N
N

N

HAL

open science

Partitioning a Square into Rectangles:
NP-Completeness and Approximation Algorithms

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, Yves Robert

» To cite this version:

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, Yves Robert. Partitioning a Square into Rect-
angles: NP-Completeness and Approximation Algorithms. [Research Report] LIP RR-2000-10, Labo-

ratoire de 'informatique du parallélisme. 2000, 2+25 p. hal-02101984

HAL Id: hal-02101984
https://hal-lara.archives-ouvertes.fr /hal-02101984
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101984
https://hal.archives-ouvertes.fr

%

Laboratoire de I’ I nformatique du Parall&isme

- L CENTRE NATIONAL
Ecole Normale Supérieure de Lyon DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON r 5668 SCIENTIFIQUE

Partitioning a Square into Rectangles:
NP-Completeness and Approximation
Algorithms

Olivier Beaumont

Vincent Boudet

Fabrice Rastello February 2000
Yves Robert

Research Report N° 2000-10

Ecole Normale Supérieure de Lyon

- SPI
EEEEN
EEEEN

46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 F 1 N R I A
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : 1ip@ens-lyon.fr

Partitioning a Square into Rectangles:
NP-Completeness and Approximation Algorithms

Olivier Beaumont
Vincent Boudet
Fabrice Rastello

Yves Robert

February 2000

Abstract

In this paper, we deal with two geometric problems arising from het-
erogeneous parallel computing: how to partition the unit square into p
rectangles of given area s1, s2,... ,s, (such that Y7 s; = 1), so as to
minimize (i) either the sum of the p perimeters of the rectangles (ii) or
the largest perimeter of the p rectangles. For both problems, we prove
NP-completeness and we introduce approximation algorithms.

Keywords: heterogeneous resources, load-balancing, communication cost, parallel computing,
partitioning, NP-completeness, geometric problems

Résumé

Dans ce rapport, nous nous intéressons a deux probléemes géométriques
issus de calculs paralleles hétérogenes : comment découper le carré unité
en p rectangles d’aires donnés si,s2,...,sp (tel que Y2 s, = 1), de
maniére & minimiser (i) soit la somme des périmetres des p rectangles
(ii) soit le plus grand périmetre de ces p rectangles. Pour les deux
problemes, nous établissons leur NP-complétude et nous introduisons
des algorithmes d’approximation.

Mots-clés: ressources hétérogenes, équilibrage de charge, cout de communication, calcul
parallele, découpage, NP-complétude, problemes géométriques

1 Introduction

In this paper, we deal with two simple geometric problems: how to partition the unit square into
p rectangles of given area sq,s2,... ,s, (such that >¥ | s; = 1), so as to minimize

e either the sum of the p half perimeters of the rectangles,
e or the largest half perimeter of the p rectangles.

Note that there always exist solutions to these problems: e.g. tile the unit square into p horizontal
slices of height s1,s9,...,s,. The difficulty is to minimize the objective function.

Consider the following example with p = 5 rectangles R1,... , R5 of areas s; = 0.36, so = 0.25,
s3 = s4 = s5 = 0.13. A possible partition is shown in Figure 1. The size of each rectangle is the
following: 0.61 x % for Ry, 0.61 x % for Ry, and 0.39 x % for R3, R4, and Rs. The maximum
half-perimeter is that of R, approximately 1.2002, which is very close to the absolute lower bound
1.2 obtained when the largest rectangle is a square (this is not achievable in this example). As for
the second objective function, we compute that the sum of the half-perimeters is 4.39, while the
absolute lower bound is)% _; 2,/s; ~ 4.36 (obtained when all rectangles are squares, which is not
achievable in this example either). Hence the partition turns out to be very satisfactory for both
objective functions. The geometric interpretation for the sum of the half-perimeters is nice: it is
the length of the lines drawn to make the partition, plus 2 corresponding to the right and bottom
edge of the unit square.

0.61 0.39
S3 3
36/61 Sy
Sy 13
25/61 S,
Sg 3

Figure 1: A simple example with 5 rectangles.

The main results of the paper are the proof of NP-completeness and approximation algorithms
for both optimization problems. Beforehand, we explain the initial motivation for this work, which
arises from minimizing communications in the design of parallel algorithms targeted to hetero-
geneous platforms. The rest of the paper is organized as follows. In Section 2 we explain the
motivation from heterogeneous parallel computing. In Section 3 we formally state the optimization
problems PERI-SUM (minimize the sum of the perimeters of the rectangles) and PERI-MAX (min-
imize the largest perimeter), and we establish their NP-completeness. Section 4 is devoted to the
design of approximation algorithms for PERI-MAX; Section 5 is its counterpart for PERI-MAX.
In Section 6 we briefly survey related optimization problems. We give some final remarks and
conclusions in Section 7.

2 Problem Motivation

The motivation for this work is the design of parallel Matrix-Matrix Multiplication (MMM for short)
algorithms targeted to heterogeneous platforms, such as heterogeneous clusters of workstations, or

1

collections of such clusters.

Parallel MMM algorithms work as follows: let C' = A x B the product to be computed, where
A and B are square matrices of size n x n. First, granularity is increased: matrix blocks rather
than elementary matrix coefficients are allocated to processors, as in the ScaLAPACK library [4].
Hence, each “element” in A, B and C is a square r X r block, and the unit of computation is the
updating of one block, i.e. a matrix-matrix multiplication of size r. Assume there are p processors.
The three matrices A, B and C are partitioned into p (superposed) rectangles. There is a one-
to-one mapping between these rectangles and the processors. Each processor is responsible for
updating its rectangle: at each step, one pivot column and one pivot row are communicated to all
processors, and independent updates take place; more precisely, each processor updates each block
in its rectangle with one block from the pivot row and one block from the column row, as illustrated
in Figure 2.

.

Figure 2: The MMM algorithm on a heterogeneous platform.

Using different-speed processors, we want to balance the computing load so that each processor
receives an amount of work in accordance to its computing power. Because all C' blocks require
the same amount of arithmetic operations, each processor executes an amount of work which is
proportional to the number of blocks that are allocated to it, hence proportional to the area of its
rectangle. In Figure 2, we have 13 different-speed computing resources. We let s; the fraction of
the total computing power represented by processor P;, 1 < 4 < p. Normalizing processor speeds,
we have > P | s; = 1. Normalizing the computing workload accordingly, we have to tile the unit
square into p rectangles R; of prescribed area s;, 1 < 4 < p. The question is: how to compute the
shape of these p rectangles so as to minimize the total execution time?

