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Optimal Search and One-Way Trading
Online Algorithms

R. El-Yaniv,1 A. Fiat,2 R. M. Karp,3 and G. Turpin4

Abstract. This paper is concerned with thetime series searchandone-way tradingproblems. In the (time
series) searchproblem a player is searching for the maximum (or minimum) price in a sequence that unfolds
sequentially, one price at a time. Once during this game the player can decide to accept the current pricep in
which case the game ends and the player’s payoff isp. In theone-way tradingproblem a trader is given the
task of trading dollars to yen. Each day, a new exchange rate is announced and the trader must decide how
many dollars to convert to yen according to the current rate. The game ends when the trader trades his entire
dollar wealth to yen and his payoff is the number of yen acquired.

The search and one-way trading are intimately related. Any (deterministic or randomized) one-way trading
algorithm can be viewed as a randomized search algorithm. Using thecompetitive ratioas a performance
measure we determine the optimal competitive performance for several variants of these problems. In particular,
we show that a simplethreat-basedstrategy is optimal and we determine its competitive ratio which yields,
for realistic values of the problem parameters, surprisingly low competitive ratios.

We also consider and analyze a one-way trading game played against an adversary calledNaturewhere
the online player knows the probability distribution of the maximum exchange rate and that distribution has
been chosen by Nature. Finally, we consider some applications for a special case of portfolio selection called
two-way tradingin which the trader may trade back and forth between cash and one asset.

Key Words. Time series search, One-way trading, Two-way trading, Portfolio selection, Online algorithms,
Competitive analysis.

1. Introduction

1.1. Time Series Search. Consider the followingelementary search problem. A player
is searching for the maximum (resp. minimum) price of some asset. At each time period
i = 1,2, . . . ,n the player obtains a price quotationpi and must decide whether or not to
accept this price. Once the player decides to accept some pricepj the game ends and the
player’s payoff (resp. cost) ispj . The horizonn may or may not be known to the player
and if the player has not decided to accept a price during the firstn− 1 periods he must
accept some minimum (resp. maximum) pricem. In essence, in this elementary search
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problem the player is confronting the decision problem of when he has acquired sufficient
price sampling so that the accepted price is satisfying given what he already knows.

The elementary search problem has many variations and extensions. If the horizonn
is known (resp. unknown) to the player, then the problem is termedwith known duration
(resp.with unknown duration). In the case of unknown duration the player is informed
just before the last period so that he can accept the last offered price. Throughout this
paper we assume a finite (known or unknown) duration. A search problem iswith recallif
some number of the most recent price offers are retained and at any period the player can
choose to accept one of the retained offers. In another natural extension of the elementary
search problem the player has to pay asampling cost ci to obtain thei th price quotation.
In this case the total payoff (or return) of a player that accepts the pricepj is

pj −
∑

1≤i≤ j

ci .

Applications of the time series search decision task are required and performed by
virtually all economic agents and institutions. Therefore, search is a most fundamental
feature of economic markets. Consider the following straightforward applications.

Job and employee search. In the job search the player is seeking employment. In each
period the job seeker obtains one job offer which may be viewed as the lifetime earning
from the job. A sampling cost may be associated with the generation of each offer and
may include advertising costs, transportation costs, and perhaps the loss incurred from
being currently unemployed.

Now consider an employer searching for an employee. We assume that the employer
can test and quantify the suitability of candidates to the job offered. Such quantities
correspond to price quotations. The sampling cost in this case may be attributed to
advertisement, qualification tests, etc.5

Search for the lowest price of goods. Here the player needs to buy some goods that
are sold at different stores at different prices. The player can obtain price quotations
after identifying the relevant sellers. Here sampling fees may account for traveling or
phone costs and for the time wasted. Like job and employee search this application
is of fundamental importance because optimal search strategies determine the demand
function which in turn determines the nature of the market itself.

1.2. One-Way Trading. Consider a trader who needs to exchange some initial wealth
w0, given in some currency (say, dollars), to some other asset or currency (say, yen). At
the start of each trading period the trader obtains the current price quotation and must
decide whether to accept it or wait for a better price. Typically, the cost of sampling a price
quotation is negligible as prices are widely available in quotation services. Nevertheless,
the trader may be required to pay some transaction fees for the exchange (e.g., to a
financial institution).6 Thus stated, the one-way trading problem is a direct application

5 This employee search is closely related to the well knownsecretary problem[16], [1] where typically the
objective is to accept one or more “secretaries” of best ordinal value among an ordered set of all secretaries.
6 These transaction fees can be a function of the amount traded (i.e., dollars spent) or a function of the price
(which is equivalent to the amount of yen received). Alternatively (or in addition), the fees can include a fixed
cost.
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of the time series search problem. Nevertheless, the trader can partition the initial wealth
w0 and exchange it sequentially in parts, each part in a different exchange rate. Clearly,
this more general trading scheme may result in higher returns. As we shall later see,
trading in parts is equivalent to a randomized search.

One-way trading algorithms can be applied in various economic situations. For in-
stance, consider a fund manager who decides to change the position of some portfolio
and enter (or exit) some market. In this casew0 is the part of his wealth allocated to
the new position. Another natural application arises when an individual, for the purpose
of emigrating to a foreign country, sells local property in order to exchange the local
currency received to the foreign currency.

1.3. Previous Work Related to Time Series Search. The search problem has received
considerable attention in mathematical economics and operations research. Traditionally,
a Bayesian approach has been employed: An optimal search strategy is sought under the
assumption that the prior distribution of prices is given and stationary. In order to allow
for analytical results it is usually further assumed that price quotations are independent
observations of this distribution. Although the stationarity and independence assumptions
are somewhat simplistic, this basic paradigm has given rise to a rich theory that relies
on tools from the theory of optimal stopping [11]. It is beyond the scope of this paper to
survey the Bayesian work related to search.7

Not surprisingly, the Bayesian approach derives search algorithms that are heavily
dependent on the price prior distribution. Nevertheless, one striking feature of Bayesian
optimal search algorithms (applicable to many problem variants) is that they have the
following structure. Based upon the problem parameters, and, in particular, the assumed
prior distribution, there is a single fixed critical number called thereservation pricesuch
that the optimal policy is to reject all prices below the reservation price and to accept
any offer above it.8

The least acceptable assumption of classical Bayesian search models is that the prob-
ability distribution of prices is fully known to the player. Several models attempt to relax
this assumption. For example, Rosenfield and Shapiro [28] studied cases where the price
distribution is itself a random variable distributed according to probability law with some
known moments (e.g., the price distribution is known to be normal with mean distributed
according to some other probability law).

In this paper we attempt to circumvent almost all distributional assumptions by re-
sorting to competitive analysis (defined in Section 1.4). Our only assumption is that the
price generating process has finite (known or unknown) support.

1.4. Competitive Analysis of Online Problems. Let P = (I, F,U ) be a profit maxi-
mization problem whereI is a set of possible inputs; for eachI ∈ I, F(I ) is the set of
feasible outputs;U is a utility function such that for allI andO ∈ F(I ), U (I ,O) ∈ <.
Consider any algorithmALG for the problemP. Given any inputI , ALG computes a
feasible outputO ∈ F(I ). We denote the profit (or return) ofALG on the input instance

7 The reader is referred to the excellent surveys by Lippman and McCall that discuss Bayesian solutions for a
variety of search problem variants [23], [24].
8 In the case of search with known duration the reservation price can change dynamically.
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I by ALG(I ) = U (I ,O). Typically, each input can be represented as a finite sequence
I = i1, i2, . . . , i n and a feasible outputO can also be represented as finite sequence
O = o1,o2, . . . ,on.

An algorithmALG computesonline if for each j = 1, . . . ,n− 1, ALG must compute
oj beforei j+1 is given. An algorithm isoffline if it can produce a feasible output given
the entire input sequence. We denote an optimal offline algorithm byOPT. By definition,
for each input sequenceI the return ofOPT is OPT(I ) = supO∈F(I ) U (I ,O).

An online algorithm isc-competitive if for anyI ∈ I,

ALG(I ) ≥ 1

c
· OPT(I ).(1)

In this case we also say thatALG attains a competitive ratioc. The least competitive ratio
thatALG attains is calledthecompetitive ratio ofALG.

The competitive ratio is thus a worst-case performance measure. Anyc-competitive
online algorithm is guaranteed to return at least a fraction 1/c of the optimal offline profit
no matter how unfortunate or erratic the future will be.

The use of the competitive ratio to measure performance of online algorithms is
calledcompetitive analysis.9 Competitive analysis has been used in the computer science
literature for over 20 years. At first it was used implicitly for the online approximation of
NP-hard problems (see, e.g., [17], [19], [20], and [30]). Somewhat later, the seminal work
of Sleator and Tarjan [29] on virtual memory and dictionary management put forth the
use of the competitive ratio as a general performance measure for online decision making.

Sometimes it is convenient to view the competitive analysis of an (online) problem as a
two-person game between the online player and an adversary. The online player chooses
an online algorithmALG and informs the adversary of his choice. The adversary then
chooses an input sequenceI . The payoff to the adversary is the resulting performance
ratio OPT(I )/ALG(I ) and the payoff to the online player is minus this quantity (i.e., the
game is zero-sum).

As is generally the case with two-person zero-sum games, a randomized strategy is re-
quired to obtain optimal (expected) competitive performance. Extending the definition of
the competitive ratio to randomized algorithms is straightforward. We simply substitute in
(1) E[ALG(I )] for ALG(I )where the expectation is taken with respect to the distributions
used byALG. Since in the game corresponding to this definition the adversary is ignorant
of the outcomes of the random choices made by the online algorithm this adversary is
calledoblivious.10 Indeed, it is often the case that randomization (against an oblivious
adversary) dramatically improves the competitive performance (see the classical results
of [8] and [15] regarding metrical task systems and virtual memory management). As
we shall later see randomization empowers the online player also in the search problem.

1.5. Competitive Analysis: A Discussion. The main attraction in using the competitive
ratio for analyzing online algorithms is that there is no need to rely on statistical model-
ing of input sequences. Indeed, it is often extremely difficult to devise realistic statistical

9 The termcompetitive ratiowas termed by Karlin et al. [21].
10 Other kinds of adversaries that generate input sequences adaptively (based on the outcomes of the online
random choices) have been considered (see [5]).
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models for possible inputs (which are always highly dependent on the particular appli-
cation). This difficulty is often more extreme in complex dynamical environments such
as economical systems. Strategic financial decision making is therefore a very attractive
domain for competitive analyses. Moreover, in financial decision making it is often de-
sirable to secure some minimal sure profit rather than expecting higher average profits
while being exposed to severe risks. Essentially, this is what competitive analysis offers.
Nevertheless, this risk aversion property of the competitive ratio is quite often a draw-
back since this performance measure can lead to overly defensive algorithms. Indeed,
whenever decision makers do have some side information or partial (statistical) knowl-
edge on the evolution of input sequences it would be a terrible waste to ignore it, which
is precisely what the competitive ratio does. Recently, al-Binali [2] generalized the pure
competitive analysis so that it can utilize predictions (in the form of partial knowledge
on future input sequences) while retaining the natural risk aversion of the competitive
ratio. In fact, this generalized competitive analysis framework allows for trading-off the
associated risk with the potential reward.11 This (generalized) competitive analysis offers
a robust yet flexible complementary framework to the analysis of (financial) decision
making under uncertainty. An additional advantage of the competitive ratio is that it
offers a unified measure of performance under which any two strategies are comparable
in some fundamental sense.

