
Fast Concurrent Access to Parallel

Disks

Peter Sanders, Sebastian Egner, Jan

Korst

MPI{I{1999{1-003 June 1999

Author's Address

Peter Sanders

Max-Planck-Institute for Computer Science

Im Stadtwald, 66123 Saarbr�ucken, Germany

sanders@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/~sanders/

Sebastian Egner, Jan Korst

Philips Research Laboratories

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

{egner,korst}@natlab.research.philips.com

Abstract

High performance applications involving large data sets require the e�cient

and
exible use of multiple disks. In an external memory machine with D

parallel, independent disks, only one block can be accessed on each disk in

one I/O step. This restriction leads to a load balancing problem that is per-

haps the main inhibitor for the e�cient adaptation of single-disk external

memory algorithms to multiple disks. We show how this problem can be

solved e�ciently by using randomization and redundancy. A bu�er of O(D)

blocks su�ces to support e�cient writing of arbitrary blocks if blocks are

distributed uniformly at random to the disks (e.g., by hashing). If two ran-

domly allocated copies of each block exist, N arbitrary blocks can be read

within dN=De + 1 I/O steps with high probability. The redundancy can be

further reduced from 2 to 1 + 1=r for any integer r. From the point of view

of external memory models, these results rehabilitate Aggarwal and Vitter's

\single-disk multi-head" model [2] that allows access to D arbitrary blocks in

each I/O step. This powerful model can be emulated on the physically more

realistic independent disk model [35] with small constant overhead factors.

Parallel disk external memory algorithms can therefore be developed in the

multi-head model �rst. The emulation result can then be applied directly or

further re�nements can be added.

1 Introduction

Despite of ever larger internal memories, even larger data sets arise in important

applications like video-on-demand, data mining, electronic libraries, geographic

information systems, computer graphics, or scienti�c computing. For many of

these applications, no size limits are in sight. In this context, it is necessary to

e�ciently use multiple disks in parallel in order to achieve high bandwidth.

This situation can be modelled using the one processor version of Vitter and

Shriver's parallel disk model : A processor with M words of internal memory is

connected to D disks. In one I/O step, each disk can read or write one block of

B words. To keep the discussion simple, we also assume that I/O steps are either

pure read steps or pure write steps (Section 6.1 gives a more detailed discussion).

E�cient single-disk external memory algorithms are available for a wide spec-

trum of applications (e.g. [34]), yet parallel disk versions are not always easy

to derive. We face two main tasks: �rstly to expose enough parallelism so that

at least D blocks can be processed concurrently and secondly to ensure that the

blocks to be accessed are evenly distributed over the disks. In the worst case, load

imbalance can completely spoil parallelism increasing the number of I/O steps

by a factor of D. This paper solves the load balancing problem by placing blocks

randomly, and, in the case of reading, by using redundancy.

1.1 Summary of Results

In Section 2, we use queueing theory, Cherno� bounds and the concept of negative

association [14] to show that writing can be made e�cient if a pool of O(D=�)

blocks of internal memory are reserved to support D write queues. This su�ces

to admit (1� �)D new blocks to the write queues during nearly every write step.

Subsequent read requests to blocks that have not yet been written, can be served

from the write queues.

Since our model assumes separate read and write steps, we can analyze these

two issues separately. Scheduling read accesses is more di�cult since a parallel

read has to wait until all requested blocks have been read. In Section 3, we in-

vestigate random duplicate allocation (RDA) that uses two randomly allocated

copies of each logical block. Which of the two copies is to be read is optimally

scheduled using maximum
ow computations. We show that N blocks can be

retrieved using dN=De + 1 parallel read steps with high probability (whp). Fur-

thermore, in Section 4 we explain why the optimal schedules can be found faster

than the worst-case bounds of maximum
ow algorithms would suggest.

In Section 5 we generalize RDA. Instead of writing two copies of each logical

block, we split the logical block into r sub-blocks and produce an additional parity

sub-block that is the exclusive-or of these sub-blocks. These r+ 1 sub-blocks are

then randomly placed as before. When reading a logical block, it su�ces to

retrieve any r out of the r+1 pieces|a missing sub-block is always the exclusive-

or of the retrieved sub-blocks. We allow mixed workloads with di�erent degrees

of redundancy. Much of the analysis also goes through as before. At the price

1

of increasing the logical block size by a factor of r, we reduce the redundancy of

RDA from 2 to 1 + 1=r.

Our techniques for reading and writing can be joined to a quite far-reaching

result, namely that Aggarwal and Vitter's multi-head disk model [2] that allows

access to D arbitrary blocks in each I/O step, can be e�ciently emulated on

the independent disk model [35]. In Section 6, we summarize how this can be

exploited and adapted to yield improved parallel disk algorithms for many \clas-

sical" external memory algorithms for sorting, data structures and computational

geometry, as well as for newer applications like video-on-demand or interactive

computer graphics.

1.2 Related Work

The predominant general technique to deal with parallel disks in practice is strip-

ing [28, 26]. In our terminology this means using logical blocks of size DB, which

are split into D sub-blocks of size B|one for each disk. This yields a perfect load

balance but is only e�ective if the application can make use of huge block sizes.

For example, at currently realistic values of D = 64 and B = 256 KByte we would

get logical blocks of 16 MByte. Since many external memory algorithms work

best if thousands of I/O streams with separate bu�er blocks are used, prohibitive

internal memory requirements would result.

Reducing access contention by random placement is a well-known technique.

For example, Barve et al. [6] use it for a simple parallel disk sorting algorithm.

However, in order to access N blocks in (1 + �)N=D steps, N must be at least

 ((D=�

2

) logD). If N = �(D), some disk will have to access �(logD= log logD)

blocks. Apparently, it has not been proven before that in the case of writing, a

small bu�er solves this problem.

Our results are also interesting from a more abstract point of view indepen-

dent of the external memory model. Load balancing when two randomly chosen

locations of load units are available has been studied using several models { usu-

ally for the case N = D or N = �(D). Azar et al. [5] show that an optimal online

strategy commits each arriving request to the least loaded unit. This strategy

achieves a maximum load of O(log logD) whp. For parallelizations of this result

and related work we refer to [1, 22]. For PRAM simulation, fast parallel schedul-

ing algorithms have been developed. Czumaj et al. [12] give a (quite involved)

algorithm that reduces the maximum load to O(log log logD) whp. No previous

work was able to reduce the maximum load to a constant for N = O(D). We go

one step further and reduce the maximum load to dN=De+1 whp and show that

this is optimal (in the sense of Section 3.1).

Heuristic load balancing algorithms using redundant storage are used by a

number of authors in multimedia applications [31, 32, 19, 23]. Even the idea

of a parity sub-block built out of r data sub-blocks has been used by several

researchers [7, 8]. The �rst optimal scheduling algorithm for RDA was presented

in [19]. We prove its optimality, generalize the algorithm to parity encoding,

analyze the quality achieved and speed up the scheduling algorithm.

2

2 Queued Writing

This section shows that a fraction of 1 � � of the peak bandwidth for writing

can be reached by making W = O(D=�) blocks of internal memory available to

bu�er write requests. This holds for any access pattern (Theorem 1), assuming

that logical blocks are mapped to disks with a random hash function

1

. The bu�er

consists of queues Q

1

; : : : ; Q

D

, one for each disk. Initially, all queues are empty.

Then the application invokes the following procedure to write up to (1 � �)D

blocks.

write((1� �)D blocks):

append blocks to Q

1

; : : : ; Q

D

;

write-to-disks(Q

1

; : : : ; Q

D

);

while jQ

1

j+ � � �+ jQ

D

j > W do

write-to-disks(Q

1

; : : : ; Q

D

).

After each invocation of write, the queues consume at mostW internal mem-

ory. The procedure write-to-disks stores all �rst blocks of the non-empty

queues onto the disks in parallel. Note that read requests to blocks pending in

the queues can be serviced directly from internal memory.

2

The remainder of this section contains the proof of the following statement

which represents the main result on writing, namely that a global bu�er size W

which is linear in D su�ces to ensure that on the average, a call of the write

procedure incurs only about one I/O step.

Theorem 1 Consider W = (ln(2) + �)D=� for some � > 0 and let n

(t)

be the

number of calls to write-to-disks during the t-th invocation of write. Then

En
(t)

� 1 + e

�
(D)

:

The idea behind the analysis: By reducing the arrival rate to 1 � � we

can bound the queues by the stationary distribution of a queueing system with

batched arrivals. This means that thewhile-loop is entered infrequently (Lemma 3)

for a suitably chosen W that. As the �rst step, we derive the expected queue

length and a Cherno�-type tail bound for one queue.

1

The hash function h maps block number i, starting at external memory address iB, to

disk h(i). The assumption that the hash function behaves like a true random function is quite

similar to the usual assumption of randomized algorithms that the pseudo-random number

generators used in practice produces true random numbers and the same assumption seems to

be quite common in other works relying on hash function like PRAM emulation. However, in

our case we can do even better. We could simply use a RAM resident directory with random

entries for each block. This is possible since we need only a few bytes of RAM for a disk block

with hundreds of kilobytes. The additional hardware cost for this RAM is negligible in many

practical situations.

2

If one insists on �nding the result of the entire computation in the external memory, then the

queues have to be
ushed at the very end of the program. However, this e�ort can be amortized

over the entire computation, and using Lemma 2 it is easy to show that max(Q

(t)

1

; : : : ;Q

(t)

D

) =

O

�

logD

�

�

with high probability.

