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Optimal Search and One-Way Trading
Online Algorithms

R. El-Yaniv} A. Fiat? R. M. Karp? and G. Turpifi

Abstract.  This paper is concerned with thiene series searcandone-way tradingoroblems. In thetime

serieg searchproblem a player is searching for the maximum (or minimum) price in a sequence that unfolds
sequentially, one price at a time. Once during this game the player can decide to accept the currprihprice
which case the game ends and the player’s payqft is theone-way tradingoroblem a trader is given the

task of trading dollars to yen. Each day, a new exchange rate is announced and the trader must decide how
many dollars to convert to yen according to the current rate. The game ends when the trader trades his entire
dollar wealth to yen and his payoff is the number of yen acquired.

The search and one-way trading are intimately related. Any (deterministic or randomized) one-way trading
algorithm can be viewed as a randomized search algorithm. Usingotheetitive ratioas a performance
measure we determine the optimal competitive performance for several variants of these problems. In particular,
we show that a simpléhreat-basedstrategy is optimal and we determine its competitive ratio which yields,
for realistic values of the problem parameters, surprisingly low competitive ratios.

We also consider and analyze a one-way trading game played against an adversafyatatiedhere
the online player knows the probability distribution of the maximum exchange rate and that distribution has
been chosen by Nature. Finally, we consider some applications for a special case of portfolio selection called
two-way tradingn which the trader may trade back and forth between cash and one asset.

Key Words. Time series search, One-way trading, Two-way trading, Portfolio selection, Online algorithms,
Competitive analysis.

1. Introduction

1.1. Time Series Search Consider the followinglementary search problerA player

is searching for the maximum (resp. minimum) price of some asset. At each time period
i =1,2,...,nthe player obtains a price quotatipnand must decide whether or not to
accept this price. Once the player decides to accept someppribe game ends and the
player’s payoff (resp. cost) ig;. The horizom may or may not be known to the player
and if the player has not decided to accept a price during thenfirst periods he must
accept some minimum (resp. maximum) proeln essence, in this elementary search
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problem the player is confronting the decision problem of when he has acquired sufficient

price sampling so that the accepted price is satisfying given what he already knows.
The elementary search problem has many variations and extensions. If the morizon

is known (resp. unknown) to the player, then the problem is tesnigcknown duration

(resp.with unknown duratiop In the case of unknown duration the player is informed

just before the last period so that he can accept the last offered price. Throughout this

paper we assume a finite (known or unknown) duration. A search probieithisecallif

some number of the most recent price offers are retained and at any period the player can

choose to accept one of the retained offers. In another natural extension of the elementary

search problem the player has to pasampling costicto obtain thd th price quotation.

In this case the total payoff (or return) of a player that accepts the pyise

- G
1<i<]j
Applications of the time series search decision task are required and performed by
virtually all economic agents and institutions. Therefore, search is a most fundamental
feature of economic markets. Consider the following straightforward applications.

Job and employee searchin the job search the player is seeking employment. In each
period the job seeker obtains one job offer which may be viewed as the lifetime earning
from the job. A sampling cost may be associated with the generation of each offer and
may include advertising costs, transportation costs, and perhaps the loss incurred from
being currently unemployed.

Now consider an employer searching for an employee. We assume that the employer
can test and quantify the suitability of candidates to the job offered. Such quantities
correspond to price quotations. The sampling cost in this case may be attributed to
advertisement, qualification tests, étc.

Search for the lowest price of goadsHere the player needs to buy some goods that
are sold at different stores at different prices. The player can obtain price quotations
after identifying the relevant sellers. Here sampling fees may account for traveling or
phone costs and for the time wasted. Like job and employee search this application
is of fundamental importance because optimal search strategies determine the demand
function which in turn determines the nature of the market itself.

1.2. One-Way Trading Consider a trader who needs to exchange some initial wealth
wp, given in some currency (say, dollars), to some other asset or currency (say, yen). At
the start of each trading period the trader obtains the current price quotation and must
decide whether to accept it or wait for a better price. Typically, the cost of sampling a price
quotation is negligible as prices are widely available in quotation services. Nevertheless,
the trader may be required to pay some transaction fees for the exchange (e.g., to a
financial institution® Thus stated, the one-way trading problem is a direct application

5 This employee search is closely related to the well kneatretary problenfil6], [1] where typically the
objective is to accept one or more “secretaries” of best ordinal value among an ordered set of all secretaries.
6 These transaction fees can be a function of the amount traded (i.e., dollars spent) or a function of the price
(which is equivalent to the amount of yen received). Alternatively (or in addition), the fees can include a fixed
cost.
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of the time series search problem. Nevertheless, the trader can partition the initial wealth
wo and exchange it sequentially in parts, each part in a different exchange rate. Clearly,
this more general trading scheme may result in higher returns. As we shall later see,
trading in parts is equivalent to a randomized search.

One-way trading algorithms can be applied in various economic situations. For in-
stance, consider a fund manager who decides to change the position of some portfolio
and enter (or exit) some market. In this caggis the part of his wealth allocated to
the new position. Another natural application arises when an individual, for the purpose
of emigrating to a foreign country, sells local property in order to exchange the local
currency received to the foreign currency.

1.3. Previous Work Related to Time Series SearcFhe search problem has received
considerable attention in mathematical economics and operations research. Traditionally,
a Bayesian approach has been employed: An optimal search strategy is sought under the
assumption that the prior distribution of prices is given and stationary. In order to allow
for analytical results it is usually further assumed that price quotations are independent
observations of this distribution. Although the stationarity and independence assumptions
are somewhat simplistic, this basic paradigm has given rise to a rich theory that relies
on tools from the theory of optimal stopping [11]. It is beyond the scope of this paper to
survey the Bayesian work related to seafch.

Not surprisingly, the Bayesian approach derives search algorithms that are heavily
dependent on the price prior distribution. Nevertheless, one striking feature of Bayesian
optimal search algorithms (applicable to many problem variants) is that they have the
following structure. Based upon the problem parameters, and, in particular, the assumed
prior distribution, there is a single fixed critical number calledréservation pricesuch
that the optimal policy is to reject all prices below the reservation price and to accept
any offer above it

The least acceptable assumption of classical Bayesian search models is that the prob-
ability distribution of prices is fully known to the player. Several models attempt to relax
this assumption. For example, Rosenfield and Shapiro [28] studied cases where the price
distribution is itself a random variable distributed according to probability law with some
known moments (e.qg., the price distribution is known to be normal with mean distributed
according to some other probability law).

In this paper we attempt to circumvent almost all distributional assumptions by re-
sorting to competitive analysis (defined in Section 1.4). Our only assumption is that the
price generating process has finite (known or unknown) support.

1.4. Competitive Analysis of Online ProblemsLet P = (Z, F, U) be a profit maxi-
mization problem wher& is a set of possible inputs; for eathe Z, F(l) is the set of
feasible outputdy) is a utility function such that for all andO € F(1),U (I, O) € A.

Consider any algorithmaLG for the problemP. Given any inputl, ALG computes a
feasible outpu € F(l). We denote the profit (or return) af G on the input instance

7 The reader is referred to the excellent surveys by Lippman and McCall that discuss Bayesian solutions for a
variety of search problem variants [23], [24].
8 In the case of search with known duration the reservation price can change dynamically.
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| by ALg(l1) = U(l, O). Typically, each input can be represented as a finite sequence

| =i,i2,...,inh and a feasible outpud can also be represented as finite sequence
O =04,0,...,05.
An algorithmALG computenlineif foreachj = 1,...,n — 1, ALG must compute

0; beforeij;1 is given. An algorithm ifflineif it can produce a feasible output given
the entire input sequence. We denote an optimal offline algorithoplnyBy definition,
for each input sequendethe return ofoPTis OPT(I) = sUpyr() U (I, O).

An online algorithm isc-competitive if for anyl € Z,

(1) ALG(l) > % -OPT(I).

In this case we also say thatG attains a competitive ratia The least competitive ratio
thatALG attains is calledhe competitive ratio ofALG.

The competitive ratio is thus a worst-case performance measurec-Aompetitive
online algorithm is guaranteed to return at least a fractj@ot the optimal offline profit
no matter how unfortunate or erratic the future will be.

The use of the competitive ratio to measure performance of online algorithms is
calledcompetitive analysid Competitive analysis has been used in the computer science
literature for over 20 years. At first it was used implicitly for the online approximation of
NP-hard problems (see, e.g., [17],[19], [20], and [30]). Somewhat later, the seminal work
of Sleator and Tarjan [29] on virtual memory and dictionary management put forth the
use of the competitive ratio as a general performance measure for online decision making.

Sometimes itis convenient to view the competitive analysis of an (online) problem as a
two-person game between the online player and an adversary. The online player chooses
an online algorithmaLG and informs the adversary of his choice. The adversary then
chooses an input sequenkceThe payoff to the adversary is the resulting performance
ratiooPT(l)/ALG (I ) and the payoff to the online player is minus this quantity (i.e., the
game is zero-sum).

As is generally the case with two-person zero-sum games, a randomized strategy is re-
quired to obtain optimal (expected) competitive performance. Extending the definition of
the competitive ratio to randomized algorithms is straightforward. We simply substitute in
() E[ALG(1)] for ALG (] ) where the expectation is taken with respect to the distributions
used byaLG. Since in the game corresponding to this definition the adversary is ignorant
of the outcomes of the random choices made by the online algorithm this adversary is
calledoblivious!® Indeed, it is often the case that randomization (against an oblivious
adversary) dramatically improves the competitive performance (see the classical results
of [8] and [15] regarding metrical task systems and virtual memory management). As
we shall later see randomization empowers the online player also in the search problem.

