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Abstract Traditional distributed transaction process-
ing (TP) systems, such as replicated databases, faced
difficulties in getting wide adoption for scenarios of en-
terprise integration due to the level of mutual trust
required. Ironically, public blockchains, which promised
to solve the problem of mutual trust in collaborative
processes, suffer from issues like scalability, probabilis-
tic transaction finality, and lack of data confidentiality.
To tackle these issues, permissioned blockchains were
introduced as an alternative approach combining the
positives of the two worlds and avoiding their drawbacks.
However, no sufficient analysis has been done to em-
phasize their actual capabilities regarding TP. In this
paper, we identify a suitable collection of TP criteria to
analyze permissioned blockchains and apply them to a
prominent set of these systems. Finally, we compare the
derived properties and provide general conclusions.

Keywords Permissioned blockchains · Distributed
ledgers · Transaction processing · Replicated databases

1 Introduction

Distributed TP systems have been around for several
decades. Nonetheless, they failed to gain adoption in
cases where different enterprises need to collaborate
together because of the level of mutual trust needed
when jointly running them. On the other hand, public
blockchains were introduced as a means to facilitate
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trustless collaborations. However, their open nature re-
sulted in scalability and privacy problems since all peers
need to hold a copy of the shared data and process
new transactions. Furthermore, an expensive means to
prevent double-spending attempts is needed rendering
the approach unusable for B2B applications. To solve
the limitations of both approaches, permissioned block-
chains were introduced as replicated databases that have
limited mutual trust requirements. However, the capabil-
ities of permissioned blockchains as TP systems remain
unclear due to the absence of a detailed analysis.

In this paper, we bridge the gap between database
and blockchain experts by analyzing permissioned block-
chains from a TP standpoint in order to answer the re-
search question: “What are the transactional properties
of permissioned blockchains? ”. To this end, we (i) intro-
duce the hypothesis that permissioned blockchains can
be viewed as replicated databases, and (ii) identify a
set of TP properties suitable for describing them. More-
over, (iii) we apply the set to a collection of the most
prominent technologies in order to infer their character-
istics from a TP standpoint. Finally, (iv) we categorize
these systems based on the results. Thus, this analysis
supports enterprises willing to incorporate permissioned
blockchains into their interactions

The paper proceeds as follows: in Section 2, we give
a general background about the related technologies
and discuss permissioned blockchains and the reasons
behind their inception. Furthermore, we present the
major research question, and show that the related
work did not address it sufficiently. In Section 3, we
propose to look at permissioned blockchains as replicated
databases. Later, in Section 4, we apply this vision to a
number of prominent permissioned blockchains. Finally,
in Section 5, we summarize our findings and detect areas
in which these systems can further evolve.
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2 Background, Related Work, and Motivation

In this section, we give background information about
TP systems and blockchain systems.

2.1 Basics of Transaction Processing (TP)

In computer systems, a transaction in its most abstract
form is a finite execution of a program that accesses
shared data [9, p. 2]. Each transaction is a unit-of-work
that represents a real world business transaction exe-
cuted via a computer system. This includes, for exam-
ple, transferring money between two bank accounts. The
code executed by a transaction is known as a transaction
program which is grouped with others into a TP appli-
cation that automates entire business activities, such as
a banking system. Moreover, a TP system is a computer
system capable of hosting and managing transaction
programs. Relational databases are the most prominent
example of such systems. Others include messaging sys-
tems, and business process management systems. A TP
system is called distributed when the underlying shared
data resides in more than one location.

Haerder et al. [20] define a set of four properties, ab-
breviated in the acronym ACID, that every transaction
must have: (i) Atomicity means that a transaction
either executes completely, or not at all. This guar-
antees that the effects of a successful transaction are
completely reflected in the underlying datastore, or that
none of these effects are reflected if the transaction fails.
(ii) Consistency means that if a transaction is applied
to a consistent datastore, it must preserve this consis-
tency by transforming the state to a new consistent
state. A datastore is consistent when it preserves a set
of predefined domain-specific business rules. (iii) Isola-
tion means that a transaction should execute as if it is
the only one being run at the same time. Nonetheless,
to achieve higher throughput, TP systems usually run
transactions in parallel while guaranteeing that they are
isolated and do not affect each other, i.e., serializable.
(iv) Finally, Durability means that the effects of a suc-
cessful transaction, i.e., a committed transaction, are
durably stored in the underlying datastore even if the
TP system suffers from failure.

These properties focus on transactions that run on
a multi-user centralized TP system, i.e., the underlying
shared data is located on a central site. However, of high
importance for the study of blockchains is the concept
of global (or distributed) transactions which affect data
items in more than one site, i.e., in a distributed TP
system. More specifically, we are interested in transac-
tions that operate on replicated data, which are well
studied in the field of replicated database systems.

2.2 Replicated Database Systems

Kemme et al. [21] give a comprehensive overview of this
field by identifying the general properties and trade-offs
of replicated databases and their effects on transactions,
and also by listing the various transaction correctness
criteria that contribute to strong consistency.

First, replicated databases can be described based on
two parameters: (i) the location in which the execution
of transactions is possible. This is traditionally divided
into either the primary-copy case that permits the ex-
ecution of transactions only on a specific replica, or
the update-anywhere case in which transactions can be
executed on any of the replicas. In both cases the effects
of the transaction are propagated from the origin of exe-
cution to the other replicas according to some protocol.
This leads to the second parameter, namely (ii) the syn-
chronization strategy between replicas. Traditionally,
this also has two cases: the eager strategy, in which the
replica that executes the transaction transmits its effects
to the others and ensures they will commit them before
signaling success to the user, and the lazy strategy, in
which the executing replica announces the success of
the transaction immediately after its local commitment
and before ensuring its success on the other replicas.
This indicates a clear trade-off between availability and
strong consistency [9, p. 261].