3

Lemma 2 Let Q

(t)

i

be the length of Q

i

at the t-th invocation of write. Then

EQ
(t)

i

� 1=(2�) and

P

h

Q

(t)

i

> q

i

< 2e

��q

for all q > 0.

Proof Clearly, the queues can only become shorter if the while-loop is entered.

Hence, it is su�cient for an upper bound on the queue length to consider the case

where W is so large that this never happens.

Let X

(t)

i

denote the number of blocks that are appended to Q

i

at the t-th

invocation of write. Then, X

(1)

i

;X

(2)

i

; : : : are independent B((1 � �)D; 1=D)

binomially distributed random variables. We describe the queue Q

i

together with

its input X

(1)

i

;X

(2)

i

; : : : as a queueing system with batched arrivals. In particular,

one block can leave per time unit and a B((1� �)D; 1=D)-distributed number of

blocks arrives per time unit. We �rst derive the probability generating function

(pgf) ofQ

i

for the stationary state by adapting the derivation from [25, Section 12-

2] to the case of batched arrivals. Let G

t

(z) be the pgf of Q

(t)

i

. Then, G

0

(z) = 1

and for all t 2 f0; 1; : : :g

G

t+1

(z) =

�

z

�1

G

t

(z) + (1� z

�1

)G

t

(0)

�

�H(z)

where H(z) = (z=D + 1 � 1=D)

(1��)D

is the binomial pgf of X

(t)

i

. Since the

average rate of arrival is 1� � and the rate of departure is 1, a stationary state

exists. In the stationary state G

t+1

= G

t

and by normalizing G(1) = 1 we �nd

the stationary pgf

G(z) =

(1� z)�

1� zH(z)

�1

:

We now show that the stationary distribution is an upper bound on the distribu-

tion of Q

(t)

i

for all t in the sense

P

h

Q

(t)

i

> q

i

� P [Q

1

i

> q] for all q > 0,

where Q

1

i

is a G-distributed random variable. To see the bound, consider two

queues processing identical input but with di�erent initial length. Then in any

step, the di�erence in length either remains the same or gets reduced by one. This

continues until (possibly) the lengths become equal for the �rst time and from

then on the queues coincide for all time because they process the same input.

Thus, EQ
(t)

i

� EQ
1

i

= G

0

(1) and

G

0

(1) =

1

2�

�

1� �+D�

2

2D�

�

1

2�

:

For the tail bound, note that ln(1 + x) < x for x > 0 implies lnH(e

�

) <

(1� �)(e

�

� 1). Thus

G(e

�

) <

�(1� e

�

)

1� exp(�� (1� �)(e

�

� 1))

< 2:

4

The tail bound follows from the general tail inequality P [Q

1

i

> q] < G(e

�

)e

��q

for all q > 0 (from [16, Exercise 8.12a]).

Based on Lemma 2 we give an upper bound on the probability that the while-

loop is entered for a given limit W = qD of internal memory.

Lemma 3 Let Q

(t)

= Q

(t)

1

+ � � �+Q

(t)

D

with Q

(t)

i

as in Lemma 2. Then EQ
(t)

�

D=(2�) and

P
�

Q

(t)

> qD

�

< e

�(�q�ln 2)D

for all q > 0.

Proof The technical problem here is that Q

(t)

1

; : : : ;Q

(t)

D

are not independent.

However, the variables are negatively associated (NA) in the sense of [14, De�ni-

tion 3]

3

as we will now show.

De�ne the indicator variable B

(t)

i;k

= 1 if the k-th request of the t-th invocation

of write is placed in Q

i

and B

(t)

i;k

= 0 otherwise. Then [14, Proposition 12] states

that all B

(t)

i;k

are NA. Furthermore, Q

(t)

i

is a non-decreasing function of all B

(t

0

)

i;k

for

all k and all t

0

� t, since adding a request to Q

i

can only increase the queue length

in the future. In this situation, [14, Proposition 8 (2.)] implies that Q

(t)

1

; : : : ;Q

(t)

D

are NA.

Now we can use Cherno�'s method to derive the tail bound. Consider Markov's

inequality

P
�

Q

(t)

> W

�

= P

h

e

�Q

(t)

> e

�W

i

< e

��W

Ee
�Q

(t)

:

Using the negative association

Ee
�Q

(t)

= Ee
�

P

i

Q

(t)

i

�

Y

i

Ee
�Q

(t)

i

=

�

Ee
�Q

(t)

1

�

D

:

Since Ee
�Q

(t)

1

= G(e

�

) < 2 (proof of Lemma 2) the tail bound follows. The bound

on the expected value follows directly from Lemma 2 and the linearity of the

expected value.

We are now ready to prove Theorem 1, the main result of this section.

Proof Write-to-disks is called at least once during the t-th invocation of

write. Lemma 3, with W=D = q = (ln(2) + �)=�, gives the probability that the

body of the while-loop is entered

p = P
�

Q

(t)

> W

�

� e

�(�W=D�ln(2))D

= e

��D

:

3

For every two disjoint subsets of fQ

(t)

1

; : : : ;Q

(t)

D

g, A and B, and all functions f : R
jAj

! R

and g : R
jBj

! R which are both nondecreasing or both nonincreasing,

E[f(A)g(A)] � E[f(A)]E[g(A)]:

5

Even in the worst case after W +D iterations all queues must be empty. Thus,

the expected number of calls to write-to-disks is

En
(t)

� 1 + p � (W +D) = 1 +O

�

D

�

�

e

��D

which is bounded by 1+e

�
(D)

.

3 Random Duplicate Allocation (RDA)

In this section, we investigate reading a batch of N logical blocks from D disks.

There are copies of the i-th block on disks u

i

and v

i

. The batch is described by the

undirected allocation multigraph G

a

= (f1::Dg; (fu

1

; v

1

g; : : : ; fu

N

; v

N

g)) |there

can be multiple edges between two nodes. As in Section 2, we assume that the

logical blocks are mapped to the disks with a random hash function. The logical

block starting at external memory address kB is mapped to the disks h(2k) and

h(2k+1) using the hash function h.

4

Therefore, G

a

is a random multigraph with

D nodes and N edges chosen independently and uniformly at random.

A schedule for the batch is a directed version G

s

of G

a

. (The directed edge

(u

i

; v

i

) means that block i is read from disk u

i

.) The load L

u

(G

s

) of a node

u is the outdegree of u in the schedule G

s

. (We omit \(G

s

)" when it is clear

from the context which schedule is meant.) The maximum load L

max

(G

s

) :=

max(L

1

(G

s

); : : : ; L

D

(G

s

)) gives the number of read steps needed to execute the

schedule. Finally, L

�

max

is the load of an optimal schedule. This is a schedule G

s

for G

a

with minimal L

max

(G

s

).

The main result of this section is the following theorem, which is proven in

Section 3.2.

Theorem 4 Consider a batch of N randomly and duplicately allocated blocks to

be read from D disks. Then, abbreviating b = dN=De,

P [L

�

max

> b + 1] = O(1=D)

b+1

:

Note that Lemma 6 below also provides more accurate bounds for small D and

N that can be evaluated numerically.

A di�culty in establishing Theorem 4 is that optimal schedules are compli-

cated to analyze directly using probabilistic arguments because their structure is

determined by a complicated scheduling algorithm. Therefore, we �rst derive a

characterization of optimal schedules in terms of the allocation graph G

a

which

is simply a random graph. Since this result is of some independent interest and

of completely combinatorial nature, we have separated it out into Section 3.1.

4

We can additionally make sure that the two copies are always mapped to di�erent disks.

A re�ned analysis then yields a probability bound O(1=D)

2b+1

in a strengthened version of

Theorem 4. For the sake of simplicity, we do not go into this.

6

In Section 3.3, we explain how an optimal schedule can be found in polynomial

time using a small number of maximum
ow computations. Section 4 will then

show why optimal schedules can be found even faster than the worst case bounds

for maximum
ow algorithms might suggest.

3.1 Unavoidable Loads

Consider a subset � of disks and de�ne the unavoidable load L

�

as the number

of blocks that have both copies allocated on a disk in � (for a given batch of

requests). The following Theorem characterizes L

�

max

in terms of the unavoidable

load.

Theorem 5 For any batch,

L

�

max

= max

;6=��f1::Dg

�

L

�

j�j

�

:

Proof \�": For any �, a schedule fetches at least L

�

blocks from the disks in

�. Hence, there must be at least one disk u 2 � with load L

u

� dL

�

=j�je.

\�": It remains to show that there is always a subset � with dL

�

= j�je �

L

�

max

witnessing that L

�

max

cannot be improved. Consider an optimal schedule

G

s

, which has no directed paths of the form (v; : : : ; w) with L

v

= L

�

max

and

L

w

� L

�

max

�2. Such a schedule always exists, since in schedules with such paths,

the number of maximally loaded nodes can be decreased by moving one unit of

load from v to w by reversing the direction of all edges on the path.

Choose a node v with load L

�

max

and let � denote the set containing v and all

nodes to which a directed path from v exists. Using this construction, all edges

leaving a node in � also have their target in � so that the unavoidable load L

�

is simply

P

u2�

L

u

. By de�nition of G

s

and v, we get L

�

� 1 + j�j (L

�

max

� 1),

i.e., L

�

= j�j � 1= j�j+ L

�

max

� 1. Taking the ceiling on both sides yields

�

L

�

j�j

�

�

�

1

j�j

+ L

�

max

� 1

�

= L

�

max

as desired.

