on different processors (In-

tel Nehalem-EP, Nehalem-EX, Sandy Bridge-EP, and

AMD FirePro GPUs) with a focus on improving large-

scale power measurement methodologies [14].

However, processor performance variations occur due

to power and thermal constraints for certain processors

that can be the result of insufficient cooling, artificially

low power limits, or hardware over-provisioning. Start-

ing with Intel Sandy Bridge processors, a power limit

below the TDP can be enforced via the running aver-

age power limitation (RAPL) [11]. To estimate the cur-

rent power consumption, RAPL uses an energy model

on Sandy Bridge processors [4] and measurements on

Haswell processors [7] to throttle the performance of the

processor to achieve the given power limit. The qual-

ity of the RAPL power enforcement in terms of sta-

bility, accuracy, settling time and maximum overshoot

has been analyzed by Zhang and Hoffman for Sandy

Bridge processors [16]. Rountree et al. show how an en-

forced power limit turns power variations into perfor-

mance variations for Intel Sandy Bridge processors [12].

Pedretti et al. investigate in [10] the influence of such

power limits on power consumption, performance, and

energy efficiency of four parallel benchmarks and com-

pare it to the usage of processor P-States. They de-

scribe that an enforced common power cap regulation

can limit scalability due to performance variability.

The major changes of the Intel Haswell processor

generation with respect to on-chip energy management

have been summarized previously [7]. It was predicted

that these changes significantly influence power con-

sumption and performance variations, which is investi-

gated in detail in the following sections.

3 Test Systems and Measurement Methodology

To demonstrate the power and performance variations

at scale, we launch an instance of the LINPACK bench-

mark on all sockets or nodes, as described below. All

measurements were conducted on the Bullx DLC B710/

B720 [1] based system Taurus installed at TU Dres-

den, for which details are provided in Table 1. Both the

Intel Xeon E5-2690 (Sandy Bridge-EP) and the Intel

Xeon E5-2680 v3 (Haswell-EP) partitions contain di-

rectly liquid cooled (DLC) dual-socket nodes. Due to

time constraints, not all nodes have been taken into

account but the selection of nodes has been unbiased

and we believe that the number of nodes presented in

Section 4 is sufficient for our analyses.

We use the LINPACK shipped with the Intel MKL

and perform ten repetitions of the benchmark. We take

the median performance of these ten runs to be able

to rule out possible outliers due to temporary effects.

Similar to the LINPACK performance, we use the mea-

surements of the average power consumption of the run

with the median performance. We consider the three

metrics LINPACK performance, package power as re-

ported by RAPL, and per-node power consumption.

The LINPACK performance is measured for each

processor individually with threads pinned to the re-

spective sockets. Two instances per node are launched

in parallel to ensure the nodes are under full load, e.g.,

Table 1 Test system description

Processor arch. Sandy Bridge-EP Haswell-EP

Intel Xeon E5-2690 E5-2680 v3

Sockets per node 2 2

Cores per CPU 8 12

Nominal freq. 2.9 GHz 2.5 GHz

Turbo freq. up to 3.8 GHz up to 3.3 GHz

AVX base freq. n/a 2.1 GHz

TDP 135 W 120 W

Linux Kernel 2.6.32-431.23.3.el6

DRAM 32 GB
DDR3-1600

64 GB
DDR4-2133

Number of nodes 228 1328



The Shift from Processor Power Consumption to Performance Variations: Fundamental Implications at Scale 3

to rule out potential effects from the cooling system

and to prevent changes in package C-states, which may

influence the performance of other packages by delay-

ing cache coherence traffic responses. The configuration

of each of the LINPACK instances is chosen to utilize

nearly half of the available 64 GB of main memory on

the node and to ensure sufficient LINPACK runtime.

Timestamped RAPL measurements are taken once a

second to detect and handle overflows.

In addition to the RAPL power, we measure the

node power consumption using the HDEEM infrastruc-

ture [5]. All Haswell nodes are calibrated to facilitate

node-level power measurements with 2 % accuracy. The

node power measurements using HDEEM are performed

with one LINPACK instance per node to account for

the spatial granularity of the node-level measurements.

