arXiv:cs/9907030v1 [cs.CG] 19 Jul 1999

Algorithms for Coloring Quadtrees

David Eppsteii Marshall W. Berfh Brad Hutching$

Abstract

We describe simple linear time algorithms for coloring theares of balanced and unbalanced quad-
trees so that no two adjacent squares are given the same tfaddquares sharing sides are defined as
adjacent, we color balanced quadtrees with three colo,uabalanced quadtrees with four colors;
these results are both tight, as some quadtrees requirmémy colors. If squares sharing corners are
defined as adjacent, we color balanced or unbalanced geadtith six colors; for some quadtrees, at
least five colors are required.

1 Introduction

A quadtreefff] is a data structure formed by starting from a single sguand recursively dividing squares
into four smaller squares. In this paper we consider problefitoloring quadtree squares so that no two
neighboring squares have the same color. This quadtreermloroblem was introduced by Benantar et
al [fl, 21, motivated by problems of scheduling parallel certagions on quadtree-structured finite element
meshes.

There are several variants of the problem depending on tlaélslef its definition. Quadtrees may be
balanced(i.e. squares sharing an edge may be required to be withicter faf two of each other in size) or
unbalanced Balanced quadtrees are typically used in finite elemenhewg$ut other applications may give
rise to unbalanced quadtrees. Further, squares may bedl#fibe neighboring if they share a portion of
an edge €dge adjacengy or if they share any vertex or portion of an edger{ex adjacengy We can thus
distinguish four variants of the problem: balanced witheddjacency, unbalanced with edge adjacency,
balanced with corner adjacency, and unbalanced with cadfjacency. (Other balance conditions may also
be used, but we do not concern ourselves with them here.)

Since quadtrees are planar, the four-color theorem foplaraps implies that edge-adjacent quadtrees
require at most four colors, regardless of balance. Benattal. showed that with corner adjacency,
balanced quadtrees require at most six colgrs [2] and unbathquadtrees require at most eight colfs [1].
Benantar et al also suggest that four colors may suffice, frerorner adjacencyf][1].

Here, we tighten the upper bounds above, and show that leslatge-adjacent quadtrees require only
three colors while even unbalanced corner-adjacent qeegltran be six-colored. We provide simple linear
time algorithms that color quadtrees within these bounds, that four-color edge-adjacent unbalanced
guadtrees. We also provide lower bound examples showinghiteee colors are necessary for balanced edge
adjacency, four colors are necessary for unbalanced edgeeady, and at least five colors are necessary
for balanced corner adjacency, refuting the suggesteddalor bound of Benantar et al.

“Dept. of Information and Computer Science, Univ. of Califar Irvine, CA 92697-3425, USA, eppstein@ics.uci.edu,
http://www.ics.uci.edut-eppsteir/. Work supported in part by NSF grant CCR-925835y Xerox Corp.

TXerox Palo Alto Research Ctr., 3333 Coyote Hill Rd., PalmAILA 94304, USA, bern@parc.xerox.com.

1Dept. of Information and Computer Science, Univ. of Catifiar Irvine, CA 92697-3425, USA.

http://arxiv.org/abs/cs/9907030v1
http://www.ics.uci.edu/~eppstein/

Figure 1. (a) Three-coloring of grid; (b) Any four-squardénbas only two neighboring colors.

2 Balanced edge adjacency

Theorem 1. Any balanced quadtree can be colored with three colors sbribawo squares sharing an
edge have the same color.

Proof: Imagine constructing the quadtree bottom-up, by startiity @ regular grid of squares and then
consolidating quadruples of squares of one size to makeresg|ud the next larger size. We color the
initial grid by a regular pattern of three colors, depictadrigure[lL(a). Then, when we consolidate four
squares of one size to make squares of the next larger sizde |ager square has only two colors among
its smaller neighbors (Figufé 1(b)), forcing it to take thed color. Connected sets of larger squares then
end up colored by the same regular pattern used to color taéesrgrid, so we can repeat this process of
consolidation and coloring within each such set. O

We note that this process gives each square a color depeodin@n its size and position within the
quadtree, and not depending on what subdivisions have rectetsewhere in the quadtree. This coloring
can be determined easily from the color the square’s parentdibe given by the same process, so the
coloring algorithm can be performed top-down in linear time

3 Unbalanced edge adjacency

By the four-color theorem for planar maps, any unbalancetlyge can be colored with four colors so that
no two squares sharing an edge have the same color. Suchriagddonot difficult to find:

Theorem 2. Any unbalanced quadtree can be colored in linear time with éwlors so that no two squares
sharing an edge have the same color.

