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A Generalization of AT-Free Graphs and a Generic
Algorithm for Solving Triangulation Problems

H. J. Broersma,1 T. Kloks, D. Kratsch,2 and H. Müller3

Abstract. A subsetA of the vertices of a graphG is anasteroidal setif for each vertexa ∈ A a connected
component ofG−N[a] exists containingA\{a}. An asteroidal set of cardinality three is calledasteroidal triple
and graphs without an asteroidal triple are calledAT-free. The maximum cardinality of an asteroidal set ofG,
denoted byan(G), is said to be theasteroidal numberof G. We present a scheme for designing algorithms
for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters
such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a
polynomial (of degree asteroidal number plus a small constant) in the number of vertices and the number of
minimal separators of the input graph.
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1. Introduction. Graphs without an asteroidal triple are called asteroidal triple-free
graphs (AT-free graphs for short) and attained much attention recently. M¨ohring has
shown that every minimal triangulation of an AT-free graph is an interval graph, which
implies that for every AT-free graph the treewidth and the pathwidth of the graph are
equal [24]. Furthermore, a collection of interesting structural and algorithmic prop-
erties of AT-free graphs has been obtained by Corneil et al., among them an exis-
tence theorem for so-called dominating pairs in connected AT-free graphs and a linear
time algorithm to compute a dominating pair for connected AT-free graphs (see [11]
and [12]).

The class of graphs with a bounded asteroidal number extends the class of AT-free
graphs, based on a natural way of generalizing the concept of asteroidal triples to so-called
asteroidal sets, first given by Walter [27]. Walter, Prisner and Lin et al. used asteroidal
sets to characterize certain subclasses of the class of chordal graphs [22], [25], [27].

In this paper we consider the NP-complete graph problems TREEWIDTH, MINIMUM

FILL-IN and VERTEX RANKING that all remain NP-complete when restricted to AT-free
graphs. In fact, each of the three problems remains NP-complete on cobipartite graphs
[2], [7], [28] that form a small subclass of the class of AT-free graphs.
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TREEWIDTH has been studied in numerous recent papers, mainly since many NP-
complete graph problems become solvable in polynomial time or even linear time when
restricted to a class of graphs with bounded treewidth [1], [5], [16]. Recall that for each
constantk, there is a linear time algorithm that determines whether a given graph has
treewidth at mostk [6], [16]. However, the constant factor of this algorithm is exponential
in the treewidth (of yes-instances), which limits its practicality.

The MINIMUM FILL -IN problem stems from the optimal performance of Gaussian
elimination on sparse matrices and has important applications in this area. Both TREE-
WIDTH and MINIMUM FILL -IN ask for a certain chordal embedding of the given graph.
This often allows the design of similar algorithms for both problems, when graphs of
some special class are considered.

The VERTEX RANKING problem received much attention lately because of the growing
number of applications. The problem of finding an optimal vertex ranking is equivalent to
the problem of finding a minimum-height elimination tree of a graph [13]. This measure
is of importance for the parallel Cholesky factorization of matrices [8], [23]. Other
applications can be found in VLSI-layout design [21].

In [3] and [17] algorithms are published that list all minimal separators of a given
graphG in time O(n3r +m) andO(n5r +m), respectively, wheren is the number of
vertices ofG, m is the number of edges ofG andr is the number of minimal separators
of G. Both algorithms can be used as a subroutine when computing the treewidth and
the minimum fill-in [19] as well as the vertex ranking number [20] on AT-free graphs.
The running time of these algorithms is polynomial in the number of vertices and the
number of minimal separators of the input graph, but in general not polynomial in the
input length, because AT-free graphs may have “exponentially” many minimal separators
(see, e.g., [20] for an example).

We extend the method used in [19] and [20]. To be more precise, we focus on certain
sets of minimal separators called blocking sets. We show that these blocking sets have
at mostan(G) elements, and that they decompose the graph into a number of so-called
blocks, which is bounded by a polynomial of orderan(G) in the number of minimal
separators ofG. We consider graphsH obtained from a block ofG by making the
separators of the blocking set complete, and establish a relation between the blocks of
H and the blocks ofG. Together with some known recurrence relations for the three
aforementioned problems in terms of the minimal separatorsS of G and the connected
components ofG− S, this enables us to give a scheme for recursive algorithms. In this
way, for each of the three problems, we obtain an algorithm that solves the corresponding
problem for all graphsG in timeO(n3r+m+krk+1(n+m)n logn), wherek = an(G)and
r is the number of minimal separators ofG. Moreover, the algorithms can be implemented
without knowing the asteroidal number or the number of minimal separators of the input
graphs in advance. In that case the algorithms will generate the correct answers, within
the stated timebound. This is of importance, since computing the asteroidal number in
general is NP-complete [18].