To have a better understanding of what we mean by
strong consistency, we take a look at three of the cor-
rectness dimensions that collectively contribute to this
notion [21]: (i) Global atomicity is a generalization
of ACID atomicity (c.f. Section 2.1) but for a replicated
environment. It requires that a global transaction either
entirely commits or entirely aborts at all replicas. Tra-
ditionally, this is achieved via coordination protocols
such as two-phase commit (2PC). Strong consistency
here requires that all data copies have the same value at
commit time, whereas weak consistency either refers to
the possibility of reading stale data values from certain
replicas even when others report a successful commit,
i.e., staleness, or it refers to temporal inconsistency that
need to be resolved. (ii) Global isolation, is a gen-
eralization of the ACID isolation. The global isolation
level usually considered is 1-copy-serializability (1CS)
in which the execution of a set of interleaved global
transactions is equivalent to a serial execution of these
transactions on a single logical copy of the database
even if some replicas are failing. Finally, (iii) session
consistency addresses a sequence of global transactions
issued from the same user. A consistent session guaran-
tees that transactions are committed in the order they
were issued. We use these dimensions later to categorize
permissioned blockchains from a TP standpoint.
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Other properties [21] that differentiate database
replication approaches and are important for our discus-
sion here include: (i) The execution strategy which
refers to a spectrum of mechanisms. On one end of the
spectrum, we find the case of all replicas executing every
statement of every transaction, i.e., statement, active,
or symmetric replication. On other end, a single replica
executes the transaction program statements while gen-
erating a write-set of changed variable that the other
replicas apply to their copies, i.e., object, passive, or
asymmetric replication. (ii) Concurrency control on
the other hand, refers to the mechanism that ensures the
absence of undesired conflicts in the execution history
of interleaved global transactions, i.e., global isolation.
These mechanisms are generally divided into pessimistic
ones, e.g., 2-phase-locking (2PL), and optimistic ones,
like multi-version concurrency control (MVCC). Finally,
(iii) two major architectural alternatives can be iden-
tified. Kernel-based replication, in which the replica con-
trol mechanism is implemented in the software of each
node. On the other hand, middleware-based replication
delegates the task of replica control to a dedicated soft-
ware layer that coordinates replication transparently.

Despite their maturity, a drawback that hinders the
adoption of such systems for the purpose of enterprise
integration is the level of trust needed to run traditional
replication control mechanisms [9, p. 241] Therefore, we
deviate our discussion to blockchain systems.

2.3 Blockchains

Blockchains refer to systems that maintain an immutable
ledger of transactions shared among a set of mutually
untrusting parties. These parties usually have conflicting
interests, e.g., a consortium of companies competing in
the same market. Although mutual trust is missing in
such cases, collaboration is often necessary and beneficial
to all parties. However, this leads to the question of
who should manage the joint process; a participant
managing the interaction is out of question as they
could manipulate it in their own favor. One way to solve
this is the introduction of a trusted third-party, such as
a notary service, a governmental agency, or a payment
settlement intermediary. Nonetheless, this introduces
raised transaction fees as well as potential managerial
and performance hurdles, but above all, the existence
of such a trusted third party in certain scenarios is by
itself challenging, which is the major motivation behind
blockchain systems: they run as a trusted intermediary
which is jointly operated by the untrusting parties in a
transparent way that does not favor specific participants
over the others. Moreover, they can be categorized into
permissionless and permissioned.

2.3.1 Permissionless Blockchain Systems

A permissionless (or public) blockchain, is a peer-to-
peer blockchain open for anyone. The only condition is
to run a local instance of the shared protocol that is
connected with the other instances via a network, usually
the Internet. This is comparable to other decentralized
systems such as BitTorrent [24].

As an example, Bitcoin [23] is a peer-to-peer pay-
ment network without any settlement intermediaries,
and it introduces its own cryptocurrency, which is also
called bitcoin. In this system, sending a payment to an-
other peer entails issuing a digitally signed transaction
stating, among other things, the identity of the recipi-
ent and the amount of cryptocurrency to be sent. The
transaction then propagates through the network using
a gossip protocol [10]. All peers receiving the transaction
validate its integrity by verifying the authenticity of the
accompanied digital signature as well as by making sure
the sender actually owns the coins being transacted. To
this end, every peer in the network maintains an im-
mutable list of transactions grouped into blocks which
represents the history of all valid interactions that ever
took place in Bitcoin. Furthermore, in order for all peers
to maintain a single view of this shared data structure,
which is known as the blockchain, a consensus mecha-
nism is required. Bitcoin introduces a mechanism based
on Proof-of-Work (PoW) [17] in which the blockchain
advances periodically one block at a time. To achieve
this, certain peers, known as miners, formulate blocks
out of the valid transactions they recently received so
that every one of them proposes a single new block in
each round. Since only one new block can be appended
at a time, miners participate in a probabilistic lottery
based on PoW to determine the winning block, which
propagates afterwards to the other peers using a sim-
ilar gossip protocol. The winning miner receives some
bitcoins as a reward and a compensation for the spent
energy. Furthermore, the blockchain is arranged in a
way that makes it hard to alter old blocks without con-
trolling the majority of the computational power of the
whole network, ensuring immutability.