While the LINPACK benchmark has been critized

for not accurately representing real-world HPC work-

loads, we argue that it is the best choice to easily rank

socket performance for compute-bound problems. The

effect of the performance variations presented in this

paper are most notable for this class of problems. We

only consider the core phase of the LINPACK for all

power measurements on the Haswell nodes. Due to soft-

ware restrictions, the exact timestamps of the LIN-

PACK core phase are not available on the Sandy Bridge

nodes. We therefore use the inner 50 % of the whole

LINPACK run (starting at 25% of the runtime) to en-

sure that only samples from the core phase are used.

The Linux userspace governor is used to repeat the ex-

periments at different core frequencies.

4 Performance and Power Characteristics

The results of our measurements presented in Figure 1a

indicate that the Sandy Bridge processors show a ho-

mogeneous distribution of the performance across all

processors under test with the mean performance at

148 GFlop/s and standard deviation σ = 0.6 GFlops/s.

In contrast to that, the performance of the Haswell

(a) Sandy Bridge LINPACK performance (b) Haswell LINPACK performance

(c) Sandy Bridge avg. power consumption (d) Haswell avg. power consumption

Fig. 1 Distribution of LINPACK performance and average RAPL package power consumption during the core phase using
412 Sandy Bridge and 1144 Haswell sockets at nominal frequency (fSB = 2.9 GHz, fHSW = 2.5 GHz).
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processors ranges from 355 to 400 GFlop/s, a varia-

tion of more than 10 % between the slowest and fastest

processor (see Figure 1b). The mean performance is

380 GFlop/s with σ = 8 GFlop/s, constituting a much

larger spread compared to Sandy Bridge.

With regards to the average power consumption of

the core phase measured through RAPL, the picture is

inverted. On the one hand, the average power consump-

tion of the Sandy Bridge processors spreads by about

±5 % around the mean of 129 W (σ = 2.35 W). On the

other hand, the power reported by the Haswell proces-

sor is highly uniform across all CPUs tested with the

average at 119.6 W (σ = 0.398 W).

The uniformity of RAPL measurements on Haswell

are as expected considering that the same measure-

ments are used for power capping. It should be noted

that RAPL has only been studied for systematic er-

rors but the absolute accuracy has not been evaluated

so far [4,7]. Inaccuracies in the calibration of the RAPL

measurements could contribute to the variations in com-

putational performance across the set of processors.

4.1 Detailed Performance Analysis

For the Sandy Bridge processors under test, the dis-

tribution of LINPACK performance was found to be

narrow across all measured frequencies, ranging from

2.9 GHz down to 2.2 GHz (see Figure 1a). Only with

turbo mode enabled, there is a notable spread in per-

formance around the mean of 162.39 (σ = 1.64 GFlop/s,

not depicted).

In contrast to that, the performance distribution

pattern of the Haswell processors changes quite signifi-

cantly at reduced clock speeds as depicted in Figure 2.

While the distribution remains the same for turbo mode

down to 2.3 GHz, the upper half is cut off starting at

2.2 GHz. At 2.1 GHz and below, the performance dis-

tribution is narrow.

Figure 3 depicts the mean performance over all nodes

for different frequencies measured on both processor

generations. As expected, the performance decreases for

lower frequencies on Sandy Bridge processors. However,

on Haswell processors the average LINPACK perfor-

mance remains stable from turbo mode down to 2.2 GHz,

(a) Turbo (b) 2.4 GHz

(c) 2.2 GHz (d) 2.1 GHz

Fig. 2 Per-socket LINPACK performance distribution of 1144 Haswell sockets at different frequencies. Note the diverting
y-axis scale in plot (d). At 2.4,GHz and 2.3 GHz, a similar distribution has been observed as for 2.5 GHz.
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(a) Sandy Bridge (b) Haswell

Fig. 3 Absolute overall mean LINPACK performance per socket for different frequencies.

with only a minor drop at 2.1 GHz (see Figure 3b). This

behavior can be explained with the new AVX frequency,

which is the minimum guaranteed frequency that can

be achieved in the presence of AVX instructions under

heavy load. This concept has been introduced to en-

sure that the processors stay within the specified TDP.

The AVX frequency of our Haswell-EP model is 2.1 GHz

(see Table 1), which is in line with our experimental re-

sults.

