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Abstract

This paper presents algorithms for computing a mini-
mum 3-way cut and a minimum 4-way cut of an undi-
rected weighted graph G. Let G = (V, E) be an undi-
rected graph with n vertices, m edges and positive edge
weights. Goldschmidt et al. presented an algorithm for
the minimum k-way cut problem with fixed k, that re-
quires O(n') and O(n®) maximum flow computations, re-
spectively, to compute a minimum 3-way cut and a min-
imum 4-way cut of G. In this paper, we first show some
properties on minimum 3-way cuts and minimum 4-way

cuts, which indicate a recursive structure of the minimum

k-way cut problem when k = 3 and 4. Then, based on
those properties, we give divide-and-conquer algorithms
for computing a minimum 3-way cut and a minimum
4-way cut of G, which require O(n®) and O(n') maxi-
mum flow computations, respectively. This means that
"the proposed algorithms are the fastest ones ever known.

1. Introduction

Computing a minimum cut of a graph is one of the im-
portant problems in graph theory [3]. Let G = (V, E)
be an undirected graph. Given k(> 2) disjoint nonempty
subsets, Sy, S2,..., and Si, of V', an edge set C C E is
an (51, 52,...,5%) -terminal cut of Gif G' = (V,E - ()
has no paths from any s € S; toany t € S; if i # j. An
edge set C' C E is a k-way cut of G if there are k dis-
joint vertex subsets, ¥1,Y2,...,Y1) and Y}, such that
Cisa (¥1,Ya,...,Y:) -terminal cut of G. The cost of a
cut C is defined as the total of the edge costs in C. A
k-way cut C is called minimum if it has the smallest cut
cost among any k-way cuts of G. This paper discusses
the problem of finding a minimum three-way cut and a
minimum four-way cut of an undivected graph G.
Dahlhaus et al. [2] showed that the k-terminal cut
problem is NP-hard for arbitrary k and even for k = 3.
They also proposed a minimum k-terminal cut algorithm
for a planar undirected graph. = Gomory and Hu [4]
showed that O(n) executions of a minimum two-terminal
algorithm is enough to compute a minimum two-way cut
of an undirected graph. Goldschmidt and Hochbaum
[5] showed a polynomial time algorithm for computing
a minimum k-way cut for fixed k. This result showed
that the k-way cut problem is easier than the k-terminal
cut problem of an undirected graph. In their algorithm,

the minimum two-terminal cut algorithm is repeatedly
applied. The algorithm for the minimum k-way cut prob-
lent with fixed k has O(n*” ~3/ 242 computation time for
even k and O(n*’=3%/2+5/2) computation time for odd
k. Saran and Vazirani [10] proposed two approximation
algorithms for the minimum k-way cut problem. One al-
goi'ithm requires n — 1 maximum flow computations for
finding a set of twice-optimal k-way cuts, one for each
value of k between 2 and n. Hao and Orlin [6] showed
that the minimum 2-way cut problem can be solved in
the running time for solving a single maximmum flow prob-
lem. Recently, Kapoor [8] gave an algorithm for finding a
minimum three-way cut, which requires O(n3) maximum
flow computations. Kapoor also gave an approximation
technique for the multi-way cut problem, and showed an
algorithm for the minimum k-way cut problem, which
requires O(kn(m + nlogn)) steps and gave an approxi-
mation of 2(1 — 1/k). Hochbaum and Shimoys [7] gave
an O(n?) algorithm for finding a minimum 3-way cut of
an unweighted planar graph.

All algorithms shown above are ordinary determinis-
tic algorithms, and thus they can always find optimal
solutions. On the other hand, Karger and Stein [9] pro-
posed a randomized Monte Carlo algorithm which finds a
minimum 2-way cut with high probability in O(n*log®n)
time. They also gave a randomized Monte Carlo algo-
rithm for the minimum k-way cut problem, which solves
the problem in O(n**~og®n) time. Note that, those
randomized Monte Carlo algorithms may fail to find an
optimal solution, that is due to the nature of randomized
Monte Carlo algorithms.

In this paper, first, we will show several properties on
minimum 3-way cuts and minimum 4-way cuts, which
indicate a recursive structure of the minimum k-way cut
problem when k = 3 and 4. Then, based on those prop-
erties, we will present a divide-and-conquer strategy for
the minimum 3-way and 4-way cut problems, and propose
two polynomial time algorithms, each of which computes
a minimum 3-way cut and a minimum 4-way cut of G,

‘respectively. These algorithms require O(n?) and O(n?)

maximum flow computations, respectively. This means
that the proposed algorithms are the fastest determinis-
tic algorithms ever known. For the minimum 3-way cut
problem, the number of maximum flow computations re-
quired in the algorithm is the same as one of the algo-
rithm proposed by Kapoor [8]. For the minimum 4-way
cut problem, the number of maximum flow computations



required in the algorithm is very much smaller than the
one proposed by Goldschmidt and Hochbaum [5], which
requires O(n?) maximum flow computations.

2. Preliminaries

In the following, we give some definitions and terminolo-
gies.