Public blockchains, in general, suffer from a number
of drawbacks: (i) Due to their design, they have a scala-
bility issue in terms of the amount of transactions the
network can process. For example, Bitcoin sustains only
about 7 tx/s [16]. (ii) Permissionless blockchain transac-
tions never reach absolute finality. Due to the protocol
design, there is always a probability that an alternative
(partial) history that may include transactions that con-
tradict with some of the currently accepted ones appears
in the network. If such a history matches a specific cri-
teria, e.g., being the longest chain in the case of Bitcoin,
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it will be considered as the one true history by the net-
work peers. (iii) Finally, they are public in nature and
allow anyone to obtain a unique identity that facilitates
issuing new transactions and reading the entire history.
However, certain applications require more control over
the identity of allowed participants as well as the access
to shared data. For example, a distributed sharing of
health care data records among a set of providers should
be protected from public access. Although certain ap-
proaches exist to circumvent some of these drawbacks
using, for example, off-chain scaling solutions [16], or
cryptography, a need for a scalable, robust blockchain
capable of supporting enterprise applications exists in
the form of permissioned blockchains.

2.3.2 Permissioned Blockchains

Permissioned blockchains are systems operated by known
entities and facilitate the interactions among them even
if they do not have mutual trust. In contrast to their per-
missionless counterparts, participation in permissioned
blockchains is not open to the public. This means that
they have a mechanism to control the distribution of
recognized identities to permitted users, and potentially
control what rights identified users have in the system.
For example, certain users may only have the right to
read the history of events but not append to it. Other
users may have the right to validate new transactions.
This means that these systems are usually not peer-
to-peer since different participants have different roles.
Furthermore, the management of permissions introduces
a level of centralization in the system, even though this
task is not necessarily done by a single entity: one or
more entities become superusers or administrators and
need to be trusted and agreed upon by the others.

Nonetheless, controlling participation in the system
has the ability to solve the issues we have seen in the
case of permissionless blockchains: (i) the existence of an
access control mechanism solves the problem of privacy;
entities not allowed into the system are not permitted
to read the shared data or write to it via transactions.
Furthermore, certain permissioned blockchains have the
ability to limit access to specific parts of the shared data
even among recognized entities [1, 7]. (ii) Moreover, hav-
ing a static group of users that only allows membership
changes via explicit reconfiguration allows using the
well-studied and well-optimized consensus techniques
designed for Byzantine fault-tolerant (BFT) systems [12].
Depending on network configuration and synchrony as-
sumptions, these techniques are able to achieve a trans-
action throughput in the order of 80,000 tx/s [19], which
is a huge improvement over the throughput measured
in the range of tens of transactions per second current

permissionless blockchains can achieve. (iii) Finally, the
usage of these consensus protocols allows reaching trans-
action finality; they usually guarantee reliable broadcast
which entails that all honest nodes will reach the same
consensus outcome [12]. This is convenient for external
applications that interact with permissioned blockchains
since they do not need to implement additional mea-
sures to account for the possibility that an accepted
transaction gets dropped from the system.

2.4 Motivation and Related Work

Permissioned as well as permissionless blockchains do
not operate in isolation. In fact, they can be viewed
as software connectors providing communication, co-
ordination and other services for the various software
components of large distributed systems operated by
different entities [29]. With this view in mind, we see
that it is important to facilitate integrating the usage of
blockchains into existing systems. To this end, studying
the transactional properties of blockchains can be very
beneficial since it allows experienced software architects
to compare them to other data management systems
such as relational and NoSQL databases whose behavior
is well-understood. Studying the transactional proper-
ties means looking at blockchains as TP systems and
drawing conclusions on the guarantees they make regard-
ing how they handle transactions, as well as system-wide
properties that affect how other applications can use
them as transaction processors.

A previous work by S. Tai et al. [27] analyzed the
transactional properties of permissionless blockchains.
They inferred that these systems, by contrast to ACID or
BASE systems, are Symmetric, since peers have similar
roles, Admin-free, as they are self governing, Ledgered,
because a replicated ledger is stored on each node, and
Time-consensual, since the advancement of the block-
chain happens at intervals averaging to a specific tar-
geted value (SALT). However, since permissioned block-
chains have considerably different characteristics com-
pared to their public counterparts, the aforementioned
research cannot be considered to cover them.

C. Cachin and M. Vukolic [12] gave an extensive
comparison of the various advantages and drawbacks
of the consensus protocols commonly used by permis-
sioned blockchains. Nonetheless, their discussion was
limited to these attributes only, and they did not ex-
plain their effects on the TP guarantees provided by the
corresponding systems. Therefore, in this work, which
we view as necessary for enterprises willing to incorpo-
rate permissioned blockchains into their interactions, we
try to build upon the previous results to derive the TP
properties of permissioned blockchains.
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3 Permissioned Blockchains as Replicated
Database Systems

As we saw in Section 2.3.2, permissioned blockchains
are considered an adaption of their permissionless coun-
terparts that tries to solve the issues that prevents using
them in enterprise scenarios. However, to answer the
research question “What are the transactional properties
of permissioned blockchains? ”, we present here an alter-
native point-of-view on the topic. We propose the hy-
pothesis that permissioned blockchains are an adaption
of replicated databases that introduces trust guarantees
influenced from public blockchains, which eases their
applicability to enterprise integration use-cases.