Proof: We form the desired quadtree by splitting squares one ate taneach step we split the largest
square possible. Thus the four smaller squares formed lbysgdit are, at the time of the split, among the
smallest squares in the quadtree. As we perform this syjifirocess, we maintain a valid four-coloring of
the quadtree.

When we split a square, we color the four resulting smalleases. We give the upper right and lower
left squares the same color as their parent. Each of the ttlwesquares has at most four neighbors, two
of which are the same color. Therefore each has at most tiighboring colors, and at least one color
remains available; we give each of these two squares one alvtilable colors. O

As we now show, four colors may sometimes be necessary.

2

Figure 2. Unbalanced edge adjacency requires four colors.

Theorem 3. There is an unbalanced quadtree requiring four colors fdralorings in which no two
squares sharing an edge have the same color.

Proof: An unbalanced quadtree is depicted in Figjre 2, with somésadguares labeled. A simple case
argument shows that it has no three-coloring: suppose fanaadiction that we are attempting to color
it red, blue, and green. Since squafesB, andC are mutually adjacent, we may assume without loss of
generality that they are colored red, blue, and green résphc SinceD is adjacent taA andC, it must be
blue, and sincé& is adjacent td andC, it must be red. Sinc€ is adjacent td andE, it must be green.
But thenG is adjacent to a red squarg)(a green squard-}, and a blue squardj, so it can not be given
any of the three colors. Thus, four colors are required tordblis quadtree. O

4 Balanced corner adjacency

Theorem 4. There is a balanced quadtree requiring five colors for allacoigs in which no two squares
sharing an edge or a corner have the same color.

Proof: A balanced quadtree is depicted in Fig{fe 3. A simple casenaegt shows that it has no four-

coloring: choose four different colors for the four squatgsC,, C3, andC,4 meeting in the center vertex.

Then, choose a color for one of the diagonal neighbbisandD», of the two small center squares. Now
repeatedly apply the following two coloring rules:

1. If some squars has three differently colored neighbors, assign the reimgiiourth color tos.

2. If some squars has a corner shared by three other squares, each of whicfateatto squares of
some colora, assign coloa to s since no other choice leaves enough free colors to the ofjuares
sharing the corner.

Figure 3. Balanced corner adjacency requires at least fieesco

Figures[} anfl]5 show the results of a partial application esetrules, for two choices of color fBy;. The
third possible choice is symmetric with FigUre 5. No mattéraivcolor is chosen fab4, these rules lead
to an inconsistency db,: rule 2 applies in two different ways, forcing, to have two different colors.
Therefore the overall quadtree can not be colored. O

5 Unbalanced corner adjacency

Theorem 5. Any balanced or unbalanced quadtree can be colored in linieage with six colors so that no
two squares sharing an edge or a corner have the same color.

Proof: We form the adjacency graph of the squares in the quadtrdegply thegreedy algorithmremove

a minimum degree vertex from the graph, color recursivélgntadd back the removed vertex and give it a
color different from its neighbors. If the maximum degreeaofertex removed at any stepdsthis uses at
mostd + 1 colors. We can find the minimum degree vertex by maintaifangeachi < 5 a doubly linked
lists of the vertices currently having degrieas we show below, at least one list will be nonempty, and it is
straightforward to update these lists in constant time f&gy. STherefore, the overall time will be linear.

Our bound of six colors then follows from the following lemmnizet Q be a subset of the squares in a
(not-necessarily balanced) quadtree. Defilégeboxto be a square that is not the smallesQjthat has at
most five neighbors which are also not the smalle€ ifirigure[(a)). Define Aanging boxo be a square
sthat is not the smallest i), that has at most three neighbors incident to the upperdefter, and at most
two below or to the right; the below-right neighbors musbaist be the smallest i@ (Figure[§(b)).

