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A Generalization of AT-Free Graphs and a Generic
Algorithm for Solving Triangulation Problems

H. J. Broersma,T. Kloks, D. Kratsct? and H. Miller®

Abstract. A subsetA of the vertices of a grap@ is anasteroidal setf for each vertexa € A a connected
component of5 — N[a] exists containingA\ {a}. An asteroidal set of cardinality three is calkesteroidal triple

and graphs without an asteroidal triple are call@efree The maximum cardinality of an asteroidal setaf

denoted byan(G), is said to be thasteroidal numbepf G. We present a scheme for designing algorithms

for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters
such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a
polynomial (of degree asteroidal number plus a small constant) in the number of vertices and the number of
minimal separators of the input graph.
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1. Introduction. Graphs without an asteroidal triple are called asteroidal triple-free
graphs (AT-free graphs for short) and attained much attention recentigrivg” has
shown that every minimal triangulation of an AT-free graph is an interval graph, which
implies that for every AT-free graph the treewidth and the pathwidth of the graph are
equal [24]. Furthermore, a collection of interesting structural and algorithmic prop-
erties of AT-free graphs has been obtained by Corneil et al., among them an exis-
tence theorem for so-called dominating pairs in connected AT-free graphs and a linear
time algorithm to compute a dominating pair for connected AT-free graphs (see [11]
and [12]).

The class of graphs with a bounded asteroidal number extends the class of AT-free
graphs, based on a natural way of generalizing the concept of asteroidal triples to so-called
asteroidal sets, first given by Walter [27]. Walter, Prisner and Lin et al. used asteroidal
sets to characterize certain subclasses of the class of chordal graphs [22], [25], [27].

In this paper we consider the NP-complete graph probleREEWIDTH, MINIMUM
FILL-IN and VERTEX RANKING that all remain NP-complete when restricted to AT-free
graphs. In fact, each of the three problems remains NP-complete on cobipartite graphs
[2], [7], [28] that form a small subclass of the class of AT-free graphs.
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TREEWIDTH has been studied in numerous recent papers, mainly since many NP-
complete graph problems become solvable in polynomial time or even linear time when
restricted to a class of graphs with bounded treewidth [1], [5], [16]. Recall that for each
constanik, there is a linear time algorithm that determines whether a given graph has
treewidth at most [6], [16]. However, the constant factor of this algorithm is exponential
in the treewidth (of yes-instances), which limits its practicality.

The MINIMUM FILL -IN problem stems from the optimal performance of Gaussian
elimination on sparse matrices and has important applications in this area. Beth T
WIDTH and MINIMUM FILL -IN ask for a certain chordal embedding of the given graph.
This often allows the design of similar algorithms for both problems, when graphs of
some special class are considered.

The VERTEX RANKING problem received much attention lately because of the growing
number of applications. The problem of finding an optimal vertex ranking is equivalent to
the problem of finding a minimum-height elimination tree of a graph [13]. This measure
is of importance for the parallel Cholesky factorization of matrices [8], [23]. Other
applications can be found in VLSI-layout design [21].

In [3] and [17] algorithms are published that list all minimal separators of a given
graphG in time O(n® + m) and O(n%r + m), respectively, whera is the number of
vertices ofG, mis the number of edges & andr is the number of minimal separators
of G. Both algorithms can be used as a subroutine when computing the treewidth and
the minimum fill-in [19] as well as the vertex ranking number [20] on AT-free graphs.
The running time of these algorithms is polynomial in the number of vertices and the
number of minimal separators of the input graph, but in general not polynomial in the
input length, because AT-free graphs may have “exponentially” many minimal separators
(see, e.g., [20] for an example).

We extend the method used in [19] and [20]. To be more precise, we focus on certain
sets of minimal separators called blocking sets. We show that these blocking sets have
at mostan(G) elements, and that they decompose the graph into a number of so-called
blocks, which is bounded by a polynomial of order(G) in the number of minimal
separators of5. We consider graphsl obtained from a block ofs by making the
separators of the blocking set complete, and establish a relation between the blocks of
H and the blocks of5. Together with some known recurrence relations for the three
aforementioned problems in terms of the minimal separ&@asG and the connected
components o6 — S, this enables us to give a scheme for recursive algorithms. In this
way, for each of the three problems, we obtain an algorithm that solves the corresponding
problem for all graph& in time O (N°r +m+kr**1(n+m)nlogn), wherek = an(G) and
r isthe number of minimal separators®fMoreover, the algorithms can be implemented
without knowing the asteroidal number or the number of minimal separators of the input
graphs in advance. In that case the algorithms will generate the correct answers, within
the stated timebound. This is of importance, since computing the asteroidal number in
general is NP-complete [18].