To intuitively justify this vision, we point out the
observation that, in general, blockchains can be thought
of as TP systems, particularly, distributed TP systems,
as they host transaction applications in the form of
smart contracts. A smart contract is a set of proce-
dures that collectively manage a collection of data items
shared among the users of the system. Each of these
procedures gets executed as a unit-of-work, and thus
can be thought of as a transaction program. This makes
the whole blockchain a distributed TP system since it
supports hosting these programs in a distributed envi-
ronment. Moreover, shared data (global state) in such an
environment is fully replicated among the peers which
is usually ensured by the consensus mechanism. This
makes blockchain systems with their TP capabilities
very close to the aforementioned replicated database
systems (c.f. Section 2.2). Note that even blockchains
that do not support hosting arbitrary smart contracts
can also be thought of as distributed TP systems as
they still host a fixed set of transaction programs. For
example, the basic Bitcoin functionality supports a sin-
gle transaction program that atomically transfers funds
from a set of source accounts to a set of target accounts.1

It is worth mentioning in this context that in the
literature, the term blockchain transaction (BC trans-
action for short) refers to something different from the
transactions we are describing here. A BC transaction is
a request message sent by an end-user to the blockchain
system in order to issue the execution of a transaction
program. In fact a BC transaction is a well-defined data
structure that normally includes, among other things,
the required input arguments for the smart contract
procedure to be invoked as well as a cryptographic sig-
nature that guarantees the integrity of these passed data
items, authenticates their originating user, and prevents
malicious participants from impersonating other users.
Although the concepts of a transaction in the context

1 In fact Bitcoin supports a limited scripting language that
allows even more sophisticated programs.

Table 1: Summary of the analogy between replicated
databases and blockchain systems.

Replicated Databases Blockchains
tranasction program smart contract function
transaction application smart contract

transaction smart contract function
execution

request message transaction

replicated data global state and
blockchain data structure

replica control consensus mechanism

of TP systems and a BC transaction are related since
the latter is a trigger for the former, one needs to keep
the difference in mind since the discussion about the
“transactional properties” of some system majorly refers
to “actual” transactions rather that request messages.

Nonetheless, BC transactions have a larger role in
blockchain systems than just request messages: as we
have seen earlier, validated BC transactions have total
order among them, and they represent transitions of the
system state, which is defined as the overall values as-
signed to the shared data items managed by the system.
On the other hand, blockchain systems guarantee that
smart contract procedures execute in a deterministic
fashion, thus a BC transaction has a 1-to-1 mapping to
an “actual” transaction, which actually operates on data
items and results in a state transition. Furthermore, as
seen earlier, BC transactions are authenticated data
structures and thus are good for proving the validity of
the state they cause the system to transition to, at least
from a cryptographic point-of-view. Therefore, block-
chain systems store a permanent ordered record of BC
transactions. Such a record is capable of generating the
system state by traversing it from its start and invoking
each corresponding transaction. In fact, apart from per-
formance considerations, it is enough for a a blockchain
system to only store the ordered list of BC transactions,
i.e., the blockchain data structure, without storing the
actual shared state at all since it can be (re-)calculated
on-demand by the aforementioned traversal.

Table 1 summarizes the introduced analogy. What
makes permissioned blockchains differ from their per-
missionless counterparts in this context is their enforce-
ment of data confidentiality, their relatively high transac-
tion processing rate, and their general resilience against
blockchain forking which ensures most of the favorable
transaction consistency and guarantees already provided
by replicated databases (c.f. Section 2.2).
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4 Transactional Properties of Permissioned
Blockchain Systems

To further validate the hypothesis presented in the pre-
vious section, we examine here a set of the most promi-
nent permissioned blockchain systems and evaluate their
transactional properties. For each introduced system,
we first give a high-level overview of it and then try to
analyze its properties based on the previous observation
that blockchain systems can be thought of as replicated
databases from a TP point-of-view. To this end, we use
the concepts defined in Section 2.2.

4.1 Ethereum-based Permissioned Blockchains

Ethereum [28] is a prominent permissionless blockchain
platform that was the first to enable Turing-complete
smart contracts (transaction applications) via the in-
troduction of the Ethereum Virtual Machine (EVM), a
special stack-based state machine that prevents indeter-
ministic executions by limiting its instruction set, and
also prevents infinite executions via a parameter called
gas that gets gradually consumed by every executed
operation until it is exhausted, or the execution is over.
A high level language, e.g., Solidity is used to write
smart contracts which get compiled into bytecode and
stored on the blockchain. Due to its wide adoption and
continuous evolution, Ethereum constitutes a promising
candidate for a permissioned counterpart. To this end
several Etherum-inspired permissioned blockchains were
introduced that inherit many of its TP properties: They
validate transactions at every peer serially according
to the order dictated in the containing block, which is
determined previously by the consensus outcome. Fur-
thermore, they have a kernel-based architecture that
embeds the replication logic into each peer. However,
they change the consensus protocol from the original
PoW to a permissioned one. Next, we discuss some
prominent examples of these systems.

4.1.1 Aura and Clique (Proof-of-Authority)

Aura [2] (implemented in Parity Ethereum), as well as
Clique [26] (implemented in Go Ethereum) are alter-
native realizations of the Proof-of-Authority consensus
protocol, which is meant to replace PoW in permis-
sioned settings. They are supposed to reduce the power
consumption of the network and increase the TP per-
formance while maintaining a high level of security and
data consistency. However, an independent research [8]
involving these protocols showed that they, under realis-
tic network and adversary assumption, fail to guarantee
safety, i.e., that the probability of blockchain forking

exists. This has dire effects on the consistency measures
of TP. First of all, local durability of transactions at
each peer is not guaranteed since a previously commit-
ted transaction can later disappear from the blockchain,
which would also affect histories that include it both
system-wide and at a single user level (session). This
means that global isolation and session consistency are
also not guaranteed. Finally, global atomicity is also not
guaranteed since if a transaction commits in one fork,
it might not commit on the other. All in all, although
these protocols provide high availability, they are not
safe enough to be used in real B2B scenarios.