2. Preliminaries. Throughout the paper we useG = (V, E) to denote a graph with
vertex setV and edge setE, and we let|V | = n and|E| = m. ForW ⊆ V , G[W] denotes
the subgraph ofG induced by the vertices ofW, G−W is shorthand forG[V\W]. For
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a vertexx ∈ V , we writeG − x instead ofG − {x}. The maximal connected induced
subgraphs of a graph are called its connected components. The set of vertices adjacent
to a vertexx ∈ V is theneighborhood N(x) of x, andN[x] = {x} ∪ N(x) is theclosed
neighborhoodof x. We say that a sequenceP = (u0,u1, . . . ,ul ) of pairwise distinct
vertices ofG is au,v-path inG if u = u0, v = ul and{ui−1,ui } ∈ E for i = 1, . . . , l .
For any setS whose elements are sets we use

⋃
S to denote

⋃
S∈S S.

2.1. Preliminaries on Asteroidal Sets

DEFINITION 1. A subsetA ⊆ V is called anasteroidal setof G if for eacha ∈ A
there exists a connected component ofG − N[a] containing all vertices ofA\{a}. The
maximum cardinality of an asteroidal set ofG is denoted byan(G), and is called the
asteroidal numberof G.

By definition the vertices of an asteroidal set are pairwise nonadjacent. Hence
an(G) ≤ α(G), whereα(G) denotes the maximum cardinality of an independent set in
G. Furthermore, for every positive integerk there exist graphs with asteroidal numberk,
e.g.,an(C2k) = k for k ≥ 2, whereCn is the chordless cycle onn vertices. Notice that
every subset of an asteroidal set is asteroidal.

There are polynomial time algorithms to compute the asteroidal number for graphs
in some special classes, like HHD-free graphs (including all chordal graphs), claw-free
graphs, circular-arc graphs and circular permutation graphs. However, the corresponding
decision problem remains NP-complete on triangle-free 3-connected 3-regular planar
graphs [18].

2.2. Preliminaries on Triangulations

DEFINITION 2. A graphH is chordal(or triangulated) if it does not contain a chordless
cycle of length at least four as an induced subgraph.

DEFINITION 3. A triangulationof G is a graphH with the same vertex set asG such
that H is chordal andG is a subgraph ofH . A triangulationH of G is calledminimal
if there is no proper subgraphH ′ of H which is also a triangulation ofG.

The following theorem was proved in [26]. HereH .− e denotes the graph obtained
from H by removing the edgee.

THEOREM4. Let H be a triangulation of a graph G. The graph H is a minimal tri-
angulation of G if and only if for every edge e∈ E(H)\E(G) the graph H .− e is not
chordal. Hence every edge e∈ E(H)\E(G) is the unique chord in a cycle of length four
in H .

The size of a maximum clique inG is denoted byω(G).

DEFINITION 5. Thetreewidthof G, denoted bytw(G), is the minimum ofω(H) − 1
taken over all triangulationsH of G.
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DEFINITION 6. The minimum fill-in of G, denoted bymfi(G), is the minimum of
|E(H)\E| taken over all triangulationsH of G.

DEFINITION 7. Let t be an integer. A (vertex) t-ranking of G is a coloringc: V →
{1, . . . , t} such that for every pair of verticesx and y with c(x) = c(y) and for every
path betweenx andy there is a vertexzon this path withc(z) > c(x). Thevertex ranking
numberof G, denoted byχr(G), is the smallest valuet for which the graphG admits a
t-ranking.

2.3. Preliminaries on Minimal Separators. A proper subsetS⊂ V is aseparatorof
G if G− S is disconnected.

DEFINITION 8. A vertex setS ⊂ V is an a,b-separatorof G if the removal ofS
separatesa andb in distinct connected components ofG − S. If no proper subset of
ana,b-separatorS is ana,b-separator, thenS is aminimal a,b-separator. A vertex set
S⊂ V is aminimal separatorof G if there exist nonadjacent verticesa andb in G such
thatS is a minimala,b-separator ofG.

We defineComp(G) = {X: ∅ 6= X ⊆ V andG[X] is a connected component of
G}. By Sep(G) we denote the set of all minimal separators ofG. The following lemma
enables the design of a linear time algorithm that decides whether a given vertex setS is
a minimal separator of a given graphG.

DEFINITION 9. Let S be a separator ofG. A connected componentC of G − S is full
(with respect toS) if every vertex ofShas at least one neighbor inC.

LEMMA 10 [15]. A set S of vertices of G is a minimal separator of G if and only if
G− S has at least two full connected components.

Dirac established the following characterization of chordal graphs [14].

THEOREM11. G is a chordal graph if and only if every minimal separator of G is a
clique.

For any setS, we denote byS[2] the set of all subsets ofSof cardinality 2.

DEFINITION 12. Let S be any set of vertex subsets ofG. Then GS = (V, E ∪⋃
S∈S S[2]) is the graph obtained fromG by adding exactly those edges, which are

not present inG and which are edges of a complete graph on someS∈ S.

Now we can state the following characterization of minimal triangulations.