2. Preliminaries. Throughout the paper we use = (V, E) to denote a graph with
vertex seV and edge sdf, andwe letV| = nand|E| = m. ForW C V, G[W] denotes
the subgraph o6 induced by the vertices &/, G — W is shorthand foG[V \W]. For
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a vertexx € V, we write G — x instead ofG — {x}. The maximal connected induced
subgraphs of a graph are called its connected components. The set of vertices adjacent
to a vertexx € V is theneighborhood NXx) of x, andN[x] = {x} U N(x) is theclosed
neighborhoodof x. We say that a sequené® = (ug, Uy, ..., U;) of pairwise distinct
vertices ofG is au,v-path inG if u = ug, v = u; and{u;_1,u;} € Efori =1,...,1I.

For any set5 whose elements are sets we yge5 to denotd Jg ¢ S.

2.1. Preliminaries on Asteroidal Sets

DErFINITION 1. A subsetA C V is called anasteroidal sef G if for eacha € A
there exists a connected componenGof N[a] containing all vertices ofA\{a}. The
maximum cardinality of an asteroidal set @fis denoted byan(G), and is called the
asteroidal numbeof G.

By definition the vertices of an asteroidal set are pairwise nonadjacent. Hence
an(G) < «(G), wherexa (G) denotes the maximum cardinality of an independent set in
G. Furthermore, for every positive integethere exist graphs with asteroidal numker
e.g.,an(Cyx) = k for k > 2, whereC,, is the chordless cycle amvertices. Notice that
every subset of an asteroidal set is asteroidal.

There are polynomial time algorithms to compute the asteroidal number for graphs
in some special classes, like HHD-free graphs (including all chordal graphs), claw-free
graphs, circular-arc graphs and circular permutation graphs. However, the corresponding
decision problem remains NP-complete on triangle-free 3-connected 3-regular planar
graphs [18].

2.2. Preliminaries on Triangulations

DErFINITION 2. A graphH is chordal(ortriangulated if it does not contain a chordless
cycle of length at least four as an induced subgraph.

DerINITION 3. A triangulationof G is a graphH with the same vertex set & such
thatH is chordal ands is a subgraph oH. A triangulationH of G is calledminimal
if there is no proper subgragh’ of H which is also a triangulation d&.

The following theorem was proved in [26]. Heke — e denotes the graph obtained
from H by removing the edge.

THEOREM4. Let H be a triangulation of a graph GThe graph H is a minimal tri-
angulation of G if and only if for every edgeeeE(H)\ E(G) the graph H—+ e is not
chordal Hence every edgee E(H)\ E(G) is the unique chord in a cycle of length four
in H.

The size of a maximum clique iB is denoted by (G).

DerINITION 5.  Thetreewidthof G, denoted byw(G), is the minimum ofw(H) — 1
taken over all triangulationsl of G.
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DEFINITION 6.  The minimum fill-in of G, denoted bymfi(G), is the minimum of
|E(H)\ E| taken over all triangulationsl of G.

DEFINITION 7. Lett be an integer. Averte) t-ranking of G is a coloringc: V —
{1,...,t} such that for every pair of verticesandy with c(x) = c(y) and for every
path betweem andy there is a vertex on this path withe(z) > c(x). Thevertex ranking
numberof G, denoted by, (G), is the smallest valuefor which the graptG admits a
t-ranking.

2.3. Preliminaries on Minimal Separators A proper subse§ c V is aseparatorof
G if G — Sis disconnected.

DEFINITION 8. A vertex setS C V is ana,b-separatorof G if the removal of S
separates. andb in distinct connected components Gf— S. If no proper subset of
ana,b-separatoiSis ana,b-separator, thes is aminimal ab-separator A vertex set
S c V is aminimal separatoof G if there exist nonadjacent verticaandb in G such
thatSis a minimala,b-separator ofs.

We defineComp(G) = {X: @ # X C V andG[X] is a connected component of
G}. By Sep(G) we denote the set of all minimal separator€ofThe following lemma
enables the design of a linear time algorithm that decides whether a given versig set
a minimal separator of a given grafh

DEFINITION 9. LetSbe a separator db. A connected compone of G — Sis full
(with respect tS) if every vertex ofS has at least one neighbor@

LEMMA 10 [15]. A set S of vertices of G is a minimal separator of G if and only if
G — S has at least two full connected components

Dirac established the following characterization of chordal graphs [14].

THEOREM11. G is a chordal graph if and only if every minimal separator of G is a
clique

For any setS, we denote by§?! the set of all subsets & of cardinality 2.

DEFINITION 12. Let & be any set of vertex subsets &f. ThenGg = (V,E U
Uses S is the graph obtained fror® by adding exactly those edges, which are
not present irG and which are edges of a complete graph on s8meS.

Now we can state the following characterization of minimal triangulations.