Given an undirected graph G = (V, E) and k mutually
disjoint nonempty subsets of 17, we call the problem of
finding a minimum (T}, 75, . .., T} )-terminal cut of G the
manimum k-terminal cut problem. Given an undirected
graph G = (V,E) and an integer k(> 2), we call the
problem of finding a minimum k-way cut of G the mini-
mum k-way cut problem. From definitions, any minimal
(T1,Ts,...,Ti)-terminal cut C can be represented as a
k-way cut (Vi;Va;...; Vi) where T; C Vi,1<i<k, and
ViuthU.. .UV =V, ’

Definition 1 Let G = (V,E) be an undirected graph.
Given a nonempty vertez subset X, let G(X) = (X, Ex)
be an induced subgraph of G by X with the edge cost func-
tion cx such that for any edge e € Ex, cx(e) = c(e). O

Let'X be a subset of vertices of G = (V, E). X is the
complement of X, ie, X =V — X.

Definition 2 For an undirected graph G = (V, E), let
C=(X;X)and D= (Y:Y) be two-way cuts of G. C 1s
said to be intersected with D if the following four equa-
tions hold. :
XNY#0,X0Y#£0,XnY#£0, XnY #£0. O

Theorem 1 Let G = (V, E) be an undirected graph, and
k(> 2) be an integer. For any vertex x € V, there are
(k — 1) distinct vertices U, W2, ..., Uk—1), Such that a
minimum (&, u1, U2, ..., %k-1))-terminal cut is a mini-
mum k-way cut of G. m]

From Theorem 1, if there exists a minimum k-terminal
cut algorithm for G, we can solve the minimum k-way cut
problem in polynomial time by applying it in O(n*~1)
times. For example, if ¥ = 2, the minimum A-terminal
problem becomes the famous minimum (s, t)-terminal cut
problem, which can be solved in polynomial time based
on the Ford-Fulkerson’s min-cut max-flow theorem [1].
Thus, the minimum 2-way cut problem can be solved by
applying the min-cut max-flow algorithm in O(n) times.
Dahlhaus et al. showed, however, that for even a fixed
constant k(> 3), the minimum k-terminal cut problem
for a general graph is NP-hard [2]. So, it is hopeless to
devise a minimum k-way cut algorithm based on The-
orem 1. For the general minimum k-way cut problem,
we should adopt another approach. In this paper. we
present a divide-and-conquer approach to the minimum
k-way cut problem when k = 3 and k = 4, and propose
polynomial time algorithms.

3. Properties

In this section, we show several properties on mini-
mum 3-way cuts and minimum 4-way cuts of G. In
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the next section, those properties will be used to de-
rive a divide-and-conquer strategy to solve the mini-
mum 3-way and 4-way cut problems. For any k-way
cut C = (51:52;...;5k), let denote the cost of C,
o(C) = Zeec c(e), by ¢(S1;S2;...:S8%).

3.1. Properties on Three-Way Cuts
Given an undirected graph G = (V) E), let cgmin and
C3min be the costs of a minimum 2-way cut and a min-

imum 3-way cut of G, respectively. Then, the following
lemma. holds.

Lemma 1 Let G = (V, E) be an undirected graph. For
any minsmum 3-way. cut (R; S;T) of G, the following
holds.

. = - = 2
Comin < mln{c(R; R),c(S;8),c(T; T)} < ECSmin-

[Proof] From the definition, for any 3-way cut of G, de-
noted (R; S;T), the following holds.

(R S5;T) (R; S)U(S;T)U (R, T),
AR 5;T) = cRS)+e(S;T)+ R T),

where (R; S), (S; T), and (R;T) are 2-way cuts on G{RU
S), G(SUT), and G(RU T), respectively. From the
second equation, we see that there is a 2-way cut (¥ Z),

Y,Z € {R,S,T},Y # Z such that
- 1 1
o(Y;2) > gC(R; 57T)= §C31m'n-

Without loss of generality, we assume that (Y;Z) =
(S;T). Then, we have

2
oR;S)+ o(R;T) < 'g('.?min'
On the other hand, since S UT = R. we have
(R;S)U(R;T) = (R, R).

Hence, ¢(R; R) < %Csmm-

Since (R; R), (S; S), and (T; T) are 2-way cuts of G. it
is clear that ¢(X;X) = camin < e(P;P), Pe {R,S,T}.
Thus, the lemma holds. O

Assume that there is a minimum 3-way cut (R; S; T)
of G such that ¢(R; R) = min{c(R; R), ¢(S;5), o(T; T)}.
Let (X;X) be a 2-way cut of G. Then, depending on
the relation between (R;R) and (X;X), the following
Lemmas 2 and 3 hold.

Lemma 2 Given a graph G = (V,E) and a 2-way cut
(X:X) of G such that ¢(X;X) < 2cgmin, if there is a
minimum 3-way cut (R; S;T) of G such that ¢(R; R) <
%cgmm and (R;R) isv intersected with (X:X), then at
least one of (X\; XNR; XNR) or (X\;XNR,XNR) s a
minimum 3-way cut of G.

[Proof] Since (R; R) is intersected with (X:X), the fol-
lowing hold.



XNR
XnR
XnR
XnER
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Since R= (RNX)U(RNX) and B = (RN X)U(ENT),

we have

(RR) = ((RNX)U(RNX)):((RNX)U(RNX)))
= ((RNX);(RNX)UWRNX);(RNI)U
(RNX);(RNX)U((RNX);(RNX)),

o(R;R) = ((RNX);(RNX))+c((RNX);(RNX))+

((RNX)(RNX)) 4+ ((RNX);(RNX)).