4.1.2 Quorum

Quorum [1] is another permissioned blockchain system
based on Ethereum. Besides its permissioning capabili-
ties, it differs from Ethereum in two major ways: First,
it supports private transactions, by partitioning the
state into a public and a private one. The public state
is fully replicated as in Ethereum, whereas its private
counterpart is different for each participant. Since pri-
vate state is not replicated, we will only discuss the TP
properties of public transactions. Second, it supports a
modular consensus mechanism by allowing both a crash
fault tolerant (CFT) protocol based on Raft [6] which is
suitable for trusted environments, and a BFT protocol
called Istanbul Byzantine Fault Tolerance (IBFT) [22]
designed for more general use-cases where one-third of
the nodes is tolerated to behave in a Byzantine way.

No independent evaluation of these protocols is avail-
able at the time of writing, so providing that the claimed
safety properties are accurate, Quorum achieves very
good transaction consistency: First, with the absence
of blockchain forking and assuming correct handling
of transaction storage at each peer, local durability is
achieved. Furthermore, peers have the same decisions
regarding the validity of transactions since they share
the same state, they execute transactions serially ac-
cording to their total order, and validation rules are
deterministic. This means that both global atomicity
and isolation are guaranteed. Moreover, for each peer
a transaction counter is maintained in the blockchain
which facilitates ordering transaction requests allowing
peers to guarantee session consistency. Finally, the syn-
chronization strategy can be categorized as eager since
peers only commit state changes locally when they are
sure other correct peers will also commit them.

4.2 Ripple’s XRP Ledger

RippleNet (https://ripple.com/) is a platform pro-
viding a global payments settlement network. It is pow-

https://ripple.com/
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ered by an underlying permissioned blockchain system
called XRP Ledger [14] with a built-in cryptocurrency,
XRP. Unlike other built-in cryptocurrencies of public
blockchains, XRP does not play a role in the consen-
sus mechanism, but rather is meant as a pure digital
asset that facilitates B2B interactions by being an in-
termediary currency. Since it does not support smart
contracts, XRP Ledger is not considered a general pur-
pose blockchain, but rather has a fixed set of financial
and managerial transaction programs.

In order to infer the TP properties of XRP Ledger,
let’s take a brief look at its transaction flow: (i) A client,
who is not necessarily previously known, proposes a
transaction to one of the known nodes (servers in XRP
terminology), then (ii) the server broadcasts it to the
other servers via a gossip mechanism. (iii) The network
periodically engages in a mutli-round consensus mech-
anism so that a subset of the servers, known as the
validators agree on the set of transaction requests to
be included in the next block. This consensus protocol
allows every server to define a flexible set of peer val-
idators, or a Unique Node List (UNL), to be considered
trusted, so it only evaluates proposals from them. As-
suming certain periods of network synchrony, and after
some rounds of interactions, every server sees that a
super-majority of the validators in its UNL agree on
the set of transaction to be included in the next block.
(iv) Afterwards, each server individually constructs a
new block (ledger in XRP terminology) by ordering
the transaction requests in a deterministic canonical
order, and executing them sequentially based on the
state associated with the previous valid ledger. (v) Fi-
nally, each validators signs and announces a hash of the
ledger it calculated. Afterwards, every server ensures
that the hash of the ledger it calculated matches the
signed hashes announced by a super-majority of its UNL
which would mean that the new ledger is validated.

Under the assumption that UNLs have enough over-
lap among them and that no more Byzantine validators
exist that can be tolerated, the XRP Ledger is guaran-
teed to be safe, i.e., that blockchain forking cannot take
place [12]. This entails that local transaction durability
is guaranteed. Furthermore, since every server serially
executes the same set of transactions in the same order
based on the same initial state, global atomicity and
isolation are also guaranteed. Moreover, like Ethereum,
XRP Ledger introduces a mechanism to order requests
from the same client via a sequence number. This ensures
session consistency. In summary, XRP Ledger provides
good transaction consistency guarantees, but with strict
assumptions and static domain-specific programs.

4.3 Chain

Chain [4] is another permissioned blockchain system
in the financial domain which provides more flexibility
than Ripple (c.f. Section 4.2) by supporting determin-
istic Turing-complete smart contracts that govern the
issuance and management of assets. Like Bitcoin, Chain
follows the unsepent transaction outputs (UTXO) model
by allowing to move assets from a transaction’s inputs
to its outputs. Each output field of a transaction refers
to a control program that needs to be fulfilled in order
to spend it. Therefore, an input field wishing to spend
an output field of a previous transaction provides argu-
ments that fulfill its control program. On the other hand,
creating a new type of assets requires an input field to
refer to an issuance program instead. Moreover, each
block in Chain’s blockchain data structure refers to a
consensus program which the next block should fulfill in
order for it to be considered valid. However, the default
implementation of this smart contract is rather simple;
it provides the public key of a specific block generator
node which is allowed to issue new blocks, as well as
the public keys of 𝑁 signer nodes that are supposed
to confirm it. Out of these, 𝑀 signatures are enough
to consider the block valid. This reduces the protocol
to a traditional Byzantine quorum system that toler-
ates 𝐹 arbitrarily faulty signers when 𝑀 = 2𝐹 + 1 and
𝑁 = 3𝐹 + 1 while guaranteeing safety and liveness [12].
However, a malicious or faulty block generator can halt
the consensus mechanism, or censor specific transactions
by not including them in any block.