1.6. Paper Organization. This paper is organized as follows. In Section 2 we study the
relationship between randomized search and one-way trading. In Section 3 we present a
simple deterministic search algorithm of a reservation price policy type, which is optimal
for (deterministic) search. We then show how randomization over the reservation price
policies can dramatically improve the competitive ratio. In Section 4 we present a general
“threat-based” policy for one-way trading (or search). This general policy yields optimal
algorithms for a number of variants of the one-way trading problem. We provide in this
section detailed analyses of four problem variants. In Section 5 we give a few numerical
examples of the competitive ratios obtained in the previous sections, showing that for
realistic values of the problem parameters we can obtain surprisingly low ratios. In
Section 6 we study a problem variant called a “game against Nature.” We defineNature
as an adversary that chooses the probability distribution of the maximum exchange rate
(the maximum rate is the optimal offline return). Although at the outset it seems that
Nature is weaker than our ordinary adversary we prove that (with respect to one-way
trading) Nature and the ordinary adversary are equivalent (in a sense to be made precise
later). In Section 7 we apply our results for the one-way trading game to atwo-way trading
game in which the player can trade currencies back and forth. Lastly, in Section 8 we
summarize our conclusions and indicate some directions for future work.

2. Randomized Search and One-way Trading. Notice that in the search problem
the online player must accept one price and in the one-way trading problem the trader

11 To demonstrate the utility of this new technique al-Binali has used some of the results in this paper (based
on a preliminary version of our paper) showing how the competitive performance of a one-way trader can be
boosted when he has the knowledge of useful predictions.
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can partition his initial wealth and trade the parts sequentially, each part at a different
exchange rate. Nevertheless, the search and one-way trading problems are closely related.
Any deterministic (or randomized) one-way trading algorithm that trades the initial
wealth in parts can be interpreted as a randomized search algorithm and vice versa. This
follows from the fact that any (randomized) one-way trading algorithm is equivalent to
a randomized trading algorithm that trades the entire wealth at once (at some randomly
chosen period). Further, any randomized trading algorithm that trades the entire wealth
at once is equivalent to a deterministic algorithm that trades the initial wealth in parts.
Formally we have

THEOREM1. (i) Let ALG1 be any randomized one-way trading algorithm. Then there
exists a deterministic one-way trading algorithmALG2 such that for any exchange rate
sequenceσ , E[ALG1(σ )] = ALG2(σ ). The reverse statement is also true: (ii) LetALG2 be
any deterministic one-way trading algorithm. Then there exists a randomized algorithm
ALG1 that makes only a single trade such thatE[ALG1(σ )] = ALG2(σ ) holds for allσ .

PROOF. Let ALG1 be any randomized one-way trading algorithm. In particular (and
using game-theoretic terminology),ALG1 may be amixedstrategy (a distribution over
deterministic algorithms) or abehavioralstrategy (whose daily transactions are chosen
randomly). Since in this online game (between the online player and the adversary) the
online player has perfect recall (she has no memory restrictions), we know that the set
of behavioral strategies is a subset of the set of mixed strategies (see [3]). Thus, in any
case we can assume without loss of generality thatALG1 is a mixed algorithm, which is
a probability distribution{w(a)} overA, the set of all deterministic algorithms. For any
sequence of pricesσ = p1, p2, . . . , pn, the expected return ofALG1 is Ew[ALG1(σ )] =∫
A a(σ )dw(a). With respect toσ consider a deterministic algorithmALG2 that on periodi

spends a fraction
∫
A s(i,a)dw(a) of its initial wealth wheres(i,a) is the amount spent

by the deterministic algorithma on periodi . Thus the return ofALG2 is

ALG2(σ ) =
n∑

i=1

pi

∫
A

s(i,a)dw(a)

=
∫
A

n∑
i=1

s(i,a)pi dw(a)

=
∫
A

a(σ )dw(s) = Ew[ALG1(σ )].

To prove part (ii) consider a deterministic algorithm that trades a fractionsi of its initial
wealth at thei th period,

∑
i si = 1. Now consider a randomized algorithmALG1 that

with probabilitysi trades its entire wealth at thei th period. Clearly, the expected return
of ALG1 equals the return of the deterministic algorithmALG2.

COROLLARY 2. It follows that a(competitive) optimal deterministic one-way trading
algorithm has the same return as an optimal randomized search algorithm. This implies
that randomization cannot improve the competitive performance in one-way trading.
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Although randomization cannot help in one-way trading we will see that randomization
is advantageous for search.

As noted earlier, both in the search and one-way trading problem the online player
may be required to pay a sampling cost (and/or transaction cost) for each price quotation
(and/or dollar traded). In this paper we consider simpler problem variants where there
are no such costs. Also we make the assumptions that arbitrary fractions of money units
can be traded.

REMARK 1. In general, the nature of the sampling/transaction fees will affect the com-
petitive ratio. We state without proofs the following observations. (i) The competitive
ratio of any one-way trading algorithm is independent of transaction costs determined by
a fixed percentage applied to the amount spent. In this case the equivalence of Theorem 1
obviously holds. (ii) When we introduce transaction fees which are a fixed percentage ap-
plied to the prices, the competitive ratio will improve but Theorem 1 still holds. (iii) When
fixed transaction costs are introduced the deterministic competitive ratio increases and
there is no longer an equivalence between deterministic one-way trading algorithms and
randomized search algorithms.

3. Competitive Search Algorithms. Throughout this paper we assume that prices
(exchange rates) are chosen (by an adversary) from the real interval [m,M ] where
0< m≤ M . We define the maximumfluctuation ratioof possible prices to beϕ = M/m.
Competitive ratios of algorithms will be determined in terms ofϕ. The parametersm,
M , orϕ may or may not be known to the online player.

For a start, suppose that bothm andM are known to the online player. In this case the
optimal deterministic search strategy is the followingreservation price policy(RPP): Ac-
cept the first price greater than or equal top∗ = √Mm. We callp∗ thereservation price.
Clearly, the optimal reservation price should balance the return ratios (offline/online)
resulting by the following two events: (i) the maximum price encountered,pmax, is≥ p∗

in which case the worst-case return ratio isM/p∗; (ii) pmax < p∗ in which case the
worst-case return ratio ispmax/m. Therefore, the optimal reservation pricep∗ is the
solution ofM/p = p/m.

REMARK 2. It is possible to show that if only the fluctuation ratioϕ is known (but not
m or M), then no better ratio than the trivial one ofϕ is achievable.

One can dramatically improve the competitive ratio by using randomized algorithms.
We now introduce simple randomized algorithms of “exponential threshold” type that
achieve exponentially better competitive ratios. The basic idea of these algorithms is due
to Levin [22].

Assume, for simplicity, thatϕ = 2k for some integerk. For i = 0,1, . . . , k − 1, let
RPP(i ) be the (deterministic) reservation price policy with reservation pricem2i . De-
fine EXPO to be a uniform probability mixture over the set{RPP(i )}k−1

i=0 . That is, before
the start of the gameEXPO chooses one of theRPP(i ) strategies, each with probabil-
ity 1/k.
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THEOREM3 (Levin). Let ϕ = 2k for some integer k. AlgorithmEXPO is (c(ϕ) logϕ)-
competitive with c(ϕ) approaching1 whenϕ→∞.

PROOF. Let pmaxbe the posterior maximum price obtained. Letj be an integer satisfying
m2 j ≤ pmax< m2 j+1. The particular choice ofpmax (and, therefore, ofj ) is controlled
by the adversary. Note thatj ≤ k and since all prices are in [m,M ], j = k if and only
if pmax= M . It will later be made clear that the choicepmax= M (and, thus, ofj = k)
is not optimal for the adversary so we can assume thatj ≤ k − 1. For any choice ofj
algorithmEXPOwill return on average

m

k

(
k− j +

∑
1≤i≤ j

2i

)
= m

k
(2 j+1+ k− j − 2).

Denote byR( j ) the return ratio, offline to online, obtained for a particularj . Since for
any choice ofj it is optimal for the adversary to choosepmax arbitrarily close tom2 j+1,
we have

R( j ) = k · 2 j+1

2 j+1+ k− j − 2
.

It is not hard to see that the real-valued functionR( j ) obtains its maximum atj ∗ =
k − 2+ 1/ln 2 and it follows that the coefficient ofk in R( j ) is almost 1 resulting in a
competitive ratio that is greater than but approachingk = logϕ (asϕ andk grow).

REMARK 3. Theorem 3 can be extended in two ways. First, similar result can be ob-
tained whenϕ is not a power of 2. Second, exactly the same bound holds if the player
does not knowm andM but only knowsϕ

Algorithm EXPO can be modified to work even without knowledge ofϕ. Let µ =
{q(i )}∞i=0 be any probability distribution over the natural numbers. Consider algorithm
EXPO′µ that acts as follows. Afterp1, the first price, is revealed to the online player
algorithmEXPO′µ chooses the reservation pricep12i with probabilityq(i ).

LEMMA 1. AlgorithmEXPO′µ is 2/q(blogϕc)-competitive against an oblivious adver-
sary, whereϕ is the posterior global fluctuation ratio.

PROOF. Let pmax be the maximum price obtained and assume thatp12 j ≤ pmax <

p12 j+1 for some integerj . In the worst caseOPT’s return is less than, but arbitrarily
close to,p12 j+1 and algorithmEXPO′µ returns at leastq( j )p12 j on average. It follows
that the expected competitive ratio ofEXPO′µ is not smaller than 2/q( j ). By defini-
tion, ϕ = pmax/p1 and thereforej ≤ logϕ < j + 1, soblogϕc = j and the proof is
complete.

In order to apply Lemma 1 and derive small competitive ratios for algorithmEXPO′µ
we need to construct an appropriate probability distributionµ. Small competitive ratios
are obtained by taking appropriate converging infinite sums. For example, we can use
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the Riemann zeta functionζ(x) = ∑∞
i=1(1/i

x). Specifically, for every positiveε the
infinite sum

∑∞
i=1 1/ i 1+ε converges to the constantζ(1 + ε). It follows that µε =

{1/ζ(1+ ε)(i + 1)1+ε}∞i=0 is a probability distribution over the natural numbers. Hence
by Lemma 1,EXPO′µε attains a competitive ratio of 2ζ(1+ ε)( j +1)1+ε = O(log1+ε(ϕ))
with ϕ being the posterior global fluctuation ratio. However, we can do even better.
Consider the infinite sum

∑
i 1/(i log1+ε(i ). Lemma 1 yields the competitive ratio of

O
(
log(ϕ) · log1+ε(logϕ)

)
.(2)

Notice however that asε decreases the constant in the “big-O” increases. Hence, the
particular choice of the distributionµε can only be optimized if some bounds onϕ are
known.

REMARK 4. It is possible to generalize the upper bound given by (2) and achieve an
upper bound of

O

log(ϕ) · log1+ε(log log· · · logϕ︸ ︷︷ ︸
k

)


for every integerk.

4. Optimal “Threat-Based” Policy for One-Way Trading. As can be seen in the
previous section the competitive ratioO(logϕ) is attainable by the simpleEXPO al-
gorithm under minor assumptions on possible prices (i.e., the global fluctuation ratio
is known). It turns out that the ratioO(logϕ) is within a constant factor of the best
possible. Nevertheless, to obtain an optimal competitive ratio, somewhat more involved
algorithms and analyses are required. The optimal algorithms are best described as (de-
terministic) one-way trading algorithms and we focus on the one-way trading problem
for the remainder of the paper.