From the assumption, ¢(R; R) < %c(R; S T) = %c;;m,-n.
Thus, we have

(RN (ROX) +((RNTH(ROT) < Zegmin,
which implies
min{c((RNX); (RNX)),c((RNX); (RNX))} < %csmm.

On the other hand, from the assumption, we have
(X3 X) < 3csmin- H((RNX);(RNX)) < (RN
X);(RNYX)), then let us consider a 3-way cut (X; (RN
X); (RN X)). Then, we have

(Xi(RNX); (RN X))
«X;(RNX); (RN X))

INA

1
—C3min + =Cmi
3 3min 3 3min

C3min -

Thus, (X; (RN X); (RN X)) is a minimum 3-way cut of
G.

Fc((RNX);(RNX)) < «((RNX);(RN X)), then
we have a similar discussion to show that a 3-way cut
(X;(RNX); (RNX)) is a minimum 3-way cut of G. 0O
Lemma 3 Given a graph G = (V, E) and o 2-way cut
(X;X) of G, if there is a minimum 3-way cut of G, de-
noted (R; S;T), such that ¢(X;X) < ¢(R;R), R C X,
XNS#0,and XNT # 0, then (X;Y;Y) is a minimum
3-way cut of G, where (YY) is a minimum 2-way cut of
G(X).

[Proof] Consider a 2-way cut (X NS); (XNT)) on G(X).
Then, we have

(XNnS;(nT))
((XNSHENDY)

(5;7),
o(S;T).

IA IN

On the other hand, since (¥;Y) is a minimum 2-way
cut of G(X), we have '

(X;X)U(RNX); (RN X)),
(X;X)Uc((RNX);(RNX))
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dY;Y) <e((XNS)H(XNT)) <e(5;T).
From the assumption,

o(X;X) < ¢(R; R).

Therefore,
AX;Y3Y) = o(XN;X) + (YY)
< «R:R)+¢(S:T)
= ¢o(R;S;T).
Thus, the lemma holds. a

3.2. Properties on Four-Way Cuts

Let cuin be the cost of a minimum 4-way cut of G.
Then, the following lemma holds.

Lemma 4 Let G = (V, E) be an undirected graph. For
any minimum 4-way cut (R;S;T;U) of G. the following
holds.

Comin < ﬂlin{C(RQ ﬁ)\ o(S; -§)1 o(T, T), f’(U,ﬁ)} < %‘Mmin-

[Proof] Since ¢(R; R), ¢(S;5), o(T;T), and c(U;T) are
2-way cuts of G, it is obvious that the following holds.

comin < min{c(R; R),c(S:S), o(T; T), o(U; F)}

Now, we consider the second part of inequations. We
prove the result by contradiction. Consider a minimum
4-way cut (R;S;T;U) which satisfies the following in-
equation. )

min{c(R; R), e(S;5), «(T; T), «(U; T} > %qmm-
From the definition, we have
(R;S; T U)

(RS)U(RT)U(RUYU(S;TYU(S;UYU (T U),
c(R; S, T, U)

On the other hand, we also have

(RR) = (R:S)U(R;T)U(RD),
(5;5) (R;S)U(S;T)U(S: D),
(T;T) (RT)U(S;T)U (T U),
(U;0) (R;U)U(S;U)U(T;U),
o(R; R) o(R; )+ c(R;T) + c(R; U),
«S;S) = o(R;S)+e(S;T) +¢(S; ),
«T;T) = oRT)+e(S;T)+e(T;U),
U;U) = o(RU)+c(S;U)+c(T;U).

Thus, we have

AR S)+ c(RTY+ (R U)+c(S;T)+c(S;U) + (T U).



(B; S;T;U)
= (BSU(RT)U(R;U)U(S;T)U(S;U)U(T;U)
= (RR)U(S;S)U(T;T)U(U;T).

o B S;T;U)

= AR S)+ R T)+c(RU)+¢(S;T) +e(S;U) + o(T; U)

= ‘;'{C(R;—.-R-) +c(8;9) +e(T;T) + o(U; -ﬁ)}

From the assumption, we have

11 1 1 1
(R ST U) > E(g‘l{min + '2‘C4min + Echnin + EQ{min)
= CYmin-
This is a contradiction. Thus, the lemma holds. 0

Assume that there is a minimum 4-way cut (R; S; T; U)
of G such that ¢(R; R) = min{c¢(R; R), ¢(S;5), ¢(T:T),
e(U;T)}). Let (X;X) be a 2-way cut of G. Then, de-
pending on the relation between (R; R) and (X; X ), the
following Lemmas 5, 6, 7 and 8 hold.

Lemma 5 Given a graph G = (V,E) and a 2-way cut
(X;T) of G such that ¢(X;X) < %Q{min; if there is a
minimum 4-way cut (R; S; T;U) of G such that o R; R) <
é—c‘mm and (R;E) is intersected with (X;X), then (X N
R;XNR;XNR; X NR) is a minimum 4-way cut of G.