1.5. Competitive AnalysiA Discussion The main attraction in using the competitive
ratio for analyzing online algorithms is that there is no need to rely on statistical model-
ing of input sequences. Indeed, it is often extremely difficult to devise realistic statistical

9 The termcompetitive ratiavas termed by Karlin et al. [21].
10 other kinds of adversaries that generate input sequences adaptively (based on the outcomes of the online
random choices) have been considered (see [5]).
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models for possible inputs (which are always highly dependent on the particular appli-
cation). This difficulty is often more extreme in complex dynamical environments such
as economical systems. Strategic financial decision making is therefore a very attractive
domain for competitive analyses. Moreover, in financial decision making it is often de-
sirable to secure some minimal sure profit rather than expecting higher average profits
while being exposed to severe risks. Essentially, this is what competitive analysis offers.
Nevertheless, this risk aversion property of the competitive ratio is quite often a draw-
back since this performance measure can lead to overly defensive algorithms. Indeed,
whenever decision makers do have some side information or partial (statistical) knowl-
edge on the evolution of input sequences it would be a terrible waste to ignore it, which
is precisely what the competitive ratio does. Recently, al-Binali [2] generalized the pure
competitive analysis so that it can utilize predictions (in the form of partial knowledge
on future input sequences) while retaining the natural risk aversion of the competitive
ratio. In fact, this generalized competitive analysis framework allows for trading-off the
associated risk with the potential rewafdrhis (generalized) competitive analysis offers

a robust yet flexible complementary framework to the analysis of (financial) decision
making under uncertainty. An additional advantage of the competitive ratio is that it
offers a unified measure of performance under which any two strategies are comparable
in some fundamental sense.

1.6. Paper Organization This paper is organized as follows. In Section 2 we study the
relationship between randomized search and one-way trading. In Section 3 we present a
simple deterministic search algorithm of a reservation price policy type, which is optimal
for (deterministic) search. We then show how randomization over the reservation price
policies can dramatically improve the competitive ratio. In Section 4 we present a general
“threat-based” policy for one-way trading (or search). This general policy yields optimal
algorithms for a number of variants of the one-way trading problem. We provide in this
section detailed analyses of four problem variants. In Section 5 we give a few numerical
examples of the competitive ratios obtained in the previous sections, showing that for
realistic values of the problem parameters we can obtain surprisingly low ratios. In
Section 6 we study a problem variant called a “game against Nature.” We ti&ftoee

as an adversary that chooses the probability distribution of the maximum exchange rate
(the maximum rate is the optimal offline return). Although at the outset it seems that
Nature is weaker than our ordinary adversary we prove that (with respect to one-way
trading) Nature and the ordinary adversary are equivalent (in a sense to be made precise
later). In Section 7 we apply our results for the one-way trading gamsto-avay trading

game in which the player can trade currencies back and forth. Lastly, in Section 8 we
summarize our conclusions and indicate some directions for future work.

2. Randomized Search and One-way Trading. Notice that in the search problem
the online player must accept one price and in the one-way trading problem the trader

11 To demonstrate the utility of this new technique al-Binali has used some of the results in this paper (based
on a preliminary version of our paper) showing how the competitive performance of a one-way trader can be
boosted when he has the knowledge of useful predictions.
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can partition his initial wealth and trade the parts sequentially, each part at a different
exchangerate. Nevertheless, the search and one-way trading problems are closely related.
Any deterministic (or randomized) one-way trading algorithm that trades the initial
wealth in parts can be interpreted as a randomized search algorithm and vice versa. This
follows from the fact that any (randomized) one-way trading algorithm is equivalent to

a randomized trading algorithm that trades the entire wealth at once (at some randomly
chosen period). Further, any randomized trading algorithm that trades the entire wealth
at once is equivalent to a deterministic algorithm that trades the initial wealth in parts.
Formally we have

THEOREM1. (i) LetALG; be any randomized one-way trading algorithiten there
exists a deterministic one-way trading algorittns, such that for any exchange rate
sequence, E[ALG1(0)] = ALG2(0). The reverse statement is also tr@i@ LetALG, be
any deterministic one-way trading algorithithen there exists a randomized algorithm
ALG1 that makes only a single trade such tlE4RLG1(c)] = ALG2(0) holds for allo.

PROOF Let ALG; be any randomized one-way trading algorithm. In particular (and
using game-theoretic terminology,.G; may be amixedstrategy (a distribution over
deterministic algorithms) or behavioralstrategy (whose daily transactions are chosen
randomly). Since in this online game (between the online player and the adversary) the
online player has perfect recall (she has no memory restrictions), we know that the set
of behavioral strategies is a subset of the set of mixed strategies (see [3]). Thus, in any
case we can assume without loss of generalityAbat is a mixed algorithm, which is

a probability distributio{w(a)} over A4, the set of all deterministic algorithms. For any
sequence of pricas = py, P2, ..., Pn, the expected return eliLG; is E, [ALG1(0)] =

fA a(o) dw(a). Withrespectte consider a deterministic algorithanG, that on period
spends a fractiom"A s(i, a)dw(a) of its initial wealth wheres(i, a) is the amount spent

by the deterministic algorithra on periodi. Thus the return ofLG; is

Zpi/ s(i, a) dw (@)
i=1 A
/ZS(i,a)pi dw(a)
Aj=1

= / a(o)dw(s) = E,[ALG1(0)].
A

ALG2(0)

To prove part (ii) consider a deterministic algorithm that trades a frastiofits initial
wealth at theth period,) ; s = 1. Now consider a randomized algorithanG; that
with probabilitys trades its entire wealth at thth period. Clearly, the expected return
of ALG; equals the return of the deterministic algoritAne,. O

COROLLARY 2. It follows that a(competitivg optimal deterministic one-way trading
algorithm has the same return as an optimal randomized search algorithimimplies
that randomization cannot improve the competitive performance in one-way trading
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Although randomization cannot help in one-way trading we will see that randomization
is advantageous for search.

As noted earlier, both in the search and one-way trading problem the online player
may be required to pay a sampling cost (&mdransaction cost) for each price quotation
(and/or dollar traded). In this paper we consider simpler problem variants where there
are no such costs. Also we make the assumptions that arbitrary fractions of money units
can be traded.

REMARK 1. In general, the nature of the samplibgnsaction fees will affect the com-
petitive ratio. We state without proofs the following observations. (i) The competitive
ratio of any one-way trading algorithm is independent of transaction costs determined by
a fixed percentage applied to the amount spent. In this case the equivalence of Theorem 1
obviously holds. (i) When we introduce transaction fees which are a fixed percentage ap-
plied to the prices, the competitive ratio willimprove but Theorem 1 still holds. (i) When
fixed transaction costs are introduced the deterministic competitive ratio increases and
there is no longer an equivalence between deterministic one-way trading algorithms and
randomized search algorithms.

3. Competitive Search Algorithms. Throughout this paper we assume that prices
(exchange rates) are chosen (by an adversary) from the real interyM][ where

0 < m < M. We define the maximufftuctuation ratioof possible pricestobg = M/m.
Competitive ratios of algorithms will be determined in termgpofThe parameters,

M, or ¢ may or may not be known to the online player.

For a start, suppose that bathandM are known to the online player. In this case the
optimal deterministic search strategy is the followiagervation price policyrPP: Ac-
cept the first price greater than or equapto= ~/ Mm. We call p* thereservation price
Clearly, the optimal reservation price should balance the return ratios (gttitiee)
resulting by the following two events: (i) the maximum price encountepgg, is > p*
in which case the worst-case return ratioMs p*; (i) pmax < p* in which case the
worst-case return ratio ipmax/m. Therefore, the optimal reservation prige is the
solution ofM/p = p/m.

REMARK 2. Itis possible to show that if only the fluctuation ragias known (but not
m or M), then no better ratio than the trivial onegfs achievable.

One can dramatically improve the competitive ratio by using randomized algorithms.
We now introduce simple randomized algorithms of “exponential threshold” type that
achieve exponentially better competitive ratios. The basic idea of these algorithms is due
to Levin [22].

Assume, for simplicity, thap = 2 for some integek. Fori = 0,1,...,k — 1, let
RPR(i) be the (deterministic) reservation price policy with reservation pmée De-
fine ExPOto be a uniform probability mixture over the s{eaPF(i)}:‘:‘é. That is, before
the start of the gamexpPo chooses one of thePRi) strategies, each with probabil-
ity 1/K.
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THEOREM3 (Levin). Letg = 2K for some integer kAlgorithmExpois (c(¢) log¢)-
competitive with ¢p) approachingl wheng — oo.

PROOF  Let pmaxbe the posterior maximum price obtained. L&k an integer satisfying
m2) < pmax < M2i+L. The particular choice opmay (and, therefore, of) is controlled
by the adversary. Note that< k and since all prices are im, M], j = k if and only
if Pmax= M. It will later be made clear that the choipg..x = M (and, thus, off = k)
is not optimal for the adversary so we can assume jthatk — 1. For any choice of
algorithmexpowill return on average

Ml i) = Mosivt i
k(k 1+Zz)_k(2 +k—j—2.

1<i<j

Denote byR(j) the return ratio, offline to online, obtained for a particujasSince for
any choice ofj it is optimal for the adversary to choopgiax arbitrarily close tan2i+1,
we have

2i+1
2itl p k—j -2
It is not hard to see that the real-valued functig(j) obtains its maximum at* =

k — 2+ 1/In2 and it follows that the coefficient &fin R(j) is almost 1 resulting in a
competitive ratio that is greater than but approactking log¢ (as¢ andk grow). O

R(j) =k-

REMARK 3. Theorem 3 can be extended in two ways. First, similar result can be ob-
tained whenp is not a power of 2. Second, exactly the same bound holds if the player
does not known andM but only knowsyp

Algorithm ExpPo can be modified to work even without knowledgeqofLet © =
{a(i)}2, be any probability distribution over the natural numbers. Consider algorithm
EXPO, that acts as follows. Aftep,, the first price, is revealed to the online player
algorithmexpd, chooses the reservation pripe2 with probabilityq(i).

LEMMA 1. Algorithmexpo, is 2/q(llog¢])-competitive against an oblivious adver-
sary, whereg is the posterior global fluctuation ratio

PROOF Let pmax be the maximum price obtained and assume W&l < Pmax <
p12i*1 for some integerj. In the worst cas@pPTs return is less than, but arbitrarily
close to,p;2/** and algorithmexpg, returns at least(j)p:2! on average. It follows
that the expected competitive ratio BXPO, is not smaller than 2j(j). By defini-
tion, ¢ = pPmax/ P1 and thereforg < logy < j + 1, solloge| = j and the proof is
complete. O

In order to apply Lemma 1 and derive small competitive ratios for algoréRro,
we need to construct an appropriate probability distributio®mall competitive ratios
are obtained by taking appropriate converging infinite sums. For example, we can use
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the Riemann zeta function(x) = > {2, (1/i*). Specifically, for every positive the
infinite sum) 2, 1/i** converges to the constagtl + ¢). It follows that i, =
{1/¢(1+ &)(i + e}, is a probability distribution over the natural numbers. Hence
by Lemma 1ExPC, attains a competitive ratio 021+ ¢)(j + 1+ = O(logt** (¢))

with ¢ being the posterior global fluctuation ratio. However, we can do even better.
Consider the infinite surd_; 1/(i log**(i). Lemma 1 yields the competitive ratio of

() O (log(p) - log***(log¢)) .