The optimal performance is obtained by algorithms that obey the followingthreat-
based policy. Let c be any competitive ratio that can be attained by some one-way
trading algorithm. For a start, assume thatc is known to the trader. For each suchc the
corresponding threat-based policy consists of the following two rules.

RULE 1. Consider trading dollars to yen only when the current rate is the highest seen
so far.

RULE 2. Whenever you convert dollars, convertjust enoughto ensure that a competitive
ratio c would be obtained if an adversary dropped the exchange rate to the minimum
possible rate12 and kept it there throughout the game.

Note that these two rules apply to all but the last trading day when, by the rules of the
game, the trader must trade all remaining dollars to yen.

12 The “minimum possible rate” is defined with respect to the information known to the trader. That is, it ism
if m is known, and it isp/ϕ if only ϕ is known andp is highest price seen so far.
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At the outset it is not clear how to follow such a policy, in particular, how to follow
Rule 2 that requires trading a quantity that equals the amount of “just enough” dollars
in order to ensure a competitive ratio ofc. For now assume that it is possible to compute
the quantities prescribed by Rule 2 and assume an algorithm that follows this policy.
Such an algorithm converts dollars to yen based on the threat that the exchange rate will
drop permanently to the minimum possible rate. For each attainable competitive ratioc
the corresponding threat-based algorithm can be shown to bec-competitive. This can be
intuitively justified as follows. Consider the first trade (exchange rate isp1). Since the
current exchange rate is the highest seen so far the algorithm considers a trade. Since
the competitive ratioc is attainable by some deterministic trading algorithm, there exists
somes ≥ 0 such that the ratioc will still be attainable ifs dollars are traded to yen.
Further, the chosen amount of dollarss is such that the ratioc is so far guaranteed even
if there will be a permanent drop of the exchange rate and no further trades will be
conducted (except for one last trade converting the remaining dollars with the minimum
possible exchange rate). In particular, there is no need to consider any exchange rate
which is smaller thanp1. Similar arguments can be used to justify the choice of the
amounts for the rest of the trades and thus intuitively this policy induces ac-competitive
algorithm. A formal analysis follows.

REMARK 5. Denote the minimum possible exchange rate bym. Notice that as long as
the exchange rates are not larger thancm, the threat-based trader should not trade any
dollars to yen (except of course for the last day, when the trader must trade all remaining
dollars to yen). This follows from Rule 2 because a competitive ratio ofc is always
attainable when the maximum rate iscm even if all dollars are exchanged at ratem.

We now develop some basic properties of threat-based trading. These properties will
facilitate analyses of the threat-based policy for the following variants of the one-way
trading game.

Variant 1: Known duration (i.e.,n is known) withm andM known.
Variant 2: Unknown duration withm andM known.
Variant 3: Known duration and knownϕ.
Variant 4: Unknown duration and knownϕ.

For each of the above variants, we identify the corresponding optimal threat-based
online algorithm and determine its competitive ratio.

Fix any two positive realsm and M with m < M , and any integern > 1. An
exchange rate sequence, σ , is an element of [m,M ]n. Thus,σ = p1, p2, . . . , pn, and
for each 1≤ i ≤ n, pi ∈ [m,M ] is called theexchange rate of the ith daygiving the
number of yen that can be traded for one dollar on that day. Let6(n) denote the set of all
such exchange rate sequences. A deterministicone-way trading algorithmis a function,
D:6(n) × {1,2, . . . ,n} → [0,1], satisfying the following properties:

• D is nonincreasing;
• for eachσ ∈ 6(n), D(σ,0) = 1, andD(σ,n) = 0.

D(σ, i ) is defined to be the number of remaining dollars just after thei th day when the
algorithm trades its dollars in accordance withσ . To measure the performance ofD we
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make use of some more definitions. For eachσ ∈ 6(n), let

si
def= D(σ, i − 1)− D(σ, i ), i = 1, . . . ,n.(3)

si is calledthe ith transactionand it thus gives the amount of dollars traded to yen on
the i th day by the algorithmD. GivenD(·) and thesi , we defineYD as follows:

YD(σ,0)
def= 0,

YD(σ, i )
def=

i∑
j=1

sj pj , i = 1, . . . ,n.

Thus,YD(σ, i ) gives the number of accumulated yen justafter the i th transaction has
been performed. Clearly,YD is nondecreasing and the monotonicity ofD (and YD)
corresponds to theone-wayrequirement. Thereturn of D on the sequenceσ , denoted
by PD(σ ), is defined to be the quantityYD(σ,n). An onlineone-way trading algorithm
is a one-way trading algorithmD such that thei th transaction is solely based on past
and present exchange rates, and the parameters known to the online player.

Assume that the online player knows that there are at mostn trading days. This
corresponds to Variant 1 or 3.13 Consider the threat-based strategy. Rule 1 requires that
once a transaction has been made at some exchange rate, further transactions will be made
only at higher exchange rates; rates that are the same or lower will be ignored. Hence,
bothOPT and the threat-based algorithm conduct transactions only when the exchange
rate sequence reaches a new high. Therefore, in a worst-case analysis of the performance
of the threat-based algorithm, we may assume that the exchange rate sequence consists
of an initial segment of successive maxima of lengthk ≤ n. In addition, we can assume
that the first ratep1 is larger than the minimum possible rate timesr wherer is the target
competitive ratio of the threat-based algorithm (see Remark 5). That is,

(minimum possible rate)r ≤ p1 < p2 < · · · < pk ≤ (maximum possible rate).

However, in order to realize a threat, the adversary may choosek < n and then take

pk+1 = pk+2 = · · · = pn = (minimum possible rate).

Given a problem variant (1 or 3), letALG be the optimal threat-based algorithm for that
variant. The algorithmALG will be associated with the functionD(·), as defined above,
and throughout this section we abbreviateD(σ, i ) (resp.Y(σ, i )) to Di (resp.Yi ). Recall
that the player starts withD0 = 1 dollars andY0 = 0 yen. Also, recall thatsi (as defined
in (3)) denotes thei th transaction. Specifically,si = Di−1 − Di . It is easy to see that
pi si = Yi − Yi−1. Let r be the target competitive ratio thatALG is trying to achieve.

LEMMA 2. If ALG is an r-competitive threat-based algorithm then for every i≥ 1,

si = pi − r · (Yi−1+ Di−1 · (minimum possible rate))

r · (pi − (minimum possible rate))
(4)

13 The results for Variants 2 and 4 will be then derived from the results for Variants 1 and 3, respectively, by
taking the limitn→∞.
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and

Yi + Di · (minimum possible rate) = pi

r
.(5)

PROOF. SinceALG is r -competitive, by Rule 2 it must be that

pi

Yi + Di · (minimum possible rate)
≤ r.(6)

Here the denominator represents the return ofALG if an adversary dropped the exchange
rate to the minimum possible rate, and the numerator is the return ofOPT for such an
exchange rate sequence. That is,

pi

(Yi−1+ si pi )+ (Di−1− si ) · (minimum possible rate)
≤ r.(7)

Since (by Rule 2)ALG must spend the minimalsi that satisfies inequality (7) and since the
left-hand side in (7) is decreasing withsi we must replace the inequality with equality:

pi

(Yi−1+ si pi )+ (Di−1− si ) · (minimum possible rate)
= r.

Equation (4) is obtained by solving this equality forsi . Equation (5) is obtained by
replacing the inequality in (6) with equality and rearranging.

4.1. Analysis of Variant1: Known Duration with m,M Known. To begin our analysis
for Variant 1, we make use of (4) and (5) specializing them to the case in which the “min-
imum possible rate” ism as assumed for Variant 1. This yields the following expressions
for the daily transactions:

s1 = 1

r

p1− rm

p1−m
,(8)

and fori > 1 ,

si = 1

r
· pi − r · (Yi−1+ Di−1m)

pi −m
.(9)

Then, by (5) ati − 1 instead ofi we haveYi−1 + Di−1m = pi−1/r , so we obtain, for
i > 1,

si = 1

r
· pi − pi−1

pi −m
.(10)

In the above formulas for the daily transactions,r is the target competitive ratio that
the algorithm is attempting to achieve. Clearly the algorithm cannot attain an arbitrarily
smallr . For example, ifr = 1 we see thats1 = 1 (formula (8)) and the algorithm will
spend its entire wealth on the first rate thus failing to achieve a competitive ratio of 1
(with any continuation of the exchange rate sequence that increases above the first rate).

Hence, we can obtain from these formulasr -competitive (threat-based) algorithms
only by using sufficiently large valuesr . Our goal now is to identify the smallest achiev-
able competitive ratio.
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Let σ be an exchange rate sequence and letr > 1 be any real. We say that the threat-
based algorithmAr , as defined by formulas (8) and (10) applied withr , is r -properwith
respect toσ if (i) the sum of daily transactions computed byAr , when the exchange
rate sequence isσ , is not larger than 1 (the initial wealth); and (ii) the resulting ratio of
optimal offline return over online returnAr (σ ) with respect toσ is not larger thanr .

LEMMA 3. Let σ be any exchange rate sequence. If Ar is r-proper with respect toσ ,
then for any r′ ≥ r , Ar ′ is r ′-proper.

PROOF. As noted, and without loss of generality, suppose thatσ = p1, . . . , pk,m, . . . ,
m with m < p1 < p2 < · · · < pk. For each dayi , the daily dollar transactionss′i
as calculated byAr ′ are not larger than the respective amountssi as calculated byAr .
Specifically, fori = 1 we have, using (8),

s1− s′1 =
p1

p1−m

(
1

r
− 1

r ′

)
≥ 0.

Similarly, from (10) we have fori > 1,

si − s′i =
pi − pi−1

pi −m

(
1

r
− 1

r ′

)
≥ 0.

Therefore,
∑

i s′i ≤
∑

i si , and sinceAr is r -proper,
∑

i si ≤ 1 and, therefore,
∑

i s′i ≤ 1.
By the definition of the threat-based algorithm and since the competitive ratior ′ is
attainable, for every dayi ≤ k, Ar ′ chooses a transaction that guarantees a competitive
ratio ofr ′ even in a case of a permanent drop tom. Therefore,A′r is r ′-proper with respect
to σ .

Let σ = p1, . . . , pk,m, . . . ,m be an input sequence. For anyk, we want the daily
transactions to satisfy

∑k
i=1 si ≤ 1. Suppose for the moment thatk is known to the online

player. In this case, theoptimalcompetitive ratio for a threat-based algorithm must be
determined such that there will be no dollars remaining after the last purchase (on dayk).
In other words, the optimal competitive ratio of the threat-based strategy (withk known)
has the property that

k∑
i=1

si = 1.

Substituting for thesi from (8) and (10) we obtain

1= 1

r

p1− rm

p1−m
+ 1

r

k∑
i=2

pi − pi−1

pi −m
.(11)

After solving (11) forr we write

r = r (k)(p1, p2, . . . , pk)(12)

def= 1+ p1−m

p1
·

k∑
i=2

pi − pi−1

pi −m
.
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As shown in the following lemma, we can determine an attainable competitive ratio of
threat-based algorithm in ann-day game by maximizingr (k)(p1, . . . , pk)over all choices
of k ≤ n andm≤ p1 < p2 < · · · < pk ≤ M . Define

rn(m,M) = sup
k≤n,

m≤p1<...<pk≤M

r (k)(p1, p2, . . . , pk).(13)

LEMMA 4. Let σ be any exchange rate sequence. Then the threat-based algorithm
Arn(m,M) is rn(m,M)-proper with respect toσ .