[Proof] Since (X; X) is intersected with (R; R), the fol-
lowing equation hold.

XNR
XnR
XNR
XnR

L S ST
ssss

Furthermore, we have
(XNRAUXNRUKXNRUEXNR =V.

Thus, ( XNR,XNER,XNR, XN R) is indeed a 4-way
cut of G. Next, we show the minimality of (X N R; X N
R XNR;:XNR). We have

(XNRXNR;XNR,XNRER)

= XNRXNRULNNRXNRU
(XNREXNRUKXNER,XNRU
(XNEXNRUKXNR,XNR)

= (XNR,XNRUXNRXNER)U
(XNR;XNRUXNER;XNRER)U
(XNRXNRU(XNR;XNR)U
(XNER,XNR)U(XNR,XNR)

= (X;X)U(R;R).
(XNR,XNERXNR,XNR)

= (XNRXNR)+c(XNR,XNR)U
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(XNRXNR) +c(XNER;XNR)U
c(‘\'ﬂﬁ;fﬂﬁ)-{-c(fﬂ R XNRER)
[(XNRBXNR) +«XNRXNR)+
dXNRXNR) +c«(XNR:XNR)+
[((XNRXNR)+c¢(XNR,XNR) +
AXNEXNR) +«(XNRXNR)
o(X;X) + (R R)

) {min 2C4m1,n

IN

IA

Chmin-
Thus, the lemma holds. O

Lemma 6 Given an undirected graph G = (V,E) and a
2-way cut, (X; X), of G, if there is a mingmum 4-way cut,
(R; S;T;U), of G such that RC X. ¢(X;X) < ¢(R; R),
XNS#0, XNT #0, and XNU # 0. then there is
a minimum 4-way cul, denoted (X;Y;Z; W), such that
(Y Z; W) ts a minimum 3-way cut of G(X).

[Proof] Since R € X, we have X C SUT UU. Then,
XnS;XNT;XNU)is a 3-way cut of G(X). Since
(Y;Z; W) is a minimum 3-way cut of G(X), we have

AY;Z,W)<e(XNU;XNT;UNU) < (S T;U).

Consider a 4-way cut (X;Y;Z;W) of G. Then, we
have the following equations.

(X;Y; 2, W) (XU Z; W)

(X;Y Z;W) = o XGX)+ oY Z; W)
< oR;R)+¢(S;T;U)
= ¢(R;S;T;U)
Thus, the lernma holds. m}

Lemma 7 Given an undirected graph G = (V, E), let
(X:X) be a 2-way cut of G. If there is a minimum 4-
way cut, denoted (R; S;T;U), of G such that X = RUS,
then (R';S";T';U") is also a minimum 4-way cut of G,
where (R';S") and (T';U') are minimum 2-way cuts of
G(X) and G(X). respectively.

[Proof] From the assumption, we have X = RU S and
X =T UU. For G(X), we have

c(R';S8') < ¢(R;S).
For G(‘_Y-), we have
T U") L e(T;U).

Then,

(RS TU")

o X:X)+ (RS )+ (T U")

< o(RUS;TUU)+c(R;S)+ (T U)
= R;S;T;U).
Thus, the lemma holds. O



Lemma 8 Given an undirected graph G = (V,E), let
(X;X) be a 2-way cut of G. If there is a minimum
4-way cut, denoted (R;S;T;U), of G such that (X;:X)
is intersected with (R; R) and (S;.S.), X CRUS, and
«X;X) < min{e(R;R),e(S;3),c(T;T),c(U; U)}. then
(R';8;T';U") is also a minimum 4-way cut of G, where
(R';S") and (T';U') are minimum 2-way cuts of G{X)
and G(X), respectively.

[Proof] Without loss of generality, we assume that
¢(R:R) < ¢(S;5). Since (X;X) is intersected with
(B;R), (RNX;RNX;RENX;RNX)is a 4-way cut
of G.

o{RNX;RNX;RNX;RNX)

< dRR)+c(X;X)
< HABR) +e(5T) +

min{c(R; R).c(S5;5).¢(T; T),c(U; U)}
< %{C(R; R) +¢(S;8) + «(T;T) + «(U; T)}

= —;—{2x(c(R;S)+c(R;T)+c(R;U)+
e(S;T)+c(S;U)+ «(T5U))}
= oR;S;T;U)

Ci{min-

Thus, (RNX; RNYX; RNX; RNX) is a minimum 4-way
cut of G. Since (RN X;RNX) and (RNX;RNX) are
2-way cuts of G(X) and G(X), respectively, we have

o(R;S8") < ¢RNX;RNX),
T U'Y < e(RNX;RNX).
Therefore,

(RNX;RNX;RNX;RNX)
(XN;X)+c(RNX;RNX)+¢(RNX;RNX)

> o X;X)+ (RS )+ (T U")
= ¢(R;S;T,U"
Thus, the lemma holds. 0

4. A Divide and Conquer Approach

In this section, first, we show a recursive structure of min-
imum 3-way cuts and minimum 4-way cuts of an undi-
rected graph GG. Then, we present two main theorems,
which will be a base to construct algorithms for comput-
ing a minimum 3-way cut and a minimum 4-way cut of

G.