Notice however that as decreases the constant in the “big-O” increases. Hence, the
particular choice of the distribution, can only be optimized if some bounds grare
known.

REMARK 4. It is possible to generalize the upper bound given by (2) and achieve an
upper bound of

O [ log(y) - log** (log log- - - log ¢)
—_——
K
for every integek.

4. Optimal “Threat-Based” Policy for One-Way Trading. As can be seen in the
previous section the competitive rat@(logg) is attainable by the simplexpo al-
gorithm under minor assumptions on possible prices (i.e., the global fluctuation ratio
is known). It turns out that the rati®(log¢) is within a constant factor of the best
possible. Nevertheless, to obtain an optimal competitive ratio, somewhat more involved
algorithms and analyses are required. The optimal algorithms are best described as (de-
terministic) one-way trading algorithms and we focus on the one-way trading problem
for the remainder of the paper.

The optimal performance is obtained by algorithms that obey the followhirest-
based policy Let ¢ be any competitive ratio that can be attained by some one-way
trading algorithm. For a start, assume tbé known to the trader. For each sucthe
corresponding threat-based policy consists of the following two rules.

RuLE 1. Consider trading dollars to yen only when the current rate is the highest seen
so far.

RULE 2. Whenever you convert dollars, conveit enoughio ensure that a competitive
ratio c would be obtained if an adversary dropped the exchange rate to the minimum
possible rat& and kept it there throughout the game.

Note that these two rules apply to all but the last trading day when, by the rules of the
game, the trader must trade all remaining dollars to yen.

12 The “minimum possible rate” is defined with respect to the information known to the trader. That ig, it is
if mis known, and it isp/¢ if only ¢ is known andp is highest price seen so far.
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At the outset it is not clear how to follow such a policy, in particular, how to follow
Rule 2 that requires trading a quantity that equals the amount of “just enough” dollars
in order to ensure a competitive ratioofFor now assume that it is possible to compute
the quantities prescribed by Rule 2 and assume an algorithm that follows this policy.
Such an algorithm converts dollars to yen based on the threat that the exchange rate will
drop permanently to the minimum possible rate. For each attainable competitive ratio
the corresponding threat-based algorithm can be showndebmpetitive. This can be
intuitively justified as follows. Consider the first trade (exchange ram)isSince the
current exchange rate is the highest seen so far the algorithm considers a trade. Since
the competitive ratia is attainable by some deterministic trading algorithm, there exists
somes > 0 such that the ratigc will still be attainable ifs dollars are traded to yen.
Further, the chosen amount of dollars such that the ratio is so far guaranteed even
if there will be a permanent drop of the exchange rate and no further trades will be
conducted (except for one last trade converting the remaining dollars with the minimum
possible exchange rate). In particular, there is no need to consider any exchange rate
which is smaller tharmp;. Similar arguments can be used to justify the choice of the
amounts for the rest of the trades and thus intuitively this policy inducesompetitive
algorithm. A formal analysis follows.

REMARK 5. Denote the minimum possible exchange raterbyNotice that as long as

the exchange rates are not larger tieam the threat-based trader should not trade any
dollars to yen (except of course for the last day, when the trader must trade all remaining
dollars to yen). This follows from Rule 2 because a competitive ratio isf always
attainable when the maximum ratecis even if all dollars are exchanged at rate

We now develop some basic properties of threat-based trading. These properties will
facilitate analyses of the threat-based policy for the following variants of the one-way
trading game.

Variant1: Known duration (i.e.n is known) withm andM known.
Variant2: Unknown duration withm andM known.

Variant3: Known duration and knowa.

Variant4: Unknown duration and knowg.

For each of the above variants, we identify the corresponding optimal threat-based
online algorithm and determine its competitive ratio.

Fix any two positive realsn and M with m < M, and any integen > 1. An
exchange rate sequence, is an element ofrph, M]". Thus,c = p1, p2, ..., pn, and
foreach 1<i < n, p; € [m, M] is called theexchange rate of theh day giving the
number of yen that can be traded for one dollar on that dayzl‘®tdenote the set of all
such exchange rate sequences. A determirostécway trading algorithns a function,

D: =™ x {1, 2,...,n} — [0, 1], satisfying the following properties:

e D is nonincreasing;
e foreacho € ™, D(0, 0) =1, andD(o, n) = 0.

D(o, 1) is defined to be the number of remaining dollars just after thelay when the
algorithm trades its dollars in accordance withTo measure the performancedfwe
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make use of some more definitions. For each =™, let

3) s ®¥D@,i-1)-D@i), i=1....n
s is calledthe ith transactionand it thus gives the amount of dollars traded to yen on
theith day by the algorithnD. Given D(-) and thes, we defineYp as follows:

Yp(c,0) = O,

def

i
Yo(o.i) £ > sp.  i=1...n
=1

Thus,Yp(o, i) gives the number of accumulated yen jafter theith transaction has
been performed. Clearly{p is nondecreasing and the monotonicity Bf (and Yp)
corresponds to thene-wayrequirement. Theeturn of D on the sequence, denoted
by Pp(0), is defined to be the quanti¥ (o, n). An online one-way trading algorithm
is a one-way trading algorithr® such that theth transaction is solely based on past
and present exchange rates, and the parameters known to the online player.

Assume that the online player knows that there are at mdsading days. This
corresponds to Variant 1 or'8.Consider the threat-based strategy. Rule 1 requires that
once atransaction has been made at some exchange rate, further transactions will be made
only at higher exchange rates; rates that are the same or lower will be ignored. Hence,
both opT and the threat-based algorithm conduct transactions only when the exchange
rate sequence reaches a new high. Therefore, in a worst-case analysis of the performance
of the threat-based algorithm, we may assume that the exchange rate sequence consists
of an initial segment of successive maxima of length n. In addition, we can assume
that the first ratgy; is larger than the minimum possible rate timegherer is the target
competitive ratio of the threat-based algorithm (see Remark 5). That is,

(minimum possible rata) < p; < p2 < --- < px < (maximum possible rate)
However, in order to realize a threat, the adversary may choaese and then take
Pk+1 = Pki2 = -+ = Pn = (Minimum possible rate)

Given a problem variant (1 or 3), latG be the optimal threat-based algorithm for that
variant. The algorithmLG will be associated with the functioB(-), as defined above,
and throughout this section we abbreviBtér, i) (resp.Y (o, i)) to D; (resp.Y;). Recall
that the player starts withg = 1 dollars andvy = 0 yen. Also, recall theg (as defined

in (3)) denotes théth transaction. Specificallg = Dj_; — D;. It is easy to see that
pis = Yi — Yi_1. Letr be the target competitive ratio thatc is trying to achieve.

LEMMA 2. If ALG is an r-competitive threat-based algorithm then for every1,

pi —r - (Yi_1 + Dj_1 - (minimum possible raj¢

4) § = r - (pi — (minimum possible raig

13 The results for Variants 2 and 4 will be then derived from the results for Variants 1 and 3, respectively, by
taking the limitn — oo.
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and

(5) Yi + Di - (minimum possible raje= %

PROOF  SinceALG is r-competitive, by Rule 2 it must be that

pi <
Y; + D; - (minimum possible rape™

(6)

Here the denominator represents the retursLcfif an adversary dropped the exchange
rate to the minimum possible rate, and the numerator is the retupemfor such an
exchange rate sequence. That is,

Pi

(7) — : <r.
(Yi_1+sp)+ (Di_1 — §) - (minimum possible rate

Since (by Rule 2ALG must spend the minimal that satisfies inequality (7) and since the
left-hand side in (7) is decreasing wishwe must replace the inequality with equality:
Pi _r
Yi_1+sp)+ (Di_1 — §) - (minimum possible rate

Equation (4) is obtained by solving this equality fer Equation (5) is obtained by
replacing the inequality in (6) with equality and rearranging. O

4.1. Analysis of VarianfL: Known Duration with mM Known To begin our analysis

for Variant 1, we make use of (4) and (5) specializing them to the case in which the “min-
imum possible rate” im as assumed for Variant 1. This yields the following expressions
for the daily transactions:

1pi—rm
C) T p-m’
and fori > 1,
1 pi—r-(Yi.1+ Dj_1m
) S:__pu (Yi1 |1)'
r pi—m

Then, by (5) ai — 1 instead of we haveY;_; + Dj_im = pj_1/r, SO we obtain, for
i >1,
(10) s = 1 PP
rp-—m

In the above formulas for the daily transactionss the target competitive ratio that
the algorithm is attempting to achieve. Clearly the algorithm cannot attain an arbitrarily
smallr. For example, if = 1 we see thas; = 1 (formula (8)) and the algorithm will
spend its entire wealth on the first rate thus failing to achieve a competitive ratio of 1
(with any continuation of the exchange rate sequence that increases above the first rate).

Hence, we can obtain from these formutasompetitive (threat-based) algorithms
only by using sufficiently large values Our goal now is to identify the smallest achiev-
able competitive ratio.
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Leto be an exchange rate sequence and letl be any real. We say that the threat-
based algorithn#,, as defined by formulas (8) and (10) applied witfs r-proper with
respect tar if (i) the sum of daily transactions computed By, when the exchange
rate sequence s, is not larger than 1 (the initial wealth); and (ii) the resulting ratio of
optimal offline return over online returA;, (o) with respect tar is not larger tham.

LEMMA 3. Leto be any exchange rate sequenideA; is r-proper with respect to,
then forany f > r, Ay is ’-propet

PrROOF As noted, and without loss of generality, supposedhat p;, ..., px, m, ...,
mwithm < p; < p2 < .-+ < pk For each day, the daily dollar transactions
as calculated by, are not larger than the respective amouwstas calculated by, .
Specifically, fori = 1 we have, using (8),

Cpr—m\r

Similarly, from (10) we have for > 1,

s—s{zw<1‘_%>zo_
pp—m \r r

Thereforep ; s < ) ; s, andsinceA, isr-proper,) ; s < land, therefore} ; § < 1.