An important consequence of Theorem 5 is that perfect load balance (i.e.

L

�

max

= N=D whp) is not possible unless N =
 (D logD): It is well known

from random graph theory that for N � cD lnD and constant c < 1=2, most

random graphs G

a

= (V;E) with N edges contain at least one isolated node v

[10, Theorem VII.3.]. Therefore, � := V � fvg has unavoidable load L

�

= N

and this implies

L

�

max

�

�

L

�

j�j

�

�

�

N

D � 1

�

>

N

D

:

The random multigraphs which we consider, are even more likely to contain

isolated nodes.

7

3.2 Proof of Theorem 4

It should �rst be noted that, without loss of generality, we can assume that N

is a multiple of D, i.e., b = dN=De = N=D, since it only makes the scheduling

problem more di�cult if we add D dN=De �N dummy blocks to the batch.

The starting point of our proof is the following simple probabilistic upper

bound on the maximum load of optimal schedules, which is based on Theorem 5.

Lemma 6 P [L

�

max

> b + 1] �

D

X

d=1

�

D

d

�

P

d

where P

d

:= P [L

�

� d(b+ 1) + 1] for a subset � of size d.

5

Proof By Theorem 5 and the principle of inclusion-exclusion

P [L

�

max

> b + 1] = P [9� : L

�

> j�j(b+ 1)]

�

D

X

d=1

�

D

d

�

P

d

since

�

D

d

�

is the number of subsets of size d.

Lemma 6 is useful because L

�

only depends on the allocation graph G

a

and

is binomially B(bD; d

2

=D

2

) distributed for j�j = d.

In the rest of this section we derive the asymptotic behavior of the bound

from Lemma 6. This yields the result stated in Theorem 4. The outline of

the derivation is as follows: Our most important tool is an accurate Cherno�

bound for the tail of the binomial distribution that is used to bound P

d

, the

probability to overload a given set of disks of size d (Lemma 7). The technically

most challenging part is to further bound the resulting expressions to obtain easy

to interpret asymptotic estimates. We do this by splitting the summation over

d into three partial sums for d � D=8 (Section 3.2.1), D=8 < d < Db=(b + 1)

(Section 3.2.2) and

P

d�Db=(b+1)

�

D

d

�

P

d

which is simply zero.

The next lemma states the Cherno� bound on which the further analysis

relies. Let p = d=D.

Lemma 7 For any x > EL
�

,

P [L

�

� x] �

�

Np

2

x

�

x

�

1� p

2

1� x=N

�

N�x

:

5

Note that this bound already yields an e�cient way to estimate P [L

�

max

> b+ 1] numeri-

cally since the cumulative distribution function of the binomial distribution can be e�ciently

evaluated by using a continued fraction development of the incomplete Beta-function [27, Sec-

tion 6.4]. Furthermore, most summands will be very small so that is su�ces to use simple

upper bounds on

�

D

d

�

P

d

for them. Overall, we view it as likely that P [L

�

max

> b+ 1] can be

well approximated in time O(D).

8

Proof De�ne the independent identically distributed 0-1 random variables X

i

that take the value one if both copies of block i are allocated to �. We have

L

�

=

P

i

X

i

and P [X

i

= 1] = p

2

. For this type of sum, Cherno�'s technique can

be applied without any approximations beyond using Markov's inequality [21,

Lemma 2.2].

6

P
�

L

�

� (p

2

+ t)N

�

�

�

p

2

p

2

+ t

�

p

2

+t

�

1� p

2

1� p

2

� t

�

1�p

2

�t

!

N

:

Solving (p

2

+ t)N = x for t yields t = x=N � p

2

. Substituting this value into

the above equations yields the desired bound after straigtforward simpli�cations.

3.2.1 Small �

This section is dedicated to proving the following bound for small �. For the

overall result we set � = 1=8.

Lemma 8 For any constant � < e

�2

,

X

d��D

�

D

d

�

P

d

= O(1=D)

b+1

Proof Lemma 14 proves a bound for small � which we can apply in its simplest

form (setting � = 0) to see that

�

D

d

�

P

d

�

�

d

D

�

db+1

e

d(b+1)+1

:

Viewing this bound as a function f(d) of d, it is easy to check that f

00

(d) � 0

(di�erentiate, remove obviously growing factors and di�erentiate again). There-

fore, f assumes its maximum over any positive interval at one of the borders of

that interval. We get

P

d��D

�

D

d

�

P

d

� f(1) + �Dmax ff(2); f(�D)g.

f(1) = D

�b�1

e

b+2

= e(e=D)

b+1

= O(1=D)

b+1

�Df(2) = �D(2=D)

2b+1

e

2b+3

= O(1=D)

2b

�Df(�D) = �D�

�Db+1

e

�D(b+1)+1

= O(D) e

�D(b(1+ln �)+1)

= e

�
(D)

if � < e

�2

.

All these values are in O(1=D)

b+1

.

6

Several more well-known simpler forms do not su�ce for our purposes.

9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

0.9
0.45

B1(p)
B2(p)
B3(p)
B4(p)
fp(5)

Figure 1: Behavior of B

b

(p) for small b.

3.2.2 Larger �

When j�j is at least a constant fraction of D, P

d

actually decreases exponentially

with D.

Lemma 9

X

D

8

<d<

Db

b+1

�

D

d

�

P

d

= O

�

p

D � 0:9

D

�

:

Proof Remembering that p = d=D and N = bD we get

d(b + 1) + 1 � d(b+ 1) = pD(b+ 1)

and using Lemma 7 we get

P

d

�

�

bDp

2

pD(b+1)

�

pD(b+1)

�

1�p

2

1�

pD(b+1)

bD

�

bD�pD(b+1)

=

�

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

�

D

:

Note that D only appears as an exponent now.

�

D

d

�

=

�

D

pD

�

can be brought into

a similar form. Using the Stirling approximation (e.g. [36]) it can be seen that

�

D

pD

�

= O

�

q

D

pD(D�pD)

�

D

pD

�

pD

�

D

D�pD

�

D�pD

�

= O

�

q

1

Dpq

(p

�p

q

�q

)

D

�

= O

�

q

1

D

(p

�p

q

�q

)

D

�

for 1=8 < p < b=(b+ 1).

Since we are summing O(D) terms it remains to be shown that

B

b

(p) :=

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

p

p

q

q

� 0:9

10

for all 1=8 < p < b=(b + 1). For �xed b, this is easy since B

b

(p) is a smooth

function and because the open right border of the interval is no problem since

lim

p!b=(b+1)

B

b

(p) = (b=(b + 1))

2b

2

=(b+1)

< 0:9. Essentially, for �xed b, the proof

can be done \by inspection". Figure 1 shows the plots of the function B

b

(p) for

b 2 f1; 2; 3; 4g. One can make such an argument more rigorous using interval

arithmetic computations (e.g. [17]).

For b � 5 we exploit that p

�p

q

�q

� 2 so that it also su�ces to show that

f

p

(b) :=

�

pb

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

� 0:45 :

In Figure 1 it can be seen that this relation holds for b = 5 and Lemma 16 (setting

� = 0) implies that for a larger b the maximum of f

p

(b) can only decrease.

3.3 Finding Optimal Schedules

We can e�ciently �nd an optimal schedule by transforming the problem into a se-

quence of maximum
ow computations: Suppose we have a schedule G

s

= (V;E)

for a given batch G

a

, and we try to �nd an improved schedule G

0

s

with L

max

(G

0

s

) =

L

0

< L

max

(G

s

). Then, consider the
ow network N = ((V [fs; tg ; E

+

); c; s; t)

where E

+

= E [f(s; v) : L

v

(G

s

) > L

0

g [f(u; t) : L

u

(G

s

) < L

0

g. Edges (u; v)

stemming from E have unit
ow capacity c(u; v) = 1; c(s; v) = L

v

(G

s

) � L

0

for

(s; v) 2 E

+

; c(u; t) = L

0

� L

u

(G

s

) for (u; t) 2 E

+

. s and t are arti�cial source

and sink nodes, respectively. The edges leaving the source indicate how much

load should
ow away from an overloaded node. Edges into the sink indicate how

much additional load can be accepted by underloaded nodes. Figure 2 illustrates

the sturcture of the
ow network.

......
...

L -L’v L’-L u

s t

v u...

...

overloaded nodes underloaded nodes

edges

unit

capacity

Figure 2: Sketch of a
ow network for improving the maximum load to L

0

.

If an integral maximum
ow through N saturates the edges leaving s, we can

construct a new schedule G

0

s

with L

max

(G

0

s

) = L

0

by
ipping all edges in G

s

that

carry
ow. Furthermore, if the edges leaving s are not saturated, L

max

cannot be

reduced to L

0

:

Lemma 10 If a maximum
ow in N does not saturate all edges leaving s, then

L

�

max

> L

0

.

11

Proof It su�ces to identify a subset � with unavoidable load L

�

> L

0

j�j.