Lemma 9 Given an undirected graph G = (V,E), let
(X;X) be a 2-way cut. Let (Y;Y) and (Z;Z) be min-
imum 2-way cuts of G(X) and G(X). respectively. If
there is @ minimum 3-way cut (R;S;T) of G such that
odX;X) < min{c(R;_ﬁ),r;(S;_S_),é(T;T_)}, then at least
one of the following four properties holds. .
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(i) (X;Y;Y) is a minimum 3-way cut of G.

(i) (X; 2, Z) is a minimum 3-way cut of G.

(it) There i3 @ minimum 3-way cut, denoted (R';S';T"),
such that X C R'.

(iv) Theve is a minimum 3-way cut, denoted (R"; S";
T"). such that X C R".

[Proof] Without loss of generality, we assume that
o(R:R) = min{c(R; R).c(S;5). (T, T)} Consider the
relation between (.X'; X) and (R: R). Then, there are four
cases. That is, (1) (X;X) is intersected with (R; R), (2)
XCR,(3)RCX,and (4) XNR=0.

First, consider the case (1). From Lemma 2, at
least (X:(X N R);(XNR)) or (X:(XNR);(XNR))
is a minimum 3-way cut of G. Consider the case that
(X;(X N R);(XNR)) is a minimum 3-way cut of G. In
this case, ((X N R);(X N R)) is a 2-way cut of G(X).
Theu, since (Y;Y) is a minimum 2-way cut of G(X), we
have ¢(Y;¥) < ¢((X N R); (X N R)). Therefore, we have

dX;Y3Y) <e(X5(XNRY; (X NR)) = camin.

Thus, (X;Y;Y) is a minimum 3-way cut of G. For the
case that ((X; (X N R); (Y N R)) is a minimum 3-way cut
of G, we have a similar discussion to show that (X: Z; Z)
is a minimum 3-way cut of G. Consequently, for the case
(1), at least one of the properties (i) or (ii) is satisfied.

Next, consider the case (2). In this case, it is clear that
the property (iii) is satisfied.

Next, consider the case (3). This case is further clas-
sified into the following cases. That is, (3-1) X NS # 0,
and XNT # 0. (3-2) there is a P such that X = RU P,
P e {S,T}, and (3-3) there is a @ such that X C Q,Q €
{5, T}.

Consider the case (3-1). From Lemma 3, we see that
the property (i) holds. Consider the case (3-2). In this
case, it is clear that the property (ii) holds. Consider the
case (3-3). In this case, we see that the property (iv)
holds.

Finally, consider the case (4). In this case, we have
RCYX. Let X' = X. Then, this is the same case as the
case (3). Thus, the lemma holds. ]

Lemma 10 Given an undirected graph G = (V,E),
let (X;X) be a 2-way cut. Let (YY) and (Z;2) be
minimum 2-way cuts of G(X) and G(X), respectively.
Let (R;S;T) and (R';S";T') be minimuwm 3-way cuts
of G(X) and G(X). respectively. If there is a mini-
mum 4-way cut (A; B;C: D) of G such that o(X;X) <
min{c(A4; A),¢(B: B),c(C; C), o(D; —5)}. then at least one
of the following five properties holds.

(i) (X} R; S;T) is a minimum 4-way cut of G.

(i) (X; R'; S";T') is a minimum 4-way cut of G.

(14) (Y;Y: Z; Z) is @ minimum 4-way cut of G.

(iv) There is o minimum 4-way cut, denoted (A'; B';
C'; D), such that X C A'. '

(v) There is a minimum 4-way cut, denoted (A'":B";
C"; D"}, such that X C A".

[Proof] Without loss of generality, we assume that
c(A4; 4) = min{c(4; A), «(B; B), ¢(C; T), ¢(D: D)}. Con-
sider the relation between (X:X) and (A4;A4). Then,



there are four cases. That is, (1) (X;X) is intersected
with (4;4), (2) X C A4, (3)AC X,and (4) XNA=0.

First, consider the case (1). From Lemma 5, (X' N
AXN A:X n 4;:Xn A) is a minimum 4—wa.v cut of G.
Since (X ﬂA, XN4)and (XNA; XNA) are 2- -way cuts
of G(X) and G(X), respectively, we have.

(XNAXN Z),
dXNA;XNnA).

S dZ;Z)
e(Y;Y)

IAIA

Therefore, we have

oYY 2:2).

o(X;X) + YY) +¢(Z; Z)

(X X)+e(XNAXNA) +e(XNAXNA)
(XNAXNAXNAXNA

IN I

C4min-

Thus, the property (iii) holds. -

Next, consider the case (2). For this case, the property
(iv) holds. ' '

Next, consider the case (3). ~This case is further
classified into the following four cases. That is, (3-1)
XNB#0, XNC # 0, and XND # 0, (3-2) there
are L, M,N € {B,C,D},L # M,M # N,L # N, such
that X C AULUM, X C M UN, (3-3) there are
L,M,N € {B,C,D},L # M,M # N,L # N, such that

X C AULUMUN, X ¢ MUN, (X; X) is intersected with’

(M; M) and (N; V), and (3-4) there'is L € {B.,C,D}
such that X C L.
Consider the case (3-1). From Lemma 6, the property

(i) holds. Consider the case (3-2). f X = AU L and

X =MUN R then from Lemma 7, the property-(iii):

holds. Consider otherwise. Then, we have X N A # @,
XNL#® and XNM # 0. From the assumption,
we have ¢(X;X) < ¢(N;N).” Let X' = X. Then, we
see from Lemma 6 that the property (ii) holds. Next,
consider the case (3-3). Let X’ = X. Then, from Lemma
8. we see that the property (iii) holds. Consider the case
(3-4). For this case, it is obvious that the property (iv)
holds. ) ‘ ‘

" Finally, consider the case (4) Since XN A4 = 0, we
have A C X. Let X' = X. Then, this is the same as the
case (3). Thus, the lemma holds. k : (]

Lemmas 9 and 10 tell us that a minimum 3-way cut
and a minimum 4-way cut-can be computed recursively.