By the definition of the threat-based algorithm and since the competitive raiso
attainable, for every day < k, A;- chooses a transaction that guarantees a competitive
ratio ofr’ even in a case of a permanent droptol herefore A, isr’-proper with respect
too. O

Leto = p1,..., px, M, ..., mbe an input sequence. For akywe want the daily
transactions to satisizik:1 s < 1. Suppose for the moment theais known to the online
player. In this case, theptimal competitive ratio for a threat-based algorithm must be
determined such that there will be no dollars remaining after the last purchase (dgn day
In other words, the optimal competitive ratio of the threat-based strategyKwitbwn)
has the property that

k
Zs =1
i=1
Substituting for thes from (8) and (10) we obtain

I Sl LGN < p-pa

rp-m r4& p-m’

(11)

After solving (11) forr we write

(12) r=r%0p,p2,... P
def1+ pl_m. K pi_pifl.
P1 i Pi—m
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As shown in the following lemma, we can determine an attainable competitive ratio of
threat-based algorithm in amday game by maximizing® (py, .. ., p«) over all choices
ofk <nandm< p; < p2 <--- < px < M. Define

(13) fn(m, M) = sup r®(ps, pa2, ...\ P

m<py<..<p<M

LEMMA 4. Let o be any exchange rate sequendden the threat-based algorithm
A m.m) IS r(m, M)-proper with respect to .

PROOF As usual, suppose that= p;, ..., px, M, ..., m. Letr =r®(py, po, ...,
p«). By construction, the threat-based algoritémis r -proper foro . Sincer,(m, M) >
r, by Lemma 3A;,m.m) iS rn(m, M)-proper with respect to. O

By Lemma 4r,(m, M) is an achievable competitive ratio for the problem. The rest
of this section is devoted to calculatingm, M). Our analysis proceeds as follows: we
first fix k, p1, andpx, and maximize ovefp; }}‘;21. Then we maximize ovepy, next over
p1, and, lastly, ovek. Without loss of generality we assume tlkat- 1 since for the
choicek = 1, a competitive ratio of 1 is trivially achieved. The sequence of following
lemmas lead to the evaluation of (13).

LEMMA 5. For fixed k> 1, p; and f,

kpi Pi

1/(k=1)
— Pi- —m
max 71=(k—1) 1—('01 )
Pi<Pe<e<pi<Pi— Pi—M Pk —m

and the maximum is obtained when for everg i <k,

. — D _ 1/(k=1)
(14) pl pl—l — 1 _ < pl m) )
pi—m Pk —m

PrROOF For each, setx; = p — m. Hence,

K K
Pi—Pi-1 Z Xi — Xi—1

i—2 P—m

However, by the geometric-arithmetic mean inequality,

(Xa/Xo + Xo/Xa + -+ + X1/ %) _ <ﬁ X Xk1>l/(kl) _ <ﬁ>1/(kl)

k—1 T\ X2 X3 Xk Xk

and equality is obtained if and only if all the terms in the left-hand side are equal. Hence,

max Xk: Al L min Xk: X1
P p—m X Xi

2<i<k-1 =2 o< <hk—1 i=1
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1/(k—1)
X1
)
1/(k—1)
(k—1)<1—(pl_m> ) O
Pk —m

From Lemma 5 we immediately obtain

K K
sup r®(py o, pd = sup r®(py, o),
k=n, k=n,
m<pp<--<pg<M m=py <px=M

where

Pk —m

_ _ 1/(k—1)
r®(py, po 1+ plp M -1 (1— (pl m) )
1

It is readily seen that®(py, py) is increasing withpy. Therefore, it is maximized
when pi takes its maximum possible valub], and SUR, p r (K)(pz1, px) reduces to
sup,, r ®(py) where

_ o\ WD)
(15) 0y 1 P gy 1—<p1 m) .
P2 M

-m
Abbreviate may, r © (p;) by r®.

LEMMA 6. max, r ¥ (py) exists let p* be a number ifm, M] such that ¥ (p*) =
max, r ®(py). Then p is unique and

kp*
(16) () TET——
PROOFE We use the following substitutions:

u= (p—m¥&
v = (M —mY&D,

After simplification, we can write the derivative of (p;) as follows:

dr®(p) U+ mku—mk— 1o
dp pfu '

(17)

Consider the numerator of (17). For every positivendk > 1, the equation
(18) UK+ mku—m&—1)v =0

has a unique positive roat*. In other words, there exists = (u*)*"+m, thatis, a sta-
tionary point ofr ®(py). Itis straightforward to check that the quantitfr © (py)/dp?)
(p*) is negative and thus® (p*) is a maximum.
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We can rewrite (18) in the form
u* m(k — 1)

v (u*)"—l +mk’
and if we substitute back far* andv we obtain

pr-m\"*?  mk-1)  mk-1
M—m T pr—m+mk pr4+mk-1)

The proof of (16) is then complete by substituting (19) in (15). That is,

% * 1/(k-1)
O = 142 p*m(k—l) (1_ <p m) )

(19)

M-—-m
p*—m m(k — 1)
=1 k—D(1- — 2
T )( m+mm—b>
(p*—mk—-1)
=14 = 7
T Tmk=1D
_ ke O
p*+mk—1)

We can now uniquely characterize the worst-daskay sequence of exchange rates
against the threat-based algorithm. bget= p1, Po, ..., Pk denote this sequence. By
Lemma 6,p; = p*. We also know, from an earlier discussion, that= M. In addition,
by Lemmab5, forall2<i <k -1,

P—P1_ <p1—m)l/(k_1)
p—m P —m ’

A 1/(k-1) A 1/(k-1)
. A (P1—M _(Pi—m
pll_pl<M—m) +m(1 (M—m) )

The behavior of the threat-based algorithm agaipstan also be made clear now. For
1 <i <k, denote by§ the daily amounts that the threat-based algorithm spends when
the exchange rate sequencés

(20)

SO

LEMMA 7. Foralll<i <k, § =1/k.

PrOOF Itis readily seen, by Lemma 5, that
=8==5&
The proofis completed by showing ttfat= 1/k as follows. We substitute the expression
of r® from (16) forr in (8). That s,
1 pr—r®m
=@ om

A
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p*+mk—1) p*—kmp/(p*+mk-1)

kp* p*—m
_ prtmk-1 p*(p* —m)
kp* (p* —m)(p* + m(k — 1))
1

Thus, against the (worst-case) exchange rate seqdgnite threat-based algorithm
obeys the conventional wisdom of investment advisers by employdalar-cost av-
eragingstrategy, in which an equal number of dollars is invested each day.

The next lemma yields a more informative characterizatiorf‘of

LEMMA 8. r® is the unique solutigrr, of

m@r — 1)\ ¥
21) r=k-<1—(m) )

ProoOFE First we show that

22) o — g (1o (Pmm)TY
M —m

Consider formula (10) fos, i > 1. We already know th& = 1/k. Therefore, using
(20) we obtain

O
r® B —m

1 A 1/(k=1)
- . (1_ <p1 m) )
r® M—m

This proves (22). Using (8) we derive the following expressiongor

R

. o mrPk =1
(23) Pp1= Tk

which is obtained when we solve the equatigik &= (1/r ®). ((py — mr®)/(p. — m))
for p1. We now substitute the expression fy, (23), in (22) and learn that® is the
solution of the following equation:

1/(k=1)
w0 B mkr ® — 1) >
(24) r _k<1 <(k—r<k>)(|v| ~ .

Starting with (24), the following sequence of equivalent equalities completes the proof
of the lemma:

K mkr® —1) \Y*P
(3) = k_k<(k—r<k>)<M —m ’
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k—r® mkr® — 1) \Y*P
k (k —r®)y(M —m) ’

k —r® ( mk(r (. 1) ) B < mk(r &) _ 1) )k/(k—l)

k (k=r®)y(M —m) (kK =r®)y(M —m)

mr®© — 1)\ Y¥ mk(r® — 1) 1=
( M —m ) =<<k—r<k>><M—m>) '

Notice that the right-hand side of (25) is identical to the exponentiated term of (24). The
lemma is complete by using (24) while substituting the left-hand side of (25) for this
term. O

Consider the representationrdf , (21). Itis clear that® < M/m since the compet-
itive ratio M/m is attained by the trivial strategy that trades all dollars in the minimum
possible ratemn, and the threat-based algorithm certainly performs strictly better. Hence,
mr —1)/(M —m) = (r —1)/(M/m—1) < 1, and then it is not hard to see th&?
is strictly increasing withk. Therefore, we must take the pessimistic assumption that
k = n. This yields the following corollary that gives the best attainable competitive
ratio,r,(m, M), that the threat-based algorithm can attain fonatay conversion game.

COROLLARY 4. rp(m, M) is the root r, of the equation

(26) r=n- <1— (nl]\jlri—_n?y/n) .

To summarize, we have two methods of calculatingn, M):

e Solvedr™(p;)/dp, = O for its roote* (as in (17)) and then substitute it into (15).
e Solve (26) forr.

The nexttheorem states tigtm, M) is the best competitive ratio that a one-way trading
algorithm can achieve for the known duration case withading days.

THEOREMS5. Letm M, and n be givenThen ,(m, M) is the lowest possible compet-
itive ratio for a known duration one-way trading garfwith known m and Nl

PROOF LetALG be any deterministic algorithm different from the threat-based algo-
rithm. Using an adversary argument we show tat cannot achieve a ratio smaller
thanr, (as defined in (26)). Let, = p1, P2, ..., Pn be the exchange rate sequence that
maximizes (p1, P2, . .., pn) for ann-day game (see the discussion after Lemma 6). On
the first day we preserft; to ALG. If ALG spends less thary i dollars on this rate, then
we end the game. Therefora,c must convert the remaining dollars with the minimum
possible ratep. If this is the caseALG cannot achieve a ratio smaller thgpnsimply be-
causef; is chosen such thayh is the minimal amount that should be spent to guarantee
the ratior,. Therefore, we assume thaitG spends on the first day an amosht- 1/n.