Consider a minimal s � t-cut (S; T). De�ne � := S � fsg. Since not all edges

leaving s are saturated, � is nonempty. Let c

s

:=

P

(s;v)2E

0

c(s; v) denote the

capacity of the edges leaving s and let c

ST

:=

P

f(u;v):u2S;v2Tg

c(u; v) denote the

capacity of the cut. The unavoidable load of � is L

�

= L

0

j�j + c

s

� c

ST

(by

de�nition of the
ow network). By the max-
ow min-cut Theorem, c

ST

is identical

to the maximum
ow. By construction we get c

s

> c

ST

. Therefore, L

�

> L

0

j�j

and by Theorem 5, L

�

max

> L

0

.

An optimal schedule can now be found using binary search in at most logN

steps and much less if a good heuristic initialization scheme is used [19]. Moreover,

Theorem 4 shows that the optimal solution is almost always dN=De or dN=De+1

so that we only need to try these two values for L

0

most of the time.

4 Fast Scheduling

For very large D, the worst-case bounds for maximum
ow computations might

become too expensive, since eventually, the scheduling time exceeds the access

time. Therefore, we will now explain, why slightly modi�ed maximum
ow algo-

rithms can actually �nd an optimal schedule e�ciently with high probability.

Theorem 11 Given a batch of N = �(D) blocks.

7

Let b = dN=De and de�ne a

constant 0 < � � 1=5. An optimal schedule can then be found in time O(D logD)

with probability 1�O(1=D)

b+1��

.

8

We proceed analogously to Section 3 and start with graph theoretic arguments

in Section 4.1, continue with a probabilistic analysis in Section 4.2 and only then

consider algorithmic questions in Section 4.3.

The general idea is based on the observation that maximum
ow algorithms

essentially compute optimal schedules by removing all paths from overloaded to

underloaded nodes. We call such paths augmenting paths following the tradition

in
ow computations. The key observation is that it is actually su�cient to

perform
ow augmentations that remove all augmenting paths of logarithmic

length. Why is this su�cient? Consider a schedule without augmenting paths of

length � c logD. Assume this schedule is not optimal. From Theorem 4 we know

that with probability 1� O(1=D)

b+1

this means that there is still a disk v with

load L

v

= b + 2. Section 4.1 establishes that then there must also exist a set of

disks � with L

�

> j�j (b + 1� �). We then prove that such a subset is unlikely

to exist for a random allocation graph G

a

. This requires a slightly strengthened

version of the probabilistic analysis done in Section 3.2. Finally, in Section 4.3 we

explain how maximum
ow algorithms can be adapted to �nd augmenting paths

7

The assumption N = �(D) is for technical convenience only. But note that it encompasses

the most interesting case.

8

Using more careful rounding in lemmata 12 and 14, even sharper probabilistic bounds can

be obtained because it turns out that we do not need to take small overloaded sets into account.

12

of logarithmic length very e�ciently. In particular, even a simple pre
ow-push

algorithm solves the task in O(D logD) steps.

4.1 Unavoidable Loads

Our key argument is a counterpart to Theorem 5:

Lemma 12 Consider a schedule graph G

s

= (f1::Dg ; E), any disk v with load

L

v

and a parameter
 2 (0; 1). If there is no directed path (v; : : : ; u) from v to a

disk u with L

u

� L

v

� 2 and a path length j(v; : : : ; u)j � log

1+

D+1, then there

must be a subset � of disks with unavoidable load L

�

> j�j (1�
)(L

v

� 1).

Proof Consider the neighborhoods of v reached by i steps of breadth �rst

search: �

0

:= fvg and �

i+1

:= �

i

[fu : 9w 2 �

i

j 9(w; u) 2 Eg. Let j :=

min fi : j�

i+1

j < (1 +
) j�

i

jg denote the �rst neighborhood that grows by a fac-

tor less then
. We have D � j�j � (1 +
)

j

and hence j � log

1+

D. Let

�

0

:= �

j+1

��

j

and let

�

� denote the set of disks in �

0

that have at least L

v

in-

coming edges from �

j

. We argue that � := �

j

[

�

� has L

�

> j�j (1�
)(L

v

�1).

By assumption, the disks in �

j

have total load exceeding j�

j

j (L

v

�1). Load can

only be moved out of � over at most

�

�

�

0

�

�

�

�

�

(L

v

� 1) edges leaving �, i.e., �

has unavoidable load

L

�

> j�

j

j (L

v

� 1)�

�

�

�

0

�

�

�

�

�

(L

v

� 1)

= (j�

j

j+

�

� �

�

�

�

� j�

0

j)(L

v

� 1)

= (j�j � j�

0

j)(L

v

� 1)

� (j�j �
 j�

j

j)(L

v

� 1)

� j�j (1�
)(L

v

� 1)

We proceed as follows: Set
 =

�

b+1

. Set up a maximum
ow problem for

the algorithm from Section 3.3 with target maximum load L

0

= b + 1. Now run

a modi�ed maximum
ow algorithm, which stops when no augmenting paths of

length log

1+

D + 1 � 1 + (b+ 1) log(D)=� exist.

When the
ow is computed, a schedule G

s

is derived from it as described in

Section 3.3. If the
ow saturates the source node, we have a maximum
ow and

L

0

= b + 1 as desired. Otherwise, there must be a node with load at least b + 2

and Lemma 12 tells us that there must also be set of disks � with unavoidable

load L

�

> j�j (b + 1� �).

4.2 Probabilistic Analysis

Let us introduce the abbreviations b

�

:= b + 1 � � and P

�

d

:= P [L

�

� db

�

+ 1]

for a subset � of size d. Analogous to Lemma 6 and its proof, we have to prove

that

P

D

d=1

�

D

d

�

P

�

d

= O(1=D)

b

�

. In principle, we could replace Section 3.2 by the

13

simple remark that it is the special case � = 0 of the present analysis. However,

this would reduce the accessibility of the basic result for � = 0, which is perhaps

more important than the re�nement presented here. We therefore choose the

following compromise between understandability and low redundancy: The less

interesting technical lemmata are proven for the general case. The main line of

argument for the proof is done in detail for the case � = 0 in Section 3.2. This

has the additional advantage to yield more favourable constant factors inside the

analysis. Here, we only outline the necessary modi�cations.

As before, the sum

P

�

D

d

�

P

�

d

is split into three parts. Now, small � are

between 0 and bD=16c. P

�

d

disappears for very large � with at least

b

b

�

disks.

4.2.1 Small �

Lemma 13

P

d�D=16

�

D

d

�

P

d

= O(1=D)

b

�

Proof Lemma 14 is now applied in its full generality. Setting

f(d) :=

�

d

D

�

d(b��)+1

e

d(b+1)+1

;

we can see that f

00

(d) is positive as before if d � 3 and � � 1=2, so that it

su�ces to consider values at the boundary of the interval [3; D=16]. We get

P

d��D

�

D

d

�

P

�

d

� f(1) + f(2) + �Dmax ff(3); f(�D)g.

f(1) = (1=D)

b

�

e

b+2

= e

1+�

(e=D)

b

�

= O(1=D)

b

�

. Similarly,

f(2) = (2=D)

2(b��)+1

e

2b+3

= O(1=D)

2(b��)+1

�Df(3) = �D(3=D)

3(b��)

e

3b+4

= O(1=D)

3(b��)

�Df(�D) = �D�

�D(b��)+1

e

�D(b+1)+1

= O(D) e

�D((b��) ln�+b+1)

= e

�
(D)

if � < e

�2=(1��)

.

All these values are inO(1=D)

b

�

for � < 1=5 and � < 1=16.

Lemma 14 For any 0 � � < 1, and b

�

= (b + 1� �)

�

D

d

�

P [L

�

� db

�

+ 1] �

�

d

D

�

d(b��)+1

e

d(b+1)+1

:

Proof First, we estimate

�

D

d

�

�

�

De

d

�

d

=

�

D

d

�

d

e

d

14

using the Stirling approximation.

Now, setting x = db

�

+1, p = d=D,N = bD in Lemma 7, we get P [L

�

� db

�

+ 1] �

f � g where

f =

�

bd

2

=D

db

�

+ 1

�

db

�

+1

and

g =

1� d

2

=D

2

1�

db

�

+1

bD

!

bD�db

�

�1

:

We have

f �

�

bd

Db

�

�

db

�

+1

=

�

d

D

�

db

�

+1

�

b

b

�

�

db

�

+1

�

�

d

D

�

db

�

+1

�

b

b

�

�

db

�

�

�

d

D

�

db

�

+1

e

�d(1��)

where the last estimate stems from the relation

�

b

b

�

�

b

�

=

�

1�

1� �

b

�

�

b

�

� e

�(1��)

:

Since 1� d

2

=D

2

= (1 + d=D)(1� d=D), we can write the second factor, g, as

g = g

1

� g

2

where

g

1

=

�

1 +

d

D

�

bD�db

�

�1

�

�

1 +

d

D

�

bD

� e

bd

and

g

2

=

1�

d

D

1�

db

�

+1

bD

!

bD�db

�

�1

=

�

1 +

db

�

� db + 1

bD � db

�

� 1

�

bD�db

�

�1

� e

db

�

�db+1

:

Multiplying the bounds for

�

D

d

�

, f , g

1

, and g

2

yields

�

D

d

�

P [L

�

� d(b + 1� �) + 1]

�

�

D

d

�

d

e

d

�

d

D

�

db

�

+1

e

�d(1��)

e

bd

e

db

�

�db+1

=

�

d

D

�

d(b+1��)�d

e

d�d(1��)+bd+d(b+1��)�db+1

=

�

d

D

�

d(b��)+1

e

d(b+1)+1

:

15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

1
0.5

B1(p)
B2(p)
B3(p)
B4(p)
fp(5)

Figure 3: Behavior of B

b

(p) for � =

1

5

and small b.