THEOREM13. A graph H is a minimal triangulation of G if and only if B Ggep(h).
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PrOOF AssumeH is a minimal triangulation 06, and letS = Sep(H). Then clearly
Gg is a subgraph oH since every minimal separator h is a clique. Lete = {a, b}
be an edge oH which is not an edge db. SinceH is a minimal triangulatione is the
unigue chord of a 4-cyclé, p, b, q) in H (Theorem 4). However, thesmmandb must
be contained in every minimad,g-separator irH, which shows thag is also an edge
in Gg.

Now assume thaH = Gg. ThenH is a triangulation ofG since every minimal
separator is a clique by Theorem 11. leet {a, b} be an edge o which is not an
edge ofG. Sinceeis an edge irGg, e is contained in a minimal separatsiof H. Let
H[C;] andH[C;] be two full connected componentsidf— S(Lemma 10). Then we can
construct two chordless b-paths inH, with internal vertices i€, andC, respectively
thus obtaining a chordless cycle of length at least foudin- e. HenceH = eis not
chordal. O

Finally we mention two useful characteristics of minimal triangulations (see, e.g.,

[19)).

LEMMA 14. If H is a minimal triangulation of Gthen

1. If a and b are nonadjacent in Hhen every minimal @-separator in H is also a
minimal ab-separator in G

2. If Sis a minimal separator in H and if C is the vertex set of a connected component
of H — S, then C induces a connected component ir-G.

3. Recurrence Relations and Minimal Separators. Some well-known graph param-
eters can be computed by applying recurrence relations involving the set of all minimal
separators of the graph under consideration. The most prominent examples are the fol-
lowing.

First we consider the treewidth &. If G is not a complete graph, théh contains
a minimal separato® such thatw(G) = tw(Gyg)). This leads to the following theorem
shown in [19]. Here and in what follow&§& ({S}, C) = Gg[SU C].

THEOREM15. Let G be a graph which is not complefiehen

tw(G) = i tw(G({S}, C)).
w(G) s ) ceomaX w(G({S}, C))

Now we consider the minimum fill-in o&. For all W C V we definefill(W) =

W — |E(G[W])| to be the number of edges notnthat have to be added G[W]
for makingW a clique. The following theorem is given in [19].

THEOREM16. Let G be a graph which is not complefiehen

mfi(G):SErSrlLr(lG)(fill(S)—i— 3 mfi(G({S},C))).

CeComp(G—-9)
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Finally we consider the vertex ranking problem. Notice thaiG) = n for any
complete grapks onn vertices. In the following we mention a special case of a theorem,
given in [13], which is sufficient for our purposes.

THEOREM17. Let G be a graph which is not complefghen

xr(G) = Smin <|S| t o ceemax o Xr(G[C])> .

We have seen that for three well-known and well-studied NP-complete graph prob-
lems recurrence relations exist that are all of the same type. It is natural that algorithms
for special graph classes have been designed by exploiting these recurrence relations.
On one hand, many efficient algorithms for special graph classes such as permutation,
trapezoid, circle and circular-arc graphs have been obtained [9], [13], [16]. On the other
hand,O(n® + n® 3) algorithms for AT-free graphs were obtained, that are based on the
abovementioned recurrence relations, in [19] and [20]. A similar approach (using closed
neighborhoods instead of minimal separators) leads to polynomial time algorithms for
INDEPENDENT SET INDEPENDENT DOMINATING SETandINDEPENDENT PERFECT DOM
NATING SET [10] when restricted to graphs with a bounded asteroidal number.

Our major goal in the remainder of this paper is to extend the approach for AT-free
graphs to obtain a general scheme for designing recursive algorithms on all graphs, which
is applicable as soon as there is a recurrence relation for computing the graph parameter
under consideration similar to those in Theorems 15-17.

4. Blocks. Blocking sets and blocks are central concepts for the recursive algorithms
and the corresponding decompositions.

DerINITION 18. A set® of minimal separators db is ablocking setf the elements
of & are incomparable with respect to set inclusion and folSadl & the vertex set
(U 6)\Sis contained in one connected componenGof S.

Note that in particular any singleton consisting of a minimal separat@r igfa block-
ing set.

DEFINITION 19. Let& be a blocking set B with |&| > 2. Thenavertex € V\|J &
is said to bein the interior of & if, for every S € &, the vertexv and the vertex set
|J &\ Sare contained in one connected componer@ef S.

LEMMA 20. For every blocking seb of G, |G| < an(G).

PROOF  Any asteroidal sef\ of G with |A] > 3 is contained in one connected compo-
nent ofG. Hence we may assume thatis connected ani5| > 2. For every minimal
separatoiS € & of G, we choose a vertel(S) that belongs t4 ] G\S, and a vertex
a(9) in afull connected component Gf— Sthat does not contain the vertex 5¢tS\ S.
Thusa(S) andb(S) belong to different connected component&of Sfor everyS € G.
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Moreover,a(S) # a(S) for all distinctS, S € &. We claim thatA = {a(S): S€ G}is
an asteroidal set @8, thus proving thatA| = |&] < an(G).