When the aforementioned safety conditions are met,
Chain nodes can guarantee the local durability of trans-
actions. Furthermore, a global order of transactions,
seen by all nodes, is ensured since there is a single au-
thority providing it, namely the block generator. These
transactions are serially and deterministically validated
and executed by every non-faulty node in the network.
This means that global atomicity and isolation are guar-
anteed. However, by default, the block generator orders
transactions in every block according to their hash which
probably does not correspond to the submission order
by each client. Therefore, session consistency is not
maintained by Chain. All in all, Chain provides TP
guarantees that match the majority of other permis-
sioned blockchains, but by default, depends on a single
leader for ordering transactions and generating blocks
which could introduce security and liveness issues.

4.4 Multichain

Multichain [18] is a permissioned blockchain platform
based on the Bitcoin Core software. Nonetheless, it in-
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troduces permissioning capabilities based on public-key
cryptography, and employs a low resource-demanding
mining variant. Transactions in Multichain are based
on the aforementioned UTXO model (c.f. Section 4.3),
and have a flow similar to public blockchains but with
a different “mining” mechanism: Block generation hap-
pens periodically as a result of a consensus protocol
among a predefined list of miners. Afterwards, all net-
work nodes independently verify the correctness of these
blocks and deterministically validate and execute the
contained transactions serially according to the global
order. However, in each block generation step, only a
sub-set of miners is allowed to compete. This is deter-
mined with a diversity parameter which puts a limit
on the number of blocks generated by the same miner
within a given window. This means that more than one
miner could have the right to produce blocks at the
same time, which could lead to alternative forks of the
blockchain being adopted by different nodes [12]. Like
Bitcoin, these forks would eventually become consistent
with a high probability using the longest chain rule.
However, this probabilistic model of transaction final-
ity badly affects TP correctness guarantees, exactly as
was the case with Aura and Clique (c.f. Section 4.1.1).
Specifically, local transaction durability, global atomic-
ity and isolation, as well as session consistency cannot
be ensured with Multichain. In summary, the heavy
dependence on Bitcoin’s architecture and transaction
flow makes Multichain inherit its finality issues which
could have been avoided by using a BFT protocol.

4.5 Hyperledger Fabric

Hyperledger Fabric [7] (or Fabric) is a modular and con-
figurable open-source permissioned blockchain platform
that runs under the umbrella of the Hyperledger Green-
house (https://www.hyperledger.org/) managed by
the Linux Foundation. It supports a distinctive architec-
ture called execute-order-validate which separates Fabric
from most other permissioned blockchains that usually
follow the active replication architecture [15].

Figure 1 shows a visual representation of the typical
transaction flow in Fabric. It starts when a pre-registered
client node formulates a signed transaction request (a
request for short) to execute one function of a smart
contract (chaincode in Fabric terms). Fabric introduces
a policy-based trust model for the process of endorsing
transaction proposals, i.e., verifying their validity and
ensuring their conformance to business rules. To this
end, a chaincode-wise endorsement policy is defined and
stored in the genesis block of the replicated blockchain
(ledger in Fabric terms). This policy specifies the set
of peers that need to endorse a transaction proposal

before it is considered valid. Such peers are known as
endorsing peers, and they are usually representatives of
the business entities participating in the process. The
policy applied in Fig. 1, for example, states that both
of the endorsing peers of organization A and B should
endorse the given proposal. Therefore, the client sends it
to them (1). Notice that Fabric divides its peers into or-
ganizations that represent the aforementioned real-world
business entities. So within each organization mutual
trust is assumed. An endorsing peer receiving a proposal
simulates it by executing the transaction on a stable
snapshot of the latest committed state it knows of, and
generates a readset containing the keys of all accessed
data items associated with their versions, and a writeset
that contains the keys of the changed data items with
their proposed new values. The peer then sends them
back to the client (2). When the client collects enough
endorsements according to the policy, it formulates a
transaction (BC transaction) out of them and submits
it to the ordering service via the broadcast interface
(3). The ordering service is a collection of special nodes
known as the orderes which are responsible for batching
transactions into blocks that give them total order, and
for agreeing on this order via a pre-configured consen-
sus protocol. Fabric provides multiple options for this.
One implementation with CFT guarantees, is based on
Apache Kafka [12], and a less performant but better
resilient implementation is based on BFT-SMaRt which
tolerates up to one-third of the orderers behaving in a
Byzantine way [25]. In both cases, atomic broadcast is
guaranteed. After consensus, transactions are batched
into signed blocks and cryptographically chained to-
gether to form a blockchain (4). Apart from the afore-
mentioned broadcast interface, the ordering service also
exposes a deliver interface that permits peers to pull the
latest blocks (5). Optionally, and for scalability reasons,
only one peer per organization, namely, the leader peer,
performs the pulling, and then the block is broadcast via
gossiping (6). Finally, when a peer receives a new block
it validates it by ensuring that the set of endorsements
of each transaction fulfills the endorsement policy and
that they include identical read- and writesets. After-
wards, optimistic concurrency control is performed by
ensuring that the versions of the data items included in
each readset have not changed since its creation. At the
end (7), the block is persisted in the local ledger, and
if the previous validation passed, the local world-state
is updated by applying the writesets which happens
serially according to their total order.