Let h; x v; be the size of rectangle R;, where h;v; = s;. At each step of the MMM algorithm,
communications take place between processors: the total volume of data exchanged is proportional
to the sum C' = Y%, (h; + v;) of the half perimeters of the p rectangles R;. In fact, this is not
exactly true: because the pivot row and columns are not sent to the processors that own them, we
should subtract 2 from C , 1 for the horizontal communications and 1 for the vertical ones. Since
minimizing C or C — 2 is equivalent, we keep the value of C as stated. Minimizing C seems to be
a very natural goal, because it represents the total volume of communications. For instance it is
natural to assume that communications will be mostly sequential on a heterogeneous network of
workstations where processors are linked by a simple Ethernet network; also, there will be little
or none computation/communication overlap on such a platform. In that context, minimizing the
total communication volume is the main objective.

Conversely, some communications can occur in parallel, if the computing resources are linked
through a dedicated high-speed network, and if parallel communication links are provided. In that
context, we may want to minimize the maximal amount of communications to be performed by
each processor, so that the objective function becomes M = max<i<p(hi + v;).

2

Once a solution to either optimization problem has been found, we derive the allocation of data
elements to processor P; by rounding up the values n x h; and n x v;. Finally, note that both
optimization problems have a wide potential applicability. Forgetting about MMM algorithms,
consider the implementation of any application (such as a finite-difference scheme) where hetero-
geneous processors communicate boundary elements at each step (the communication scheme need
not be nearest-neighbor, it can be anything): minimizing the total communication volume, or the
maximal amount of communications performed by one processor, while load-balancing the work,
amounts to solving exactly the same optimization problems.

3 NP-Completeness

3.1 Problem Formulation

We formally state both optimization problems. We have to determine p rectangles R;, of prescribed
area s;, 1 <1 < p where Zle s; = 1. The shape of each R; is the degree of freedom: we want to
tile the unit square so as to solve the following optimization problems:

Definition 1 PERI-SUM(s): Given p real positive numbers si,...,sp s.t. Y0, s; = 1, find
a partition of the unit square into p rectangles R; of area s; and of size h; X v;, so that C =
P (hi + v;) is minimized.

Definition 2 PERI-MAX(s): Given p real positive numbers si,...,sp s.t. Y ¢ ;s = 1, find
a partition of the unit square into p rectangles R; of area s; and of size h; X v;, so that M =
max<;<p(h; +v;) is minimized.

There is an obvious lower bound for PERI-SUM(s) and for PERI-MAX(s):

Lemma 1 For all solutions of PERI-SUM(s), C > 23 P \/si. For all solutions of PERI-
MAX(S), M Z 2max1§i§p \/3_1

Proof The half-perimeter of each rectangle R; will be always larger that 2,/s;, the value when it
is a square. Of course, tiling the unit square into p squares of area s; is not always possible, so the
lower bound for PERI-SUM(s) is not always tight. The same observation holds for PERI-MAX(s),
as shown by the example in Section 1. [

3.2 PERI-SUM(s)

The decision problem associated to the optimization problem PERI-SUM is the following;:
Definition 3 PERI-SUM(s,K): Given p real positive numbers si,... ,sp s.t. » 0 si =1 and a
positive real bound K, is there o partition of the unit square into p rectangles R; of area s; and of
size h; X vj, so that Y% | (hi +v;) < K?

Our first result states the intrinsic difficulty of the PERI-SUM optimization problem:

Theorem 1 PERI-SUM(s,K) is NP-complete.

Proof We give the main ideas of the proof. A full-length version is available in the technical
report [3]. Obviously, PERI-SUM(s,K) € NP. We use the following reduction:

Lemma 2

2P-eq <p SSP <p PERI-SUM,
where SSP and 2P-eq are defined as follows:
Definition 4 2-Partition-Equal (2P-eq)

Given a set of p integers A = {a1,... ,ap}, is there a partition of {1,... ,p} into two subsets A,
and As such that

Z a; = Z a; and card(Ay) = card(Ag) ?¢

€A €A
Definition 5 Square-Square-Partition (SSP)
Given a set A= {s1,...,sp} of p real positive numbers such that YV | s; =1, is there a partition

of the unit square into p squares S; of area s; ?

Since 2P-eq is known to be NP-Complete [6], Lemma 2 will complete the proof of Theorem 1.

3.2.1 Reduction: SSP <p PERI-SUM(s,K)

We start by proving the easy part of Lemma 2, i.e. SSP <p PERI-SUM(s,K). Let A = {s1,...,s,}
be a set of p real positive numbers s.t. ¥ _;s; = 1. Solving SSP is equivalent to solving PERI-
SUM(s,K) with

p
K=2Y /s
=1

and therefore,
SSP <p PERI-SUM.

3.2.2 Reduction: 2P-eq <p SSP

In this section, we consider an arbitrary instance of the 2-Partition-Equal problem, i.e. a set
A ={ay,... ,a,} of n integers. We assume that n > 400 without loss of generality. We have to
polynomially transform this instance into an instance of the SSP problem which has a solution iff
the original instance of 2-Partition-Equal has one solution.

Define {by, ... ,b,} as Vi, b; = 2(a; + 2n maxy, ax). Thus, b; > %’Cb’“, b; is even. Moreover, if we

let M = maxy b, and S = %, then S > 100M. We build the following instance of the (scaled)
SSP problem (SSP(by,... ,b,)): is there a partition of the (205 + 17M) x (205 + 17M) square into
14+ n+ >, b (M — by) squares of respective areas

Az = (138 +11M)? (x1),
A7g = (1S+6M)* (x3),
Ay = (4S+3M)* (x2),
Ass = (3S+3M)* (x2),
Ass = (3S+2M)* (x2),
Ass = (2S+2M)* (x4),
Ay = b (Vi,1<i<n),

Ap o= 1 (XD b(M —by))?
k

4

As 2
Aaz
As 2
A7 A7
Asz3 Az \
Az 3 ——MxS rectangles
Aaz ? /
—
A3 2
Az p | Az
A1311
A7

Figure 3: General position of the squares

A

/

|

be
Figure 4: Zoom on the M X S rectangle areas

In what follows, we prove that such a partition is necessarily the one depicted in Figure 3,
where the two small M x § rectangle areas are shown by arrows in Figure 3 and fully described
in Figure 4. The intuitive idea of the proof is the following: the large squares are used to prevent
the two small M x S rectangle areas to be neighbors. Hence these areas must be filled separately
by the remaining squares, those of area b; and those of area 1. This will be possible iff there the
b;’s can be partitioned into two subsets of same cardinal and same sum. The number of squares of
area 1 is computed so as to fill the holes and obtain a true tiling of the whole area.