THEOREM13. A graph H is a minimal triangulation of G if and only if H= GSep(H).
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PROOF. AssumeH is a minimal triangulation ofG, and letS = Sep(H). Then clearly
GS is a subgraph ofH since every minimal separator inH is a clique. Lete = {a,b}
be an edge ofH which is not an edge ofG. SinceH is a minimal triangulation,e is the
unique chord of a 4-cycle(a, p,b,q) in H (Theorem 4). However, thena andb must
be contained in every minimalp,q-separator inH , which shows thate is also an edge
in GS.

Now assume thatH = GS. Then H is a triangulation ofG since every minimal
separator is a clique by Theorem 11. Lete = {a,b} be an edge ofH which is not an
edge ofG. Sincee is an edge inGS, e is contained in a minimal separatorSof H . Let
H [C1] andH [C2] be two full connected components ofH−S(Lemma 10). Then we can
construct two chordlessa,b-paths inH , with internal vertices inC1 andC2 respectively
thus obtaining a chordless cycle of length at least four inH .− e. HenceH .− e is not
chordal.

Finally we mention two useful characteristics of minimal triangulations (see, e.g.,
[19]).

LEMMA 14. If H is a minimal triangulation of G, then:

1. If a and b are nonadjacent in H, then every minimal a,b-separator in H is also a
minimal a,b-separator in G.

2. If S is a minimal separator in H and if C is the vertex set of a connected component
of H − S, then C induces a connected component in G− S.

3. Recurrence Relations and Minimal Separators. Some well-known graph param-
eters can be computed by applying recurrence relations involving the set of all minimal
separators of the graph under consideration. The most prominent examples are the fol-
lowing.

First we consider the treewidth ofG. If G is not a complete graph, thenG contains
a minimal separatorSsuch thattw(G) = tw(G{S}). This leads to the following theorem
shown in [19]. Here and in what follows,G({S},C) = G{S}[S∪ C].

THEOREM15. Let G be a graph which is not complete. Then

tw(G) = min
S∈Sep(G)

max
C∈Comp(G−S)

tw(G({S},C)).

Now we consider the minimum fill-in ofG. For all W ⊆ V we definefill(W) =
|W[2] | − |E(G[W])| to be the number of edges not inE that have to be added toG[W]
for makingW a clique. The following theorem is given in [19].

THEOREM16. Let G be a graph which is not complete. Then

mfi(G) = min
S∈Sep(G)

(
fill(S)+

∑
C∈Comp(G−S)

mfi(G({S},C))
)
.
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Finally we consider the vertex ranking problem. Notice thatχr(G) = n for any
complete graphG onn vertices. In the following we mention a special case of a theorem,
given in [13], which is sufficient for our purposes.

THEOREM17. Let G be a graph which is not complete. Then

χr(G) = min
S∈Sep(G)

(
|S| + max

C∈Comp(G−S)
χr(G[C])

)
.

We have seen that for three well-known and well-studied NP-complete graph prob-
lems recurrence relations exist that are all of the same type. It is natural that algorithms
for special graph classes have been designed by exploiting these recurrence relations.
On one hand, many efficient algorithms for special graph classes such as permutation,
trapezoid, circle and circular-arc graphs have been obtained [9], [13], [16]. On the other
hand,O(n3r + n3r 3) algorithms for AT-free graphs were obtained, that are based on the
abovementioned recurrence relations, in [19] and [20]. A similar approach (using closed
neighborhoods instead of minimal separators) leads to polynomial time algorithms for
INDEPENDENT SET, INDEPENDENT DOMINATING SETandINDEPENDENT PERFECT DOMI-
NATING SET [10] when restricted to graphs with a bounded asteroidal number.

Our major goal in the remainder of this paper is to extend the approach for AT-free
graphs to obtain a general scheme for designing recursive algorithms on all graphs, which
is applicable as soon as there is a recurrence relation for computing the graph parameter
under consideration similar to those in Theorems 15–17.

4. Blocks. Blocking sets and blocks are central concepts for the recursive algorithms
and the corresponding decompositions.

DEFINITION 18. A setS of minimal separators ofG is ablocking setif the elements
of S are incomparable with respect to set inclusion and for allS ∈ S the vertex set
(
⋃

S)\S is contained in one connected component ofG− S.

Note that in particular any singleton consisting of a minimal separator ofG is a block-
ing set.

DEFINITION 19. LetS be a blocking set ofG with |S| ≥ 2. Then a vertexv ∈ V\⋃ S

is said to bein the interior of S if, for every S ∈ S, the vertexv and the vertex set⋃
S\Sare contained in one connected component ofG− S.

LEMMA 20. For every blocking setS of G, |S| ≤ an(G).

PROOF. Any asteroidal setA of G with |A| ≥ 3 is contained in one connected compo-
nent ofG. Hence we may assume thatG is connected and|S| ≥ 2. For every minimal
separatorS ∈ S of G, we choose a vertexb(S) that belongs to

⋃
S\S, and a vertex

a(S) in a full connected component ofG−Sthat does not contain the vertex set
⋃

S\S.
Thusa(S) andb(S) belong to different connected components ofG−Sfor everyS∈ S.
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Moreover,a(S) 6= a(S′) for all distinctS, S′ ∈ S. We claim thatA = {a(S): S∈ S} is
an asteroidal set ofG, thus proving that|A| = |S| ≤ an(G).