Fabric gives relatively strong transaction process-
ing guarantees. It ensures the absence of forking in its
ledger, i.e., that all correct peers are guaranteed to see
the same transactions and to agree on the outcome of

https://www.hyperledger.org/
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Figure 1: Architecture and transaction flow of Hyperledger Fabric [7]

each one of them, due to the implemented concurrency
control mechanism (MVCC) and the atomic broadcast
property of the ordering service [12]. This means that
the durability of transactions is guaranteed locally at
each peer, and since Fabric has a recovery mechanism
for its failed peers that guarantees the execution of all
successful transactions, global atomicity is also achieved.
Moreover, atomic broadcast makes sure that the order
of transactions at each peer is the same, and because the
execution of writesets is serial, then 1CS is also guaran-
teed. On the other hand, a unique property of Fabric is
that the execution of the transaction program happens
specifically at the peers described in the endorsement
policy. Furthermore, the execution is asymmetric since
only some of the peers execute transaction programs,
while the others only apply writesets. Synchronization
is considered eager since when a peer applies a writeset,
it is sure that all other correct peers will do the same.
However, session consistency is not achieved since stale
reads are possible because peers do not coordinate be-
fore signaling successful transactions to clients. Finally,
clients play a prominent role in the middleware-based
replica control mechanism of Fabric, and are expected
to maintain state and to be functioning at least during
the first phase of the transaction flow.

4.6 Hyperledger Sawtooth

Hyperledger Sawtooth [5] (or Sawtooth), like Fabric,
is a general-purpose blockchain platform from the Hy-
perledger Greenhouse that is both highly modular and
configurable. However, compared to Fabric, Sawtooth
focuses more on providing flexible architecture and so-
phisticated TP capabilities rather than focusing on data
confidentiality and privacy. It introduces transaction

families as the way to define smart contracts. Specifi-
cally, a transaction family, which can be plugged into the
system and can co-exist with other families, describes
a predefined set of possible transaction operations that
are allowed to be executed. One part of every transac-
tion family is the transaction processor that implements
the needed operations. On the other hand, transaction
requests in Sawtooth are grouped into batches by clients.
A batch is an atomic unit-of-work, i.e., either all trans-
actions in a batch are committed, or none of them are,
and thus is useful for explicitly defining a set of inter-
dependent transactions. Sawtooth also supports explicit
cross-batch dependencies by allowing each transaction
to specify a set of other transactions that it depends on.

Transaction flow in Sawtooth follows an execute-
consensus-execute model. In this model, validator nodes
locally execute the batches they receive either directly
from clients or from other validators via gossiping. The
execution is based on a snapshot of the last agreed-upon
global state which gets incrementally changed when
batches are applied to it. Afterwards, validators organize
batches into blocks. Each block contains in its header
the root of a hash tree that describes the world-state
after the contained transactions were applied. Then the
configured consensus protocol is executed so that all
validators agree on whose version of the next block is to
be appended to the blockchain. Afterwards, validators
independently execute the transactions of the agreed-
upon block and ensure that the resulting world-state is
identical to the one declared in the header. This guaran-
tees that a badly implemented user-defined transaction
family that does not ensure deterministic execution will
not cause state inconsistencies. On the other hand, a
prominent feature of Sawtooth is its support for parallel
transaction execution. This is ensured in both of the
previously mentioned execution phases via a parallel
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scheduler, which determines, for each transaction, a list
of predecessor transactions that need to be executed be-
fore it. To this end, every submitted transaction proposal
should explicitly indicate the sets of state addresses it
could read from and write to. Using these sets, the sched-
uler is able to identify conflicting transactions which,
combined with the explicit dependency information as-
sociated with each transaction, allows it to determine
the predecessor lists. Moreover, if the scheduler detects,
at some point in time, that all the predecessors of one
or more transactions are already executed, it runs them
on parallel allowing for potentially a substantial per-
formance gain. Sawtooth ensures that this scheduling
procedure produces serializable executions and is deter-
ministic across peers, thus ensuring global isolation with
1CS. As mentioned earlier, the consensus mechanism
in Sawtooth is modular and configurable. This gives a
variety of options ranging from PoW-like mechanisms,
e.g., Proof of Elapsed Time (PoET), which scales well in
terms of node count but do not provide finality, to PBFT-
like mechanisms which are not as scalable but guarantee
finality even in Byzantine environments. Assuming that
a consensus mechanism that does guarantee finality is
used, local transaction durability is ensured due to the
absence of forks and maintaining the blockchain data
structure and the state on stable storage. Moreover, all
peers are guaranteed to come to the same conclusion
on the validity of transactions. Thus, global atomicity
is ensured. Furthermore, the ability to specifically in-
dicate inter-transaction dependencies allows clients to
force session consistency. Finally, all peers execute the
programs of all requested transactions; therefore, the
execution strategy is categorized as symmetric. In sum-
mary, from a TP point-of-view, Sawtooth is a general
purpose and parallel TP system that allows explicit
handling of transaction dependencies and guarantees
strong consistency.

4.7 Tendermint-based Permissioned Blockchains

Tendermint Core [11] is not a standalone permissioned
blockchain, but rather a software middleware that im-
plements a BFT replicated state machine. A node using
Tendermint Core has a local deterministic implementa-
tion of a state machine, and by using Tendermint Core,
it reaches consensus with the other correct nodes on
the set of transactions that will be applied to the state
machine and the order in which they will be applied. To
this end Tendermint Core introduces a BFT protocol
which is divided into phases and rounds. In each phase,
the agreement on a new block of ordered transactions is
reached using one or more rounds. Similar to PBFT [13],
in every round, a leader node proposes a new block to

the network and engages in several cycles of authen-
ticated message exchange. Normally, this will lead to
all honest nodes agreeing on the next block. However,
in certain cases, consensus could not be reached which
would lead to the initiation of a new round with a new
leader. Nonetheless, under the assumption that the net-
work eventually becomes synchronous, termination is
guaranteed while tolerating up to one-third of nodes
being Byzantine [12].