Definition 3 Let u and v be distinct vertices of a graph
G = (V,E). We can construct a new graph G' by fusing
the two vertices, namely by replacing them by a single
new vertes x such that every edge that was incident with
u or v in G 1 now incident with x in G'. Given a subset
X of V, let Shrink(G,X) be a graph obtained by fusing
all the vertices in X, and removing all the self-loop edges
from the resulting graph. o

From Lemmas 9 and 10,  and‘ the definition ..of
Shrink(G, X)), we can show the following main theorems.
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Theorem 2 Let G = (V, E) be a graph, and (X;X) be a
2-way cut of G. Let (YY) and (Z; Z) be minimum 2-way
cuts of G(X) and-G(X), respectively. Let (R';S";T") be
a minimum 3-way cut of Shrink(G, X), and (R";S";T")
be a minimumn 3-way cut of Shrink(G;X). If there is a
manimum 3-way ciut (R; $;T) of G such that ¢(X;X) <
1nin{c(R;E), c(8:5), cfT; T)}, then at least one of the fol-
lowing 3-way cuts of G, (X; YY), (X; 2; Z), (R'; S";T').
and (R";8";T"), is a minimum 3-way cut of G. m|

Theorem 3 Let G = (V,E) be a graph, and (X:X)
be a 2-way cut of G. Let (YY) and (Z;Z) be
minumum  2-way cuts of G(X) and G(X), respec-
tively. Let (R;S5;T) and (R';S";T') be minimum
3-way cuts of G(X) and G(X), respectively. Let
(A'; B';C"; D') and (A"; B";C"; D") be minimum 4-way
cuts of Shrink(G,X) and Shrink(G,X), respectively. If
there is a mainimum 4-way cut (A; B; C; D) of G such
that ¢(X;X) < min{c(4;A),¢(B; B),«(C;C), (D D)}
then at least one of the following 4-way cuts ofG. (X; R

S: T), (X;R;S8T'), (Y;Y;Z;X), (45B';C"; D') and
(A"; B";C"; D"), is @ minimum 4-way cut of G. (m]

5. Algorithms

Based on Theorems 2 and 3, we can present simple divide-
and-conquer algorithms for computing a minimum three-
way cut and a minimum four-way cut of an undirected
graph. From Theorems 2 and 3, we find a recursive
structure of the minimum 3 -way and 4-way cut problems.
For e\ca.mple consider the minimum 3-way cut problem.
Then, given a graph G = (V| E), we can find a mini-
mum 3-way cut of G byicomfmting some combinations of
minimum 2-way cuts, or by computing minimum 3-way
cuts of Shrink(G,X) and Shrink(G,X) for some 2-way
cut (X: X) of G. If both Shrink(G, X) and Shrink(G, X)
are smaller than G in the number of ver tl('es, then we see
that the ininimum 3-way cut problém can be solved in a
divide-and- cohquer manner. For some minimum 3-way
and 4-way cuts, denoted (R;S;T) and (R';S":T",U"),
let cg_smin = 111111{ (R; R ), e(S; S) (T;T) )}, and
¢4 —gmin = min{c(R; R ,c(S', SO, e(T T, (U TN}
Then, the problem we should-consider is thus the follow-
ing: How do we find a 2-way cut (X;X) of G such that
(i) (Av,f) < ¢3-2min or ¢(X; A\) < ¢4 —2min, and (ii)
|X] > 2 and |X| >2? : :

In-the following, we will show a method for ﬁndmg a
two-way cut satisfying the above condition.

Lemma 11 Given an undirected graph G = (V, E), let
x1,22,%3, 74 be four distinct vertices in V such that a
({x1,22}, {x3,x4})-terminal cut of G is minimum in
its cost among all those ({u,v}, {w,a})-terminal cuts
of G for any four distinct vertices, u,v,w.x, in V. Let
denote this ({x1,x2}. {x3,x4})-terminal cut by (X;X).
Then, if there is a minimum 3-way cut (R;S;T) of G
satisfying |R|,|S|,|T| > 2, then C(AYQ:\T) < €3 gmin,
where ¢g_ gmin = min{c(R; R),c(S;5).e(T;T)}. If there
is a minimum 4-way cut (R';S";T";U') of G satisfying
[R' IS IT'L U’ > 2. then o(X;X) < ¢ _gmin, where
C} —pmin =min{c(R:R). (S 8).«(T; T, c(U";T")}.