PROOF. As usual, suppose thatσ = p1, . . . , pk,m, . . . ,m. Let r = r (k)(p1, p2, . . . ,

pk). By construction, the threat-based algorithmAr is r -proper forσ . Sincern(m,M) ≥
r , by Lemma 3Arn(m,M) is rn(m,M)-proper with respect toσ .

By Lemma 4,rn(m,M) is an achievable competitive ratio for the problem. The rest
of this section is devoted to calculatingrn(m,M). Our analysis proceeds as follows: we
first fix k, p1, andpk, and maximize over{pi }k−1

i=2 . Then we maximize overpk, next over
p1, and, lastly, overk. Without loss of generality we assume thatk > 1 since for the
choicek = 1, a competitive ratio of 1 is trivially achieved. The sequence of following
lemmas lead to the evaluation of (13).

LEMMA 5. For fixed k> 1, p1 and pk,

max
p1<p2<···<pk−1<pk

k∑
i=2

pi − pi−1

pi −m
= (k− 1)

(
1−

(
p1−m

pk −m

)1/(k−1)
)

and the maximum is obtained when for every2≤ i ≤ k,

pi − pi−1

pi −m
= 1−

(
p1−m

pk −m

)1/(k−1)

.(14)

PROOF. For eachi , setxi = pi −m. Hence,

k∑
i=2

pi − pi−1

pi −m
=

k∑
i=2

xi − xi−1

xi

= k− 1−
k∑

i=2

xi−1

xi
.

However, by the geometric-arithmetic mean inequality,

(x1/x2+ x2/x3+ · · · + xk−1/xk)

k− 1
≥
(

x1

x2
· x2

x3
· · · · · xk−1

xk

)1/(k−1)

=
(

x1

xk

)1/(k−1)

,

and equality is obtained if and only if all the terms in the left-hand side are equal. Hence,

max
pi ,

2≤i≤k−1

k∑
i=2

pi − pi−1

pi −m
= (k− 1)− min

xi ,

2≤ i ≤ k− 1

(
k∑

i=1

xi−1

xi

)
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= (k− 1)

(
1−

(
x1

xk

)1/(k−1)
)

= (k− 1)

(
1−

(
p1−m

pk −m

)1/(k−1)
)
.

From Lemma 5 we immediately obtain

sup
k≤n,

m≤p1<···<pk≤M

r (k)(p1, p2, . . . , pk) = sup
k≤n,

m≤p1<pk≤M

r (k)(p1, pk),

where

r (k)(p1, pk)
def= 1+ p1−m

p1
· (k− 1)

(
1−

(
p1−m

pk −m

)1/(k−1)
)
.

It is readily seen thatr (k)(p1, pk) is increasing withpk. Therefore, it is maximized
when pk takes its maximum possible value,M , and supp1,pk

r (k)(p1, pk) reduces to
supp1

r (k)(p1) where

r (k)(p1)
def= 1+ p1−m

p1
· (k− 1)

(
1−

(
p1−m

M −m

)1/(k−1)
)
.(15)

Abbreviate maxp1 r (k)(p1) by r (k).

LEMMA 6. maxp1 r (k)(p1) exists; let p∗ be a number in[m,M ] such that r(k)(p∗) =
maxp1 r (k)(p1). Then p∗ is unique and

r (k)(p∗) = kp∗

km+ (p∗ −m)
.(16)

PROOF. We use the following substitutions:

u = (p1−m)1/(k−1),

v = (M −m)1/(k−1).

After simplification, we can write the derivative ofr (k)(p1) as follows:

dr (k)(p1)

dp1
= −uk +mku−m(k− 1)v

p2
1v

.(17)

Consider the numerator of (17). For every positivev andk > 1, the equation

uk +mku−m(k− 1)v = 0(18)

has a unique positive root,u∗. In other words, there existsp∗ = (u∗)k−1+m, that is, a sta-
tionary point ofr (k)(p1). It is straightforward to check that the quantity(d2r (k)(p1)/dp2

1)

(p∗) is negative and thusr (k)(p∗) is a maximum.
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We can rewrite (18) in the form

u∗

v
= m(k− 1)

(u∗)k−1+mk
,

and if we substitute back foru∗ andv we obtain(
p∗ −m

M −m

)1/(k−1)

= m(k− 1)

p∗ −m+mk
= m(k− 1)

p∗ +m(k− 1)
.(19)

The proof of (16) is then complete by substituting (19) in (15). That is,

r (k)(p∗) = 1+ p∗ −m

p∗
(k− 1)

(
1−

(
p∗ −m

M −m

)1/(k−1)
)

= 1+ p∗ −m

p∗
(k− 1)

(
1− m(k− 1)

p∗ +m(k− 1)

)
= 1+ (p

∗ −m)(k− 1)

p∗ +m(k− 1)

= kp∗

p∗ +m(k− 1)
.

We can now uniquely characterize the worst-casek-day sequence of exchange rates
against the threat-based algorithm. Letσ̂k = p̂1, p̂2, . . . , p̂k denote this sequence. By
Lemma 6,p̂1 = p∗. We also know, from an earlier discussion, thatp̂k = M . In addition,
by Lemma 5, for all 2≤ i ≤ k− 1,

pi − pi−1

pi −m
= 1−

(
p1−m

pk −m

)1/(k−1)

,(20)

so

p̂i−1 = p̂i

(
p̂1−m

M −m

)1/(k−1)

+m

(
1−

(
p̂1−m

M −m

)1/(k−1)
)
.

The behavior of the threat-based algorithm againstσ̂k can also be made clear now. For
1 ≤ i ≤ k, denote bŷsi the daily amounts that the threat-based algorithm spends when
the exchange rate sequence isσ̂k.

LEMMA 7. For all 1≤ i ≤ k, ŝi = 1/k.

PROOF. It is readily seen, by Lemma 5, that

ŝ2 = ŝ3 = · · · = ŝk.

The proof is completed by showing thatŝ1 = 1/k as follows. We substitute the expression
of r (k) from (16) forr in (8). That is,

ŝ1 = 1

r (k)
· p∗ − r (k)m

p∗ −m
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= p∗ +m(k− 1)

kp∗
· p∗ − kmp∗/(p∗ +m(k− 1))

p∗ −m

= p∗ +m(k− 1)

kp∗
· p∗(p∗ −m)

(p∗ −m)(p∗ +m(k− 1))

= 1

k
.

Thus, against the (worst-case) exchange rate sequenceσ̂k, the threat-based algorithm
obeys the conventional wisdom of investment advisers by employing adollar-cost av-
eragingstrategy, in which an equal number of dollars is invested each day.

The next lemma yields a more informative characterization ofr (k).

LEMMA 8. r (k) is the unique solution, r , of

r = k ·
(

1−
(

m(r − 1)

M −m

)1/k
)
.(21)

PROOF. First we show that

r (k) = k

(
1−

(
p̂1−m

M −m

)1/(k−1)
)
.(22)

Consider formula (10) forsi , i > 1. We already know that̂si = 1/k. Therefore, using
(20) we obtain

1

k
= 1

r (k)
· p̂i − p̂i−1

p̂i −m

= 1

r (k)
·
(

1−
(

p̂1−m

M −m

)1/(k−1)
)
.

This proves (22). Using (8) we derive the following expression forp̂1:

p̂1 = mr(k)(k− 1)

k− r (k)
(23)

which is obtained when we solve the equation 1/k = (1/r (k)) ·(( p̂1−mr(k))/( p̂1−m))
for p̂1. We now substitute the expression forp̂1, (23), in (22) and learn thatr (k) is the
solution of the following equation:

r (k) = k

(
1−

(
mk(r (k) − 1)

(k− r (k))(M −m)

)1/(k−1)
)
.(24)

Starting with (24), the following sequence of equivalent equalities completes the proof
of the lemma:

r (k) = k− k

(
mk(r (k) − 1)

(k− r (k))(M −m)

)1/(k−1)

,(25)
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k− r (k)

k
=
(

mk(r (k) − 1)

(k− r (k))(M −m)

)1/(k−1)

,

k− r (k)

k

(
mk(r (k) − 1)

(k− r (k))(M −m)

)
=
(

mk(r (k) − 1)

(k− r (k))(M −m)

)k/(k−1)

,(
m(r (k) − 1)

M −m

)1/k

=
(

mk(r (k) − 1)

(k− r (k))(M −m)

)1/(k−1)

.

Notice that the right-hand side of (25) is identical to the exponentiated term of (24). The
lemma is complete by using (24) while substituting the left-hand side of (25) for this
term.

Consider the representation ofr (k), (21). It is clear thatr (k) < M/msince the compet-
itive ratio M/m is attained by the trivial strategy that trades all dollars in the minimum
possible rate,m, and the threat-based algorithm certainly performs strictly better. Hence,
m(r − 1)/(M −m) = (r − 1)/(M/m− 1) < 1, and then it is not hard to see thatr (k)

is strictly increasing withk. Therefore, we must take the pessimistic assumption that
k = n. This yields the following corollary that gives the best attainable competitive
ratio,rn(m,M), that the threat-based algorithm can attain for ann-day conversion game.

COROLLARY 4. rn(m,M) is the root, r , of the equation

r = n ·
(

1−
(

m(r − 1)

M −m

)1/n
)
.(26)

To summarize, we have two methods of calculatingrn(m,M):

• Solvedr (n)(p1)/dp1 = 0 for its roote∗ (as in (17)) and then substitute it into (15).
• Solve (26) forr .

The next theorem states thatrn(m,M) is the best competitive ratio that a one-way trading
algorithm can achieve for the known duration case withn trading days.

THEOREM5. Let m, M , and n be given. Then rn(m,M) is the lowest possible compet-
itive ratio for a known duration one-way trading game(with known m and M).

PROOF. Let ALG be any deterministic algorithm different from the threat-based algo-
rithm. Using an adversary argument we show thatALG cannot achieve a ratio smaller
thanrn (as defined in (26)). Let̂σn = p̂1, p̂2, . . . , p̂n be the exchange rate sequence that
maximizesr (p1, p2, . . . , pn) for ann-day game (see the discussion after Lemma 6). On
the first day we present̂p1 to ALG. If ALG spends less than 1/n dollars on this rate, then
we end the game. Therefore,ALG must convert the remaining dollars with the minimum
possible rate,m. If this is the case,ALG cannot achieve a ratio smaller thanrn; simply be-
causep̂1 is chosen such that 1/n is the minimal amount that should be spent to guarantee
the ratiorn. Therefore, we assume thatALG spends on the first day an amounts′1 ≥ 1/n.
In this case we continue the game and presentALG with the next rate,̂p2. In general, if
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at the end of thei th day the total amount in dollars thatALG spent is less thani /n we
immediately end the game. Otherwise, we continue and presentALG with the next rate,
p̂i+1, etc. Let j be the minimumi such that at the end of thei th day, the total amount
spent byALG so far is less thani /n. Denote bys′i the amount spent byALG on thei th
day, 1≤ i ≤ j . Since the game proceeded to thej th day we know that

1

n
≤ s′1,

2

n
≤ s′1+ s′2,

...

j − 1

n
≤

j−1∑
i=1

s′i .