4.2.2 Larger �

Lemma 15 For � � 1=5,

X

D=16<d<Db=b

�

�

D

d

�

P

�

d

= e

�
(D)

:

Proof Using an analogous argument as in the proof of Lemma 9 we can see that

it su�ces to evaluate

B

b

(p) :=

�

bp

b

�

�

pb

�

�

1�p

2

1�p�

p(1��)

b

�

b�pb

�

p

�p

q

�q

< 1 :

on the interval [

1

16

;

b

b

�

). Since

@

@�

B

b

(p) � 0 it su�ces to consider the case � = 1=5.

Figure 3 shows the plots for b � 4. For b = 5, we even have

f

p

(b) :=

�

bp

b

�

�

pb

�

1� p

2

1� p�

p(1��)

b

!

b�pb

�

< 0:5;

and Lemma 16 shows that the maximum of f

p

(b) can only decrease for larger b.

Lemma 16 Given constants 0 < � � 1=2 and 0 � � < 1 and the abbreviation

b

�

= (b + 1� �), consider the function

f

p

(b) :=

�

bp

b

�

�

pb

�

1� p

2

1� p�

p(1��)

b

!

b�pb

�

:

Then, sup

��p<b=b

�

f

p

(b) is decreasing for integer b � 5.

16

Proof Consider any b > 5 and any p where f

p

(b) is maximized. Such a value

must exist in the interior of [�p; b=b

�

) since lim

p!b=b

�

@

@p

f

p

(b) = �1.

Case p � (b � 2)=b: In Lemma 17 it is shown that f

p

(b) is non-increasing for

p � (b� 1)=(b+ 1). In particular, it can only decrease on the interval [b� 1; b].

Case p > (b� 2)=b: We make the substitution p :=

b��

b

�

, i.e., � = b� pb

�

and the

condition p > (b� 2)=b becomes � < 1 + �+

2(1+�)

b

� 4. In Lemma 18 it is shown

that

g

�

(b) := f

p

(b)

�

p

b� �

b

�

�

is non-increasing for its range of de�nition b � �. In particular, for b � 5 and

� � 5, g

�

(b) is de�ned and non-increasing on the interval [b� 1; b]. We get

f

p

(b) = g

b�p(b+1��)

(b)

� g

b�p(b+1��)

(b� 1)

= f

(b�1)�(b�p(b+1��))

(b�1)+1��

(b� 1)

= f

p�(1�p)=(b��)

(b� 1)

since p � (1 � p)=(b � �) � 1=2 for b � 5, � � 1, and p > (b � 2)=b � 3=5.

Lemma 17 For p <

b�1

b+1

and any 0 � � < 1,

f

b

(p) =

�

bp

b

�

�

pb

�

1� p

2

1� p�

p(1��)

b

!

b�pb

�

is non-increasing.

Proof Consider the derivative of f

p

(b),

f

0

p

(b) = f

p

(b)

�

p ln

�

bp

b

�

�

+ (1�p) ln

�

1�p

2

1�p�

p(1��)

b

��

:

Since f

p

(b) is positive, we have to verify that

l

b

(p) := p ln

�

bp

b

�

�

+ (1�p) ln

�

1�p

2

1�p�

p(1��)

b

�

� 0

for p �

b�1

b+1

. However, since

@

@�

l

b

(p) � 0 for p < b=b

�

, it su�ces to consider the

case � = 0 within the rest of this proof.

Lets �rst consider extreme values of p: We have l

b

(0) = 0 and

l

b

�

b�1

b+1

�

=

4

b+1

ln

�

2b

b+1

�

+

b�1

b+1

ln

�

b(b�1)

(b+1)

2

�

:

17

By inspection, it can be seen that this is indeed negative for b � 34. For larger

b, we use 2b=(b + 1) � 2 and estimate

ln

�

b(b� 1)

(b+ 1)

2

�

= ln

�

1�

3b + 1

(b + 1)

2

�

� �

3b+ 1

(b + 1)

2

using series development. We get

l

b

�

b� 1

b+ 1

�

�

4 ln(2)

b+ 1

�

(b� 1)(3b+ 1)

(b+ 1)

3

:

This can be shown to be negative for b � 34 by solving a simple quadratic

equation.

To complete the proof, we show that l

b

(p) cannot assume larger values for

0 < p <

b�1

b+1

because l

b

(p) is concave, i.e., l

00

b

(p) > 0. l

00

b

(p) is a rational function

and has the positive denominator (p + 1)

2

(1 � p)(b � bp � p)

2

p so that its sign

only depends on the numerator, the polynomial P

b

(p) := (p

4

� 4p

3

+ 6p

2

� 4p +

1)b

2

+(2p

3

�6p

2

+6p�2)pb+p

4

�p

3

+3p

2

+p. Since the b-independent summand

p

4

� p

3

+ 3p

2

+ p is nonnegative for p 2 [0; 1], it su�ces to show that

Q

b

(p) := (P

b

(p)� p

4

� p

3

+ 3p

2

+ p)=b

= (p

4

�4p

3

+6p

2

�4p+1)b+(2p

3

�6p

2

+6p

1

�2)p

= (1� p)

3

(b� p(b+ 2))

is nonnegative. This is the case for p � b=(b+2), i.e., even beyond (b�1)=(b+1).

Rolling up our chain of arguments, we conclude that P

b

(p) � 0 and l

00

b

(p) � 0

for p 2 [0;

b�1

b+1

], i.e., l

b

(p) is concave. Therefore, it was su�cient to prove that

l

b

(0) � 0 and l

b

(

b�1

b+1

) � 0 to establish that f

p

(b) is non-increasing.

Lemma 18 g

�

(b) :=

�

b(b��)

b

2

�

�

b��

�

b

�

�

1�

(b��)

2

b

2

�

��

�

is non-increasing for b � �.

Proof Consider

g

0

�

(b) =

g

�

(b)u

b

(�)

b

�

(b+ b

�

� �)

where u

b

(�) := b(2�+4(1� �))+ 2� 4�+((1� �)

2

+3b(1� �)� db

�

+2b

2

) ln

b(b��)

b

2

�

is the only term that can become negative for b � �. We have

u

b

(0) = 2(b+ b

�

)(1� �+ b

�

ln

b

b

�

) :

Using series development, we get ln(b=b

�

) � �

1��

b

�

and hence u

b

(0) � 0. Further-

more, using series development again yields

u

0

b

(0) = 2b

�

ln(1 +

1� �

b

)� 3(1� �)�

(1� �)

2

b

� 2b

�

1� �

b

� 3(1� �)�

(1� �)

2

b

= �

(1� �)b

�

b

� 0

18

Finally

u

00

b

(�) = �

(1 + � � �)b

�

(b� �)

2

� 0;

i.e., u

b

(�) is convex. Together with u

0

b

(0) � 0 and u

b

(0) � 0 this implies that

u

b

(�) � 0 for all 0 � � < b and the same holds for g

0

�

(b).

4.3 Maximum Flow with Short Augmenting Paths

What remains to be done to establish Theorem 11 is to explain how all augmenting

paths of logarithmic length can be removed in time O(N logD) time where N =

O(D) is the number of edges of the allocation graph.

To explain why
ow computations can be easier if only augmenting paths of

logarithmic length need to be considered we start with a simple example. Dinic'

algorithm [13] removes all augmenting paths of length i in the i-th iteration.

Each iteration computes a blocking
ow. Even a simple backtracking implemen-

tation of the blocking
ow routine can do that in time O(iN) so that the time

for the O(logD) �rst iterations is O

�

N log

2

D

�

. Note that the same simplistic

implementation needs O(D

3

) steps for unconstrained maximum
ows.

We can prove an even better bound for pre
ow-push algorithms by addition-

ally exploiting that we are essentially dealing with a unit capacity
ow problem.

This `essentially' can be made precise by transforming the
ow problem as for-

mulated in Section 3.3 into a problem with only unit capacity edges: Replacing

an edge (s; v) or (u; t) with integer capacity c by c parallel unit capacity edges.

For target load L

0

= O(N=D), the number of additional edges will be in O(N).

Since detailed treatments of the pre
ow push algorithm are standard textbook

material [11, 3], we only sketch the changes needed for our analysis: A pre
ow

push algorithm maintains a pre
ow, which respects the capacity constraints of

the
ow network but relaxes the
ow conservation constraints. Nodes with excess

ow are called active. The di�erence between the original
ow network and the

pre
ow is the residual network that de�nes which edges are still able to carry

ow. The algorithm also maintains a height H(v) which is a lower bound for

the distance of a node v to the sink node t, i.e. the minimum number of residual

edges needed to connect v to t. Units of
ow can be pushed downward from active

nodes. Active nodes that lack downward residual edges can be lifted.