[Proof] Consider the case of finding a minimum 3-way
cut. For the case of finding a minimum 4-way cut, we
can prove the lemma by giving the similar discussion
shown below. Without loss of genmerality, c¢(R;R) =
C3_gmin- From the assumption of (X;X), there are
four distinct vertices x1,x2, 23, x4 such that x;, 2 € X
and x3,74 € X, and (X;X) is a minimum ({1, 22},
{3, 24})-terminal cut of G. Since |R| > 2 and |R| > 2,
we can choose two distinct vertices, say u and v, from
R and two distinct vertices, say w and «, from R. Let
(Y;Y) be a minimum ({u,v}, {w,z})-terminal cut of
G. Then, from the assumption, it is always true that
o(X;X) < oY;Y) holds for any u,v € R,u # v and
w,x € R, w # z. Thus, the lemma holds. O

Based on Lemma 11, given a graph G = (V, E), we
will present a procedure to find a 2-way cut, (X::f),
of G, which satisfies (i) |X| > 2 and [X| > 2, and (ii)
e(X;X) < ¢3_omin and ¢(X;X) < €4 _gmin for any 3-
way, and 4-way cuts of G. A straightforward way to
find (X;X) would be as follows. We enumerate all the
combinations of four distinct vertices of G, say u,v,w,
and x, and for each set of vertices, we find a mini-
mum {{u, v}, {w, z})-terminal cut of G. Among all the
combinations of four vertices, we select one set of ver-
tices, say {v',v’,w’,2'} such that the cost of a minimum
({«,v'}, {w', z'})-terminal cut of G' is minimum among
all the other combinations of four vertices. Then, let
(X;X) be the minimum ({u’,v'}, {w', 2'})-terminal cut
of G. Note that, for given distinct four vertices of G,
finding a minimum ({u, v}, {w;z})-terminal cut of G is
easy. First, we add two new vertices s and ¢ to G, and
then add new edges (s,u), (s,v), (¢,w), and (¢,x). We
define the costs of new edges as co. Then, we find a min-
imum (s,t)-terminal cut of G by applying a minimum
2-terminal cut algorithm. '

The procedure shown above, however, would require
O(n*') min-cut max-flow computations. In the follow-
ing,‘we will show an efficient method to compute (X; X),
which requires O(n?) min-cut max-flow computations.
First, we pay attention to the following fact.

Fact 1 Given an undirected graph G = (V,E), let
(X;X) be a two-way cut of G. Let S = {u,v,w,z}
be four distinct vertices in V. Let nx and nsr be the
numbers of vertices in S, which are contained in X and
X, respectively. Then; one of the following conditions

holds. (i) nx = ny = 2. (i) max{nx,ny} = 3
and min{nx,ny} = 1. (4) max{nx,ny} = 4 and
min{nx,ny} = 0. (]

This Fact gives the base of our algorithm for comput-
ing (X; X). Assume that a fixed set of four distinct ver-
tices, say So = {uo,vo,ws, 20}, is given in advance. For
any distinct four vertices of G, say {u,v,w,x}, consider
a minimum ({u,v}, {w,z})-terminal cut of G, denoted
(Y;Y). Then, from Fact 1, one of the following condi-
tions holds.

Case (1) S is partitioned into two subsets, say T and
U, each of which consists of :two elements, respec-
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tively, so that (Y;Y) is a minimwmn (T, U)-terminal
cut of G.

Case (2) Sp is partitioned into two subsets, say T and
U’', each of which consists of three and one elements,
respectively, so that (¥;Y) is a minimum (7", U' U
{y})-terminal cut of G, where y is a vertex in G.

Case (3) Sy is not partitioned so that (17 Y) is a min-
imum (Sg, {y, z})-terminal cut of G, where y and =
are vertices in G.

From those results mentioned above, we can present a
procedure to find ( X; X)), which satisfies the conditions
given previously. We call this procedure the procedure
Divide(G). Due to space limitation, description of the
procedure Divide(G) is omitted. For this procedure, we
can show the following theorem.

Theorem 4 The function Divide(G) finds a smallest
cost cut in all minimum ({u, v}, {w, x})-terminal cuts for
any distinct four vertices in G, by applying at most O(n*)
min-cut maz-flow computations.

[Proof] Correctness of the function was derived from Fact
1, as we discussed previously. Since there are doubly
nested loops on vertices in G, it is clear that the function,
which executes min-cut max-flow computation once, was
invoked in O(n?) times in total. (]

5.1. The Four-way Cut Algorithm
Due to space limitation, in this paper, we only present an
algorithm for computing a minimum 4-way cut of a given
graph G. The proposed algorithm is based on Theorem
3. Note that, there is a special case, in which for given
G, there is no minimum 4-way cut, (R; S; T; U) such that
|R| > 2,|S] >2,|T|>2,and |U]| > 2. In such a case, we
can not compute a minimum 4-way cut by applying the
function Divide, and we should treat this case separately.
The following are functions, which are used in the pro-
posed algorithm.