Position of the Largest Four Squares The general position of the largest four squares is
shown in Figure ba. Obviously, if we can tile the remaining area with the remaining squares, this
will also be the case for the configuration shown in Figure 5b. Therefore, from now on, we assume
(without loss of generality) that the largest four rectangles are arranged as shown in Figure 5b.

A7,6 A7,6

Az

A7

A7

A7

Az

Figure 5: General position of the largest four squares

135 + 11M

7S +6M

6S +5M

6S +5M

S+ M

7S +6M

Figure 6: Remaining surface

7S +6M

Az 3 Aus

[6S +5M

A2 Az | Az

135S +11M S+ M
A3z Az,
7S +6M
As 2
Ay
As 2
6S + 55

Figure 7: One possible tiling of the remaining surface.

Tiling the Remaining Surface Now we discuss the tiling of the remaining surface (the white
area of Figure 5b). We give all dimensions in Figure 6). In the following figures, A, , denotes a
square of size 5 + yM. Proceeding by an exhaustive case analysis, we prove that the only correct
configuration is the one depicted in Figure 7 (other equivalent solutions are also possible).

Therefore, any tiling of the remaining surface (see Figure 6) is similar to the one depicted in
Figure 7: after using all the large rectangles A, ,, there remains two non-adjacent rectangle areas
of area M x S to be tiled. Therefore, we can solve the SSP problem iff we can tile these two areas
with the remaining squares, i.e. n squares of area b?,1 <i <n, and Y, bp(M — by) squares of area
1. Since ming by > %Xb’“ and), by = 2S5, one can easily check that both M x S rectangle areas
have to be tiled as depicted in Figure 4. Therefore, our instance of the SSP problem has a solution
iff there exists a partition of {by,... ,b,} into two subsets of same sum.

Final reduction To complete the reduction, we have to show that there exists a partition of
{b1,...,by} into two subsets of same sum iff the original instance of the 2-Partition-Equal problem
has a solution.

First, suppose that the original instance of the 2-Partition-Equal problem has a solution, i.e.

there exists a partition of {1,... ,n} into two subsets A; and Ay satisfying
Z ay = Z ay, and card(A;) = card(As).
ke Ay keAs

Recall that by = 2(ay + 2n MAX), where MAX = maxy, a. Then,

Z by = Z ar + 2n MAX card(A;)
ke Ay ke Ay

= Z ax + 2n MAX card(As)
ke Az

= Zbk

ke Az
Therefore, there exists a suitable partition of {b1,... ,b,}.

7

Conversely, suppose that there exists a partition of {1,... ,p} into two subsets A; and Ay such

that
b= b

ke Ay keAz
Thus,

Z ap = Z bk —2n MAX card(.Al)

ke Ay ke A
Z ap = Z bk —2n MAX card(.Ag)
ke Ay k€A
Z ap — Z ap = 2n MAX card(.Ag - .Al)
keA; ke Az
Moreover, since
Zak—ZakgnMAX,
ar €AY ar €A

we obtain

card(A;) = card(Az) and Z ay = Z ar

ke Al keAs

Therefore, the original instance of the 2-Partition-Equal problem has a solution.

The last element of the proof is the conciseness of the transformation: we have to proof that
our instance of the SSP problem has a size polynomial in the size of the original instance of the
2-Partition-Equal problem.

Lemma 3 Define MAX = maxy, ay as above, and let c(a) and c(b) denote respectively the encoding
of the data a and b. Then,
Length(c(b)) = O(Length(c(a))?).

This achieves the proof of the NP-completeness of SSP, and therefore of the NP-completeness
of PERI-SUM. [|

3.3 PERI-MAX(s)
The decision problem associated to the optimization problem PERI-MAX is the following:

Definition 6 PERI-MAX(s,K): Given p real positive numbers s1,...,sp s.t. >0 s, =1 and a
positive real bound K, is there a partition of the unit square into p rectangles R; of area s; and of
size h; X v, so that max;<;<p(h; +v;) < K?

Our second result states the intrinsic difficulty of the PERI-MAX optimization problem:

Theorem 2 PERI-MAX(s,K) is NP-complete.

Proof We give the main ideas of the proof, which uses the following reduction:

Lemma 4
2P-0-4 <p MSP <p PERI-MAX,

where MSP and 2P-0-4 are defined as follows:

Definition 7 2-Partition-0-4 (2P-0-4)
Given a set of p + 2 integers A = {a1,... ,ap,ap11 = 2,ap12 = 2} such that (Vi < p, a; >
4 and a; = 0 mod 4), is there a partition of {1,... ,p+ 2} into two subsets Ay and Ay such that

Zai:Zaior Zai:Zai—i—él ?

€A1 €A €A 1€EA2

Definition 8 Maz-Square-Partition (MSP)

Given a set A= {s1,...,sp} of p real positive numbers such that Y b s; =1 and s1 > s3 > ... >
sp, s there a partition of the unit square into p rectangles R; of area s; such that Ry is a square
and the half-perimeter of other rectangles is not larger than 2,/s1?

Since 2P-0-4 is known to be NP-Complete (trivial reduction from 2-Partition [6]), Lemma 4 will
complete the proof of Theorem 2.

3.3.1 Reduction: MSP <p PERI-MAX(s,K)

We start by proving the easy part of Lemma 4, i.e. MSP <p PERI-MAX(s,K). Let A = {s1,...,5,}
be a set of p real positive numbers s.t. Zle si = 1l and s1 > s3 > ... > s,. Solving MSP is
equivalent to solving PERI-MAX(s,K) with

K =251

and therefore,
MSP <p PERI-MAX.