In this case we continue the game and preseatwith the next ratep,. In general, if
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at the end of theth day the total amount in dollars thatG spent is less thaiyn we
immediately end the game. Otherwise, we continue and presenwith the next rate,
Pi+1, etc. Letj be the minimuni such that at the end of théh day, the total amount
spent byALG so far is less thai/n. Denote bys' the amount spent byLG on theith
day, 1<i < j. Since the game proceeded to fitb day we know that

< s,

< s +s,

SINDSIE

-1 _ &

n i=1

IA

S
However, by the choice of,

j
> ZS’.
i=1

ThereforeaLG could have gained more by spending exacflg &n each of the firsf — 1
days and by spending = s + (Zi';ll § — (j —1)/n) at the higher ratep;. Even if
this is the case, siné < 1/n, ALG could not guarantee a competitive ratiorgfsince

p; is chosen such that exactlyd dollars should be spent on thith day to attain a ratio

of ry. It follows then thataLG must coincide with the threat-based algorithm, achieving
a ratio ofry,, or otherwiseaLG incurs a higher ratio on this exchange rate sequentce.

S l—

REMARK 6. With respect to the proof of Theorem 5, notice that the adversary may end
the game after any day, provided that the total amount spent myG is less than or
equal toi /n. For example, ifALG spends exactly /n dollars on the first day, then by
dropping the rest of the sequencentpthe adversary forces a competitive ratia gbn

ALG. Thus, there are exactly types of worst-case sequences against the threat-based
algorithm. Namely, the sequences

P1, P2, ..., Hi,mm,...,m, i=12,...,n.
————

n—i

(Of course, the adversary may use other rates smallerftharstead of all then's on
the last days, except for the very last day.)

REMARK 7. It is easy to extend the proof of Theorem 5 to the case of randomized
algorithms against oblivious adversaries. All that is needed is to note that an oblivious
adversary can calculate the expected amounts that the algorithm will spend on each
trading day. Then the proof is analogous to the proof of Theorem 5. Nevertheless, we
already know from Corollary 2 that randomization cannot help in one-way trading.



120 R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin

4.2. A Game Against a Lenient AdversaryAs can be seen in the proof of Theorem 5,

the adversary can always force a competitive ratig,¢h, M) on any algorithm. Never-
theless, for any practical purpose, it is most likely the case that we will confront a more
lenient adversary—one which deviates from the worst-case sequence of exchange rates.
In this section we describe an algorithm that always perform as well as the previous
algorithm. However, on some exchange rate sequences, those which are not worst-case,
the new algorithm strictly improves the offline to online ratio.

At the start of each trading day, the online player knows the number of remaining
days,n’ < n and is presented with an exchange ratdn addition, the player already
accumulated > 0yen and ha® < 1 dollars remaining. At this stage, the online player
can calculate the best attainable competitive ratio for the remaininggiasis x and
use it to determine the amount of dollars to be spent. The idea is simply to assume that
the current day is the first trading day ofarday trading period and that the rest of the
rates will be chosen by an adversary (i.e., to maximize the competitive ratio). Since we
considerx to be a “first” day rate we denote it byy; and similarly, we denote the rest
of the worst-caseexchange rates bg, i = 2,3,...,n’". Also, the (worst-case) daily
transactions will be denoted tsj. GivenD, Y, n’, and p; we now derive a formula for
r’, the best attainable ratio from this stage onward, as well as formulas fgf. tRete
that for usage the online player need only know the quastfity

An application of (4) with = 1 yields

p;—r’ - (Y + Dm)

27 =
@7) B r-(py—m
Fori > 1 we obtain from (10)

1 p-pL
(28) s_r/ —m

Since the amounts to be spent sum uPtae have

»
D=s+)§
i=2

_ Pi—r'-(Y+Dm g.ip{—p{_l

r-(pp—m o= o -mo

Solving forr’,

, P; LN i
rr=—* |1+
Dp; +Y [ Py .; p—m
p/l ") /

Dp, + Y (Py Pn)
wherer ™ (.) is defined by (12) (wittk = n’). Thus, the best ratio}, is simply written as
a “normalization” of the best ratio for a regulalrday gameD = 1, Y = 0) with future
ratesp,, ps, ..., p,,. To determine the optimal ratio at this stage, we must optimize over
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all possible future exchange rates. Notice however that we need not maximizp,over
since it is already given. Hence, we apply Lemma 5 to obtain

r' = r'(py,n,D,Y,m M)
dgef P ™ (!

= Dy (P,
wherer ™ (p}) is given by (15).

The improved, adaptive algorithm may be summarized as follows: Given an exchange
ratex when there aré trading days remaining (> 0), the online player wittD dollars
andY yen calculates’ = r'(x, £, D,Y, m, M). If x < mr’, then the online player
makes no transaction (see Remark 5). Otherwise, the online player §a@egiation
(27)) dollars to yen.

We now exemplify how this adaptive algorithm takes advantage of opportunities
encountered in the trading period (i.e., deviations from the worst-case exchange rate
sequence). In this example, [Etbe an arbitrary number of days ), and suppose that
the first exchange rate we encounter is the maximum possibléMa®yppose also that
at this stage the algorithm hold3 dollars andY yen. In contrast to the “worst-case”
algorithm described in the previous section, we shall see that the adaptive algorithm
identifies this opportunity and trades all availaBlelollars on this (fortunate) exchange
rate.

First, by (15)r ™ (M) = 1, sor’ = M/(DM + Y). Hence,

5 = (M B M(Y+Dm)>/<M(M—m))
DM +Y DM +Y

MD(M —m)

MM —-m)

REMARK 8. In general, it can be shown that when using this improved algorithm, the
sequence of ratias that is calculated by the online player in this manner is nonincreasing
and if the adversary always deviates from the worst possible sequence, then the sequence
of calculated ratios;’, is strictly decreasing.

4.3. Analysis of Varian®: Unknown Duration with mM Known  Since in this variant
the number oftrading days is not given to the online player, he must consider an arbitrarily
large number of days. Define

(M, M) d=9fnlim r(m, M).
— 00

Notice thatr, is monotone increasing with. Thereforey, is larger tharr,, for any
n and therefore, by Lemma 3 the threat-based algorithm calculated with,_) is

I o-proper for any input sequeneeand therefore,, is anattainablecompetitive ratio
for any finite trading period. On the other handy ass the lower bound for eaam-day
trading game, the lower bound for Variant 2 approaches (from belQuhn, M) since
the adversary may choose arbitrarily large
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Using elementary calculus we calculatg as follows. Using the abbreviatidd =
m(r — 1)/(M — m) we calculate the limit lirg_, o N - (1 — PY™) = limp_, o rn(m, M).
Notice thatn - (1 — P¥™) = (1 — P¥™)/(1/n), so by L'Hdpital’s rule

: . PY".InP/n?
limn-@1—PY" = lim pP7-InpP/m
n—o0 n—o00 —1/n2
= lim —PY".InP
n—o0
= —InP.
Hencef.,(m, M) is the unique solutior,, of
M —m
(29) =In—.
m(r — 1)

It is not hard to see that, = ®(In¢) wherep = M/m.

4.4, Analysis of VarianB: Known Duration withp Known Here, the online player
knows only the quantity = M/m but not the actual bounds on possible exchange rates,

m andM. Notice that the information about the minimum possible rate available to the
online player varies online. A simple observation is that atitheday the minimum
possible rate (at this stage) [i5/¢; here we assume that is an element of the initial
segment of exchange rate maxima. Therefore, as in the analysis of the second variant,
we now make use of (4) and (5) specializing them to the case in whichmimémum
possible rate”is pj /¢ as inferred from the above observation. First, from (5) we have

v+p 2P
) r
Solving for D; we obtain
1
(30) D'_(p'(F_H)'

Then, from (4) we obtain

pi —r(Yi—1+ Di—1- pi/e)

31 s —
1) S r-(pi — pi/e)

SinceYy = 0 andDg = 1, we have for the case= 1,

_ ey
Cre(p-1

Consider (30) for the case-1 and substitute it fob; _1 in (31). After some simplification
the resulting equation can, for> 1, be written as

Yi_1g < 1 1)
33 _Yiae (1 1)
(33) S o—1 \p_1 P

(32) S1
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By definition,Y; = Yi_1+ pis. If we use (33) to substitute far we obtain the following
recurrence relation fory, k > 1:

(34) Yo = Yee1+ Py S
Y 1 1
_ mww.(———)
p—1 Pk-1 Pk

1 Pk )
Yi_1- . . —11.
K p—1 <€0 Pk-1
Recall that the base case for this recurrence relation is givefy bys; - p1. Using (32)
we obtain
1 k—1 k pi
Yy [ —— . LG |
() M)
Pa(p —1) ( 1 )“ - ( pi )
— . . ).
o \po1) Lo

Whenk is known to the online player, the optimal online algorithm must convert all
dollars by the end of thkth day. ThereforeDy should equal 0. Thus, using (30),

(35) Yk

Hencer = px/ Yk, and if we substitute (35) fork we obtain

P
Yk

r =
Px/ P1
(0 =D)/rip—1)- 1/l — D)1 T (- (p/pi0) — D).
After solving forr and simplifying we obtain
(36) r=r%y. p2..... o
wl (PP (p =D
Mo (p/Pi-v) — 1)

Hence, it remains to calculate

def
@) = max r®0pe.... po.

P1<P2<-<Pk
LEMMA 9. Forfixed p and p,

max  r®(pg, p2. ..., PO

Pr<pz<-<px

occurs whenfor every2 < j <Kk,

i=<&)l/(k_l)
Pj-1 P1
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PrOOF If we fix py and pein r®(py, pa, ..., pi) it only remains to maximizé® =
I—[:(Zz(ga -(pi/pPi—1) — 1). First notice that since > 1and O0< p; < p2 < -+ < Pk
every term inP is positive. Now, for any < j < k — 1, p; contributes to the product
P only in the multiplication of two terms which we abbreviate Ay.