However, by the choice ofj ,

j

n
>

j∑
i=1

s′i .

ThereforeALG could have gained more by spending exactly 1/n on each of the firstj −1
days and by spendinḡsj = s′j + (

∑ j−1
i=1 s′i − ( j − 1)/n) at the higher rate,̂pj . Even if

this is the case, sincēsj < 1/n, ALG could not guarantee a competitive ratio ofrn since
p̂j is chosen such that exactly 1/n dollars should be spent on thej th day to attain a ratio
of rn. It follows then thatALG must coincide with the threat-based algorithm, achieving
a ratio ofrn, or otherwiseALG incurs a higher ratio on this exchange rate sequence.

REMARK 6. With respect to the proof of Theorem 5, notice that the adversary may end
the game after any day,i , provided that the total amount spent byALG is less than or
equal toi /n. For example, ifALG spends exactly 1/n dollars on the first day, then by
dropping the rest of the sequence tom, the adversary forces a competitive ratio ofrn on
ALG. Thus, there are exactlyn types of worst-case sequences against the threat-based
algorithm. Namely, the sequences

p̂1, p̂2, . . . , p̂i ,m,m, . . . ,m︸ ︷︷ ︸
n−i

, i = 1,2, . . . ,n.

(Of course, the adversary may use other rates smaller thanp̂i instead of all them’s on
the last days, except for the very last day.)

REMARK 7. It is easy to extend the proof of Theorem 5 to the case of randomized
algorithms against oblivious adversaries. All that is needed is to note that an oblivious
adversary can calculate the expected amounts that the algorithm will spend on each
trading day. Then the proof is analogous to the proof of Theorem 5. Nevertheless, we
already know from Corollary 2 that randomization cannot help in one-way trading.
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4.2. A Game Against a Lenient Adversary. As can be seen in the proof of Theorem 5,
the adversary can always force a competitive ratio ofrn(m,M) on any algorithm. Never-
theless, for any practical purpose, it is most likely the case that we will confront a more
lenient adversary—one which deviates from the worst-case sequence of exchange rates.
In this section we describe an algorithm that always perform as well as the previous
algorithm. However, on some exchange rate sequences, those which are not worst-case,
the new algorithm strictly improves the offline to online ratio.

At the start of each trading day, the online player knows the number of remaining
days,n′ ≤ n and is presented with an exchange rate,x. In addition, the player already
accumulatedY ≥ 0 yen and hasD ≤ 1 dollars remaining. At this stage, the online player
can calculate the best attainable competitive ratio for the remaining daysgiven x, and
use it to determine the amount of dollars to be spent. The idea is simply to assume that
the current day is the first trading day of ann′-day trading period and that the rest of the
rates will be chosen by an adversary (i.e., to maximize the competitive ratio). Since we
considerx to be a “first” day rate we denote it byp′1 and similarly, we denote the rest
of the worst-caseexchange rates byp′i , i = 2,3, . . . ,n′. Also, the (worst-case) daily
transactions will be denoted bys′i . GivenD, Y, n′, andp′1 we now derive a formula for
r ′, the best attainable ratio from this stage onward, as well as formulas for thes′i . Note
that for usage the online player need only know the quantitys′1.

An application of (4) withi = 1 yields

s′1 =
p′1− r ′ · (Y + Dm)

r ′ · (p′1−m)
.(27)

For i > 1 we obtain from (10)

s′i =
1

r ′
· p′i − p′i−1

p′i −m
.(28)

Since the amounts to be spent sum up toD we have

D = s′1+
n′∑

i=2

s′i

= p′1− r ′ · (Y + Dm)

r ′ · (p′1−m)
+ 1

r ′
·

n′∑
i=2

p′i − p′i−1

p′i −m
.

Solving forr ′,

r ′ = p′1
Dp′1+ Y

·
[

1+ p′1−m

p′1

n′∑
i=2

p′i − p′i−1

p′i −m

]

= p′1
Dp′1+ Y

· r (n′)(p′1, . . . , p′n′),

wherer (n
′)(·) is defined by (12) (withk = n′). Thus, the best ratio,r ′, is simply written as

a “normalization” of the best ratio for a regularn′-day game (D = 1,Y = 0) with future
ratesp′2, p′3, . . . , p′n′ . To determine the optimal ratio at this stage, we must optimize over
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all possible future exchange rates. Notice however that we need not maximize overp′1
since it is already given. Hence, we apply Lemma 5 to obtain

r ′ = r ′(p′1,n
′, D,Y,m,M)

def= p′1
Dp′1+ Y

· r (n′)(p′1),

wherer (n
′)(p′1) is given by (15).

The improved, adaptive algorithm may be summarized as follows: Given an exchange
ratex when there arè trading days remaining (` > 0), the online player withD dollars
and Y yen calculatesr ′ = r ′(x, `, D,Y,m,M). If x ≤ mr′, then the online player
makes no transaction (see Remark 5). Otherwise, the online player tradess′1 (equation
(27)) dollars to yen.

We now exemplify how this adaptive algorithm takes advantage of opportunities
encountered in the trading period (i.e., deviations from the worst-case exchange rate
sequence). In this example, letn′ be an arbitrary number of days (≥ 2), and suppose that
the first exchange rate we encounter is the maximum possible rate,M . Suppose also that
at this stage the algorithm holdsD dollars andY yen. In contrast to the “worst-case”
algorithm described in the previous section, we shall see that the adaptive algorithm
identifies this opportunity and trades all availableD dollars on this (fortunate) exchange
rate.

First, by (15),r (n
′)(M) = 1, sor ′ = M/(DM + Y). Hence,

s′1 =
(

M − M(Y + Dm)

DM + Y

)/(
M(M −m)

DM + Y

)
= MD(M −m)

M(M −m)
= D.

REMARK 8. In general, it can be shown that when using this improved algorithm, the
sequence of ratiosr ′ that is calculated by the online player in this manner is nonincreasing
and if the adversary always deviates from the worst possible sequence, then the sequence
of calculated ratios,r ′, is strictly decreasing.

4.3. Analysis of Variant2: Unknown Duration with m,M Known. Since in this variant
the number of trading days is not given to the online player, he must consider an arbitrarily
large number of days. Define

r∞(m,M)
def= lim

n→∞ rn(m,M).

Notice thatrn is monotone increasing withn. Therefore,r∞ is larger thanrn for any
n and therefore, by Lemma 3 the threat-based algorithm calculated withr∞ (Ar∞ ) is
r∞-proper for any input sequenceσ and thereforer∞ is anattainablecompetitive ratio
for any finite trading period. On the other hand, asrn is the lower bound for eachn-day
trading game, the lower bound for Variant 2 approaches (from below)r∞(m,M) since
the adversary may choose arbitrarily largen.
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Using elementary calculus we calculater∞ as follows. Using the abbreviationP =
m(r − 1)/(M −m) we calculate the limit limn→∞ n · (1− P1/n) = limn→∞ rn(m,M).
Notice thatn · (1− P1/n) = (1− P1/n)/(1/n), so by L’Hôpital’s rule

lim
n→∞n · (1− P1/n) = lim

n→∞
P1/n · ln P/n2

−1/n2

= lim
n→∞−P1/n · ln P

= − ln P.

Hence,r∞(m,M) is the unique solution,r , of

r = ln
M −m

m(r − 1)
.(29)

It is not hard to see thatr∞ = 2(lnϕ) whereϕ = M/m.

4.4. Analysis of Variant3: Known Duration withϕ Known. Here, the online player
knows only the quantityϕ = M/m but not the actual bounds on possible exchange rates,
m andM . Notice that the information about the minimum possible rate available to the
online player varies online. A simple observation is that at thei th day the minimum
possible rate (at this stage) ispi /ϕ; here we assume thatpi is an element of the initial
segment of exchange rate maxima. Therefore, as in the analysis of the second variant,
we now make use of (4) and (5) specializing them to the case in which the“minimum
possible rate”is pi /ϕ as inferred from the above observation. First, from (5) we have

Yi + Di
pi

ϕ
= pi

r
.

Solving for Di we obtain

Di = ϕ ·
(

1

r
− Yi

pi

)
.(30)

Then, from (4) we obtain

si = pi − r (Yi−1+ Di−1 · pi /ϕ)

r · (pi − pi /ϕ)
.(31)

SinceY0 = 0 andD0 = 1, we have for the casei = 1,

s1 = ϕ − r

r · (ϕ − 1)
.(32)

Consider (30) for the casei−1 and substitute it forDi−1 in (31). After some simplification
the resulting equation can, fori > 1, be written as

si = Yi−1ϕ

ϕ − 1
·
(

1

pi−1
− 1

pi

)
.(33)
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By definition,Yi = Yi−1+ pi si . If we use (33) to substitute forsi we obtain the following
recurrence relation forYk, k > 1:

Yk = Yk−1+ pk · sk(34)

= Yk−1+ pkYk−1ϕ

ϕ − 1
·
(

1

pk−1
− 1

pk

)
= Yk−1 · 1

ϕ − 1
·
(
ϕ · pk

pk−1
− 1

)
.

Recall that the base case for this recurrence relation is given byY1 = s1 · p1. Using (32)
we obtain

Yk = Y1 ·
(

1

ϕ − 1

)k−1

·
k∏

i=2

(
ϕ · pi

pi−1
− 1

)
(35)

= p1(ϕ − r )

r (ϕ − 1)
·
(

1

ϕ − 1

)k−1

·
k∏

i=2

(
ϕ · pi

pi−1
− 1

)
.

Whenk is known to the online player, the optimal online algorithm must convert all
dollars by the end of thekth day. Therefore,Dk should equal 0. Thus, using (30),

ϕ ·
(

1

r
− Yk

pk

)
= 0.

Hence,r = pk/Yk, and if we substitute (35) forYk we obtain

r = pk

Yk

= pk/p1

((ϕ − r )/r (ϕ − 1)) · (1/(ϕ − 1))k−1 ·∏k
i=2 (ϕ · (pi /pi−1)− 1) .

After solving forr and simplifying we obtain

r = r (k)(p1, p2, . . . , pk)(36)

def= ϕ − (pk/p1) · (ϕ − 1)k∏k
i=2(ϕ · (pi /pi−1)− 1)

.

Hence, it remains to calculate

rn(ϕ)
def= max

k≤n,
p1<p2<···<pk

r (k)(p1, . . . , pk).

LEMMA 9. For fixed p1 and pk,

max
p1<p2<···<pk

r (k)(p1, p2, . . . , pk)

occurs when, for every2≤ j ≤ k,

pj

pj−1
=
(

pk

p1

)1/(k−1)

.
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PROOF. If we fix p1 and pk in r (k)(p1, p2, . . . , pk) it only remains to maximizeP =∏k
i=2(ϕ · (pi /pi−1) − 1). First notice that sinceϕ ≥ 1 and 0< p1 < p2 < · · · < pk,

every term inP is positive. Now, for any 2≤ j ≤ k − 1, pj contributes to the product
P only in the multiplication of two terms which we abbreviate byAj :

Aj =
(
ϕ · pj

pj−1
− 1

)
·
(
ϕ · pj+1

pj
− 1

)
.