3.3.2 Reduction: 2P-0-4 <p MSP

In this section, we consider an arbitrary instance of the 2-Partition-0-4 problem, i.e. a set A =
{a,... ,an,0p41 = 2,ap42 = 2} such that (Vi < p, a; > 4 and a; = 0 mod 4). We have to
polynomially transform this instance into an instance of the MSP problem which has a solution iff
the original instance of 2-Partition-0-4 has one solution. Let

_ Z1§ign aq

d 4

We build the following instance of the (scaled) MSP problem (MSP(aq, ... ,a,)): is there a partition
of the (S + 2) x (S + 2) square into n + 3 rectangles Rg, Ry,... , Ry12 of respective areas

Rg: Ag = S2
R,: A = ua; (Vi, 1 <i<n),
Rpp1: Appr = 2,
Rnto: Apje = 2,

S
$%)Y

P

i \
//’(\\\ \

N

3 en

As

Figure 8: General position of the largest square.

where the rectangle Rg of area Ag is a square and the half-perimeter of other rectangles R; is less
than 257

The general position of the largest square is depicted in Figure 8. We partition the set of the
remaining rectangles into three disjoints sets:

e Sp: the rectangles whose intersection with ¥y has a non-zero area.
e S1: the rectangles whose intersection with 31 has a non-zero area.
e Srem: the rest of the rectangles.

Since the area of ¥, is equal to 4, we can easily prove the following lemma;:

Lemma 5 Vi < n, R; belongs either to Sy or to Sy (a; > 4). Moreover, we have |2Ri€50 A; —
ZRiesl Al| < 47 i.e. |ER¢ESO Al - ZRiE.S'l AZ| € {07 2a4}

Without lost of generality, we suppose in what follows that (3-p cg, Ai > D g.cg, Ai). Three
different cases are to be considered according to the value of (3} p (g, Ai — D p.cs, Ai):

. (ZRieSO A; — ZRiesl A;) = 0. In this case, either 3i, R,11 € S; and R,19 € S1_;, or
both R, ;1 and R, s belong to Syep,. In the first case, Sy and S; represent a partition of
A = {ay,... ,an,ap41 = 2,ap+2 = 2} into two subsets of same sum. In the second case
So U Rn+1 and Sy |J R, 42 represent a partition of A into two subsets of same sum.

® (X Rriesy Ai — 2Rries, Ai) = 2. In this case, exactly one rectangle out of Ry41 and Ry 2
belongs to Sy or S;, and the other one belongs to Syem. Let us suppose, without loss of
generality, that R,1; € S;. Then Sy and Si|J Ry+2 represent a partition of A into two
subsets of same sum.

® (X RriesyAi — DoRries, 4i) = 4. Again, in this case, either 3i, R,41 € S; and Ry19 € 514,
or both R,4+1 and Ry42 belong to Spem. In the first case, Sy and S represent a partition
of A into two subsets whose sums differ by 4. In the second case Sy and St |J Rn+1 U Ruto
represent a partition of A into two subsets of same sum.

10

Rn+1

.

(a) (b)
Figure 9: Tiling the square using the MSP instance.

Therefore, there exists a partition of 4 = {a1,... ,an,ap+1 = 2,ap42 = 2} into two subsets
whose sums differ by 0 or 4 if our instance of the MSP problem has a solution. To complete the
reduction, we have to show that our instance of the MSP problem has a solution if there exists a

partition of A = {a1,... ,apn,an+1 = 2,ap4+2 = 2} into two subsets whose sums differ of 0 or 4.
e Suppose there is a partition of {1,... ,n + 2} into two subsets A; and Ay such that
S a=Y ata
1€AL €A

Let us define Sy = (J;c 4, Ri where R; denotes a 2 x 4 rectangle, and S1 = [J,c 4, Ri, where
R; denotes a % x 2 rectangle. We tile the (S + 2) x (S + 2) area as indicated in Figure 9a.
Since it is possible to tile both ¥y and X; with Sy and Sy, it is possible to solve the MSP

problem.

e Suppose there is a partition of {1,... ,n + 2} into two subsets .4; and Ay such that

Ya=Ya

€A 1€ A2

Let us define Sy = (J;c 4, Ri where R; denotes a 2 x 4 rectangle, and S1 = |, 4, Ri, where
R; denotes a % x 2 rectangle. Suppose, without loss of generality that R, 1 belongs to Si.
Then, we tile the (S + 2) x (S 4 2) area as indicated in Figure 9b. Hence, since it is possible
to tile both Xy and ¥; with Sy and S; as depicted in Figure 9b, it is possible to solve the
MSP problem.

Therefore, our instance of the MSP problem has a solution iff there exists a partition of

A={a1,... ,ap,an+1 = 2,ap42 = 2} into two subsets whose sums differ by 0 or 4. This achieves
the proof of the NP-completeness of MSP, and therefore of the NP-completeness of PERI-MAX. H

11

4 Approximation Algorithms for PERI-SUM

There are several “natural” heuristics to approximate PERI-SUM. However, proving approximation
bounds turns out to be very technical. We start in Section 4.1 with a column-based heuristic, very
simple to implement, and which appears very efficient through extensive experimental comparisons.
However, we have not been able to give a tight approximation bound: the bound of Section 4.1.3
depends on the relative size of the rectangles to be used in the tiling. In Section 4.2 we move to a
recursive heuristic, much more complicated to describe, but for which a nice approximation bound
is provided.

4.1 Column-Based Heuristic

P S c2 , 3
S1
S11 S
Ss
Sg
S10
S3 1
S
Ss °
S12
So St

1

Figure 10: Column-based partitioning of the unit square: C = 3, ky =5, ko = 3 and k3 = 4.

4.1.1 Description

Since PERI-SUM(s) is NP-complete, we consider the more constrained problem COL-PERI-SUM(s)
where we impose that the tiling is made up with processor columns, as illustrated in Figure 10. In
other words, COL-PERI-SUM(s) is the restriction of PERI-SUM(s) to column-based partitions. In
this section, we give a polynomial solution to COL-PERI-SUM(s), which will be used as a heuristic
for PERI-SUM(s).

Framework We describe the COL-PERI-SUM(s) problem more formally: we aim at tiling the

unit square into C columns (where C is yet to be determined) of width ¢p,...,cc. Each column
C; is partitioned itself into k; rows (to be determined too) of respective area sq(; 1), -+, So(ik,)- Of
course, the final partitioning has ZZ-CZI k; = p rectangles, and all the areas s1,... , s, are represented

once and only once. The goal is to build such a partitioning, subject to the minimization of the
sum of the rectangle perimeters.