(i) MIN-ONE-TERM-4WAY(G) computes a smallest
cost four-way cut ({z};Y;Z;W) in all four-way
cuts constructed by a minimum three-way cut in
G(V —{x}) and a two-way cut ({x}; V — {2}), where
x € V. [O(n*) maximum flow computations]

(ii) CONST-4WAY-CUT(X) constructs a four-way cut

C of G by using the combination of (X;X) and a
" minimum three-way cut in G(X). [O( n?) maximum
flow computations]

(iii) OTHER-4WAY-CUT(X) constructs a four-way cut
C of G by using the combination of (X;X), a mini-
mum two-way cut in G(f) and a minimum two-way
cut in G(X). [2 maximum flow computations]

(iv) ENUMERATE-ALL-4CUTS(G) enumerates all 4-
way cuts of G, and returns the one with the smallest
cost.

Algorithm MIN-QUADRI-PARTITION(G)
input an undirected graph G = (V, E).



begin
Co = MIN-ONE-TERM-4WAY(G);
C1 = MIN-4WAY-CUT(G);
return MIN(Cq, C1)

end.

Recursive Procedure MIN-4WAY-CUT(G)
input an undirected graph G = (V, E).

begin :
if |V'| < 6 then return ENUMERATE-ALL-4CUTS(G):
else begin ‘
(X;X) « Divide(G);
Gx « Shrink(G,X);
Gx «~ Shrink(G, X);
Co — CONST-4WAY-CUT(X);
C1 — CONST-4WAY-CUT(X);
Ca — OTHER-4WAY-CUT(X);
C3 — MIN-4WAY-CUT(Gx);
Cs — MIN-4WAY-CUT(G);
return MIN(Cq, C1, Ca, Cs, C4)
end
end

5.2. Computation Time

Correctness of the proposed algorithms can be easily
shown from Theorems 2 and 3. For the time complexity
of the algorithms, we can show the following theorem.

Theorem 5 For an undirected graph G = (V,E), the
algorithm MIN-TRI-PARTITION(G) and the algorithm
MIN-QUADRI-PARTITION(G) compute a minimumn 3-
way cut and a minimum 4-way cut by applying O(n®) and
O(n*) mazimum flow computations, respectively.

[Proof] In the following, we consider computation time of
the algorithm MIN-TRI-PARTITION(G). Computation
time of the algorithm MIN-QUADRI-PARTITION(G)
can be discussed similarly.

Given a graph G = (V, E), let K be the total number
of invocations of the procedure MIN-3WAY-CUT in the
algorithm. Them, from the description of the algorithm,
it is easy to show that the algorithm invokes the min-
cut max-flow procedure in O(K n?) times. Thus, in the
following, we derive an upper bound of K.

First, we define a rooted tree called computation tree
T = (N, A) as follows. Each vertex, v, of T has a weight,
denoted w(v). Each vertex in T corresponds to an invo-
cation of MIN-3WAY-CUT in the algorithm. The root
of T corresponds to the first invocation of MIN-3WAY-
CUT, whose actual parameter is G itself. Assume that
G' is an input graph of MIN-3WAY-CUT, and applying
Divide to G', two new graphs, Gx = Shrink(G',X) and
Gx = Shrink(G', X) are produced. Then, in T, there
are three vertices, u, v, and w, which correspond to G',
Gx, and G, respectively, and there are edges (u.v) and
(u, ). The weights of u, v, and w are the number of ver-
tices in G', Gx, and G5 For simplicity, we assume that
in the algorithm, if a given graph has more than three
vertices, then MIN-3WAY-CUT will be applied to con-
tinue the recursive calls of MIN-3WAY-CUT, although,
in the actual algorithm, if a given graph has less than
six vertices, the recursive calls will terminate. Then, the
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weight of a vertex has the following properties. (i) Let »
be the root of T. Then, w(r) = |V} = n. (ii) For each
internal vertex v, let w and w be its left and right sous,
respectively. Then, w(v) > 4. w(u) > 3, w(w) > 3, and
w(e) + 2 = w(u) 4+ w(w). (iii) For each leaf v, w(v) = 3.

Now, it is clear that T is a full binary tree, i.e., a binary
tree whose any internal vertex has left and right sons.
Let I(T) and L(T') be the numbers of internal vertices
and leafs, respectively. Then, we can easily show that
L(T) = I(T) + 1. Let SUM bhe the total of weights of
all leafs. Then, from the properties of the weights of
vertices, we can show that SUM = w(r)+ I(T) x 2. On
the other hand, it is obvious that SUM = L(T) x 3. Since
w(r) =n, wehave n +I(T) x 2 = L(T) x 3. Substituting
the equation L(T) = I(T) + 1, we finally get n + I(T) x
2 = (I(T)+1) x 3. Thus, we have n — 3 = I(T) and

L(T) = I(T)+1 = n—2. Consequently, the total number

of invocation of MIN-3WAY-CUT is I(T) + L(T) = 2n —
5. This shows that the algorithmn MIN-TRI-PARTITION
invokes the min-cut max-flow procedure in O(n?) times.
o . ,

Note that there have been a number of min-cut max-
flow algorithms [1]. Time complexity of finding a mini-
mum (s,%)-terminal cut of a general undirected weighted
graph G is bounded by O(n?).

6. Conclusion

We have presented divide-and-conquer algorithms for
computing a minimum three-way cut and a minimum
four-way cut of an undirected weighted graph. As future
work, we will consider an extension of the proposed algo-
rithms for the minimum k-way cut problem for general
k>5.
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