Consider

d Aj

dpj
= −ϕ · (p

2
j − pj+1 · pj−1)

pj−1 · p2
j

.

Clearly, p′j = (pj−1 · pj+1)
1/2 is a root ofd Aj /dpj = 0. In addition,(d2Aj /dp2

j )(p
′
j ) is

negative. Therefore, for fixedpj−1 and pj+1, Aj is maximized when

pj

pj−1
= pj+1

pj
=
(

pj+1

pj−1

)1/2

.

It follows then thatP is maximized when for every 2≤ j < k, pj /pj−1 = pj+1/pj . We
denote this ratio byρ. Thus,

ρk−1 = p2

p1
· p3

p2
· · · · · pk

pk−1
= pk

p1

andρ = (pk/p1)
1/(k−1).

As a direct conclusion of Lemma 9r (k)(p1, p2, . . . , pk) can be rewritten asr (k)(pk)

where

r (k)(pk)
def= ϕ − (pk/p1) · (ϕ − 1)k∏n

i=2(ϕ · (pk/p1)1/(k−1) − 1)
(37)

= ϕ − pk/p1 · (ϕ − 1)k(
ϕ · (pk/p1)1/(k−1) − 1

)k−1 .

By taking the derivative ofr (k)(pk)with respect topk, it can be seen that for everyϕ > 1,
r (k)(pk) increases withpk, so letpk take its maximum valuep1ϕ to obtain

r (k)
def= ϕ − (p1ϕ/p1) · (ϕ − 1)k

(ϕ · (p1ϕ/p1)1/(k−1) − 1)k−1
(38)

= ϕ ·
(

1− (ϕ − 1)k(
ϕk/(k−1) − 1

)k−1

)
.

The final step to establish the best attainable competitive ratio for this variant is to
optimizer (k) with respect tok.

LEMMA 10. r (k) is monotone increasing with k.
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PROOF. Set

f (k)
def= (ϕ − 1)k(

ϕk/(k−1) − 1
)k−1

and

g(k)
def=
(
ϕk+1/k − 1

)k
(ϕ − 1)k

.

By showing that for allk ≥ 2 andϕ > 1, f (k) − f (k + 1) is positive, we shall prove
that f (k) is monotone decreasing. By considering (38), this will readily prove thatr (k)

is monotone increasing withk.

f (k)− f (k+ 1) = (ϕ − 1)k(
ϕk/(k−1) − 1

)k−1 −
(ϕ − 1)k+1(
ϕ(k+1)/k − 1

)k
= (ϕ − 1) ·

(
1

g(k− 1)
− 1

g(k)

)
.(39)

Showing thatf is decreasing is therefore equivalent to showing thatg is an increasing
function. Since log is an increasing function, it is sufficient to show that log(g(k)) is

increasing. Sety
def= 1/k andh(t)

def= log(ϕ1+t − 1). Then

log(g(k)) = k log

(
ϕ1+1/k − 1

ϕ − 1

)
= k(log(ϕ1+y − 1)− log(ϕ − 1))

= h(y)− h(0)

y
.

Sincek is decreasing iny, we need to show that(h(y)− h(0))/y is a monotone decreas-
ing function ofy. This is established in two steps: (i)h(y) is a strictly concave function;
(ii) (h(y)− h(0))/y is a decreasing function.

We first show that (ii) follows from (i). Ifh is strictly concave, then

h (ty+ (1− t)x) > t · h(y)+ (1− t) · h(x)
for all t in (0,1) andx 6= y such thath(x) andh(y) are defined. Takex = 0 to obtain

h(ty) > t · h(y)+ (1− t) · h(0)
for y > 0. This yields

h(ty)− h(0)

ty
>

h(y)− h(0)

y
, t ∈ (0,1),

which proves (ii). To prove (i) we show thath′(y) is a decreasing function. We differen-
tiateh:

h′(y) = log(ϕ)
ϕ1+y

ϕ1+y − 1
.
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We writez = ϕ1+y and thenh′(y) = log(ϕ)z/(z− 1). Sincez/(z− 1) is a decreasing
function of z in the rangez > 1, and sincez is an increasing function ofy, it follows
thath′(y) is strictly decreasing. It is well known that this implies thath is concave. This
establishes (i).

A direct conclusion of Lemma 10 is that the adversary will choosek to ben and we
obtain the following:

THEOREM6. rn(ϕ) = ϕ(1− (ϕ − 1)n/(ϕn/(n−1) − 1)n−1).

4.5. Analysis of Variant4: Unknown Duration withϕ Known. Here, analogously to
Variant 2, the best attainable competitive ratio is

r∞(ϕ)
def= lim

n→∞ rn(ϕ).

Using elementary calculus it can be shown that

lim
n→∞

(ϕ − 1)n(
ϕn/(n−1) − 1

)n−1 = (ϕ − 1)exp

(
−ϕ lnϕ

ϕ − 1

)
.

Therefore,

r∞(ϕ) = ϕ

(
1− (ϕ − 1) · exp

(
−ϕ lnϕ

ϕ − 1

))
= ϕ − ϕ − 1

ϕ1/(ϕ−1)
.

LEMMA 11. r∞(ϕ) = 2(lnϕ).

PROOF. We first prove the upper bound,r∞(ϕ) = O(lnϕ). Let f (x)
def= x−x/(x + 1)1/x.

We will show that for allx > 1, f (x) ≤ ln(x+1). This shall prove thatr∞(ϕ) = O(lnϕ)
(for ϕ > 2), sincef (ϕ−1)+1= r∞(ϕ). To prove the claim it is sufficient to prove that

exp( f (x)) ≤ x + 1,

or, in other words, that

ex

exp(x/(x + 1)1/x)
≤ x + 1.

This is equivalent to showing that

1

x + 1
· ex ≤

(
exp

(
1

(x + 1)1/x

))x

.

So it is sufficient to prove that

1

(x + 1)1/x
· e≤

(
exp

(
1

(x + 1)1/x

))
.
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Seta = 1/(x + 1)1/x. We need, then, to show thatg(x)
def= ea−ea is nonnegative for all

x > 1. This can be established by differentiation. We shall show thatg′ is negative, sog
is decreasing. Then it can be shown that limx→∞ g(x) = 0 (and also it is easy to verify
thatg(1) = √e− e/2' 0.2896). This will complete the proof. It remains to show that
g′ < 0.

g′(x) = a(x ln(x + 1)+ ln(x + 1)− x) · (ea − e)

x2(x + 1)
.

It is not hard to verify thatx ln(x+1)+ ln(x+1)− x is positive (for example, atx = 1
the value of this expression is> 1

3). Seth(x) = ea − e. We will show thath is negative
in the interval(1,∞) and this will prove thatg′ < 0. We differentiateh:

h′(x) = eaa(x ln(x + 1)+ ln(x + 1)− x)

x2+ 1
> 0.

Therefore,h is increasing and it can be shown that limx→∞ h(x) = 0. Hence,h is
negative in the interval(0,∞). This proves the upper bound.

For the lower bound, recall thatϕ = M/m. It is clear that for eachn ≥ 2,rn(m,M) ≤
rn(ϕ). Hence,

r∞(ϕ) ≥ r∞(m,M) = 2(lnϕ).

5. Numerical Examples of Competitive Ratios of Search and One-way Trading
Algorithms. In this section we provide some numerical examples of competitive ratios
attained by some of the algorithms discussed so far. Consider Table 1. Clearly, the optimal
threat-based algorithm for the unknown duration case withm andM known is always
significantly better than all other algorithms. Notice that the deterministic reservation
price policy RPP is better than algorithmEXPO for small values ofϕ, but the growth
rate ofEXPO’s competitive ratio is approximately the logarithm of the growth rate of the
competitive ratio ofRPP. In general it is not hard to show that the limit of the ratio of
EXPO’s competitive ratio to the threat-based competitive ratio is 1/ln 2≈ 1.44.

With respect to the known duration case, it is interesting to consider the rate of
increase of the optimal competitive ratio as a function of the number of trading daysn. It
is not hard to see that the optimal competitive ratio grows very quickly to its asymptote.
Nevertheless, there is still an advantage in playing short games. For instance, already
at then = 20th periodrn(1,2) almost reaches its asymptote,r∞(1,2) ≈ 1.278 (which
is equivalent to guaranteeing 78.2% of the optimal offline return), atn = 10 the ratio
achieved is 1.26 (79.3%), and atn = 5 the ratio is 1.24 (80.6%).

6. One-Way Trading Against Nature. Letµbe the maximum value that the exchange
rate will assume. In this section we define and study a one-way trading game in which
the online player knows the probability distribution ofµ, and this distribution is chosen
by an adversary. This model is typically referred to as a game against Nature (see [4],
[26], and [12]). The result in this section reveals an interesting relationship between this
game against Nature and the results of previous sections. At the outset it may appear



128 R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin

Table 1. Numerical examples of competitive ratios for some search and one-way
trading algorithms (unknown duration).

Value ofϕ
Algorithm 1.5 2 4 8 16 32

RPP(m,M known) 1.22 1.41 2 2.82 4 5.65
EXPO(only ϕ known)∗ 1.5 2 2.66 3.42 4.26 5.16
THREAT (only ϕ known) 1.27 1.50 2.11 2.80 3.53 4.28
THREAT (m,M known) 1.15 1.28 1.60 1.97 2.38 2.83

∗Or m andM known.

that Nature is weaker than the oblivious adversary since Nature chooses its policy based
solely on the problem parameters whereas the oblivious adversary knows and makes
use also of the online strategy. Moreover, Nature has to declare its strategy before the
start of the game whereas the oblivious adversary keeps its strategy secret and reveals
it only piecemeal online. Nevertheless, we shall see that the online player does not gain
more power against Nature and in fact the competitive ratios of the strategy against the
oblivious adversary and Nature are exactly the same.

We now define the new game more precisely. In contrast to the previous analyses
we consider here a continuous time model. Fixm and M and let F be a cumulative
distribution function ofµ; that is,F(x) = Pr[µ < x]. Assume that the support ofF is
in [m,M ]. Let F denote the set of all such cumulative distribution functions.

REMARK 9. Notice that our definition ofF is slightly different from the conventional
one. Usually, a cumulative distribution functionF with support [a,b] is any real function
that satisfies: (i) for anyx in [a,b], F(x) is nonnegative; (ii)F(a) = 0 andF(b) = 1;
(iii) F is nondecreasing over [a,b]; and (iv) F is right-hand continuous in the open
interval (a,b). Thus, for eachx, y ∈ [a,b], with a < x < y, F(y) − F(x) is the
probability that a number is chosen in(x, y], andF(y)− F(a) is the probability that a
number is in [a, y].

In our formulation, for eachx, y ∈ [m,M ] with x < y < M , F(y) − F(x) is the
probability that a number is in [x, y) andF(M)− F(y) is the probability that a number
is in [y,M ]. Thus, our cumulative distribution functions are left-hand continuous in
the open interval(m,M). The usefulness of this definition in our context is twofold.
First it will simplify some of the calculations. More importantly, it will be essential
later to guarantee the existence of Stieltjes integral when the integrand is a probability
distribution function of this type (left-hand continuous) and the integrator is an ordinary
(right-hand continuous) probability distribution function.

For eachµ ∈ [m,M ] consider the following exchange rate function,Eµ: [m,M ] →
R[m,M ],

Eµ(t)
def=
{

t, if m≤ t ≤ µ,
m, if t > µ.