Algorithm The main points of the column-based tiling are the following:
1. Re-index the variables si,... ,s, such that s < sy < ... <5y,
2. Tteratively build the function f¢, by incrementing the value of C from 1 to the desired value For

qg€{1,...,p}, fc(q) represents the total perimeter of an optimal column-based partitioning

12

of a rectangle of height 1 and width (3°7_, s;) X1 into ¢ rectangles of respective area s, ... , sq,
using C columns.

To help understand the derivation, we apply the algorithm on the following toy example: we
have p = 10 areas of values (0.02,0.04,0.06,0.08,0.2,0.2,0.2,0.2). The results of the algorithm are
described in Table 1. Each column C; contributes to the sum of the half perimeters as follows: 1
for the vertical line, and k; X ¢; for the k; horizontal lines of length ¢;.

| | a=t [a=2 | a=3 | q=4 | g=5 | q=6 [q¢=7 | q=8 |
102/0[112/0[136/0[1.8/0] 3/0 | 46/0] 66/0 | 9/0

206 /1[218/2| 24/2 [292/3[36/4| 46/4 | 58/5
312/2[326/3| 36/4 |412/5|472/5 | 5.4/ 6
42/3 [446 /4] 48/5 |532/6|592/7
54/4 566 /5| 6/6 |652/7
66/5 |686/6| 7.2/7
78 /6 | 8.06 /7
9/7

QAQQQYR/IYR[IYAQAD

Il
o | o] x| w| |~

Table 1: Table containing the values of the couples fc(q)/r where fe(q) =

1+ (qu<i§q 3i> x (q—4q') +f071(q,)> =1+ (Zr<i§q 3i> X (¢ — 1)+ fc-1(r). Bold
entries correspond to the optimal solution.

/N

man/

In the example, the optimal partitioning is obtained for 3 columns (f3(8) = 5.4). The last
column of width c¢3 = s7 + sg = 0.4 is made of two elements. The second column of width ¢y =
s5+3¢ = 0.4 is also made of two elements. Then the first column of width ¢; = s; +s9+s3+s4 = 0.2
is made of the smallest 4 elements. Figure 11 represents this partitioning.

0.2 0.4 0.4
1
perimeter perimeter perimeter partitioning of the whole square
02x4+1 04x2+1 04x2+1
fi(4) =138 f2(6) =3.6 f3(8) =54

Figure 11: Optimal column-based partitioning for the example. Thicker lines correspond to the
sum of the half perimeters.

The algorithm is outlined as follows:

13

S=0
for g=1top
S == S + 3(1
{)emmeter(q) =1+8x q
ff*(q) =0
endfor
for C=2 to p
for q=C to p
gemmeter(q) _ min1§r§q—C+1 (1 +Sxr+ fgirlzmeter(q — 7“))
f6"(a) = g — rmin
endfor
endfor

The worst-case complexity of the algorithm is O(p?log(p)): indeed, fci1(q) can be built from
fc in 0(log p) steps, because the minimum in the algorithm can be searched by dichotomy: since for
each C, fc—1 is an non-decreasing function, gc 4(r) = 1+Sxr+ 2} meter (q—r) is a convex function of
r. Hence, the minimum min;<,<4—c+1 (gc,¢()) can be found by dichotomy in O(log(q —C +1)) =
O(logp) steps. Note that in practice the complexity will be lower than the worst-case analysis
shows, because fc(p) is a function that is first decreasing and then increasing as C varies. All the
functions f¢ will not be built, the expected cost will be pCp,in log(p) = p/plog(p).

The final partitioning corresponding to the function f¢ ;. (p) = mini<c<, fo(p) is found using

the following algorithm:

q=p
for C = C,;,;, downto 2
ke = q— fE""(q)

q=f"(q)
endfor
ki =gq

which corresponds to tracking (backwards) the bold entries in Table 1. The unit square is
partitioned into C,,;, columns. The " column contains the rectangles sy, sq 1, . .- y Sd+k; With
d=ki+ko+...+Fk_1.

Optimality This algorithm provides the optimal column-based partitioning. The proof is detailed
in [3]. The only difficulty is to prove that we can reduce the search to sorted sequences s; < sg... <

Sp-

4.1.2 Experimental Comparison with the Lower Bound

As shown in Section 3, a lower bound for the sum C of the half-perimeters is twice the sum of
the square roots of the areas, i.e. LB =2 Ele /si. Of course this bound cannot always be met:
consider an instance of PERI-SUM(s) with only two rectangles, s; = 1 — € and s, = ¢, where € > 0
is an arbitrarily small number. Partitioning into two rectangles requires to draw a line of length 1,
hence C = 3. However, LB = 2/1 — € + /e > 2 can be arbitrarily close to 2.

In this section, we experimentally compare, using a large number of random tests, the value C
given by our partitioning against the absolute lower bound LB. Figure 12 represents two curves
for a number of processors varying from 1 to 40. The first curve corresponds to the mean value of

14

Experimental results using 2000000 random tests per point
T T T T T

11 ! B

105F gy N b

ratio (sum of perimeters)/(lower bound)

>‘§ Average values

| \ Minimum values;

V7 L Il
0 5 10 15 20 25 30 35 40
Number of processors

Figure 12: For each number of processors (varying from 1 to 40), 2,000,000 values for the s; have
been generated. For each case, we compute the ratio of the sum C of the half perimeters of our
partitioning over the absolute lower bound LB. The worst case is a constant value equal to 1.5.
The average and best cases are reported in the two curves.

the ratio % while the second curve gives the minimum values of this ratio. We see that in average,
the optimal column-based tiling given by our algorithm gives a solution that is “almost” optimal,
so that we can be satisfied with the results for all practical purposes.

4.1.3 Theoretical Comparison with the Lower Bound

In this section, we prove that the column-based partitioning is a good approximation, especially
when the ratio between max s; and mins; is small:
maxs;

Proposition 1 Letr = let C denote the sum of the half perimeters of the rectangles obtained

ins;’

with the optimal column-based partitioning, and let LB = ZEle V/8i- Then,

C 1
< 14—
75 SVrit+ \/I_))
The proof can be found in [3]. It is straightforward when evaluating the cost of a very simple
partitioning (with about \/p columns and ,/p elements per column). If r = 1, i.e. all the processors
have the same speed, the column-based partitioning is asymptotically optimal. On the other hand,

if r is large, i.e. if one rectangle is much larger than another, the bound is very pessimistic.