Let S e &. The vertices of the connected componen&of Scontainingb(S) are in
one connected component®f N[a(S)], sayG[C]. The selC contains the verteli(S)
and it also contains the vertexS) for all S € G\{S} since there is &(S),a(S)-path
insideG[C]. To see this, note that there is a path frb(®) to a vertexs' € S\ Sinside
the connected component®f— Scontainingl J &\ S. Since the connected component
of G — S containinga(S) is full, there is a path frorg’ to a(S') with all internal vertices
inside the connected component®f- S containinga(S).

Therefore for evens € &, the vertex sefA\{a(S)} is contained in one connected
component ofG — N[a(S)], which implies thatA = {a(S): S € &} is indeed an
asteroidal set o6. O

DerFINITION 21. A pair(&, C) is ablockof G if & is a blocking set of5, C C V and
one of the following conditions is fulfilled:

e & =@ andC € Comp(G).
e & ={S}andC € {z} U Comp(G — S)\Comp(G).
e |S| > 2 andC is the set of all vertices in the interior &f.

The definition and Lemma 20 immediately imply

OBSERVATION 22. The number of different blocks of G is at most

an(G) IS G
(ISep@)| + 1) VI + > (' - )'>.
k=2

(Notice that(y) = 0if k and n are integers with < n < k.)

The following definition is motivated by the recurrence relations in Section 3 and
Theorems 11 and 13.

DEFINITION 23.  Therealization G(&, C) of a block(&, C) of G is the graptGg[C U
U &1

The definition implies that the realization of any block is a connected graph.

5. Decomposing Blocks. We consider a block&, C) of G, its realizationH =
G(6, C) and a minimal separator of H. Then for an arbitrary connected compo-
nentH[D] of H — T, the pair({T}, D) is a block ofH. Our major goal in this section is
to prove that any block{T}, D) of H can be described as a block®fin the following
sense: for any block T}, D) of H = G(&, C), there is a block¥, D’) of G such that
the corresponding realizations are exactly the same graph§{®.D’) = H({T}, D).

The consequence is that any algorithm, which recursively computes a minimal sep-
aratorT for the current graptH and then calls itself on the realization of the block
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({T}, D) for each connected compondhf H — T until the current graph is complete,
will only work on realizations of blocks of the input grah Together with Lemma 20
and Observation 22 this implies, that each recursive algorithm of this type checks at most
O(|Sep(G)|2"®)) realizations of blocks of the input graj
We start with a lemma that is essential for this section.

LEMMA 24. Let(S, C) be ablock of G and let x and z be distinct vertices idlC] &.
Then{x, z} is an edge of @5, C) if and only if{x, z} € E or there exists an integer
| > 1and a path(x, y1, ¥2, ..., %, 2 in Gwithy e V\(CUJ &) fori =1,...,1I.

PROOF  Firstlet{x, z} be an edge 0&(&, C) and supposgx, z} ¢ E. Then a minimal
separatolS € & exists such that, z € S. Since(&, C) is a block ofG there is a full
connected componef@[D] of G — Swith DN (C U | &) = @ by Lemma 10. We
choose verticeg’, Z € D such thafx, X'}, {z, Z} € E. SinceG[D] is connected, there
exists a path(ys, Y2, ..., y) in G[D] with y; = x’ andy, = Z,| > 1. Consequently,
(X, Y1, Y2, ..., Wi, 2) isapath inG withy, e V\(CU|J &) fori =1,...,1.

Now suppose a pattk, yi, ¥2, ..., ¥i,2) in Gwithy; € V\(CU|J &) fori =
1,...,1 such that{x,z} ¢ E. Thenx,z € | J & andy; € D for a suitable seD ¢
Comp(G — |J &). Clearly,N(D) is a minimal separator db. It suffices to show that
there is a minimal separat® € & containingN (D), because this would imply that
{x, z} is an edge of the realizatida(&, C).

On the contrary, we assume that no separatd@ ioontains bottx andy, i.e., we
have minimal separatol§;, S, € G such thatx € S(\S, andz € S\ S. This implies
|G| > 2. ConsequenthyC is the set of vertices in the interior &. In particular, there
is a path(z, ¢1, ¢y, ..., ¢, X) in G of lengthk +1 > 2 withgg e Cfor1 <i < k. We
consider a minimat;, y;-separatolS € & that exists becausg is in the interior of&
andy; is not. In contrast, path®s, z, v, ..., Y1) and(cy, . .., C, X, Y1) existinG — S
andG — S, respectively. Henc8 # S, S # S, and into the bargais ¢ G because no
separator ir contains bothx andy. This contradiction completes the proof. O

Now we consider a patfxs, Xo, . .., X) in the realizatiorG (&, C) of a block(&, C)
of G. By Lemma 24 we are able to insert vertices frofy(C U | &) into the sequence
(X1, X2, . . ., X)) suchthatthe resulting sequence is a path.i®n the other hand, consider
anx,z-path inG with x,z € C U | J &. Then by Lemma 24 we obtain anz-path in
G(6, C) if we remove all vertices outside U | J & from the sequencg, .. ., ). This
observation proves the next lemma.