Let S∈ S. The vertices of the connected component ofG− Scontainingb(S) are in
one connected component ofG−N[a(S)], sayG[C]. The setC contains the vertexb(S)
and it also contains the vertexa(S′) for all S′ ∈ S\{S} since there is ab(S),a(S′)-path
insideG[C]. To see this, note that there is a path fromb(S) to a vertexs′ ∈ S′\S inside
the connected component ofG− Scontaining

⋃
S\S. Since the connected component

of G−S′ containinga(S′) is full, there is a path froms′ toa(S′)with all internal vertices
inside the connected component ofG− S′ containinga(S′).

Therefore for everyS ∈ S, the vertex setA\{a(S)} is contained in one connected
component ofG − N[a(S)], which implies thatA = {a(S): S ∈ S} is indeed an
asteroidal set ofG.

DEFINITION 21. A pair(S,C) is ablockof G if S is a blocking set ofG, C ⊆ V and
one of the following conditions is fulfilled:

• S = ∅ andC ∈ Comp(G).
• S = {S} andC ∈ {∅} ∪ Comp(G− S)\Comp(G).
• |S| ≥ 2 andC is the set of all vertices in the interior ofS.

The definition and Lemma 20 immediately imply

OBSERVATION 22. The number of different blocks of G is at most

(|Sep(G)| + 1) · |V | +
an(G)∑
k=2

(
|Sep(G)|

k

)
.

(Notice that
(n

k

) = 0 if k and n are integers with0≤ n < k.)

The following definition is motivated by the recurrence relations in Section 3 and
Theorems 11 and 13.

DEFINITION 23. Therealization G(S,C) of a block(S,C) of G is the graphGS[C∪⋃
S].

The definition implies that the realization of any block is a connected graph.

5. Decomposing Blocks. We consider a block(S,C) of G, its realizationH =
G(S,C) and a minimal separatorT of H . Then for an arbitrary connected compo-
nentH [D] of H −T , the pair({T}, D) is a block ofH . Our major goal in this section is
to prove that any block({T}, D) of H can be described as a block ofG in the following
sense: for any block({T}, D) of H = G(S,C), there is a block(T, D′) of G such that
the corresponding realizations are exactly the same graphs, i.e.,G(T, D′) = H({T}, D).

The consequence is that any algorithm, which recursively computes a minimal sep-
aratorT for the current graphH and then calls itself on the realization of the block



A Generalization of AT-Free Graphs 601

({T}, D) for each connected componentD of H −T until the current graph is complete,
will only work on realizations of blocks of the input graphG. Together with Lemma 20
and Observation 22 this implies, that each recursive algorithm of this type checks at most
O(|Sep(G)|an(G)) realizations of blocks of the input graphG.

We start with a lemma that is essential for this section.

LEMMA 24. Let(S,C) be a block of G and let x and z be distinct vertices in C∪⋃ S.
Then{x, z} is an edge of G(S,C) if and only if {x, z} ∈ E or there exists an integer
l ≥ 1 and a path(x, y1, y2, . . . , yl , z) in G with yi ∈ V\(C ∪⋃ S) for i = 1, . . . , l .

PROOF. First let{x, z} be an edge ofG(S,C) and suppose{x, z} /∈ E. Then a minimal
separatorS ∈ S exists such thatx, z ∈ S. Since(S,C) is a block ofG there is a full
connected componentG[D] of G − S with D ∩ (C ∪ ⋃ S) = ∅ by Lemma 10. We
choose verticesx′, z′ ∈ D such that{x, x′}, {z, z′} ∈ E. SinceG[D] is connected, there
exists a path(y1, y2, . . . , yl ) in G[D] with y1 = x′ andyl = z′, l ≥ 1. Consequently,
(x, y1, y2, . . . , yl , z) is a path inG with yi ∈ V\(C ∪⋃ S) for i = 1, . . . , l .

Now suppose a path(x, y1, y2, . . . , yl , z) in G with yi ∈ V\(C ∪ ⋃ S) for i =
1, . . . , l such that{x, z} /∈ E. Thenx, z ∈ ⋃ S and yi ∈ D for a suitable setD ∈
Comp(G −⋃ S). Clearly,N(D) is a minimal separator ofG. It suffices to show that
there is a minimal separatorS ∈ S containingN(D), because this would imply that
{x, z} is an edge of the realizationG(S,C).

On the contrary, we assume that no separator inS contains bothx and y, i.e., we
have minimal separatorsSx, Sz ∈ S such thatx ∈ Sx\Sz andz ∈ Sz\Sx. This implies
|S| ≥ 2. Consequently,C is the set of vertices in the interior ofS. In particular, there
is a path(z, c1, c2, . . . , ck, x) in G of lengthk + 1 ≥ 2 with ci ∈ C for 1 ≤ i ≤ k. We
consider a minimalc1,y1-separatorS ∈ S that exists becausec1 is in the interior ofS
andy1 is not. In contrast, paths(c1, z, yl , . . . , y1) and(c1, . . . , ck, x, y1) exist inG− Sx

andG− Sz, respectively. HenceS 6= Sx, S 6= Sz and into the bargainS /∈ S because no
separator inS contains bothx andy. This contradiction completes the proof.