As mentioned earlier, Tendermint Core is only a
middleware, i.e., other software components rely on
it to deterministically, and globally advance the repli-
cated state machine they operate. Tendermint Core
expects these applications to implement the state ma-
chine in the way they need to, and to maintain its
state locally as well. It also expects them to reply
to its requests to judge on the validity of proposed
transactions. In summary, a client application main-
tains state, executes transaction programs, and validates
transaction requests. Thus, it is difficult to judge on
the TP capabilities of Tendermint Core without con-
sidering the client application. Therefore, we take a
look at one specific permissioned blockchain system that
uses Tendermint Core as its consensus engine, namely
BigchainDB. BigchainDB [3] is a distributed database
that utilizes the blockchain technology to achieve a cer-
tain level of decentralization and immutability. Each
BigchainDB node hosts both a Tendermint Core, and
a MongoDB (https://www.mongodb.com/) nodes. It
also allows clients to create assets, which represent any
physical or digital object, and transfer their ownership
to other clients. From the standpoint of Tendermint
Core, BigchainDB is a client application that manages
the state of the replicated machine via the MongoDB
database, executes a fixed set of deterministic transac-
tion programs that cause the state to transition, and
validates transaction proposals against asset double-
spending attempts. With these properties in mind, we
can judge on the TP capabilities of BigchainDB. Mon-
goDB provides stable storage and Tendermint Core guar-
antees consensus safety, so local durability is guaranteed
at each node separately. Furthermore, Tendermint Core
provides all nodes with the same ordered set of trans-
actions which they sequentially and deterministically
apply starting from the same initial state. Thus global
atomicity and isolation are guaranteed. However, ses-
sion consistency cannot be ensured since a client-wise
request sequence number is not maintained. On the
other hand, the replication control of BigchainDB can
be categorized as middleware-based due to the depen-
dence on Tendermint Core to achieve consensus and to
disseminate transaction blocks. Moreover, peers do not
commit transactions locally until they are sure others
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will do the same which makes the replication eager. As
a conclusion, we see that judging on the TP character-
istics of permissioned blockchains that use Tendermint
Core does not only depend on the properties it provides,
but also on how these systems implement and manage
the associated replicated state machine.

5 Summary of Results

In this section, we summarize our findings from Section 4
by providing a comparison of the various permissioned
blockchain systems that we considered in terms of TP
characteristics. Table 2 shows a summary of the extent
to which each considered permissioned blockchain satis-
fies the TP correctness criteria and what system-wide
properties they expose. We can recognize three cate-
gories of systems with regards to the correctness criteria
in this table: (i) Systems that do not avoid blockchain
forking (Clique, Aura, and Multichain), and as a re-
sult do not guarantee any of the correctness criteria
either. These systems evolved from public blockchains,
and inherited these properties from them. (ii) Systems
that guarantee all of the correctness criteria apart from
session consistency (Chain, Fabric and Tendermint).
(iii) Systems that guarantee all four of the correctness
criteria (Quorum, Ripple, and Sawtooth). However, out
of these three systems, only Sawtooth provides general-
purpose transaction programs, whereas the other two
are domain-specific.

On the other hand, we quickly recognize that most
of the systems expose similar system-wide properties:
(i) Most systems, apart from Fabric, allow the client to
issue the transaction request to any of the peer nodes
in the network. This peer will then disseminate the re-
quest to the rest of the network via gossiping. Fabric,
on the other hand, has an endorsement policy that indi-
cates to which nodes the client should send the request.
(ii) Similarly, in most systems, every peer node executes
all transactions, whereas in Fabric, only endorsers exe-
cute transaction programs, while the others just apply
writesets. (iii) Furthermore, all systems that guarantee
the absence of blockchain forks have an eager synchro-
nization strategy meaning that a peer does not commit
until it is sure all other correct peers will also commit.
This is clearly not the case if forks are not avoided.
(iv) Moreover, most introduced systems have no need
for concurrency control since they execute transactions
serially according to a globally agreed-upon order. How-
ever, this limits the performance of the system since it
does not permit parallel executions. This is addressed
by both Fabric and Sawtooth. The former by using a
traditional snapshot-based MVCC, and the latter by
ensuring that schedulers produce the same predecessor

list for the same transaction across the various peers.
(v) Finally, apart from Fabric and Tendermint, all sys-
tems implement the replication control logic within the
“kernel” of each network node, whereas Fabric and Ten-
dermint follow an architecture in which a middleware
coordinates the transaction flow in the system.

In summary, we conclude that the safety of the cho-
sen consensus protocol is key to ensuring consistent
TP by permissioned blockchains. Furthermore, we think
that there is still a room for these systems to evolve
especially in terms of guaranteeing session consistency
and supporting parallel transaction processing by incor-
porating sophisticated concurrency control mechanisms.
Finally, we recognize that this study is not enough to
judge on the superiority of one system over the oth-
ers as it misses important factors such as performance,
developer-friendliness, and customer support. Nonethe-
less, we see our contributions here as a solid basis that
allows software architects to know what to expect from
permissioned blockchains and how they could be incor-
porated into their systems.
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