4.2 Recursive Heuristic

In this section we give a recursively defined heuristic, that will lead to a good approximation factor.
We introduce this heuristic in two steps: first we define a column-based tiling which is different from
that of the previous section; the idea here is to impose some ratio on the shapes of the rectangles.
This column-based tiling is then used as a building block in the second step, where we derive the
final tiling.

15

4.2.1 Column-Based Partitioning

We aim at tiling a rectangle R (not a square!) of size h x v such that A < v < 4h into p rectangles
of areas s1 > sy > ... > sp, where Z 1 8i = hv. We further assume that r = 51 < 2. In this
section, we show that there exists a column—based tiling of R into rectangles of area s; = hy X v
such that 1

(CR) Zvighigélvi Vi,lSiSp.

S; .
‘/2_’ < hy,v; < 24/s;. For convenience, we define:

(CR);, the condition h; > %vz
(CR), the condition h; < 4v;

The algorithm consists in two main phases:

First_phase
i=1
Ci = {81}
for j=2 top
if (CR), is reached for all elements of C;
t=14+1
Ci = 8y
endif
else C; = C; U s;
endfor
#columns =1
endFirst_phase

Second_phase Let s| > s5 ... > s, be the elements of the last column Cj.
if (CR), is not reached by any element of C;
Vi € {1, e ,l}, Oj+ifl71 = Cj+z’flfl U S;-
Ci=10
#columns =1 —1
endif
endSecond_phase

Figure 13 represents the partitioning of a 3 x 3.6 rectangle obtained with the following 7 rectangle
areas: (2,2,1.9,1.5,1.2,1.2,1). The proof of the correctness of the algorithm (that condition (CR)
holds at the end) follows from the following three statements:

e [Initial (CR)p]: consider any column (even the last one) after the first phase. Then, any
element in this column fulfills condition (CR)j,.

e [Final (CR)y]: the condition (CR)}, still holds if we add one element to any column.

e [Enough columns|: assume that there are ¢+ 1 columns after the first phase. If the [elements
in the last column do not fulfill condition (CR),, then [< c.

16

s5 = 1.2
51=2 |g3=19| S5 51 =2 |g3=1.9
s1 h=h1 =3 N h 3
s =3 =
T 56 = 1.2
8o = 2 sa=15 S6 S0 =2 sa=15
S7 = 1
v = 0.67
vy = 1.33 1.13 0.8 0.33 vy =1.33 w3 =1.13 vs =1.13

Figure 13: The first two figures correspond to the first phase of the algorithm: columns are filled
using (CR), as a stopping criterion: for the first column, leaving s; alone would not fulfill the
condition (CR),. Indeed, % = 2 =0.75 > 0.67 = v;. Another element must be added to the
column. Thus, we get hy = ho = 1.5 whereas v; = 1.33. The condition is then fulfilled and the
algorithm goes through the next column. The last figure corresponds to the second phase of the
algorithm: since the elements of the last column do not fulfill condition (C'R),, they are distributed
over other columns (in this case, only one element (s; = 1) has to be distributed).

Indeed, consider a column composed of k elements si > ... > s;.. Then for each element
’ k A
st = hl x v} of this column, we have h = ﬁ x h and v} = Z’? %, Consequently, we have
J=17j

D) > IZJ 1 =% and (CR)y: /s < 221 L n particular, we see that as soon as (CR),
holds true for the elements of a column, then it w1ll st1ll hold true if we add a new element to this
column.

Initial (CR);, Let us denote by s} > s5 > ... > s} the elements of the column. Let v} denote its
width and V1 <14 < k, h! the height of the rectangle of area s;. Two situations may occur:
1. [k =1]: we have v| <wv < 4h =4h)
. [k > 1]: because (CR); does not hold if we remove the k' element, we have Vi € {1,...,k},

ff]<1\/—<\[\/— Consequently, v} = %<—x—\/_<2\/_

Final (CR);, Let s} > s3> ... > s} be the elements of a column, and let s = s}, the element
to be added to this column. Taking into account the new element, we define the values v} and h!
as previously. Three different cases may occur:

1. [k = 1]: we show that in the worst case, there is only one element in the last column. Indeed,

l
consider a column s7,...,s/ of I > 1 elements. Then v{ = Lz 5 -1 2 L sl > 1hi = 1h > 1n!.
’
Consequently, £ < %. But s} < 2s. Hence, v] = sl,js < 3h. W1th two elements in a column,

hi > so finally v] < 3h!.

; : 51 h ! / ' S| +sh+s 3
2. [k = 2] in this case, 7- < 7 and s} > s > 5. Thus, v} = =2 < 7h. If there are three
elements in the column, then h] > % Consequently, v] < %h(
k+1 s k—1 s 7
3. [k > 3]: in this case v] = Z’hlsl<%x¥<%x@<\/§\/§;.

17

Enough columns Let v; (for 1 < ¢ < ¢+ 1) be the width of the i-th column after the first
phase. Let h] (for 1 < i <) denote the heights of the elements of the last column. We have shown
above (see paragraph initial (CR),) that V1 < i <¢, 1 <j <p, v < \/i\/g Since (CR), is
not fulfilled by the elements of the (¢ + 1) column we know that v < %\/g < \/i@ and
Vi<i<l, 1<j<p,hl> \/i\/g Consequently, V1 < i <c+1, 1 <5<, v; < h;-. Moreover,

since v > h, ¢ v; = v and Zé-:l h; = h, it is clear that | < c. [|

Remark A consequence of this result is that we can improve the bound of Proposition 1 when
r <2 weget%g%

4.2.2 Recursively defined partitioning

The main idea here is to split the list s1 > s3 > ... > s, of the rectangle areas into sub-lists so that
the previous condition r < 2 holds within each sub-list. For instance, if S = (0.49,0.2,0.2,0.1,0.01),
then we get three sub-lists (0.49), (0.2,0.2,0.1) and (0.01). Then we compute the sum of the
elements within each sub-list. Considering those results as new input values, we get a smaller
problem. In the example, we get S = (0.5,0.49,0.01)). Then, we restart the process recursively
until no more merging is possible. In the example, we convergence after the third step, with
S =(0.99,0.01)). At the end of the process, since Vi, s; > 2s;11, the following inequality holds
true:

Zs-<ﬁ+ﬂ+ < s;
) i<y gt i
7>

In what follows, we will denote by .S; the sub-lists obtained after convergence and by k; the cardinal
of S;. The partitioning algorithm is recursively defined with two main functions, as outlined below:

Initial square (h,v,S = (s1,...,Sk))
here necessary, the s; should fulfill the condition s; > Zj>i 5§
ifk>1
ifv>h
partition h X v into h X v1 = s1 and h X v9 = Zj>i 55
compute Column_based(h,v1,S1) and Initial_square(h,vs, (s2,...,Sk))
else
partition A X v into h; X v and hy X v and compute similarly
endif
endif

endlInitial_square

Column_based (v, h,S = (s1,...,Sk))
here necessary, the s; should fulfill the condition % < :—; <2
if 1 <2<4
apply step 1 and 2 of the algorithm of section 4.2.1
else
apply step 1 only of the algorithm of section 4.2.1
endif
Vi such that k; > 1, compute Column_based(v;, hj, S;)
endColumn_based

18

005 | 005
0.26
058 005 | 005 0.26
055
006 ‘ 005
012 P95 | 0|08 006 | 006 024
[0.02] 012|026
0.12
0.02 0.06 0.06 T
[3K]
0.55 0.45
0.01
028 “0.17
(a) Initial partitioning (b) Final partitioning

Figure 14: Partitioning the square with the following initial list of rectangles: S =
(0.26,0.12,0.06, 0.06,0.06, 0.06,0.06, 0.05, 0.05, 0.05, 0.05, 0.05, 0.026,0.024, 0.01,0.01). In this case,
convergence is obtained after one step of the algorithm, and then S = (0.55,0.26,0.12,0.05,0.02).
The initial partitioning (a) is described in the left part of the figure, while the final partitioning
(b) is shown on the right. Note that the rectangles of the initial partitioning have been recursively
partitioned into smaller rectangles with the column-based algorithm.

Proposition 2 Let C denote the sum of the half perimeters of the rectangles obtained with the
recursively defined partitioning, and let LB =23 Y | \/s;. Then,

C’§1+ZLB

Proof We have to show that the additional cost to pay for rectangles that do not fulfill condition
(CR) is less than 1. For the partitioning of a given rectangle, let us call this quantity the extra-cost.
Depending on the depth of the recursion, two kinds of partitioning may arise:

e If all the elements differ by a ratio of less than 2, then a column based partitioning is used.

e If all the elements differ by a ratio of more than 2, then the rectangle is partitioned into two
parts and the smallest part is itself partitioned into two parts recursively.

Consequently, the proof is made of two parts:

1. [Extra-cost for the column based partitioning] In that case, we show that the extra-cost for
the partitioning of a rectangle of size h x v (v > h) is less than v — h.

2. [Extra-cost for the initial partitioning of the square] In that case, we show that the extra-cost
for the partitioning of a rectangle of size h x v (v > h) is less than h.

Extra-cost for the column based partitioning
1. If there is only one rectangle, then the extra-cost is v +h — 2vvh < v — h.

2. Suppose that there are more than one rectangle and that the initial rectangle is so thin that
its partitioning is made of one element only per column. In that case, for each rectangle, the
extra-cost is less than v; — h, so that the overall extra-cost is less than Zle v,—h=v—ch<
v — h.

19

3. Suppose that there are more than one rectangle per column so that the last column only is
unbalanced (its elements do not fulfill condition (C'R)). For each elements of the last column,
the extra-cost is less than h; — v.. Hence, the overall extra-cost is less than 2221 h; — v, =
h —lv. < h and, since 4h < v, less than v — h.

Extra-cost for the initial partitioning of the square Suppose without loss of generality that
the h x v (where v > h) rectangle is partitioned into two rectangles h x v; and h X v where vy > vs.
Thus, h X vy is tiled with the column-based algorithm, so that the extra-cost for this rectangle is
less than v; — h if v1 > h and 0 otherwise, since h < v < 2vy.

Two situation may occur for the remaining rectangle:

e If vy > h, its extra-cost is less than vy, so v; > vy > h. Hence, the overall extra-cost is less
than vi — h 4+ v9 < v.

o If vy < h, its extra-cost is less than h. So, either v; > h, then the overall extra-cost is less
than vy — h 4+ h < v; or v; < h, and then the overall extra-cost is less than h < v.

As a consequence, the extra-cost for the partitioning of the initial square is less than 1. [|

5 Approximation algorithms for PERI-MAX

In this section, we introduce a polynomial heuristic to solve the PERI-MAX problem. Again,
we consider a column based partitioning of the unit square. We consider two different heuristics,
according to the area of the largest rectangle. Let s; > so... > s, denote the given areas of the
rectangles.

If s, is greater than 1, we use a first heuristic. In this case, one column is created for each

3
element. Therefore, the half-perimeter of one rectangle of area s; is 1 4+ s;. In this case,

1 ; 2
T <

N4

In the case where s; is less than %, we use a second heuristic, which ensures that

Vlgzﬁp,n:

The algorithm can be stated as follows:

20

Peri-max_column-based (p,S = (s1,...,5p))
c=1
fori=1top

Scol(c)=Scol(c) |J{¢}

if ZiEScol(c) i 2 2\/% - \/4% — IMaXjeSeol(c) Si-
c=c+1
endif
endfor

Cmaxr = C
if ZiEScol(cmax) 5; < 2 5?1 - \/4% - ma‘XiGScol(cmax) Si
Scol(1) = Scol(1) | Scol(¢maz)
Cmaz = Cmaz — 1
endif
endPeri-max_column-based

The configuration of one of the columns Scol is depicted in Figure 15. The largest perimeter of
the rectangles in the column Scol(c) is

mMaX;eScol(c) Si
> 3i+z—()$.-
i€Scol(c) i€Scol(c) 7t

max; Si
t€Scol(c) Ot max s;
EiEScol(c) Si i€Seol(c)

Sit+1

Sitk

Figure 15: Scol(c).