LEMMA 25. Let (6, C) be a block of G with realization H= G(G,C), let T C
CuUl 6, andlet x and z be distinct vertices(@ U | J &)\T. Then x and z are in one
connected component of HT if and only if x and z are in one connected component
of G — T. Particularly, for every minimal separator & G the set §T is contained in
one connected component of-GT .

PROOF By Lemma 24. O
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Note that the last two lemmas are related to Lemma 14. Next we are interested in
minimal separators of realizations.

LEMMA 26. Let (&, C) be a block of G and let a and b be nonadjacent vertices in
G(6, C). Then every minimal @-separator in GS, C) is a minimal ab-separator
in G.

PrOOF LetT be a minimala,b-separator irH = G(&, C). Then by Lemma 25 the
setT is ana,b-separator irG.

Let G[C,] and G[Cp] be the connected components@f— T containinga andb,
and letH[D,] and H[ D] be the connected componentskf— T containinga andb,
respectively. We apply Lemma 10. Every vertexTohas inH a neighbor inD, and
a neighbor inDy. By Lemma 24 every vertex of has inG a neighbor inC, and a
neighbor inCy. HenceT is a minimala,b-separator of5. O

The next lemma classifies the minimal separators of realizations into three types.

LEMMA 27. Let (&, C) be a block of G and let T be a minimal separator of H
G(&, C). Then exactly one of the following three conditions holds

Type 1. There are distinct minimal separatorg,& e Gwith T c Sand TC S.
Type 2. There is exactly one minimal separatgy &6 such that TC .
Type 3. T\S# g forall S e G.

Furthermorein Typesl and2 the graph H— T has exactly two connected components

PrOOF First letS € & be a minimal separator with € S. ThenT # SsinceS is
a blocking set. The grapH[S\T] is a connected component bf — T by Lemma 25.
Another connected component is induced®y | ] &\Ssince(&, C) is a block and
again by Lemma 25. Consequently, there is no third connected compondnt-of if
T is of Type 1 or 2. O

PrOPOSITION28 (Type 1) (Figure 1). Let(&, C) be ablock of G andlet T be a minimal
separator of H= G(&, C) such that there exist at least two distinct minimal separators
in G containing T. Then C= @, |6| = 2 and for each S & we have H{T}, S\T) =
G({S}, 2).

minimal separators in &

O the minimal separator T'
connected components of G —
UG with vertices not in the in-
terior of &

Fig. 1. Type 1.
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minimal separators in &

the minimal separator 7'

connected components of G —
Q UG with vertices not in the in-

terior of &

vertices in the interior of &

Fig. 2. Type 2.

PROOF LetS, $ € & be distinct minimal separators withC SN S,. By Lemma 27
the connected componentsidf— T are induced by§\T andC U | J 6\ S, both for
i = landfoli = 2.SinceS\T # S\TwehaveC = 3,6 = {S, S}andT = §NS.
Now the statement for the realization is obvious. O

Let ({S, &}, @) be a block ofG. By Proposition 28 the unique minimal separator
T =5 NSof GUS, S}, @) decomposes{S;, S}, @) into two other blocks ofG.
We define the decomposition &fS,, S}, @) by

Dec({S, &}, @, T) = {({S} 9), (S}, @)}

PROPOSITION29 (Type 2) (Figure 2). Let(S, C) be ablock of G andlet T be aminimal
separator of H= G(&, C) such that there is a unique minimal separatgreSG with

T C . Let¥ = 6\{S}and D= CuUlJ ¥.Then HD] and H[S\T] are the connected
components of B T. Furthermore ({T} U ¥, C)isablock of G with G{T}U%, C) =
H{T}, D), and ({S}, @) is a block of G with G{S}, @) = H{T}, \T).

PrROOF By Lemma 27 the graph — T has exactly two connected components. These
areH[D] andH[S\T].