Define agood chaino be a set of one or more squares all the smallest inith the following properties
(Figure[6(c)): Each square in the chain must have at most eigéimor below it; except for the bottommost
square in the chain, this neighbor must be another squaleiohain, adjacent at the bottom left corner.
The bottommost square in the chain can be adjacent to a sgjnal@w it and outside the chain, but onlysif

4

Figure 4. Forced squares after choosing colors of centarequwith neighboring squai, colored the same as a
small center square.

Figure 5. Forced squares after choosing colors of centeareguwith neighboring squat® colored the same as a
large center square.

Figure 6. Good configurations: In each figure, the light aratisld squares represent a subset of a quadtree, and the
shaded squares form a good configuration for that subsdiig®px; (b) hanging box; (c) good chain.

is larger than the squares in the chain. Similarly, eachrsganahe chain must have at most one neighbor to

the right of it; except for the topmost square in the chaiis tleighbor must be another square in the chain,

adjacent at the top right corner. The topmost square in thma@an be adjacent to a squar® the right of

it and outside the chain, but again onlysifs larger than the squares in the chain. If the chain has lgxact

one square in it, it may have neighbors both below and to tite,ras long as both neighbors are larger.
Finally, define good configuratiorto be any one of these three patterns: a big box, a hangingobaex,

good chain. Note that all three of these configurations gidegree-five square or squares.

Lemmal. LetQ be any subset of the squares of a quadtree. Then Q haglacgatiguration.

Proof: We use induction on the number of levelsQn Let Q' be formed by replacing each smallest square
in Q by its parent. (We think of as being formed by splitting some square€inand removing some of
the resulting children.) LeE be a good configuration ig'.

First, suppose is a big box inQ’. Then it is also a big box iQ since none of its neighbors can be
subdivided.

Next, supposeC is a hanging box irY. If none of its neighbors is subdivided to for@ it is a big
box in Q. If one of its neighbors is subdivided and has a child neigingaC and not incident to the upper
left corner ofC, that child is a (singleton) good chain (its only below-tigidjacency is t& itself). If C’s
neighbors are subdivided but the only children neighboGrage on the cornef; remains a hanging box in
Q.

Finally, supposeC is a good chain irQY’. If some square o€ is subdivided, and its lower right child
is in Q, that child is a (singleton) good chain @ If not, but some squares are subdivided and have upper
right or lower left children, any maximal contiguous seqeesiof such children is a good chain @ If
neither of these two cases holds, but some squares are isldadand have only their upper left children in

Q, then some sequence of such children and of lower rightremldf neighbors o€ forms a good chain in
Q. If no squares irC are subdivided and none of their upper or left neighbors aleigided, each square
in the chain becomes a big box @ If no squares inC are subdivided, some upper or left neighbor is
subdivided, and its lower right child is i@, that child is a singleton good chain. In the remaining cagsg,
subdivided neighbor has neighboring children only on theenpeft corners of squares @ and all squares
in C become hanging boxes @. O

By the lemma above, any graph formed by a subset of the qeasitygares has a vertex of degree at
most five, so the greedy algorithm uses at most six colorss ddmcludes the proof of Theordin 5. O

6 Conclusions

We have shown that balanced edge-adjacent quadtreesedlrge colors, and unbalanced edge-adjacent
guadtrees require four colors. Corner-adjacent quadimasgsrequire either five or six colors. It remains to
close this gap in the corner-adjacent case and to deterntiather the balance condition makes a difference
in this case.

References

[1] M. Benantar, U. Do grusdz, J. E. Flaherty, and M. S.likrisnoorthy. Coloring quadtrees. Manuscript,
1996.

[2] M. Benantar, J. E. Flaherty, and M. S. Krishnamoorthyloafing procedures for finite element computa-
tion on shared-memory parallel computekslaptive, Multilevel, and Hierarchical Computation Strat
gies AMD 157, ASME, 1992.

[3] N. Robertson, D. P. Sanders, P. Seymour, and R. Thom#asidatly four-coloring planar graph&roc.
28th ACM Symp. Theory of Computjmp. 571-575, 1996.

[4] H. Samet. The quadtree and related hierarchical datatstes ACM Computing Surveyks:188—-260,
1984.