As shown in Figure 16, the condition

451
V3

Vi € Scol(c), max(h; +v;) <

holds true iff

s1 4sq 51 4s;
o /5L [< <o)y 2 .
3 3 iesea(e) = D, sisyfg/g icSe(e)

i€Scol(c)

21

f

45T |
V3

2 max S;
i€Scol(c)

i x
max S;
i€Scol(c)
5 4s 5 4s
Tmin = 2\/ ?1 - 31 — maxs; Tmax = 2 ?1 + 31 — Inaxs;

Figure 16: Plot of the function f(z) = x4 —eScolle) %

x

Therefore, the condition

$

. 4
Vi € Scol(c), max(h; +v;) < 3
holds true, except perhaps for the first column (since Scol(cmax) have possibly been added). Indeed,
since

Tmax(Scol(c)) — Tmin(Scol(c)) = 2 5 - ieglc%ﬁc) s; >

4 2,/
o1 o1 Z S1,
V3

we cannot jump from zpin(Scol(c)) to Tmax(Scol(c)) by adding just one rectangle to Scol(c).
Hence, in order to prove the correctness of our algorithm, we need to prove the following two
points:

e There are at least two columns at the end of the first step of the algorithm. Indeed,

Z si=1>/s1 > min(Scol(1)).

ie{l..n}
e Suppose that the last column Scol(cpax) does not fulfill the condition

)< Vo

Vi € Scol(cmax), max(h; + v;) <

S1
3.

Then, the condition

E

4
Vi € Scol(1), max(h; +v;) < 3

still holds true if
Scol(1) = Scol(1) U Scol (Cmax)-

Indeed, in this case, we know that

S1 4s; S1
Z 8i < Tmin(Scol(cmax)) = 2 37\ 3 7, Smlax 8 < 3
1€Scol(cmax) i€Scol(cmax)

22

and

> i < omin(Seol(1) + 51 < 4[5+ s

i€Scol(1)

Therefore, since s1 < %,

Z 5; <24/ %1 + 51 < V351 = Tpax(Scol(1)).

i€Scol(cmax) |J Scol(1)

In summary, by using one of the two heuristics according to the value of s;, we have proven the
following proposition:

Proposition 3 Let M denote the mazimum of the half perimeters of the rectangles obtained with
the above heuristic, and let LB = 2,/s1. Then,

M<2
LB~ /3

Note that it is impossible to obtain a better guarantee (without taking into account the actual
values of the s;’s). Indeed, if we consider the following situation with s; = s9 = s3 = %, then the
optimal solution satisfies to

2

M = mzax(hl + Q)Z') = \/g

2

6 Related Results

In this section, we survey results on geometric optimization problems similar to PERI-SUM or
PERI-MAX:

Covering a square by small perimeter rectangles Alon and Kleitman [1] consider the tiling
of the unit square into n rectangles. There is no constraint on the area of the rectangles. They
show that one of the rectangle must have perimeter at least 4(2m+1)/(n+m(m+1)), where
m is the largest integer whose square is at most n. This result is exact for n = m(m + 1) or
n =m?.

Decomposition of a square into rectangles of minimal perimeter Kong et al. [12] deter-
mine how to tile the unit square into p rectangles of same area so as to minimize the maximum
perimeter of these rectangles. This is exactly our PERI-MAX problem constrained to same-
area rectangles (s; = 1/p for 1 <14 < p). This problem is shown to be polynomial in [12]. The
optimal solution is one of the following two arrangements: let either m = |/p] or m = [/p],
and use m columns composed of |- | or [;-] rectangles. This solution is extended to deal
with the decomposition of a rectangle (instead of a square) onto same-area rectangles in [11].

Partitioning a rectangle with interior points Another related problem is to find the mini-
mum partition of a rectangle with interior points: given a rectangle R and a finite set P
of points located inside R, find a set of line segments that partition R into rectangles such
that every point in P is on the boundary of some rectangle. The goal is to minimize the

23

total length of the introduced line segments. This problem is shown NP-complete in [13] and
approximation algorithms are given in [7, 8]. The link with our PERI-MAX problem is that
the objective function is the same, but the original motivation in [7, 8] was a VLSI routing
problem (and the constraints are quite different).

Array partitioning The minimum rectangle tiling problem [9] is partially related to our optimiza-
tion problems PERI-MAX: given an n X n array A of non-negative numbers, and a positive
integer p, find a partition of A into p non-overlapping rectangular subarrays, such that the
maximum weight of any rectangle in the partition is minimized (the weight of a rectangle is
the sum of its elements). This problem is NP-complete, and approximation algorithms are
given in [10, 9]

Finally, note that there are several NP-complete geometric optimization problems that are listed
in the NP Compendium [5]. See also the survey book [2].

7 Conclusion

In this paper, we have dealt with two geometric problems arising from heterogeneous parallel com-
puting. Because both problems have been shown NP-complete, we have introduced approximation
algorithms.

The original motivation for this work is very important: the MMM algorithm is the prototype
of tightly-coupled kernels that need to be implemented efficiently on distributed and heterogeneous
platforms: we view it as a perfect testbed before experimenting more challenging computational
problems on the grid.

References

[1] N. Alon and D.J. Kleitman. Covering a square by small perimeter rectangles. Discrete Com-
putational Geometry, 1:1-7, 1986.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complezity and Approzimation. Springer, Berlin, Germany, 1999.

[3] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix-matrix multiplication on het-
erogeneous platforms. Technical Report RR-2000-02, LIP, ENS Lyon, January 2000.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. STAM, 1997.

[5] P. Crescenzi and V. Kann. A compendium of NP optimization problems. World Wide Web
document, URL: http://www.nada.kth.se/ " viggo/wwwcompendium/wwwcompendium.html.

[6] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1991.

[7] T.F. Gonzalez and S. Zheng. Improved bounds for rectangular and guilhotine partitions. .J.
Symbolic Computation, 7:591-610, 1989.

[8] T.F. Gonzalez and S. Zheng. Approximation algorithm for partitioning a rectangle with interior
points. Algorithmica, 5:11-42, 1990.

24

[9]

[10]

S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and pack-
ing. In Proc. 9th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 384-393. ACM Press,
1998.

S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning. In Proc. 24th Int.
Colloquium on Automata, Languages and Programming, LNCS 1256, pages 616—626. Springer-
Verlag, 1997.

T.Y. Kong, D.M. Mount, and W. Roscoe. The decomposition of a rectangle into rectangles of
minimal perimeter. SIAM J. Computing, 17(6):1215-1231, 1988.

T.Y. Kong, D.M. Mount, and M. Wermann. The decomposition of a square into rectangles of
minimal perimeter. Discrete Applied Mathematics, 16:239-243, 1987.

A. Lingas, R.Y. Pinter, R.L. Rivest, and A. Shamir. Minimum edge length partitioning of
rectilinear polygons. In Proc. 20th Ann. Allerton Conference on Communication, Control and
Computing, 1982.

25