Figure 4 shows the correlation between the aver-

age RAPL package power for the core phase and the

achieved LINPACK performance on Sandy Bridge pro-

cessors. The graph reflects the findings described above,

the horizontal lines represent the stable performance

and varying power dissipation across the set of pro-

cessors under test. The distribution is highly regular

Fig. 4 Correlation between mean RAPL package power in
the core phase and LINPACK performance for different fre-
quencies of the Sandy Bridge processors. The TDP of 135 W
is marked as dashed blue line.

along the power axis for all non-turbo frequencies. If

turbo is enabled, a rectangular shape develops with

all processors exceeding the specified TDP according

to RAPL. Most of the processors only slightly exceed

the TDP limit and vary by about ten GFlop/s with

similar power consumption (vertical line). It appears,

that the power manager forces a minimum performance

(frequency slightly above nominal, horizontal line) for

turbo mode regardless of TDP limitations, while en-

abling a higher performance if the TDP allows it. It

should be noted that some processor even exceed the

TDP at nominal frequency.

For Haswell, the correlation between average pack-

age power and LINPACK performance is presented in

Figure 5. Here, the clusters are vertical, reflecting a

constant power dissipation with varying performance

across the set of processors under test. At 2.1 GHz,

again a rectangular shape develops, with some proces-

sors requiring less power to sustain constant perfor-

mance. These are the processors that exhibit a high

performance at higher frequencies and thus are able to

reduce their power consumption to match the 2.1 GHz.

However, a significant amount of processors are still

running at full TDP with their performance below the

faster processors. In contrast to Sandy Bridge, the TDP

is never exceeded in such a long-term scenario.

Some performance outliers can be seen in the plots,

e.g., at 340 GFlop/s in Figure 5a, which are likely to

be caused by cooling problems as the respective nodes

reported high temperature readouts after the runs with

some even close to the critical limit. While these varia-

tions are significant, they should not be considered part

of the performance variations discussed in this paper.
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(a) Turbo (b) 2.2 GHz (c) 2.1 GHz

Fig. 5 Correlation between mean RAPL package power in the core phase and LINPACK performance for different frequencies
of the Haswell processors. The TDP of 120 W is marked as dashed blue line. Some nodes showed thermal problems, which
caused the significant outliers.

4.2 Node Power Measurements

Figure 6 shows the distribution of the average power

consumption of the used Sandy Bridge and Haswell

nodes while running a full-node LINPACK benchmark

at nominal frequency. In contrast to the performance

characteristics on Sandy Bridge processors, the spread

of the power consumption across all nodes is far more

significant. Thus, the performance is rather homoge-

neous at the expense of substantial differences in power

consumption due to hardware manufacturing variabil-
ity, as described in Section 1.

On the Sandy Bridge system, the node power con-

sumption shows a wider spread with only 68 % in the

range of ±2 % around the mean of 201 W (σ = 5.1 W).

This aligns well with the observations presented in Fig-

ure 1c. For the Haswell nodes, the distribution shows

a smaller spread with about 92 % of the nodes in the

range of ±2 % around the mean of 342.9 W (σ = 4.2 W).

However, the spread is still more significant then the

RAPL measurements presented in Figure 1d, poten-

tially due to the 2 % accuracy of HDEEM.

Given that for both processor generations the node

measurements include two sockets as well as memory,

network, and local storage, a quantitative comparison

with the per-socket RAPL measurements presented in

Figure 1 cannot be drawn due to the lack of reliable

fine-grained external measurements. Nevertheless, the

node-power measurements reflect the shift to a uniform

power distribution of the Haswell processors.

4.3 CPU Temperature Measurements

To investigate the impact of the temperature of the

Haswell processors on the LINPACK performance, we

correlate the temperature of both CPUs in a node after

ten runs with the median performance as depicted in

Figure 7. The scatter plot shows no strong correlation

between the two variables. We assume that the signifi-

cant difference in temperature between the coolest and

hottest CPU is caused by the cooling order on the blade.

However, this aspect has not been analyzed in more de-

tail since the temperature does not significantly impact

the performance, except for the outliers described in

Section 4.1.