For every minimal separat@® € ¥ the vertices irC U | J T\ Sare in one connected
component of — Ssince& is a blocking set ofs andC is the set of vertices in the
interior of . Moreover, by Lemma 25 the $8tJ|_J T\T is in one connected component
of G—T. Hence{T}U T is a blocking set o6 andC is the set of vertices in the interior
of {T}UZX. Thereforg{T}UZ¥, C) is ablock ofG. SinceH = G(&,C) everyseSe T
is a clique inH. This impliesG({T} U %, C) = H({T}, D). O

Let (&, C) be ablock ofG and letT be a minimal separator ¢ = G(&, C) such that
there is a unique minimal separatgy € G with T ¢ . Based on Proposition 29 we
define

Dec(S,C, T) = {({S}, @), (T} U G\{S}, O)}.

ProPOSITION30 (Type 3) (Figure 3). Let(S, C) be ablock of G andlet T be aminimal
separator of H= G(6&, C) suchthat NS+ @ forall S € &. Let H[D] be a connected
componentof H-T. LetT = {S: Se Gand SN D # @g}and D = D\ |J %. Then
({T}u%,D’)isablockof Gand GT} U, D) = H({T}, D).
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' minimal separators in &
g G O the minimal separator T'

0' connected components of G —

ﬁ ol Q UG with vertices not in the in-
. terior of &

- & vertices in the interior of &

Fig. 3. Type 3.

PrROOF  Firstwe show thafT } U is a blocking set o65. By Lemma 26T is a minimal
separator 06, and every element & is a minimal separator @. By the presumption
of the proposition, the minimal separators{ih} U ¥ are pairwise incomparable. The
set|J T\T is in one connected component@®f— T by Lemma 25. For ever$ € ¥
the set(T U |J %)\ Sis in one connected component®f— Ssinced is a blocking set
of GandT\ |J & ¢ C. Hence{T} U ¥ is a blocking set 0.

If T = o,thenD N |J & = g andG[D] is a connected component & — T.
ConsequentlyD’ = D and({T}, D) = ({T} U ¥, D) is a block ofG with G({T} U
T, D) =H{T}, D).

Otherwise¥ # @. Then® # @ since¥ C &. Next we show that a vertex is
in the interior of{T} U ¥ if and only if v € D’. A vertexv in the interior of{T} U<
belongs to the connected component®f T containingl J ¥\T. Furthermore, for
everyS € ¥ the vertexv belongs to the connected componenGof ScontainingT \ S.
Consequently € D’ sincev ¢ T U %.

Let v be a vertex inD’. First assume € C. Then there exists a minimal separator
S € 6 such thatv € SsinceD € (CUJ 6)\T. ThenS € ¥ by the definition of
<. However, this impliew € | J ¥, contradictingy € D’. Consequentlyy € C. Now,
for all S € ¥, there is one connected compon&itB] of G — Swith C < B and
U G\S< B.Then(Tul %)\S < BsinceT < CU|J &. This connected component
G[B] of G — Scontains the vertex € D’ sincev € C. Furthermorep € D’ belongs
to the connected component@f— T containingl J \T by Lemma 25 and’ € D.
This implies that every vertex € D’ is in the interior of{ T} U %.

Consequently{T} U ¥, D’) is a block ofG. SinceH = G(6&,C) every setSe ¥
is complete inH. This impliesG({T} U ¥, D) = H({T}, D). a

Let (&, C) be a block ofG and letT be a minimal separator di = G(&, C)
such thatT\S # @ for all S € &. In this case letl be a set of indices such that
Comp(H — T) = {D;: i € |}. Based on Proposition 30 we define

Dec(6,C, T) ={({T}U{S Se GandSND; # &},CNDj):i e l}.
The following theorem summarizes Lemma 27 and Propositions 28-30.
THEOREM31. Let (&, C) be a block of G and let T be a minimal separator of=H
G(6, C). Then we have a bijection between the blo¢ksD) corresponding with the

connected components of HT and the blockg¥, D’) in Dec(&, C, T) such that
G(%, D) = H({T}, D).
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6. Algorithms. The approach of the previous section enables two different types of
algorithms. One type is a dynamic programming algorithm as used in [9], [13], [19] and
[20]. Typical for these algorithms is a step sorting the blocks by the number of vertices
in their realization. Then it is possible to compute a parameter like the treewidth of
the realization by evaluating the recurrence relation and table look-up of the values for
smaller realizations.

Here we use another type of algorithm sometimes called a recursive algorithm
with memorization. First we describe the generic version. The input is a gsaph
a preprocessing the algorithm comput®sp(G) using the listing algorithm given
in [3].

The procedureompute is the heart of the algorithm (Figure 4). It is recursive via
access . Bothcompute andmain use the macrosollect , complete , initial -
ize ,update andstart , which are specific to the algorithmic problem under consid-
eration (Table 1).