Pj Pj+1
oo Py (o ),
! < Pj-1 Pi

daA ¢ (PF — Pi+1- Pj-1)
dp Pj-1- P’ '

Clearly, p = (pj_1- pj+1)*/?is aroot ofd Aj/dp; = 0. In addition,(d?A; /dp?)(p)) is
negative. Therefore, for fixep;_; and pj 11, A; is maximized when

P _ P _ <I01+1>1/2

Pj-1 Pj Pj-1
It follows then thatP is maximized when for every 2 j <k, pj/pj-1 = Pj+1/pj. We
denote this ratio by. Thus,

Consider

gei_ P2 Ps P P
p1 P2 Pk-1 P1
andp = (p/p)Y*Y. O
As a direct conclusion of Lemmard® (ps, pa, ..., p) can be rewritten as™ (py)
where
. _ k
(37) £ (py & (Px/P1) - (¢ — 1)

- [Ts(e - (pe/p)Y®-D — 1)
_ Pe/P1 - (9 — DK
(‘P - (Px/ pl)l/(kfl) _ 1)k—1

By taking the derivative af® (py) with respect tquy, it can be seen that for evegy> 1,
r 0 (py) increases withpy, so letpy take its maximum valug@; ¢ to obtain

k
38 (ky def (P1o/pP1) - (9 — 1)
o r Y7 @ (prp/pOV D — D)1

1. =D
2 ((pk/(k_l)_l)k—l :

The final step to establish the best attainable competitive ratio for this variant is to
optimizer ® with respect tc.

LEMMA 10. r® is monotone increasing with k
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PrROOF Set

ok
(ko -1 _
((pk/(k—l) _ 1)

and

k+1/k _ 1)k
o 8ot 1)
g(k) (@~ IF

By showing that for alk > 2 andgp > 1, f (k) — f(k + 1) is positive, we shall prove
that f (k) is monotone decreasing. By considering (38), this will readily provertfiat
is monotone increasing with

— 1k _ 1)k+1
flo—fkey = —-° @D

(pk/=D — 1)‘(*1 (prbr/k — 1)"

o (g - 22
v gk—1 gk

Showing thatf is decreasing is therefore equivalent to showingdtiaan increasing
function. Since log is an increasing function, it is sufficient to show thatddg) is

increasing. Sey gef 1/k andh(t) def log(p**t — 1). Then

+1/k _ 1
klog <¢7>
p—1

k(log(p™Y — 1) — log(yp — 1))
h(y) — h(0)
—

Sincek is decreasing iy, we need to show th&h(y) — h(0))/y is a monotone decreas-
ing function ofy. This is established in two steps: i}y) is a strictly concave function;
(i) (h(y) —h(0))/y is a decreasing function.

We first show that (ii) follows from (i). It is strictly concave, then

(39)

log(g(k))

hty+(1—-t)x) >t-h(y)+ (1 —-1)-hXx)
forallt in (0, 1) andx # y such thah(x) andh(y) are defined. Takg = 0 to obtain
hity) > t-h(y) + (1 —t) - h(0)
for y > 0. This yields

h(ty) — h(0) - h(y) — h(0)
ty y ’

which proves (ii). To prove (i) we show thhat(y) is a decreasing function. We differen-
tiate h:

te (0,1,

1+y

’ . %
h(y) = |09(¢)m~
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We writez = ™Y and thertY (y) = log(¢)z/(z — 1). Sincez/(z — 1) is a decreasing
function of z in the rangez > 1, and sincez is an increasing function of, it follows
thath’(y) is strictly decreasing. It is well known that this implies thas concave. This
establishes (i). O

A direct conclusion of Lemma 10 is that the adversary will chdoseben and we
obtain the following:

THEOREMG. Tn(p) = @(1— (¢ — DH"/(pV =D — 1)n-1),

4.5. Analysis of Variant: Unknown Duration withy Known Here, analogously to
Variant 2, the best attainable competitive ratio is

def .
Foo(@) £ lim ro(p).
n—oo
Using elementary calculus it can be shown that

. (p— 1" ( @ |n¢)>
im —————— = —1ex - ).
n—o0 ((pn/(n—l) _ 1)“_1 (¢ ) exp p—1

Therefore,
In
Fol) = ¢ (1— (-1 exp(—u))
o—1
_,_~-1
AT
LEMMA 11. 1o (@) = O(Ing).

PrOOE  Wefirstprove the upper bound, (¢) = O(In ¢). Let f (x) d:efx—x/(x + DX,

We will show thatforallk > 1, f (x) < In(x+1). This shall prove that,,(¢) = O(In¢)
(for ¢ > 2), sincef (¢ — 1)+ 1 =r(¢). To prove the claim it is sufficient to prove that

exp(f(x)) < x+1,

or, in other words, that
e*
<X
expx/(x + Ll/xy —
This is equivalent to showing that

1 1 X
1= (ool

So it is sufficient to prove that

X+ DI —< p((x+1)1/X>>'

+1
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Seta = 1/(x 4+ 1)/*. We need, then, to show thg¢x) *fea _eais nonnegative for all
x > 1. This can be established by differentiation. We shall showghiatnegative, sg
is decreasing. Then it can be shown thatlim, g(x) = 0 (and also it is easy to verify
thatg(l) = /e — /2 ~ 0.2896). This will complete the proof. It remains to show that
g <0.
, axInx+1 +Inx+1) —x)-(e®—e)
gx) = > .
X?(X + 1)
Itis not hard to verify thak In(x + 1) + In(x + 1) — x is positive (for example, at =1
the value of this expression is %). Seth(x) = € — e. We will show thath is negative
in the interval(1, co) and this will prove thaty < 0. We differentiatéh:

eaxinx+1) +In(x+1) —x) N

h'eo = x2+1

0.

Therefore,h is increasing and it can be shown that Jim, h(x) = 0. Henceh is
negative in the interval0, co). This proves the upper bound.

For the lower bound, recall that= M/m. Itis clear that foreach > 2,r,(m, M) <
r(e). Hence,

Foo(9) = Foo(M, M) = O(Ing). u

5. Numerical Examples of Competitive Ratios of Search and One-way Trading
Algorithms. In this section we provide some numerical examples of competitive ratios
attained by some of the algorithms discussed so far. Consider Table 1. Clearly, the optimal
threat-based algorithm for the unknown duration case migndM known is always
significantly better than all other algorithms. Notice that the deterministic reservation
price policyRPPis better than algorithnexpo for small values ofp, but the growth
rate ofExPOs competitive ratio is approximately the logarithm of the growth rate of the
competitive ratio ofRPR In general it is not hard to show that the limit of the ratio of
EXPOS competitive ratio to the threat-based competitive ratio/ia 2 ~ 1.44.

With respect to the known duration case, it is interesting to consider the rate of
increase of the optimal competitive ratio as a function of the number of tradinghdtys
is not hard to see that the optimal competitive ratio grows very quickly to its asymptote.
Nevertheless, there is still an advantage in playing short games. For instance, already
at then = 20th periodr,(1, 2) almost reaches its asymptotg, (1, 2) ~ 1.278 (which
is equivalent to guaranteeing 78.2% of the optimal offline returni, &t 10 the ratio
achieved is 226 (79.3%), and at = 5 the ratio is 124 (80.6%).

6. One-Way Trading Against Nature. Letu be the maximum value thatthe exchange
rate will assume. In this section we define and study a one-way trading game in which
the online player knows the probability distributiongofand this distribution is chosen

by an adversary. This model is typically referred to as a game against Nature (see [4],
[26], and [12]). The result in this section reveals an interesting relationship between this
game against Nature and the results of previous sections. At the outset it may appear
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Table 1. Numerical examples of competitive ratios for some search and one-way
trading algorithms (unknown duration).

Value ofp
Algorithm 15 2 4 8 16 32
RPP(M, M known) 1.22 1.41 2 2.82 4 5.65
EXPO (only ¢ known)* 15 2 2.66 3.42 4.26 5.16

THREAT (only ¢ known) 1.27 1.50 211 2.80 3.53 4.28
THREAT (m, M known) 1.15 1.28 1.60 197 2.38 2.83

*OrmandM known.

that Nature is weaker than the oblivious adversary since Nature chooses its policy based
solely on the problem parameters whereas the oblivious adversary knows and makes
use also of the online strategy. Moreover, Nature has to declare its strategy before the
start of the game whereas the oblivious adversary keeps its strategy secret and reveals
it only piecemeal online. Nevertheless, we shall see that the online player does not gain
more power against Nature and in fact the competitive ratios of the strategy against the
oblivious adversary and Nature are exactly the same.

We now define the new game more precisely. In contrast to the previous analyses
we consider here a continuous time model. Fixand M and letF be a cumulative
distribution function ofu; that is, F (X) = Pr[u < Xx]. Assume that the support &f is
in [m, M]. Let F denote the set of all such cumulative distribution functions.

REMARK 9. Notice that our definition oF is slightly different from the conventional
one. Usually, a cumulative distribution functiénwith support f, b] is any real function
that satisfies: (i) for any in [a, b], F(X) is nonnegative; (i (a) = 0 andF (b) = 1;
(i) F is nondecreasing overn[b]; and (iv) F is right-hand continuous in the open
interval (a, b). Thus, for eachx,y € [a,b], with a < x < vy, F(y) — F(x) is the
probability that a number is chosen(r, y], and F(y) — F(a) is the probability that a
numberisin, y].

In our formulation, for eaclx, y € [m, M]with x <y < M, F(y) — F(X) is the
probability that a number is irx[ y) andF (M) — F(y) is the probability that a number
is in [y, M]. Thus, our cumulative distribution functions are left-hand continuous in
the open intervalm, M). The usefulness of this definition in our context is twofold.
First it will simplify some of the calculations. More importantly, it will be essential
later to guarantee the existence of Stieltjes integral when the integrand is a probability
distribution function of this type (left-hand continuous) and the integrator is an ordinary
(right-hand continuous) probability distribution function.

For eactu € [m, M] consider the following exchange rate functid),: [m, M] —
R[m, M],
def | t, if m<t<uy,
Eu ) = {m, it t> .

Thus, E, is increasing to a global maximup and then drops ton. For any trading
algorithmaLg, andF € F, let P, (F) denote the expected returnafc with respect
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to F when the algorithm starts with one dollar and trades its dollars in accordance with
an exchange rate functiof, wherep is a random number chosen with probability
distributionF. Later, in Remark 11 we justify this choice B, .