In the standard pre
ow push algorithm, H(s) is initialized to D to make sure

that
ow can only return to the source if no path to the sink is left. If we are only

interested in augmenting paths of length at most H

max

, we can initialize H(s) to

H

max

. The standard analysis of pre
ow-push is straightforward to adapt so that

it takes the additional parameterH

max

into account. It turns out that the number

of lift operations is bounded by 2DH

max

and the number of saturating push oper-

ations is bounded by NH

max

. Furthermore, the algorithm can be implemented to

spend only constant time per push operation and a total of O(NH

max

) operations

in other operations. The most di�cult part in the analysis of general pre
ow-

push algorithms, namely bounding the number of nonsaturating push operations,

19

is simple here. Since there are only unit capacity edges, no nonsaturating pushes

occur. Alltogether, pre
ow push can be implemented to run in time O(NH

max

)

for unit capacity
ow networks. Since N = O(D) and H

max

= O(logD) in our

case, we get the desired O(D logD) bound.

5 Reducing Redundancy

Wemodel this more general storage scheme already outlined in the introduction in

analogy to RDA: The allocation of r+1 sub-blocks of a logical block is coded into

a hyperedge e 2 E of a hypergraph H

a

= (f1::Dg; E) connecting the r+ 1 nodes

(disks), to which sub-blocks have been allocated. Both e and E are multisets.

A schedule is a directed version of this hypergraph H

s

, where each hyperedge

points to the disk which need not access the sub-block. RDA is the special case

where all hyperedges connect exactly two nodes. Note that not all edges need

to connect the same number of nodes. On a general purpose server, di�erent

�les might use di�erent trade-o�s between storage overhead and logical block

size. A logical block without redundancy can be modelled by an edge without an

outgoing connection.

The unavoidable load of a subset of disks � is the di�erence between the

number of times an element of � appears in an edge and the number of incident

edges. Formally, L

�

:=

P

e2E

j� \ fegj � jfe 2 E : � \ E 6= ;gj. With these

de�nitions, Theorem 5 can be adapted to hypergraphs and the proof can be

copied almost verbatim. Maximum
ow algorithms for ordinary graphs can be

applied by coding the hypergraph into a bipartite graph in the obvious way.

Lemma 10 is also easy to generalize.

The most di�cult part is again the probabilistic analysis. We would like to

generalize Theorem 4 for arbitrary r. Indeed, we have no analysis yet which holds

for all values of r and N=D. Yet, in the following, we outline an analysis which

can be applied for any �xed r (we do that for r � 10) and yield the desired bound

for su�ciently large N=D but still for all D. This already su�ces to analyze a

concrete application in a scalable way, and to establish a general emulation result

between the multi-head model and independent disks.

Let N = bD, �, d = j�j, p = d=D be de�ned as in Section 3 and introduce

the abbreviations q := 1 � p, R := r + 1 and P

d

:= P [L

�

� d(rb+ 1) + 1] for

a subset � of size d. The structure of the analysis is analogous to the proof of

Theorem 4. Lemma 6 still applies. As before, if X

i

denotes the unavoidable load

incurred by logical block i, we have L

�

=

P

N

i=1

X

i

. However, for r � 2, the X

i

are not 0-1 random variables and L

�

is not binomially distributed. Instead X

i

has the shifted binomial distribution max f0;B(R; d=D)� 1g. Fortunately, the

X

i

are independent and we can use Cherno�'s technique to develop a tail bound

for L

�

:

Lemma 19 For any x � E[X] and any T � 1,

P [L

�

> x] �

(q

R

+

(pT+q)

R

�q

R

T

)

N

T

x

:

20

Proof We have P [L

�

> x] = P
�

T

X

> T

x

�

and hence, using Markov's inequality,

P [X > x] � E[T
X

]=T

x

. By de�nition of X, E[T
X

] = E[T
P

i

X

i

] = E[
Q

i

T

X

i

] =

E[T
X

1

]

N

. Using the binomial theorem, it is easy to evaluate E[T
X

i

] = q

R

+((pT +

q)

R

� q

R

)=T .

For greater
exibility, we have left the parameter T unspeci�ed. (There seems

to be no closed form optimal choice for T and general r.) Still, by picking an

appropriate T , we can use Lemma 19 in a similar way as we used Lemma 7 in

the proof for r = 1.

We split the sum from Lemma 6 into the intervals

�

0::

D

14r

	

, f

D

14r

::

Drb

rb+1

g and

�

Drb

rb+1

::D

	

where the last interval contributes only zero summands.

5.1 Small �

This section is dedicated to proving the following generalization of Lemma 8.

Lemma 20 For r � 2,

X

d�D=(14r)

�

D

d

�

P

d

= O(1=D)

br+1

First, we further simplify the Cherno� bound from Lemma 19 for N = bD,

p = d=D and x = d(br + 1) + 1.

Lemma 21 For N = bD, j�j = d and p =

d

D

,

P [L

�

� x] � e

bd(r+1)(e�1)

�

dr

D

�

x

:

Proof Choosing T = 1 +

1

rp

in Lemma 19 yields

P [L

�

> x] �

�

q

R

+

(p(1+

1

rp

)+q)

R

�q

R

1+

1

rp

�

N

(1 +

1

rp

)

x

=

�

(R=r)

R

+

q

R

rp

�

N

(1 +

1

rp

)

N+x

since 1 +

1

rp

�

1

rp

�

�

(R=r)

R

+

q

R

rp

�

N

(rp)

N+x

= (Rp(R=r)

r

+ q

R

)

N

(rp)

x

� e

bdR((R=r)

r

�1))

(rp)

x

� e

bd(r+1)(e�1)

�

dr

D

�

x

21

The latter two estimates are based on Lemma 22 and the fact that (R=r)

r

=

(1+1=r)

r

� e.

We now set x = d(rb+1)+1 and use the Stirling approximation

�

D

d

�

� (De=d)

d

to get an overall bound

�

D

d

�

P

d

� (De=d)

d

e

bd(r+1)(e�1)

�

dr

D

�

d(rb+1)+1

= (er)

d

e

bd(r+1)(e�1)

�

dr

D

�

dbr+1

Completing the proof of Lemma 20 is only slightly more complicated than it

was in Lemma 8. Let f(d) = (er)

d

e

bd(r+1)(e�1)

�

dr

D

�

dbr+1

. It is easy to check that

f

000

(d) � 0 and f

0

(1) � 0 for D > re

e+e=r+ln(r)=r

. Therefore, for su�ciently large

D, f assumes its maximum over an interval [d

min

� 1; d

max

] at one of the borders

of that interval if d

min

� 1. For any constant 0 < � < 1, we get

P

d��D

�

D

d

�

P

d

� f(1) + �Dmax ff(2); f(�D)g.

f(1) = ere

b(r+1)(e�1)

�

r

D

�

br+1

= O(1=D)

br+1

�Df(2) = �D(er)

2

e

2b(r+1)(e�1)

�

2r

D

�

2br+1

= O(1=D)

2br

�Df(�D) = (er)

�D

e

b�D(r+1)(e�1)

(�r)

�Dbr+1

= O(D) e

�D(1+ln(r)+b(r+1)(e�1)+ln(�r)br)

= e

�
(D)

if � <

1

r

e

�

1+ln r

br

�(e�1)(1+

1

r

)

or, if we prefer to choose � independently of b and

proportional to 1=r,

� � 1=(14r) <

1

r

e

�(e�1)

3

2

for r � 2.

Lemma 22 (Rp(R=r)

r

+ q

R

)

bD

� e

bdR((R=r)

r

�1)

.

Proof (Outline)

Let f(D) = (Rp(R=r)

r

+q

R

)

bD

� e

bdR((R=r)

r

�1)

. First observe, that lim

D!1

f(D) =

e

bdR((R=r)

r

�1)

. Therefore, it su�ces to show that f grows monotonically. We have

f

0

(D) = f(D)bg(p) where g(p) = ln(pR(R=r)

r

+ q

R

) +

Rpq

R

�pR(R=r)

r

pR(R=r)

r

+q

R

, and it suf-

�ces to show that g(p) � 0. Note that g only depends on r and p = d=D. In

particular, for �xed r, it su�ces to discuss a onedimensional function. Showing

the g(p) � 0 for arbitrary r is tedious but possible. One way is to show that

g

0

(p) � 0 in order to argue g(p) � g(0) = 0. The derivative g

0

(p) is a rational

function and its numerator can be further simpli�ed by using 1 � rp � q

r

� 1

in the appropriate way. The denominator of the resulting function is a quadratic

polynomial in p and can be minimized analytically.

22

5.2 Large �

Similar as in Section 3.2.2, we argue that for r � 2,

X

D=(14r)<d<Db=(rb+1)

�

D

d

�

P

d

= e

�
(D)

: (1)

However, this only holds for su�cienly large b depending on r. Furthermore, we

only know how to show this analytically if r and b are �xed. Still, the result holds

for all D, and by evaluating a two-dimensional function we will come very close

to a proof for arbitrarily large b and �xed r.

We start the computation by setting

T =

q

p

�

N + x

rN � x

=

q

p

�

1 +Rp

qr � p=b

where N = bD and x = pD(rb+ 1) < pD(rb+ 1) + 1. Lemma 19 then yields

P

d

< P [L

�

> x] <

(q

R

+

(pT+q)

R

�q

R

T

)

b

T

p(br+1)

!

D

:

Since T does not depend on D, Relation (1) can be established by showing that

B

br

(p) :=

(q

R

+

(pT+q)

R

�q

R

T

)

b

T

p(br+1)

p

p

q

q

is bounded by some constant

^

B < 1 for 1=(14r) � p <

rb

rb+1

. The factor 1=(p

p

q

q

)

stems from the Stirling approximation of the binomial coe�cient (refer to the

proof of Lemma 9 for details).