Thus, Eµ is increasing to a global maximumµ and then drops tom. For any trading
algorithmALG, andF ∈ F , let PALG(F) denote the expected return ofALG with respect
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to F when the algorithm starts with one dollar and trades its dollars in accordance with
an exchange rate functionEµ whereµ is a random number chosen with probability
distributionF . Later, in Remark 11 we justify this choice ofEµ.

Given anyF and any online algorithmALG, we measure the performance ofALG by
its return ratio against F, rALG(F,m,M), which is defined as

r A(F,m,M)
def= POPT(F)

PALG(F)
.

Thus, the online player and the adversary’s goals are, respectively, to minimize and to
maximize the online algorithm’s return ratio againstF . With respect to a distribution
function, F , we say that an online algorithm isoptimal if no other online algorithm
attains a smaller return ratio againstF .

The new game is summarized as follows:

• Nature chooses a probability distributionF ∈ F , so as to maximize the return ratio of
the best online algorithm againstF . The functionF is then made known to the online
player.
• Based onF , the online player chooses his best online trading algorithm,ALG.
• Nature chooses a random number,µ (with cumulative distributionF), which remains

unknown to the online player.
• The game is played: the online algorithmALG against the exchange rate functionEµ.

The main theorem we prove states that the smallest competitive ratio that the online
player can achieve, for Variant 2,r∞ (see Section 4.3), is equal to the largest return ratio
that the adversary can force by choosing a probability distribution for the maximum
exchange rate.

THEOREM7. r∞(m,M) = maxF minA r A(F,m,M).

Before attempting to prove Theorem 7, the question that we ask is: What is the online
algorithm that maximizes the return ratio against a givenF?

In order to answer this question we now reduce the class of candidates from all possible
(continuous) algorithms to the small class of reservation price policies (see Section 1.3).
Namely, for eachx ∈ [m,M ], the reservation price policyRPP(x) is an online trading
algorithm that trades all dollars at exchange ratex if the exchange rate function ever rises
to the ratex. It follows (by definition) that if the exchange rate function never reaches
x, RPP(x) trades all dollars at ratem.

It is not hard to see that for anyF ∈ F , the expected return ofRPP(x) is

PRPP(x)(F) = x Fc(x)+mF(x),

whereFc(x)
def= 1− F(x).

Similar to the discrete time setup we denote byD a continuous time trading func-

tion (algorithm). ConsiderDc(x)
def= 1 − D(x). By the properties ofD we have:

(i) Dc: [m,M ] → [m,M ]; (ii) Dc(m) = 0, Dc(M) = 1; (iii) Dc is nondecreasing;
and (iv) Dc is right-hand continuous. Hence,Dc is a cumulative distribution function
with support [m,M ].
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LetD be the set of all such functionsD and letDc be the set of allDc with D ∈ D.
For eachG ∈ Dc we can useG as a trading algorithm in the two following ways:

• UseGc as an (ordinary) deterministic trading algorithm.
• UseG as a randomized algorithm, viewed as a probability distribution over threshold

algorithms. Specifically,G(x) is the cumulative probability of choosing one of the
algorithms,RPP(s), s ∈ [m, x].

It is straightforward to show that these two algorithms are equivalent in the sense that
when played against a particular distribution function, they exhibit the same expected
returns. LetG ∈ Dc. For anyF ∈ F , whenG is used as a randomized algorithm, its
expected return with respect toF is

R1(F,G) =
∫ M

m

(
x Fc(x)+mF(x)

)
dG(x).

On the other hand, as a deterministic algorithm (Gc) its expected return is

R2(F,G) =
∫ M

m

(∫ x

m
u dG(u)+m [1− G(x)]

)
d F(x).

We note that sinceG is right-hand continuous andF is left-hand continuous, and since
bothG andF are of bounded variation, then bothR1 andR2 exist.

LEMMA 12. For each F∈ F and G∈ Dc, R1(F,G) = R2(F,G).

PROOF.

R1(G, F) =
∫ M

m
x(1− F(x))dG(x)+m

∫ M

m
F(x)dG(x),

R2(G, F) =
∫ M

m

(∫ x

m
u dG(u)

)
d F(x)+m

∫ M

m
d F(x)−m

∫ M

m
G(x)d F(x)

=
∫ M

m

(∫ x

m
u dG(u)

)
d F(x)+m−m

(
1−

∫ M

m
F(x)dG(x)

)
=
∫ M

m

(∫ x

m
u dG(u)

)
d F(x)+m

∫ M

m
F(x)dG(x).

Hence, it is sufficient to prove that∫ M

m

(∫ x

m
u dG(u)

)
d F(x) =

∫ M

m
x(1− F(x))dG(x).(40)

For any positive integern, letπn be the following subdivision of the interval [m,M ]:

m= x0 < x1 < · · · < xn = M,

wherexi = m+ i (M −m)/n, i = 0,1, . . . ,n. With respect toπn we write particular
Stieltjes sums for both integrals of (40). These sums turn out to be identical. For each
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1≤ i ≤ n, setgi = G(xi )− G(xi−1). The sum

Sn =
n∑

i=1

(
i−1∑
j=1

xj gj

)
[F(xi )− F(xi−1)]

is a Stieltjes sum of the left-hand integral of (40), whereas the sum

Tn =
n∑

i=1

[xi − xi F(xi )] gi

is a Stieltjes sum of the right-hand integral of (40).

Sn = [F(x2)− F(x1)] x1g1

+ [F(x3)− F(x2)] (x1g1+ x2g2)

+ [F(x4)− F(x3)] (x1g1+ x2g2+ x3g3)

+
...

+ [F(xn−1)− F(xn−2)] (x1g1+ x2g2+ · · · + xn−2gn−2)

+ [F(xn)− F(xn−1)] (x1g1+ x2g2+ · · · + xn−2gn−2+ xn−1gn−1)

=
n−1∑
i=1

xi gi −
n−1∑
i=1

xi gi F(xi )

=
n−1∑
i=1

(xi − xi F(xi )) gi .

However,F(xn) = F(M) = 1, soxngn = F(xn)xngn, andSn = Tn.
By definition, asn → ∞, Sn and Tn approachR2(F,G) and R1(F,G), respec-

tively.

One conclusion of Lemma 12 is that the online player may only consider mixtures
of reservation price policies as candidates for optimal algorithms againstF . The next
lemma states that the online player may restrict his attention only to (deterministic)
reservation price policies.

LEMMA 13. Let G ∈ Dc be any distribution reservation price policyRPP(s). Then,
for everyε > 0, and for every F∈ F , there exists a number s∗ ∈ [m,M ] such that
PRPP(s∗)(F) ≥ PG(F)− ε.

PROOF. Let ε > 0 be given.

PG(F) =
∫ M

m
PRPP(x)(F)dG(x) =

∫ M

m

(
x Fc(x)+mF(x)

)
dG(x).

Let s∗ be a number in [m,M ] such that

PRPP(s∗)(F) = sup
x

PRPP(x)(F)− ε.
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Therefore, for allx ∈ [m,M ], PRPP(s∗)(F)+ε ≥ PRPP(x)(F). For any distribution function,
G,

PRPP(s∗)(F)+ ε =
(
PRPP(s∗)(F)+ ε

) ∫ M

m
1 · dG(x)

=
∫ M

m

(
PRPP(s∗)(F)+ ε

)
dG(x)

≥
∫ M

m
PRPP(x)(F) dG(x).

Hence,

PRPP(s∗)(F)+ ε ≥ sup
G∈Dc

∫ M

m
PRPP(x)(F)dG(x).

Let Is∗ ∈ F be the cumulative distribution function

Is∗(x) =
{

0, if m≤ x < s∗,
1, if s∗ ≤ x ≤ M;

sup
G∈Dc

∫ M

m
PRPP(x)(F)dG(x) ≥

∫ M

m
PRPP(x)(F)d Is∗(x) = PRPP(s∗)(F).

Therefore,

sup
G∈Dc

∫ M

m
PRPP(x)(F)dG(x)− ε ≤ PRPP(s∗)(F) ≤ sup

G∈Dc

∫ M

m
PRPP(x)(F)dG(x).

Thus, the proof is complete.

REMARK 10. In the case where maxx PRPP(x)(F) exists we obtain the stronger result

PRPP(s∗)(F) = max
G∈Dc

∫ M

m
PRPP(x)(F)dG(x),

wheres∗ is a number in [m,M ] such that

PRPP(s∗)(F) = max
m≤x≤M

PRPP(x)(F).

For convenience, we assume for the rest of the section that maxx PRPP(x)(F) exists. Thus,
the results we obtain through consideration of the optimal performance of deterministic
threshold algorithms are limits of the actual bounds.

PROOF OFTHEOREM7. By Lemma 13, it is sufficient to consider only reservation price
policies as candidates for the optimal online algorithm againstF . Let x∗ be the value of
x at which the quantitymF(x) + x Fc(x) is maximized. Thus, givenF , RPP(x∗) is an
optimal online algorithm againstF .
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We want to calculate the quantity

max
F

POPT(F)

PRPP(x∗)(F)
= max

F

E[µ]

mF(x∗)+ x∗ · Fc(x∗)
.(41)

Consider the problem of maximizingE[µ] subject to the constraintmF(x∗) + x∗ ·
Fc(x∗) ≤ z, wherez is a parameter to be determined later. The constraint is equivalent
to the following condition: for allx ∈ [m,M ],

mF(x)+ x Fc(x) ≤ z,(42)

or, equivalently,

Fc(x) ≤ z−m

x −m
.(43)

Notice thatFc(M) = 0 (andF(M) = 1). Hence, by substitutingM for x in (42) we
learn thatz≥ m.

Then

E[µ] =
∫ M

m
x d F(x)

= M · F(M)−mF(m)−
∫ M

m
F(x)dx

= M −
∫ M

m
F(x)dx

= m+
∫ M

m
(1− F(x))dx

= m+
∫ M

m
Fc dx

= m+
∫ z

m
Fc dx+

∫ M

z
Fc dx

≤ m+
∫ z

m
1 · dx+

∫ M

z
Fc dx

= z+
∫ M

z
Fc dx

≤ z+
∫ M

z

z−m

x −m
dx

= z+ (z−m) ln
M −m

z−m
.

By the above derivation, it is evident thatE[µ] can be maximized, while still satisfying
the constraint (43), by taking

Fc(x) =


0, if x = M,
z−m

x −m
, if z< x < M,

1, if m≤ x ≤ z.
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For suchFc(x),

E[µ] = z+ (z−m) ln
M −m

z−m
.

Set

g(z)
def= z+ (z−m) ln((M −m)/(z−m))

z
.

Hence, by the choice ofFc(x) and by the definition ofz,

g(z) ≤ E[µ]

mF(x∗)+ x∗ · Fc(x∗)
,

so we can calculate (41) by maximizingg(z). Using elementary calculus we show that
g(z) is maximized atz∗ = m ln((M −m)/(z∗ −m)). By differentiation,

g′(z) = −z+m ln((M −m)/(z−m))

z2
,

and

g′′(z) = − 1

z(z−m)
+ 2z−2

(
g(z)− ln

M −m

z−m

)
.

Therefore,g′(z∗) = 0, and it can be verified thatg′′(z∗) = −1/z∗(z∗ −m). Hence,z∗

maximizesg.
Let r denote maxF minRPP(x)(F,m,M). Thenr is determined by evaluatingg(z∗).