5 Impact of Performance Variations at Scale

While the performance variations detailed above do –

to a large extent – not affect codes that exhibit low

scalability and thus do not scale across many nodes,

these variations can have an impact on massively scal-

able codes that make use of several thousands of pro-

cessor cores in parallel. For tightly coupled codes, a

10 % difference in performance between the worst and

the best performing processor can mean that a signifi-

cant amount of CPU cycles is spent on synchronization

primitives. While in the past, these losses were mainly

caused by software-induced imbalances and were pri-

marily a characteristic of the computational model and

its implementation, the hardware can now induce sig-



The Shift from Processor Power Consumption to Performance Variations: Fundamental Implications at Scale 7

(a) Sandy Bridge (b) Haswell

Fig. 6 Per-node average power distribution of 151 Sandy Bridge and 270 Haswell dual-socket nodes at nominal frequency for
the core phase of the LINPACK run measured with the HDEEM infrastructure.

nificant imbalances itself. This constitutes an important

shift for application developers: even perfectly balanced

models may now run imbalanced, losing CPU cycles to

hardware insufficiencies that are potentially unknown

to and uncontrollable for the user.

The effects of performance variations on performance

analysis can be tremendous. With previous processor

generations, single runs were sufficient to determine im-

balances in the code and to find hot spots that need

optimization. The new performance variations require

additional information to distinguish between software-

and hardware-induced imbalances and performance vari-

ations. This either requires incorporating additional in-

formation on the hardware by default (e.g., cycles con-

sumed, actual frequency) or performing multiple runs

to create a statistical performance model. Another solu-

tion would be the allocation of a fixed set of processors

during the optimization process or to ensure the same

configuration for every run, both of which can be either

cost-ineffective or time-consuming due to the way HPC

resources are allocated in production environments.

In order to estimate the effect of performance tun-

ing actions, especially on a system-wide scale, the same

holds true as with performance analysis: depending on

the type of optimization employed, the effects might

not immediately be visible but may be overshadowed

by hardware-induced imbalances. The same limitations

and mitigation strategies apply as for the performance

analysis scenario described above. In both cases it is

clear that execution time alone might not be a suffi-

cient metric anymore since additional influence factors

are added that are not under the control of the appli-

cation developer or the performance analyst.

Several measures can be employed to mitigate the

effects of the performance variations. During machine

setup, the performance characteristics of all processors

in the system can be determined and the information

exposed to the job scheduler, employing a bonus or

malus to ensure fair CPU time accounting. However,

this does not work for applications scaling to the full

system and might conflict with other allocation strate-

gies, e.g., allocation of neighboring nodes for best inter-

connect performance.

For applications that do not employ load balancing

schemes but exhibit predictable imbalances, scheduling

of heavy-loaded processes onto well-performing proces-

sors and vice versa can provide implicit rebalancing.

However, this scheme requires a good understanding

of the target application characteristics or an iterative

process to provide information on predictable imbal-

ances to the scheduler.

Fig. 7 Correlation between socket temperature and the LIN-
PACK performance of the Haswell processors at 2.5 GHz.
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6 Conclusion and Outlook

This paper presents a survey of more than one thou-

sand Haswell-EP processors, correlating their achiev-

able performance and consumed average power during

LINPACK runs and comparing the results with several

hundred Sandy Bridge-EP CPUs. Power consumption

readings are provided by both RAPL and the HDEEM

measurement infrastructure. The resulting data indi-

cates a shift in processor design from homogeneous per-

formance characteristics to a TDP-bound, static power

consumption with variable computational performance

across the set of Haswell-EP processors under test.

The impact of this observation is significant on many

levels of the HPC ecosystem. One aspect is the serious

impact on performance analysis, optimization, and tun-

ing considering that any effects of code changes can be

overshadowed by the processor characteristics, requir-

ing careful measurements by the user. It also makes

performance modelling and prediction more complex.

Another effect on productive HPC usage is that for-

merly balanced, tightly coupled parallel applications

may run imbalanced due to the heterogeneity of the

cluster. We discussed different approaches to mitigate

this behavior. Subclustering addresses this on a system-

operations level to transparently provide heterogeneous

subsets of compute nodes to applications. Unbalanced

applications can also make use of the heterogeneity by

assigning tasks with more load to faster processors.

However, it remains as future work to investigate the

impact of the performance variations on Haswell-EP

and following generations on different workload types,

e.g., memory-bound and real-world applications.
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