Now we consider a path(x1, x2, . . . , xl ) in the realizationG(S,C) of a block(S,C)
of G. By Lemma 24 we are able to insert vertices fromV\(C∪⋃ S) into the sequence
(x1, x2, . . . , xl )such that the resulting sequence is a path inG. On the other hand, consider
an x,z-path inG with x, z ∈ C ∪⋃ S. Then by Lemma 24 we obtain anx,z-path in
G(S,C) if we remove all vertices outsideC∪⋃ S from the sequence(x, . . . , z). This
observation proves the next lemma.

LEMMA 25. Let (S,C) be a block of G with realization H= G(S,C), let T ⊂
C ∪⋃ S, and let x and z be distinct vertices in(C ∪⋃ S)\T . Then x and z are in one
connected component of H− T if and only if x and z are in one connected component
of G− T . Particularly, for every minimal separator S∈ S the set S\T is contained in
one connected component of G− T .

PROOF. By Lemma 24.
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Note that the last two lemmas are related to Lemma 14. Next we are interested in
minimal separators of realizations.

LEMMA 26. Let (S,C) be a block of G and let a and b be nonadjacent vertices in
G(S,C). Then every minimal a,b-separator in G(S,C) is a minimal a,b-separator
in G.

PROOF. Let T be a minimala,b-separator inH = G(S,C). Then by Lemma 25 the
setT is ana,b-separator inG.

Let G[Ca] and G[Cb] be the connected components ofG − T containinga andb,
and letH [Da] and H [Db] be the connected components ofH − T containinga andb,
respectively. We apply Lemma 10. Every vertex ofT has inH a neighbor inDa and
a neighbor inDb. By Lemma 24 every vertex ofT has inG a neighbor inCa and a
neighbor inCb. HenceT is a minimala,b-separator ofG.

The next lemma classifies the minimal separators of realizations into three types.

LEMMA 27. Let (S,C) be a block of G and let T be a minimal separator of H=
G(S,C). Then exactly one of the following three conditions holds:

Type 1. There are distinct minimal separators S1, S2 ∈ S with T ⊂ S1 and T⊂ S2.
Type 2. There is exactly one minimal separator S0 ∈ S such that T⊂ S0.
Type 3. T\S 6= ∅ for all S ∈ S.

Furthermore, in Types1 and2 the graph H−T has exactly two connected components.

PROOF. First let S ∈ S be a minimal separator withT ⊆ S. ThenT 6= S sinceS is
a blocking set. The graphH [S\T ] is a connected component ofH − T by Lemma 25.
Another connected component is induced byC ∪⋃ S\S since(S,C) is a block and
again by Lemma 25. Consequently, there is no third connected component ofH − T if
T is of Type 1 or 2.

PROPOSITION28 (Type 1) (Figure 1). Let(S,C)be a block of G and let T be a minimal
separator of H= G(S,C) such that there exist at least two distinct minimal separators
in S containing T. Then C= ∅, |S| = 2 and for each S∈ S we have H({T}, S\T) =
G({S},∅).

Fig. 1.Type 1.
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Fig. 2.Type 2.

PROOF. Let S1, S2 ∈ S be distinct minimal separators withT ⊆ S1∩S2. By Lemma 27
the connected components ofH − T are induced bySi \T andC ∪⋃ S\Si , both for
i = 1 and fori = 2. SinceS1\T 6= S2\T we haveC = ∅,S = {S1, S2} andT = S1∩S2.
Now the statement for the realization is obvious.

Let ({S1, S2},∅) be a block ofG. By Proposition 28 the unique minimal separator
T = S1 ∩ S2 of G({S1, S2},∅) decomposes({S1, S2},∅) into two other blocks ofG.
We define the decomposition of({S1, S2},∅) by

Dec({S1, S2},∅, T) = {({S1},∅), ({S2},∅)}.

PROPOSITION29 (Type 2) (Figure 2). Let(S,C)be a block of G and let T be a minimal
separator of H= G(S,C) such that there is a unique minimal separator S0 ∈ S with
T ⊂ S0.LetT = S\{S0}and D= C∪⋃ T.Then H[D] and H[S0\T ] are the connected
components of H−T . Furthermore, ({T} ∪ T,C) is a block of G with G({T}∪T,C) =
H({T}, D), and({S0},∅) is a block of G with G({S0},∅) = H({T}, S0\T).

PROOF. By Lemma 27 the graphH −T has exactly two connected components. These
areH [D] and H [S0\T ].