Given anyF and any online algorithmLG, we measure the performancesfs by
its return ratio against F r,s(F, m, M), which is defined as

Por(F
ra(F,m, M) & POPTEF;'
ALG

Thus, the online player and the adversary’s goals are, respectively, to minimize and to
maximize the online algorithm’s return ratio agaiist With respect to a distribution
function, F, we say that an online algorithm @ptimal if no other online algorithm
attains a smaller return ratio agairist

The new game is summarized as follows:

o Nature chooses a probability distributibne F, so as to maximize the return ratio of
the best online algorithm against The functionF is then made known to the online
player.

e Based orfF, the online player chooses his best online trading algorithia,

¢ Nature chooses a random numbhefwith cumulative distributiorF), which remains
unknown to the online player.

e The game is played: the online algoritis against the exchange rate functigp.

The main theorem we prove states that the smallest competitive ratio that the online
player can achieve, for Variant2,, (see Section 4.3), is equal to the largest return ratio
that the adversary can force by choosing a probability distribution for the maximum
exchange rate.

THEOREM7. [o(M, M) = max: minara(F, m, M).

Before attempting to prove Theorem 7, the question that we ask is: What is the online
algorithm that maximizes the return ratio against a gi#éh

In order to answer this question we now reduce the class of candidates from all possible
(continuous) algorithms to the small class of reservation price policies (see Section 1.3).
Namely, for eactx € [m, M], the reservation price policgPRX) is an online trading
algorithm that trades all dollars at exchange reif¢he exchange rate function ever rises
to the ratex. It follows (by definition) that if the exchange rate function never reaches
X, RPRX) trades all dollars at rate.

It is not hard to see that for arfy € F, the expected return &PRX) is

Prerc) (F) = XFE(X) + mF(x),

whereF¢(x) defy F(x).
Similar to the discrete time setup we denotebya continuous time trading func-

tion (algorithm). ConsideD¢(x) def g _ D(x). By the properties oD we have:

() D% [m, M] — [m, M]; (i) D¢(m) = 0, D¢(M) = 1; (iii) D€ is nondecreasing;
and (iv) D€ is right-hand continuous. HencBF is a cumulative distribution function
with support i, M].
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Let D be the set of all such functiori3 and letD°® be the set of alD® with D € D.
For eachG € D we can usés as a trading algorithm in the two following ways:

e UseGF¢ as an (ordinary) deterministic trading algorithm.

e UseG as a randomized algorithm, viewed as a probability distribution over threshold
algorithms. SpecificallyG(x) is the cumulative probability of choosing one of the
algorithmsRPR(S), s € [m, X].

It is straightforward to show that these two algorithms are equivalent in the sense that
when played against a particular distribution function, they exhibit the same expected
returns. LetG € DF. For anyF € F, whenG is used as a randomized algorithm, its
expected return with respect kois
M
Ri(F, G) = / (XF(x) + mMF(x)) dG(x).

m

On the other hand, as a deterministic algoritf@®9)(its expected return is

M
Re(F.G) = [ (

We note that sinc& is right-hand continuous arfd is left-hand continuous, and since
bothG andF are of bounded variation, then bof®y and R, exist.

/X udG(u) + m[1— G(x)]) dF(x).

m

LEMMA 12. Foreach Fe F and Ge D¢, Ri(F, G) = Ry (F, G).

PrROOF

Ru(G. F) =/
i X M M
/ udG(u))dF(x)+m/ dF(x) —m/ G(x)dF(x)

M
Rx(G, F) =/ <
I’HM mx M
:/ </ udG(u))dF(x)+m—m<1—/ F(x)dG(x))
mM mx M "
:/ </ udG(u))dF(x)er/ F(x) dG(x).

Hence, it is sufficient to prove that

M X M
(40) / </ udG(u))dF(x):/ X(1— F(x))dG(x).

m

M M

X(1— FX)dG(x) + m/ F(x)dG(x),

m

For any positive integenm, let 7, be the following subdivision of the intervai], M]:
M=Xg <Xy << Xph=M,

wherex; = m+i(M —m)/n,i =0,1,...,n. With respect tar, we write particular
Stieltjes sums for both integrals of (40). These sums turn out to be identical. For each
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1<i <n,setg = G(X)— G(Xi_1). The sum

n i—1
S = Z (ZX,‘QJ) [F(x) — F(xi—1)]

i=1 \j=1

is a Stieltjes sum of the left-hand integral of (40), whereas the sum

n

To=> [x —xF)]g

i=1

is a Stieltjes sum of the right-hand integral of (40).

S = [F(x2) — F(x)] x101
+[F(X3) — F(X2)] (X101 + X202)
+ [F(X4) = F(X3)] (X101 + X202 + X303)
+

+ [F(Xn-1) — F(Xn—2)] (X101 + X202 + - - - + Xn—20n—2)
+[F(Xn) — F(Xn—1)] (X101 + X202 + - - - + Xn—20n—2 + Xn—10n—1)

n-1 n-1

=) X0 — Y XGFX)
i=1 i=1
n-1

= ) (i —xF (X)) g.

i=1
However,F (x,) = F(M) = 1, s0Xn0gnh = F(Xn)XnGn, and$, = T,.

By definition, asn — oo, §, and T, approachR;(F, G) and R (F, G), respec-
tively. O

One conclusion of Lemma 12 is that the online player may only consider mixtures
of reservation price policies as candidates for optimal algorithms aglinshe next
lemma states that the online player may restrict his attention only to (deterministic)
reservation price policies.

LEMMA 13. Let G € D° be any distribution reservation price poliGgPRS). Then
for everye > 0, and for every Fe F, there exists a numberss [m, M] such that
Peerisr) (F) = Pa(F) —¢.

PROOE Lete > 0 be given.

M M
PG(F)=f Prert (F) dG(X) =/ (XFC(x) + mF(x)) dG(x).

Lets* be a number inrh, M] such that

PRPF(S*)(F) = SupPRPF(X)(F) —&.
X
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Therefore, foralk € [m, M], Peprsy (F)+¢& > Prerxy (F). For any distribution function,
Gy

M
Prers (F) +& = PRPF(S*)(F)+8)/ 1.dG(x)

m

(
M
= / (Preris) (F) + £) dG(x)

m

v

M
/ Proriy (F) dG(X).
m

Hence,

M

Prers (F) +& > sup Prerox) (F) dG(x).
GeD¢Jm

Let s € F be the cumulative distribution function

| _]o, if m<x<s,
sM=11 i s =x<M;

M M

SUp [ Prosiy (F) dG(x) > / Preriss (F) 15 () = Prosse (F).
GeD°¢ Jm m
Therefore,
M M
sup PRPP(X)(F) dG(X) —&= PRPP(S*)(F) < sup PRPP(X)(F) dG(X)~
GeD¢Jm GeDcJm
Thus, the proof is complete. O

REMARK 10. In the case where maR..«x)(F) exists we obtain the stronger result

M
Purie(F) = 13X [ P (F) 4600,
m

wheres* is a number infn, M] such that

PRPP(s*) ( F) = mr<nxa<)l(\/| PRPF(X) ( F ) .

For convenience, we assume for the rest of the section that Rax, (F) exists. Thus,
the results we obtain through consideration of the optimal performance of deterministic
threshold algorithms are limits of the actual bounds.

PrROOF OFTHEOREM7. By Lemma 13, itis sufficient to consider only reservation price
policies as candidates for the optimal online algorithm agdingtet x* be the value of

x at which the quantityn F(x) + x F¢(x) is maximized. Thus, givelr, RPRX*) is an
optimal online algorithm againgt.
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We want to calculate the quantity

Poer(F E
(41) max—")_ _ max [1] )
FoPreren(F)  F mE(X) + x* - FO(x*)

Consider the problem of maximizing[x] subject to the constraimn F(x*) + x* -
FC(x*) < z, wherez is a parameter to be determined later. The constraint is equivalent
to the following condition: for alk € [m, M],

(42) mF(x) + xF°(x) < z,
or, equivalently,
(43) Fo() <

Notice thatF¢(M) = 0 (andF (M) = 1). Hence, by substitutingy! for x in (42) we

learn thatz > m.
M
/ x dF(x)
m
M

Then
M- F(M)—-mFm) —/ F(x)dx

m

Elu]

M
= M—/ F(x)dx
m
M
= m+/ (1-FX))dx
m
M
= m+/ Fedx
m
z M
= m+f F°dx+/ FCdx
V4

m

z M
§m+/ 1-dx+/ FCdx
z

m

M
= z+/ Fedx
z
M
Z—m
52—1—/ dx
; X—m

M —
=zZ+(z—m)ln -

By the above derivation, itis evident tHait] can be maximized, while still satisfying
the constraint (43), by taking

z ,
Fe¢(x) = T if z<x<M,
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For suchF¢(x),

E[u] = 2+ (z—m)In A=

zZ—m
Set
92 def z4+ (z—m)In(M —m)/(z—m))
- .
Hence, by the choice d¥°(x) and by the definition of,
Elu]

9@ = mF(x*) 4+ x* - Fe(x*)’
so we can calculate (41) by maximiziggz). Using elementary calculus we show that
g(2) is maximized az* = miIn((M — m)/(z* — m)). By differentiation,

—z+min((M —m)/(z — m))

ZZ
M —m
z—m )/’
Thereforeg'(z*) = 0, and it can be verified that’(z*) = —1/z*(z* — m). Hence,z*
maximizesg.
Let r denote max mingxx) (F, M, M). Thenr is determined by evaluating(z*).
A brief calculation shows that = In(M — m)/(z* — m)) = In(M — m)/(mr — m))

(z* = mr follows from the identityz* = mIn((M — m)/(z* — m)). The proof is com-
pleted since is identical tor (M, M) (see (29)). O

g2 =

and

" _ 1 —2 _
g@= z—m + 2z <g(z) In

Notice that the proof of Theorem 7 is constructive; it explicitly yields the probability
distribution, F, that maximizes the return ratio; namely, for < x < M, F¢ =
(rm —m)/(x —m) andF is discontinuous aM, where the masem — m)/(M — m)
is concentrated. It turns out that with respect to sighall reservation price policies
yield the maximum possible expected retunn,

As we defined this trading game, the online player chooses his best strategy before
the start of the game and is not allowed to change it thereafter. However, as the exchange
rate varies, the online player’'s estimate.ofilso varies. Assume that if the maximum
rate observed so far & then the conditional distribution ¢f given the history ok is
obtained simply by excluding all values pfless thars, and normalizing the relative
probabilities of values greater than or equad.tdhat is, this conditional distribution has
the cumulative distribution functiorks, given by

F(X) —F(s)

(44) F00 £ T1-F()
0, X < S.