Using a simple trick, we can study the behavior of B

br

(p) for �xed r and

arbitrarily large b. We simply substitute y 1=b and plot the resulting twodi-

mensional function g

r

(y; p). Using this approach, Figure 4 shows the behavior of

B

b2

(p) and B

b4

(p) for values of b which are large enough to ensure a value less

than one. The following table gives the smallest b which ensures that B

br

< 1 for

r 2 f2; : : : ; 10g.

r 2 3 4 5 6 7 8 9 10

b 2 6 14 24 38 56 77 101 130

We could now do more detailed numerical evaluations and probably it would

also be possible to derive an actual proof that B

br

< 1 for �xed r and su�ciently

large b (using interval arithmetics and a careful study of the behavior of B

br

as

b ! 1 and p ! rb=(rb + 1)). However, the results are already su�cient for

deriving bounds for �xed b and r. Furthermore, from a practical perspective it

is more interesting to prove an experimental observation that arbitrarily small

values for b already su�ce. The Cherno� bound from Lemma 19 is not tight

enough however. Even an optimal choice of T (which can be found analytically

for r � 3) is insu�cient.

23

0.2
0.4

0.6
0.8

1 p

0
0.1

0.2
0.3

0.4
0.5

1/b

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8
1 p

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

1/b

0

0.2

0.4

0.6

0.8

1

Figure 4: Behavior of B

b2

(p) for b � 2 and B

b4

(p) for b � 14.

6 Applications and Re�nements

Whereas sections 2 and 3 treat queued writing and reading with RDA as two

independent techniques, we combine them into a general result on emulating

multi-headed disks in Section 6.1. Further re�nements that combine advantages

of randomization and striping are outlined in Section 6.2. Then we give some ex-

amples of how our results can be used to improve the known bounds for external

memory problems. Applications for multimedia are singled out in Section 6.4,

since they served as a \breeding ground" for the algorithms described here. Fi-

nally, in Section 6.5, we further generalize the coding scheme beyond simple

parity codes. This allows more
exible tradeo�s between redundancy and fault

tolerance.

6.1 Emulating Multi-Headed Disks

Let us compare the independent disk model and the concurrent access multi-

headed disk model under the simplifying assumption that I/O steps are either

read steps or write steps.

De�nition 23 Let MHDM-I-O

D;B;M

(i; o) denote the set of problems

9

solvable

on a D-head disk with block size B and internal memory of size M using i parallel

read steps and o parallel write steps. Let IPDM-I-O

D;B;M

(i; o) denote the cor-

responding set of problems solvable with D independent single headed disks with

expected complexity i and o assuming the availability of a random hash function.

9

In a complexity theoretic sense.

24

Using queued writing (Theorem 1) and RDA (Theorem 4), we can immediately

conclude:

Corollary 24 For any 0 < � < 1 and b 2 N,

MHDM-I-O

bD;B;M

(i; o) � IPDM-I-O

D;B;M+O(D=�+bD)

(i

0

; o

0

)

where

i

0

= i � (b+ 1) +O(i=D) and

o

0

= o � 2(b=(1� �) + e

�
(D)

):

Aggarwal and Vitter's original multi-head model [2] allows read and write

operation to be mixed in one I/O step. By bu�ering write operations this more

general model could be emulated on the above MHDM-model with an additional

slowdown factor of at most two. However, nobody prevents us from mixing reads

and writes in the emulation. The write queues can even be used to saturate un-

derloaded disks during reading. We have only avoided considering mixed reading

and writing to keep the analysis simple.

The parity encoding from Section 5 can be used to reduce the overhead for

write operations from two to 1 + 1=r at the price of increasing the logical (emu-

lated) block size by a factor of r.

6.2 Re�ned Allocation Strategies

It may be argued that striping, i.e., allocating logical block i to disk i mod D is

more e�cient than random placement for applications accessing only few, long

data streams, since striping achieves perfect load balance in this case. We can

get the best of both worlds by generalizing randomized striping [6, 18, 31], where

long sequences of blocks are striped using a random disk for the �rst block.

We propose to allocate short strips of D consecutive blocks in a round robin

fashion. A hash function h is only applied to the start of the strip: Block i

is allocated to disk (h(i div D) + i mod D) + 1. This placement policy has the

property that two arbitrary physical blocks i

0

and j

0

are either placed on random

independent disks or on di�erent disks, and similar properties hold for any subset

of blocks. In the case of redundant allocation, each copy is striped independently.

We have no formal proof yet but conjecture that our analysis extends to this

random striped placement. Some applications are described in the next section.

Another issue is to replace the hash function by a directory that maps logical

blocks to disks. We can then dynamically remap blocks. In particular, we can

write exactly D blocks in a single parallel write step by generating a random

permutation of the disk indices, and mapping the blocks to be written to these

disks. Note that, in practice, the additional hardware cost for a directory is

relatively small, because a block on a disk is much more expensive than the

directory entry in RAM.

25

6.3 External Memory Algorithms

We �rst consider the classical problem of sorting N keys, since many problems

can be solved externally using sorting as a subroutine [34]. Perhaps the best al-

gorithm for both a single disk and a parallel multi-head disk is multi-way merge

sort. This algorithm can be implemented using about 2

N

DB

log

M=B

N

M

I/Os [18].

Ingenious deterministic algorithms have been developed that adapt multi-way

merging to independent disks [24]. Since the known deterministic algorithms

increase the number of I/Os by a considerable factor, Barve et al. [6] have de-

veloped a more practical algorithm based on randomized striping, which also

achieves O

�

N

DB

log

M=B

N

M

�

I/Os if M =
 (D logD). Our general emulation re-

sult does not have this restriction and achieves 2(1 +

1

r

+ �)

N

DB

log

(M=B)

N

M

for

� > 0. Further practical improvements are possible using prefetching, randomized

striping and mixing of input and output steps.

Using randomized striping and the fact that queued writing does not require

redundant allocation, we can even avoid redundant storage. We use distribution

sort [34, Section 2.1] and select O(M=B) partitioning elements fs

0

= �1, s

1

,

: : : , s

k�1

, s

k

=1g based on a random sample. The input sequence is read using

striping and all elements are classi�ed into k buckets such that bucket j contains

all elements x with s

j�1

� x < s

j

. The buckets are �les organized by randomized

striping without redundancy. This can be done using

N

BD

read steps and

N

BD(1��)

write steps using queued writing for any constant � > 0. Since the buckets are

again striped, we can apply the algorithm recursively to each bucket. Overall

we get

2N

DB(1��)

log

(M=B)

N

M

I/Os plus a small overhead for retrieving samples.

From the analysis of parallel sample sort it is known that O(M=B log(NB=M))

random samples su�ce to make sure that all buckets have size O(NB=M) with

high probability [9]. For large N this implies a negligible amount of I/Os to

retrieve the samples. For small N , we can reduce the number of samples and still

make sure that no bucket becomes larger than M so that one more pass over the

data completes the operation. Furthermore, for average inputs, B samples can

be retrieved in one I/O step.

E�cient external memory algorithms for more complicated problems than

sorting, have so far mainly been developed for the single disk case. However,

many of them are easily adapted to the multi-head model so that our emulation

result yields randomized algorithms for parallel independent disks, which need a

factor �(D) fewer I/O steps than using one disk.

All the batched geometric problems mentioned in [34] (orthogonal range queries,

line segment intersection, 3D convex hulls, triangulation of point sets, batched

point location, and others) can even be handled without redundancy using ran-

domized striping and queued writing. The same is true for many data structure

problems for example bu�er trees [4].

Despite some overhead for redundancy, algorithms based on reading from mul-

tiple sources can still be the best choice. For example, although bu�er trees yield

an asymptotically optimal algorithm for priority queues, specialized algorithms

based on multi-way merging can be a large constant factor faster [29]. A �fty

26

percent overhead for duplicate writing is not an issue in this case.

Parallel algorithms are a productive source of external memory algorithms.

For example, Sibeyn and Kaufmann [30] give a formal framework for this approach

by showing how parallel algorithms for the BSP model can be emulated using a

single disk. Using Corollary 24 this result extends to parallel disks. Some graph

problems like list ranking can be solved e�ciently using emulation of parallel

algorithms.

6.4 Interactive Multimedia Applications

In video-on-demand applications, almost all I/O steps concern reading. Hence,

the disadvantage of RDA of having to write two copies of each block is of little

signi�cance to these applications. In addition, if many users have to be serviced

simultaneously by a video-on-demand server, then disk bandwidth, rather than

disk storage space tends to be the limiting resource. In that case, the duplicate

storage of RDA need not imply that more disks are required for storage. Other-

wise, the redundancy can be reduced as shown in Section 5. Similar properties

hold for interactive graphics applications [23]. In these applications it is very

important to be able to handle arbitrary access patterns while at the same time

to realize small response times. In this respect, RDA clearly outperforms striping

and also random allocation without redundancy.

6.5 More General Encodings

The parallel disk system (the redundant storage strategy together with the pro-

tocol to read and write) can be seen as a communication system in the sense of

Shannon. The channel is represented by the read-protocol, which deliberately

introduces erasures in order to be able to balance the load on the disks. Another

possible source of erasures is disk failure.