A brief calculation shows thatr = ln((M −m)/(z∗ −m)) = ln((M −m)/(mr −m))
(z∗ = mr follows from the identityz∗ = m ln((M −m)/(z∗ −m)). The proof is com-
pleted sincer is identical tor∞(m,M) (see (29)).

Notice that the proof of Theorem 7 is constructive; it explicitly yields the probability
distribution, F , that maximizes the return ratio; namely, formr ≤ x < M , Fc =
(rm−m)/(x −m) andF is discontinuous atM , where the mass(rm−m)/(M −m)
is concentrated. It turns out that with respect to suchF , all reservation price policies
yield the maximum possible expected return,mr.

As we defined this trading game, the online player chooses his best strategy before
the start of the game and is not allowed to change it thereafter. However, as the exchange
rate varies, the online player’s estimate ofµ also varies. Assume that if the maximum
rate observed so far iss, then the conditional distribution ofµ given the history ofE is
obtained simply by excluding all values ofµ less thans, and normalizing the relative
probabilities of values greater than or equal tos. That is, this conditional distribution has
the cumulative distribution function,Fs, given by

Fs(x)
def=


F(x)− F(s)

1− F(s)
, x ≥ s,

0, x < s.
(44)

It is not hard to see that if the online player chose the optimal threshold algorithmRPP(x∗)
before the start of the game, then the optimal threshold,x∗, remains fixed throughout the
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game independent of the ever-changing estimate ofµ. To see this, we write the expected
return using some thresholdx given that the maximum rate observed so far iss < M .
Clearly, this expected return is

mFs(x)+ x Fc
s (x) =

mF(x)+ x Fc(x)

1− F(s)
− mF(s)

1− F(s)
.(45)

It is evident that the samex maximizes (45) andPRPP(x)(F) so the threshold remains
fixed.

REMARK 11. We note that it is possible to remove the assumption that the exchange
rate function is of a particular nature, except, of course, the requirement that the function
reaches the (random) global maximumµ. Simply, if the adversary chooses any other
kind of exchange rate function (e.g., with discontinuities over [0, µ]), the expected return
of the online player may only increase if he uses a reservation price policy. The optimal
offline (expected) return remains the same. On the other hand, the online player cannot
hope for higher returns since the adversary (knowing the algorithm chosen by the online
player) may choose the functionEµ against which it is shown that reservation price
policies can attain optimal returns.

7. Two-Way Trading. In this section we apply some of our results for one-way trading
to thetwo-way tradingproblem where the player is allowed to convert the money back and
forth between the two currencies. Two-way trading is a special case of the more general
portfolio selectionproblem. In this problem a trader reallocates online his wealth between
a numberN of assets (or other investment instruments) in order to take advantage of the
relative fluctuations between the various assets. The special case ofN = 2 where one
of the assets is cash corresponds to the two-way trading problem.

There is a considerable body of work related to two-way trading and portfolio selec-
tion. From the perspective of competitive analysis, there are a number of results which
are somewhat related to the results presented in this section. For example, Raghavan
[27] and Chou et al. [9], [10] study an online two-way trading problem against statis-
tical adversaries, which must produce exchange rate sequences that conform to some
statistical constraints. Cover and Ordentlich [13], [25], Helmbold et al. [18], and Blum
and Kalai [6] study the general portfolio selection and give algorithms which are com-
petitive relative to a constrained optimal offline algorithm. In particular, they compare
their online algorithm to the best (offline)constant rebalancedalgorithm that must keep
a fixed proportion invested in each of theN assets. In this section we study the two-way
trading problem with respect to the omnipotent optimal offline algorithm (still however
we keep the constraint that prices are drawn from a bounded support).

We first state the problem more formally and then give preliminary lower and upper
bounds on the competitive ratio of online algorithms for this problem. Both the lower and
upper bounds are obtained simply by a decomposition of the exchange rate sequence into
monotone increasing/decreasing segments on which we can apply our one-way trading
results.

The online player starts with someD0 dollars (here again, without loss of generality
D0 = 1) and converts back and forth between dollars and yen in accordance with
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a sequence of exchange ratesσ = p1, p2, . . . which is revealed online. These rates
(yen/dollar) must remain in the interval [m,M ], but otherwise may rise or fall arbitrarily.
When the game ends, the money is all converted to one of the currencies, say, dollars,
at the present rate. Note that the ratio of the amount accumulated by the optimal offline
algorithm on this sequence of exchange rates to the amount accumulated by the online
player is the same, no matter which currency they convert to when the game ends. As
in the one-way trading problem, the online player’s goal is to minimize the competitive
ratio.

If the number of local maxima and minima in the exchange rate sequence is un-
bounded, there is no strategy with a finite competitive ratio (see the lower bound argu-
ment in Section 7.2). Assume there arek such extrema. We show a lower bound ofr k/2

∞
and an upper bound ofr k

∞ wherer∞ = r∞(m,M) is the optimal competitive ratio for a
one-way game with an unbounded number of days (see Section 4.3).

7.1. Upper Bound. Assume thatk is even. The sequenceσ of exchange rates consists
of k/2 upward runs andk/2 downward runs. The optimal algorithm for the offline player
is to convert all his dollars to yen at the end of each upward run, and all his yen to
dollars at the end of each downward run. We describe how the online player can achieve
a competitive ratio ofr k

∞. Suppose the first upward run consists ofp1 ≤ p2 ≤ · · · ≤ pi ,
with pi+1 < pi . During the firsti days, the online player plays according to our optimal
one-way algorithm (with competitive ratior∞). By the end of thei th day he acquires
Di dollars andYi yen, wheremDi + Yi = pi /r∞. On dayi + 1 he converts all his
dollars to yen. Sincepi+1 ≥ m, he then has at leastpi /r∞ yen at the beginning of
the first downward run. He then proceeds similarly during the downward run beginning
at dayi + 1, converting yen to dollars during the decreasing run and exchanging any
remaining yen on the first day of the next increasing run. Thus, two transactions occur on
the first day of any decreasing run: first, the exchange of all dollars to yen, and second,
the first transaction of the one-way algorithm on the downward run (conversion of yen
to dollars). These conceptually distinct transactions can, of course, be combined into
a single transaction. Similarly, on the first day of any subsequent increasing run, these
two transactions may occur. In each run the ratio between the offline player’s wealth and
the online player’s wealth increases by at most the factorr∞, and thus the online player
achieves the competitive ratior k

∞.
Notice that the player does not need to knowk. In addition, some improvements may

be employed. For example, if the player has a bound,l , on the maximum length of the
upward/downward runs, then he can use the competitive ratiorl (m,M) in each one-
way game (see Section 4.1), instead ofr∞(m,M). For most real-life price sequences,
such a boundl can be identified and is rather small. Moreover, further improvement in
performance may be obtained by using the improved algorithm of Section 4.2 in every
one-way game.

7.2. Lower Bound. Assume that the online player knows onlym and M . For anyn,
it is possible for an adversary to force a competitive ratio of(rn)

k/2 against any online
strategy.

Our argument here follows from the lower bound proof of the one-way case. Suppose
each player starts with one dollar. Then, regardless of what strategy the online player
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is employing, the adversary can construct a sequence of at mostn + 1 exchange rates
consisting of an upward run (of lengthn) followed by an immediate drop of the exchange
rate tom, such that, at the end of the sequence, his total holdings in yen and dollars
(evaluated at the exchange ratem) will exceed that of the online player by at least the
factorrn. Moreover, when the exchange rate drops tom, the adversary will convert all
his yen to dollars, and the online player can do no better than to follow suit, since he will
never have a more favorable conversion rate. Thus, in one upward and one downward
run, the ratio of adversary currency to online currency can be made to increase by a
factor ofrn. This yields a factor(rn)

k/2 for the entire game (at mostk(n+ 1)/2 days).
As n increases, this lower bound approaches(r∞)k/2.

We point out that the fact that the above lower and upper bounds are exponential ink
is somewhat misleading. It may appear worse than it really is. The reason is that optimal
offline returns on sequences withk local minima and maxima are exponentially large so
that these competitive ratios do not exclude the possibility of very large (exponential)
returns for the online player.

8. Concluding Remarks. In our example of one-way trading, a striking feature of
the problem is the conceptual simplicity of the optimal strategy. To attain a certain
competitive ratio, the online player simply defends himself against the threat of dropping
the exchange rate permanently to the minimum possible rate. It would be interesting to
identify other problems in which a threat-based strategy is optimal. We note that we have
identified another interesting problem that exhibits this kind of solution. Consider the
following problem calledtrading on option:

A money trader starts withD0 dollars and receives a finite sequence of option offers.
Each option offer consists of a pair(e, p), wheree is anexchange rateand p > 0 is an
option price. For anys ≥ 0 this offer enables the trader to paypsdollars for the right to
later tradesdollars for yen at the exchange ratee. The trader knows in advance that, even
without purchasing options, he will always be able to exchange dollars for yen at the
ratem, and that the maximum exchange rate he will ever be offered isM . As each offer
(e, p) is presented, the trader chooses a corresponding values and his stock of dollars
is depleted byps. At the end of the sequence of offers the trader converts his remaining
dollars to yen by exercising some of the options he has purchased and by exchanging
any remaining dollars at the ratem. The optimal offline strategy is clear; the offline
player will choose that option(e, p) for which e/(p+ 1) is greatest and (provided that
e/(p+ 1) > m) will spend pD0/p+ 1 dollars for the right to exchange his remaining
D0/(p+ 1) dollars for yen at the exchange ratee. Under this optimal strategy the offline
player receiveseD0/(p+ 1) yen. Intuitively, if the trader can achieve a competitive ratio
of r for this problem, then he can do so using a threat-based strategy of the following
form: whenever an offer(e, p) is presented, choose the minimum value ofs that will
ensure that the trader can obtain(1/r )(eD0/(p+ 1))even under the threat that no further
option offers will be made. (Full analysis of this problem will soon be published in a
separate work.)

This paper leaves a number of questions open for future research. One intriguing
question is that of the true lower/upper bounds on the competitive ratio of the two-
way game. We suspect that a good starting point to investigate this question is to im-
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prove the upper bound which is conjectured to be suboptimal. An intuitive reason for
this conjecture is the following. Notice that on any upward (downward) run the online
player can take advantage of the knowledge that in order to force a ratior on the fol-
lowing downward (upward) run, the adversary must begin that run with a sufficiently
small (large) exchange rate (i.e.,rm in the case where the following run is an upward
run).

It would be of interest to examine the robustness of our results under some real-
life considerations such as transaction costs and errors in the choice of the parameters
(m,M,n, and/or8).

An important issue that requires further study is the sensitivity and the dependence of
the trading strategies on the constraining parameters. It is clear that a greedy choice of
these parameters may result in an unfortunate outcome. However, an ability to estimate
this dependence quantitatively allows for some degree of risk management. For example,
consider the case in which the online player underestimates the upper bound on possible
exchange rates. Say,M = cM is the true upper bound wherec > 1. Clearly, in the worst
possible rate sequencepn−1 = M and pn = M . Therefore, our trading strategy will
spend all the available dollars at the second last day and will gain at leastM/rn(m,M)
yen. On the same sequence the optimal offline player acquiresM yen and therefore the
attainable competitive ratio using the incorrect upper bound may be almost as poor as
(M/M)R(M,n) = c · rn(m,M).
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