The algorithm uses a data structitethat can store any blodl, C) of G with a
valuep(&, C), and retrieve these values. Suppbse- {1, 2, ..., n}. Any block (&, C)
is stored as asé€l C V followed by a sequence of the minimal separafrss,, ..., §

procedure main,
begin
list Sep(G);
p  start;
for C € Comp(G) do p + collect(access(d,C));
return(p)
end.

procedure access(6,C);

begin
if not present(&,C) then compute(S, C);
return(value(S,C))

end;

procedure compute(S,C);
begin
p ¢ complete;
if G(6,C) is not complete then
for T € Sep(G) do
if T is a minimal separator of G(G, C) then
begin
q < initialize;
for (%, D) € Dec(6,C,T) do g < update(access(%, D));
p + min{p,q};
end;
store(6,C,p)
end;

Fig. 4. The generic version of the algorithm.
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Table 1.Macros used in the algorithm.

Treewidth Minimum fill-in Ranking number
collect (c) max p, ¢} p+c max{p, ¢}
complete iculJsl-1 0 IC|
initialize 0 fillg(s,c)(T) ITNC|
update (c) max{q, c} q+c maxq,c+ [T NCJ}
start 0 0 0

in & that are lexicographically ordered (as subsetg pfThe data structurX supports
the following operations:

e store (&, C, p) stores for the block&, C) the valuep,

e present (&, C) returnstrue, if an operatiorstore (S, C, p) has been performed
before, for any value op, andfalseotherwise, and

e value (G, C)returnsthe valug of the (last) operatiostore (&, C, p), if present
(6, C) =true.

All three operations can be executed by iterated search for a vertex in the universe
A single search can be done in tifiglogn) by standard techniques. To find a whole
block (&, C) we need| | &| + 1 single searches 5| < 1 and) o S| single
searches if&| > 2. We refer to [4] for an implementation of a related data structure
that can be easily extended to one satisfying our purposes. Notice that our algorithm
callsvalue (&, C) only if present (&, C) = true. Furthermore, istore (&,C) is
called, therpresent (&, C) = false i.e., for each block of5, store is called at most
once.

We consider the running time of our algorithm on an input gréph: (V, E) with
V| = n, |[E| = m, |Sep(G)| = r andan(G) = k. First the algorithm in [3] needs
O(n°r + m) time to list all minimal separators @.

For the following analysis, we assume that all macros can be evaluated in constant
time. (If this is not the case in a particular application, it should be easy to achieve the
corresponding time bound with a similar analysis.) To determine the overall running
time, we estimate the running time obmpute (&, C) for any block (&, C) of G
without counting the running time of those recursive catimpute (¥, D) for which
present (¥, D) = falsewhencompute (¥, D) is called. For any block&, C) of G,
access callscompute at most once, namely whemesent (&, C) = false In this
case, for each minimal separafoof G, compute needsO(n+ m) time to test whether
T is a minimal separator @& (&, C) and, if so, to compute the blocksirec(&, C, T).

For each of the at mostblocks(¥, D) in Dec(&, C, T), access (%, D) is executed. If
access is called for a block%, D) of G, whenpresent (%, D) = true, thenaccess
does not calcompute .

Procedureaccess looks up the valugp(S, C) in the data structurX. Using an
implementation of the data structuxe similar to the one described in [4], one look-up
can be done intimé ¢ s |S| - O(logn) = O(knlogn).
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By Observation 22, the number of different blocks of the input gr@pis at most
r+2n+ Zikzz (f) Consequently, the total running time of the algorithn®ig’r +
m + kr**3(n + m)nlogn).

THEOREM32. On an input graph G= (V, E) with r minimal separators the generic
algorithm runs in time @n3 + m+ kr**1(n +m)nlogn) (under some assumptions on
the macro} where|V| = n, |E| = m andan(G) = k.

The generic algorithm can be used to compute a graph parameter which can be
evaluated via a certain type of recurrence involving the minimal separators of the graph
(see, e.g., Section 3).

6.1. Treewidth and Minimum Fill-ln  The problems REewIDTHand MNIMUM FILL -IN

are typical problems that can be solved by the generic algorithm, since the recurrences in

Theorems 15 and 16 indeed require the addition of edges such that the minimal separator

becomes a clique. This corresponds exactly to the execution of the generic algorithm.
First we consider the problenREEWIDTH. For every grapls we have

tw(G) = CECITJ,?;?EG) tw(G[C)]).

Since for all connected componen®C] of G we haveG[C] = G(g, C) this is
correctly computed by our choice obllect . By Theorems 15 and 31, the generic
algorithm correctly computes the treewidth of the input grapka (&, C) is complete,
thentw(G(&, C)) = [CU|J 6] — 1, as evaluated byomplete ; otherwise
tw(G(6,0)) = min max tw(G(%, D)).

TeSep(G(6,0)) (¥,D)ebec(S,C,T)
This is evaluated binitialize andupdate .