For every minimal separatorS∈ T the vertices inC ∪⋃ T\Sare in one connected
component ofG − S sinceS is a blocking set ofG andC is the set of vertices in the
interior ofS. Moreover, by Lemma 25 the setC∪⋃ T\T is in one connected component
of G−T . Hence{T}∪T is a blocking set ofG andC is the set of vertices in the interior
of {T}∪T. Therefore({T}∪T,C) is a block ofG. SinceH = G(S,C) every setS∈ T

is a clique inH . This impliesG({T} ∪ T,C) = H({T}, D).

Let (S,C) be a block ofG and letT be a minimal separator ofH = G(S,C) such that
there is a unique minimal separatorS0 ∈ S with T ⊂ S0. Based on Proposition 29 we
define

Dec(S,C, T) = {({S0},∅), ({T} ∪S\{S0},C)}.

PROPOSITION30 (Type 3) (Figure 3). Let(S,C)be a block of G and let T be a minimal
separator of H= G(S,C) such that T\S 6= ∅ for all S ∈ S. Let H[D] be a connected
component of H− T . Let T = {S: S ∈ S and S∩ D 6= ∅} and D′ = D\⋃ T. Then
({T} ∪ T, D′) is a block of G and G({T} ∪ T, D′) = H({T}, D).
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Fig. 3.Type 3.

PROOF. First we show that{T}∪T is a blocking set ofG. By Lemma 26,T is a minimal
separator ofG, and every element ofT is a minimal separator ofG. By the presumption
of the proposition, the minimal separators in{T} ∪ T are pairwise incomparable. The
set

⋃
T\T is in one connected component ofG − T by Lemma 25. For everyS ∈ T

the set(T ∪⋃ T)\S is in one connected component ofG− SsinceS is a blocking set
of G andT\⋃ S ⊆ C. Hence{T} ∪ T is a blocking set ofG.

If T = ∅, then D ∩ ⋃ S = ∅ and G[D] is a connected component ofG − T .
Consequently,D′ = D and({T}, D) = ({T} ∪ T, D′) is a block ofG with G({T} ∪
T, D′) = H({T}, D).

OtherwiseT 6= ∅. ThenS 6= ∅ sinceT ⊆ S. Next we show that a vertexv is
in the interior of{T} ∪ T if and only if v ∈ D′. A vertexv in the interior of{T} ∪ T

belongs to the connected component ofG − T containing
⋃

T\T . Furthermore, for
everyS∈ T the vertexv belongs to the connected component ofG−ScontainingT\S.
Consequentlyv ∈ D′ sincev /∈ T ∪⋃ T.

Let v be a vertex inD′. First assumev ∈ C. Then there exists a minimal separator
S ∈ S such thatv ∈ S sinceD ⊆ (C ∪⋃ S)\T . ThenS ∈ T by the definition of
T. However, this impliesv ∈ ⋃ T, contradictingv ∈ D′. Consequently,v ∈ C. Now,
for all S ∈ T, there is one connected componentG[B] of G − S with C ⊆ B and⋃

S\S⊆ B. Then(T ∪⋃ T)\S⊆ B sinceT ⊆ C∪⋃ S. This connected component
G[B] of G − S contains the vertexv ∈ D′ sincev ∈ C. Furthermore,v ∈ D′ belongs
to the connected component ofG − T containing

⋃
T\T by Lemma 25 andD′ ⊆ D.

This implies that every vertexv ∈ D′ is in the interior of{T} ∪ T.
Consequently,({T} ∪ T, D′) is a block ofG. SinceH = G(S,C) every setS ∈ T

is complete inH . This impliesG({T} ∪ T, D′) = H({T}, D).

Let (S,C) be a block ofG and letT be a minimal separator ofH = G(S,C)
such thatT\S 6= ∅ for all S ∈ S. In this case letI be a set of indices such that
Comp(H − T) = {Di : i ∈ I }. Based on Proposition 30 we define

Dec(S,C, T) = {({T} ∪ {S: S∈ S andS∩ Di 6= ∅},C ∩ Di ): i ∈ I }.
The following theorem summarizes Lemma 27 and Propositions 28–30.

THEOREM31. Let (S,C) be a block of G and let T be a minimal separator of H=
G(S,C). Then we have a bijection between the blocks(T, D) corresponding with the
connected components of H− T and the blocks(T, D′) in Dec(S,C, T) such that
G(T, D′) = H({T}, D).
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6. Algorithms. The approach of the previous section enables two different types of
algorithms. One type is a dynamic programming algorithm as used in [9], [13], [19] and
[20]. Typical for these algorithms is a step sorting the blocks by the number of vertices
in their realization. Then it is possible to compute a parameter like the treewidth of
the realization by evaluating the recurrence relation and table look-up of the values for
smaller realizations.

Here we use another type of algorithm sometimes called a recursive algorithm
with memorization. First we describe the generic version. The input is a graphG. In
a preprocessing the algorithm computesSep(G) using the listing algorithm given
in [3].

The procedurecompute is the heart of the algorithm (Figure 4). It is recursive via
access . Bothcompute andmain use the macroscollect , complete , initial -
ize , update andstart , which are specific to the algorithmic problem under consid-
eration (Table 1).