) X =S,

Itis not hard to see that if the online player chose the optimal threshold algarithix*)
before the start of the game, then the optimal threshdldemains fixed throughout the



Optimal Search and One-Way Trading Online Algorithms 135

game independent of the ever-changing estimate @b see this, we write the expected
return using some thresholdgiven that the maximum rate observed so fag is M.
Clearly, this expected return is

mFE(x) + xF¢(x) B mF(s)
1-F(s) 1-F(s)’

(45) mFE(X) + XFS(x) =

It is evident that the same maximizes (45) andPxex) (F) so the threshold remains
fixed.

REMARK 11. We note that it is possible to remove the assumption that the exchange
rate function is of a particular nature, except, of course, the requirement that the function
reaches the (random) global maximwm Simply, if the adversary chooses any other
kind of exchange rate function (e.g., with discontinuities ovegJ, the expected return

of the online player may only increase if he uses a reservation price policy. The optimal
offline (expected) return remains the same. On the other hand, the online player cannot
hope for higher returns since the adversary (knowing the algorithm chosen by the online
player) may choose the functidg, against which it is shown that reservation price
policies can attain optimal returns.

7. Two-Way Trading. Inthis section we apply some of our results for one-way trading

to thetwo-way tradingproblem where the player is allowed to convert the money back and
forth between the two currencies. Two-way trading is a special case of the more general
portfolio selectiomproblem. Inthis problem a trader reallocates online his wealth between
a numbem of assets (or other investment instruments) in order to take advantage of the
relative fluctuations between the various assets. The special chse-02 where one

of the assets is cash corresponds to the two-way trading problem.

There is a considerable body of work related to two-way trading and portfolio selec-
tion. From the perspective of competitive analysis, there are a number of results which
are somewhat related to the results presented in this section. For example, Raghavan
[27] and Chou et al. [9], [10] study an online two-way trading problem against statis-
tical adversaries, which must produce exchange rate sequences that conform to some
statistical constraints. Cover and Ordentlich [13], [25], Helmbold et al. [18], and Blum
and Kalai [6] study the general portfolio selection and give algorithms which are com-
petitive relative to a constrained optimal offline algorithm. In particular, they compare
their online algorithm to the best (offlinepnstant rebalancedlgorithm that must keep
a fixed proportion invested in each of tNeassets. In this section we study the two-way
trading problem with respect to the omnipotent optimal offline algorithm (still however
we keep the constraint that prices are drawn from a bounded support).

We first state the problem more formally and then give preliminary lower and upper
bounds on the competitive ratio of online algorithms for this problem. Both the lower and
upper bounds are obtained simply by a decomposition of the exchange rate sequence into
monotone increasinglecreasing segments on which we can apply our one-way trading
results.

The online player starts with soni&, dollars (here again, without loss of generality
Do = 1) and converts back and forth between dollars and yen in accordance with



136 R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin

a sequence of exchange rates= pi, po, ... which is revealed online. These rates
(yernydollar) must remain in the intervat], M], but otherwise may rise or fall arbitrarily.
When the game ends, the money is all converted to one of the currencies, say, dollars,
at the present rate. Note that the ratio of the amount accumulated by the optimal offline
algorithm on this sequence of exchange rates to the amount accumulated by the online
player is the same, no matter which currency they convert to when the game ends. As
in the one-way trading problem, the online player’s goal is to minimize the competitive
ratio.

If the number of local maxima and minima in the exchange rate sequence is un-
bounded, there is no strategy with a finite competitive ratio (see the lower bound argu-
ment in Section 7.2). Assume there &rsuch extrema. We show a lower boundi}(fZ
and an upper bound of, wherer, = ro,(m, M) is the optimal competitive ratio for a
one-way game with an unbounded number of days (see Section 4.3).

7.1. Upper Bound Assume thak is even. The sequeneeof exchange rates consists
of k/2 upward runs ankl/2 downward runs. The optimal algorithm for the offline player
is to convert all his dollars to yen at the end of each upward run, and all his yen to
dollars at the end of each downward run. We describe how the online player can achieve
a competitive ratio of X.. Suppose the first upward run consistpef< p, < --- < p;,
with pi 1 < pi. During the firsi days, the online player plays according to our optimal
one-way algorithm (with competitive ratig,). By the end of theth day he acquires
D; dollars andY; yen, wheremD; + Y, = pj/r. On dayi + 1 he converts all his
dollars to yen. Since 1 > m, he then has at leag} /ro yen at the beginning of
the first downward run. He then proceeds similarly during the downward run beginning
at dayi + 1, converting yen to dollars during the decreasing run and exchanging any
remaining yen on the first day of the next increasing run. Thus, two transactions occur on
the first day of any decreasing run: first, the exchange of all dollars to yen, and second,
the first transaction of the one-way algorithm on the downward run (conversion of yen
to dollars). These conceptually distinct transactions can, of course, be combined into
a single transaction. Similarly, on the first day of any subsequent increasing run, these
two transactions may occur. In each run the ratio between the offline player's wealth and
the online player’s wealth increases by at most the fagteand thus the online player
achieves the competitive rati¢j .

Notice that the player does not need to krlovn addition, some improvements may
be employed. For example, if the player has a bolinan the maximum length of the
upward downward runs, then he can use the competitive ratim, M) in each one-
way game (see Section 4.1), instead Qfm, M). For most real-life price sequences,
such a bound can be identified and is rather small. Moreover, further improvement in
performance may be obtained by using the improved algorithm of Section 4.2 in every
one-way game.

7.2. Lower Bound Assume that the online player knows omlyand M. For anyn,
it is possible for an adversary to force a competitive ratiorgf/? against any online
strategy.

Our argument here follows from the lower bound proof of the one-way case. Suppose
each player starts with one dollar. Then, regardless of what strategy the online player
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is employing, the adversary can construct a sequence of atrmpdt exchange rates
consisting of an upward run (of lengthfollowed by an immediate drop of the exchange
rate tom, such that, at the end of the sequence, his total holdings in yen and dollars
(evaluated at the exchange rat¢ will exceed that of the online player by at least the
factorr,. Moreover, when the exchange rate dropsitdhe adversary will convert all
his yen to dollars, and the online player can do no better than to follow suit, since he will
never have a more favorable conversion rate. Thus, in one upward and one downward
run, the ratio of adversary currency to online currency can be made to increase by a
factor ofr,,. This yields a factorr,)¥/? for the entire game (at moktn + 1)/2 days).
As n increases, this lower bound approactrgg)*/2.

We point out that the fact that the above lower and upper bounds are exponektial in
is somewhat misleading. It may appear worse than it really is. The reason is that optimal
offline returns on sequences wkhocal minima and maxima are exponentially large so
that these competitive ratios do not exclude the possibility of very large (exponential)
returns for the online player.

8. Concluding Remarks. In our example of one-way trading, a striking feature of
the problem is the conceptual simplicity of the optimal strategy. To attain a certain
competitive ratio, the online player simply defends himself against the threat of dropping
the exchange rate permanently to the minimum possible rate. It would be interesting to
identify other problems in which a threat-based strategy is optimal. We note that we have
identified another interesting problem that exhibits this kind of solution. Consider the
following problem calledrading on option

A money trader starts witb dollars and receives a finite sequence of option offers.
Each option offer consists of a pa#, p), whereeis anexchange ratandp > 0 is an
option price For anys > 0 this offer enables the trader to ppg dollars for the right to
later trades dollars for yen at the exchange ratd he trader knows in advance that, even
without purchasing options, he will always be able to exchange dollars for yen at the
ratem, and that the maximum exchange rate he will ever be offerdfl. ids each offer
(e, p) is presented, the trader chooses a corresponding salnd his stock of dollars
is depleted byps. At the end of the sequence of offers the trader converts his remaining
dollars to yen by exercising some of the options he has purchased and by exchanging
any remaining dollars at the rate. The optimal offline strategy is clear; the offline
player will choose that optiote, p) for whiche/(p + 1) is greatest and (provided that
e/(p+ 1) > m) will spend pDg/p + 1 dollars for the right to exchange his remaining
Do/(p + 1) dollars for yen at the exchange rateJnder this optimal strategy the offline
player receives Dy/(p + 1) yen. Intuitively, if the trader can achieve a competitive ratio
of r for this problem, then he can do so using a threat-based strategy of the following
form: whenever an offe(e, p) is presented, choose the minimum valuesdhat will
ensure that the trader can obtélyir ) (e Dy/(p + 1)) even under the threat that no further
option offers will be made. (Full analysis of this problem will soon be published in a
separate work.)

This paper leaves a number of questions open for future research. One intriguing
guestion is that of the true lowarpper bounds on the competitive ratio of the two-
way game. We suspect that a good starting point to investigate this question is to im-
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prove the upper bound which is conjectured to be suboptimal. An intuitive reason for
this conjecture is the following. Notice that on any upward (downward) run the online
player can take advantage of the knowledge that in order to force ar ratiche fol-
lowing downward (upward) run, the adversary must begin that run with a sufficiently
small (large) exchange rate (i.em in the case where the following run is an upward
run).

It would be of interest to examine the robustness of our results under some real-
life considerations such as transaction costs and errors in the choice of the parameters
(m, M, n, and/or ®).

An important issue that requires further study is the sensitivity and the dependence of
the trading strategies on the constraining parameters. It is clear that a greedy choice of
these parameters may result in an unfortunate outcome. However, an ability to estimate
this dependence quantitatively allows for some degree of risk management. For example,
consider the case in which the online player underestimates the upper bound on possible
exchange rates. Sayl = cM is the true upper bound whece> 1. Clearly, in the worst
possible rate sequengg_; = M and p, = M. Therefore, our trading strategy will
spend all the available dollars at the second last day and will gain atNEagtm, M)
yen. On the same sequence the optimal offline player acqMirgsn and therefore the
attainable competitive ratio using the incorrect upper bound may be almost as poor as
(M/M)R(M, n) =c-ry(m, M).
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