Now we consider the problem IMMUM FILL -IN. It is easy to see that

mfi(G) = Y mii(G[C)).
CeComp(G)
This is computed byollect . By Theorems 16 and 31, the generic algorithm cor-
rectly computes the minimum fill-in of the input graph.Gi(&, C) is complete, then
mfi(G(&, C)) =fill(C U Y &), as evaluated byomplete ; otherwise

mfi(G(G, C)) = min <fiII(T) + mfi(G(%, D))) ,
Tesep(G(8.C) (%.D)eDec(&,C.T)
which is correctly evaluated by the choiceiwitialize andupdate .

6.2. Vertex Ranking Our first goal in designing the generic algorithm was to be able to
handle minimal separators of blockgS, C) as they occur in Theorems 15 and 16. In
contrast, in Theorem 17, minimal separators of connected compdBfDisire needed.
Fortunately it turns out that the generic algorithm can also be applied to some problems
with recurrences on minimal separators as the one ERTZX RANKING.

For the correctness proof we need the following proposition.
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PrROPOSITION33. Let(S, C) be ablock of G and let R be a minimal separator ¢k
Then there is a minimal separator T of &, C) such that

Comp(G[C] — R) = U Comp(G[D])).
(%,D)eDec(S,C,T)

PrROOF Let Rbe a minimak,b-separator o5[C]. ThenRU | J & is ana,b-separator
of H = G(&, C). We choose a minimal,b-separatoim of H with T € RuJ &. We
claimR C T. We consider a verteixe R\T. ThenG[C] — (R\{t}) contains a pattP
fromatobviat sinceR is a minimala,b-separator o65[C]. However,P is also a path
fromatobin H — T, contradicting the fact thal is a minimala,b-separator oH.
Hence a vertex € R\T cannot exist. This implieR € T, more preciselyT NC = R
andT\C c | 6.

Now let G[B] be a connected component 3{C] — R. Then there is a connected
componentH[D’] of H — T with B € D’ sinceT\C C |J &. FurthermoreB <
D'\ |J & sinceB c C.

By Theorem 31 there is a blogl, D) of G inthe seDec(&, C, T) with G(%, D) =
H({T}, D). (%, D) € Dec(&,C, T) impliesT C (T} uGandDN(TUY 6) = 2.
This ensure® C D. It remains to show thdg[ B] is a connected component & D].

Since G[B] is connected it is contained in a connected componer®[@]. We
consider an edgfh, d} of G with b € B andd € D. Note thatN(B)\B € RU | 6.
The vertexd cannot belong t&k or|J & sinceR< T andDN(T U &) = @. Hence
d € B andG[B] is a connected component G D].

Finally letG[ B] be a connected component®f D] for a block(¥, D) € Dec(&, C,
T).ThenB € C\RsinceD C C\T. The graphG[B]is connected, hend®is contained
in one connected component®fC] — R. We consider an eddd, c} of Gwithb € B
andc € C\R. Note thatN(B)\B < [J ¥ sinceG[B] is a connected component of
G[D]. The vertexc cannot belong t¢ J ¥ since® € {TJUG6,CnNnJ 6 = @ and
c € C\T. Hencec € B andG[B] is a connected component G{C] — R. O

Recalling Lemma 26 and Theorems 17 and 31 we obtain the following recurrence.

COROLLARY 34. For every block &, C) of G we have

G[C) = min TNC max G[DD ).
Xr( [ ]) TesSep(G(G,0)) <| |+(‘I,D)eDec(6,C,T)Xr( [ ]))

Clearly, x,(G) = maxcecomp() Xr(G[C]). This is evaluated byollect . If G[C] is
complete, thery(G[C]) = |C|, as computed bgomplete ; otherwiseinitialize
andupdate evaluate the above recurrence.

The following theorem summarizes the main results of this section.

THEOREM 35. For each of the problemEREEWIDTH, MINIMUM FILL -IN and VERTEX
RANKING there is an algorithm to compute the corresponding graph parameter for any
input graph G in time @n3 + m + kr**(n + m)nlogn), where r is the number of
minimal separators of G and ¥ an(G).
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7. Conclusion. Ourapproach can also be applied to weighted versions of triangulation
problems. As an example we consideEMMHTED FILL-IN. Given a graphG and non-
negative weights ({u, v}) for each paiu, v of nonadjacent vertices &. The problem
is to find a minimal triangulatiotd of G such that the sum of the weights of the added
edges) {w(e): e e E(H)\E(G)}, is minimized.

For a graphG that is not complete we obtain the following recurrence which is similar
to Theorem 16:

mfi(G, = min fill(S mfi(G({S}, C),
(G, w) = _min_ <>+Cecom2p(je_s) (G({S}, C), w)

In this casefill(S) = Y {w({u, v}): u,v € Sand{u, v} ¢ E(G)} represents theveight
of the separatoB. Based on the recurrence above, our generic algorithm can be cus-
tomized to compute the weighted fill-in of arbitrary graphs.
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