The algorithm uses a data structureX that can store any block(S,C) of G with a
valuep(S,C), and retrieve these values. SupposeV = {1,2, . . . ,n}. Any block(S,C)
is stored as a setC ⊆ V followed by a sequence of the minimal separatorsS1, S2, . . . , Sj

Fig. 4.The generic version of the algorithm.
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Table 1.Macros used in the algorithm.

Treewidth Minimum fill-in Ranking number

collect (c) max{p, c} p+ c max{p, c}
complete |C ∪

⋃
S| − 1 0 |C|

initialize 0 fillG(S,C)(T) |T ∩ C|
update (c) max{q, c} q + c max{q, c+ |T ∩ C|}
start 0 0 0

in S that are lexicographically ordered (as subsets ofV). The data structureX supports
the following operations:

• store (S,C, p) stores for the block(S,C) the valuep,
• present (S,C) returnstrue, if an operationstore (S,C, p) has been performed

before, for any value ofp, andfalseotherwise, and
• value (S,C) returns the valuep of the (last) operationstore (S,C, p), if present
(S,C) = true.

All three operations can be executed by iterated search for a vertex in the universeV .
A single search can be done in timeO(logn) by standard techniques. To find a whole
block (S,C) we need|⋃ S| + 1 single searches if|S| ≤ 1 and

∑
S∈S |S| single

searches if|S| ≥ 2. We refer to [4] for an implementation of a related data structure
that can be easily extended to one satisfying our purposes. Notice that our algorithm
callsvalue (S,C) only if present (S,C) = true. Furthermore, ifstore (S,C) is
called, thenpresent (S,C) = false, i.e., for each block ofG, store is called at most
once.

We consider the running time of our algorithm on an input graphG = (V, E) with
|V | = n, |E| = m, |Sep(G)| = r andan(G) = k. First the algorithm in [3] needs
O(n3r +m) time to list all minimal separators ofG.

For the following analysis, we assume that all macros can be evaluated in constant
time. (If this is not the case in a particular application, it should be easy to achieve the
corresponding time bound with a similar analysis.) To determine the overall running
time, we estimate the running time ofcompute (S,C) for any block (S,C) of G
without counting the running time of those recursive callscompute (T, D) for which
present (T, D) = falsewhencompute (T, D) is called. For any block(S,C) of G,
access callscompute at most once, namely whenpresent (S,C) = false. In this
case, for each minimal separatorT of G, compute needsO(n+m) time to test whether
T is a minimal separator ofG(S,C) and, if so, to compute the blocks inDec(S,C, T).
For each of the at mostn blocks(T, D) in Dec(S,C, T), access (T, D) is executed. If
access is called for a block(T, D) of G, whenpresent (T, D) = true, thenaccess
does not callcompute .

Procedureaccess looks up the valuep(S,C) in the data structureX. Using an
implementation of the data structureX, similar to the one described in [4], one look-up
can be done in time

∑
S∈S |S| · O(logn) = O(knlogn).



A Generalization of AT-Free Graphs 607

By Observation 22, the number of different blocks of the input graphG is at most
(r + 1)n+∑k

i=2

(r
i

)
. Consequently, the total running time of the algorithm isO(n3r +

m+ krk+1(n+m)n logn).

THEOREM32. On an input graph G= (V, E) with r minimal separators the generic
algorithm runs in time O(n3r +m+ krk+1(n+m)n logn) (under some assumptions on
the macros), where|V | = n, |E| = m andan(G) = k.

The generic algorithm can be used to compute a graph parameter which can be
evaluated via a certain type of recurrence involving the minimal separators of the graph
(see, e.g., Section 3).

6.1. Treewidth and Minimum Fill-In. The problems TREEWIDTHand MINIMUM FILL -IN
are typical problems that can be solved by the generic algorithm, since the recurrences in
Theorems 15 and 16 indeed require the addition of edges such that the minimal separator
becomes a clique. This corresponds exactly to the execution of the generic algorithm.

First we consider the problem TREEWIDTH. For every graphG we have

tw(G) = max
C∈Comp(G)

tw(G[C]).

Since for all connected componentsG[C] of G we haveG[C] = G(∅,C) this is
correctly computed by our choice ofcollect . By Theorems 15 and 31, the generic
algorithm correctly computes the treewidth of the input graph. IfG(S,C) is complete,
thentw(G(S,C)) = |C ∪⋃ S| − 1, as evaluated bycomplete ; otherwise

tw(G(S,C)) = min
T∈Sep(G(S,C))

max
(T,D)∈Dec(S,C,T)

tw(G(T, D)).

This is evaluated byinitialize andupdate .
Now we consider the problem MINIMUM FILL -IN. It is easy to see that

mfi(G) =
∑

C∈Comp(G)

mfi(G[C]).

This is computed bycollect . By Theorems 16 and 31, the generic algorithm cor-
rectly computes the minimum fill-in of the input graph. IfG(S,C) is complete, then
mfi(G(S,C)) = fill(C ∪⋃ S), as evaluated bycomplete ; otherwise

mfi(G(S,C)) = min
T∈Sep(G(S,C))

(
fill(T)+

∑
(T,D)∈Dec(S,C,T)

mfi(G(T, D))

)
,

which is correctly evaluated by the choice ofinitialize andupdate .

6.2. Vertex Ranking. Our first goal in designing the generic algorithm was to be able to
handle minimal separators of blocksG(S,C) as they occur in Theorems 15 and 16. In
contrast, in Theorem 17, minimal separators of connected componentsG[C] are needed.
Fortunately it turns out that the generic algorithm can also be applied to some problems
with recurrences on minimal separators as the one for VERTEX RANKING.

For the correctness proof we need the following proposition.
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PROPOSITION33. Let(S,C) be a block of G and let R be a minimal separator of G[C].
Then there is a minimal separator T of G(S,C) such that

Comp(G[C] − R) =
⋃

(T,D)∈Dec(S,C,T)

Comp(G[D]).

PROOF. Let R be a minimala,b-separator ofG[C]. ThenR∪⋃ S is ana,b-separator
of H = G(S,C). We choose a minimala,b-separatorT of H with T ⊆ R∪⋃ S. We
claim R ⊆ T . We consider a vertext ∈ R\T . ThenG[C] − (R\{t}) contains a pathP
from a to b via t sinceR is a minimala,b-separator ofG[C]. However,P is also a path
from a to b in H − T , contradicting the fact thatT is a minimala,b-separator ofH .
Hence a vertext ∈ R\T cannot exist. This impliesR⊆ T , more precisely,T ∩C = R
andT\C ⊆⋃ S.

Now let G[B] be a connected component ofG[C] − R. Then there is a connected
componentH [D′] of H − T with B ⊆ D′ sinceT\C ⊆ ⋃

S. Furthermore,B ⊆
D′\⋃ S sinceB ⊂ C.

By Theorem 31 there is a block(T, D) of G in the setDec(S,C, T)with G(T, D) =
H({T}, D′). (T, D) ∈ Dec(S,C, T) impliesT ⊆ {T} ∪S andD ∩ (T ∪⋃ S) = ∅.
This ensuresB ⊆ D. It remains to show thatG[B] is a connected component ofG[D].

SinceG[B] is connected it is contained in a connected component ofG[D]. We
consider an edge{b,d} of G with b ∈ B andd ∈ D. Note thatN(B)\B ⊆ R∪⋃ S.
The vertexd cannot belong toR or

⋃
S sinceR⊆ T andD∩ (T ∪⋃ S) = ∅. Hence

d ∈ B andG[B] is a connected component ofG[D].
Finally letG[B] be a connected component ofG[D] for a block(T, D) ∈ Dec(S,C,

T). ThenB ⊆ C\RsinceD ⊆ C\T . The graphG[B] is connected, henceB is contained
in one connected component ofG[C] − R. We consider an edge{b, c} of G with b ∈ B
andc ∈ C\R. Note thatN(B)\B ⊆ ⋃

T sinceG[B] is a connected component of
G[D]. The vertexc cannot belong to

⋃
T sinceT ⊆ {T} ∪ S, C ∩⋃ S = ∅ and

c ∈ C\T . Hencec ∈ B andG[B] is a connected component ofG[C] − R.

Recalling Lemma 26 and Theorems 17 and 31 we obtain the following recurrence.

COROLLARY 34. For every block(S,C) of G we have

χr(G[C]) = min
T∈Sep(G(S,C))

(
|T ∩ C| + max

(T,D)∈Dec(S,C,T)
χr(G[D])

)
.

Clearly,χr(G) = maxC∈Comp(G) χr(G[C]). This is evaluated bycollect . If G[C] is
complete, thenχr(G[C]) = |C|, as computed bycomplete ; otherwiseinitialize
andupdate evaluate the above recurrence.

The following theorem summarizes the main results of this section.

THEOREM35. For each of the problemsTREEWIDTH, MINIMUM FILL -IN andVERTEX

RANKING there is an algorithm to compute the corresponding graph parameter for any
input graph G in time O(n3r + m+ krk+1(n + m)n logn), where r is the number of
minimal separators of G and k= an(G).
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7. Conclusion. Our approach can also be applied to weighted versions of triangulation
problems. As an example we consider WEIGHTED FILL-IN. Given a graphG and non-
negative weightsw({u, v}) for each pairu, v of nonadjacent vertices ofG. The problem
is to find a minimal triangulationH of G such that the sum of the weights of the added
edges,

∑{w(e): e∈ E(H)\E(G)}, is minimized.
For a graphG that is not complete we obtain the following recurrence which is similar

to Theorem 16:

mfi(G, w) = min
S∈Sep(G)

(
fill(S)+

∑
C∈Comp(G−S)

mfi(G({S},C), w)
)
.

In this case,fill(S) =∑{w({u, v}): u, v ∈ Sand{u, v} /∈ E(G)} represents theweight
of the separatorS. Based on the recurrence above, our generic algorithm can be cus-
tomized to compute the weighted fill-in of arbitrary graphs.
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