Consider the following mechanism: Each block is split into k equally sized

parts to which another n � k redundant parts are added as linear combinations

of the �rst k parts. The linear combinations are described by an [n; k; d] error

correcting block code with minimum distance d = n�k+1. Such a code is called

Maximum Distance Separable (MDS).

10

MDS codes are optimal in the sense that

the original block can be reconstructed from any set of at least k parts. The use

of MDS-codes for fault tolerance has been investigated for example in [15].

All storage strategies mentioned in this article are special cases of binary

MDS encoding: Striping uses the [D;D; 1] trivial code where D is the number

of disks, RDA uses the [2; 1; 2] repetition code and \r-out-of-(r + 1)" uses the

[r + 1; r; 2] parity check code. In fact, it is known that the only existing binary

MDS codes are the [n; n; 1] trivial, [n; n�1; 2] parity and [n; 1; n] repetition codes

10

For a treatment of coding theory refer to the book of MacWilliams and Sloane, [20], in

particular to Chapter 1 (\Linear codes") and Chapter 11 (\MDS codes"). The symbol [n; k; d]

denotes the parameters of a linear block code encoding k information symbols into n code

symbols with a minimum distance of d.

27

(from [33, Corollary 1]). Over larger alphabets, however, other MDS codes exists

such as Reed-Solomon codes. By the choice of an appropriate MDS code one can

protect against disk failure (as in [15]), even against failure of multiple disks, and

guarantee e�cient load balancing at the same time.

Acknowledgements

The authors would like to thank David Maslen and Mike Keane for contributions

to the analysis of RDA and Ludo Tolhuizen for advice on error correcting codes.

References

[1] Adler, M., Chakrabarti, S., Mitzenmacher, M., and Rasmussen,

L. Parallel randomized load balancing. Proceedings STOC'95 (1995).

[2] Aggarwal, A., and Vitter, J. S. The input/output complexity of sort-

ing and related problems. Communications of the ACM 31, 9 (1988), 1116{

1127.

[3] Ahuja, R. K., Magnanti, R. L., and Orlin, J. B. Network Flows.

Prentice Hall, 1993.

[4] Arge, L. The bu�er tree: A new technique for optimal I/O-algorithms. In

4th Workshop on Algorithms and Data Structures (1995), no. 955 in LNCS,

Springer, pp. 334{345.

[5] Azar, Y., Broder, A. Z., Karlin, A. R., and Upfal, E. Balanced

allocations. In 26th ACM Symposium on the Theory of Computing (1994),

pp. 593{602.

[6] Barve, R. D., Grove, E. F., and Vitter, J. S. Simple randomized

mergesort on parallel disks. Parallel Computing 23, 4 (1997), 601{631.

[7] Berson, S., Muntz, R., and Wong, W. Randomized data allocation for

real-time disk I/O. Proceedings of the 41st IEEE Computer Society Confer-

ence, COMPCON'96, Santa Clara, CA, February 25-28, pp. 286-290 (1996).

[8] Birk, Y. Random RAIDs with selective exploitation of redundancy for high

performance video servers. NOSSDAV'97, St. Louis, MO, May, 1997, pp.

13-23 (1997).

[9] Blelloch, G. E., Leiserson, C. E., Maggs, B. M., Plaxton, C. G.,

Smith, S. J., and Zagha, M. A comparison of sorting algorithms for the

connection machine CM-2. In ACM Symposium on Parallel Architectures

and Algorithms (1991), pp. 3{16.

[10] Bollob

�

as, B. Random graphs. Academic Press, 1985.

28

[11] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to

Algorithms. McGraw-Hill, 1990.

[12] Czumaj, A., auf der Heide, F. M., and Stemann, V. Shared memory

simulations with triple-logarithmic delay. In 3th European Symposium on

Algorithms (ESA) (1995), no. 979 in LNCS, Springer, pp. 46{59.

[13] Dinic, E. A. Algorithm for solution of a problem of maximum
ow. Soviet

Math. Dokl. 11 (1970), 1277{1280.

[14] Dubhashi, and Ranjan. Balls and bins: A study in negative dependence.

RSA: Random Structures & Algorithms 13 (1998), 99{124.

[15] Gibson, G. A., Hellerstein, L., Karp, R. M., Katz, R. H., and

Patterson, D. A. Coding techniques for handling failures in large disk

arrays, csd-88-477. Tech. rep., U. C. Berkley, 1988.

[16] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathe-

matics. Addison-Wesley, 1989.

[17] Hansen, E. Global optimization using interval analysis { the multidimen-

sional case. Numerische Mathematik 34 (1980), 247{270.

[18] Knuth, D. E. The Art of Computer Programming | Sorting and Searching,

2nd ed., vol. 3. Addison Wesley, 1998.

[19] Korst, J. Random duplicate assignment: An alternative to striping in

video servers. In ACM Multimedia (Seattle, 1997), pp. 219{226.

[20] MacWilliams, F., and Sloane, N. Theory of error-correcting codes.

North-Holland, 1988.

[21] McDiarmid, C. Concentration. In Probabilistic Methods for Algorithmic

Discrete Mathematics, M. Habib, C. McDiarmid, and J. Ramirez-Alfonsin,

Eds. Springer, 1998, pp. 195{247.

[22] Mitzenmacher, M. The power of two choices in randomized load balanc-

ing. PhD thesis, University of California at Berkeley, 1996.

[23] Muntz, R., Santos, J., and Berson, S. A parallel disk storage system

for real-time multimedia applications. International Journal of Intelligent

Systems 13 (1998), 1137{1174.

[24] Nodine, M. H., and Vitter, J. S. Greed sort: An optimal sorting

algorithm for multiple disks. Journal of the ACM 42, 4 (1995), 919{933.

[25] Papoulis, A. Probability, random variables, and stochastic processes.

McGraw-Hill, 2nd ed., 1984.

29

[26] Patterson, D., Gibson, G., and Katz, R. A case for redundant arrays

of inexpensive disks (RAID). Proceedings of ACM SIGMOD'88 (1988).

[27] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-

nery, B. P. Numerical Recipes in C (2nd Ed.). Cambridge University

Press, 1992.

[28] Salem, K., and Garcia-Molina, H. Disk striping. Proceedings of Data

Engineering'86 (1986).

[29] Sanders, P. Fast priority queues for cached memory. In ALENEX '99,

Workshop on Algorithm Engineering and Experimentation (1999), no. 1619

in LNCS, Springer.

[30] Sibeyn, J., and Kaufmann, M. BSP-like external-memory computation.

In 3rd Italian Conference on Algorithms and Complexity (1997), pp. 229{240.

[31] Tetzlaff, W., and Flynn, R. Block allocation in video servers for avail-

ability and throughput. Proceedings Multimedia Computing and Networking

(1996).

[32] Tewari, R., Mukherjee, R., Dias, D., and Vin, H. Design and perfor-

mance tradeo�s in clustered video servers. Proceedings of the International

Conference on Multimedia Computing and Systems (1996), 144{150.

[33] Tolhuizen, L. On maximum distance separable codes over alphabets of

arbitrary size. International Symposium on Information Theory (1994).

[34] Vitter, J. S. External memory algorithms. In 6th European Symposium

on Algorithms (1998), no. 1461 in LNCS, Springer, pp. 1{25.

[35] Vitter, J. S., and Shriver, E. A. M. Algorithms for parallel memory

I: Two level memories. Algorithmica 12, 2{3 (1994), 110{147.

[36] Worsch, T. Lower and upper bounds for (sums of) binomial coe�cients.

Tech. Rep. IB 31/94, Universit�at Karlsruhe, 1994.

30

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the Max-Planck-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most

of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which

are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-1999-2-005 J. Wu Symmetries in Logic Programs

MPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Jacquemard,

M. Veanes

Decidable fragments of simultaneous rigid reachability

MPI-I-1999-2-003 U. Waldmann Cancellative Superposition Decides the Theory of

Divisible Torsion-Free Abelian Groups

MPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite Trees

MPI-I-1999-1-002 N.P. Boghossian, O. Kohlbacher,

H.-. Lenhof

BALL: Biochemical Algorithms Library

MPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoretical and Experimental Study on the

Construction of Su�x Arrays in External Memory

MPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the First

Elementary Closure of a Polyhedron

MPI-I-98-2-017 M. Tzakova, P. Blackburn Hybridizing Concept Languages

MPI-I-98-2-014 Y. Gurevich, M. Veanes Partisan Corroboration, and Shifted Pairing

MPI-I-98-2-013 H. Ganzinger, F. Jacquemard, M. Veanes Rigid Reachability

MPI-I-98-2-012 G. Delzanno, A. Podelski Model Checking In�nite-state Systems in CLP

MPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Calculi

MPI-I-98-2-010 S. Ramangalahy Strategies for Conformance Testing

MPI-I-98-2-009 S. Vorobyov The Undecidability of the First-Order Theories of One

Step Rewriting in Linear Canonical Systems

MPI-I-98-2-008 S. Vorobyov AE-Equational theory of context uni�cation is

Co-RE-Hard

MPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Direct Lower

Bound Proof)

MPI-I-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-I-98-2-005 M. Veanes The Relation Between Second-Order Uni�cation and

Simultaneous Rigid E-Uni�cation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Functional+Record Subtype

Constraints is NP-Hard

MPI-I-98-2-003 R.A. Schmidt E-Uni�cation for Subsystems of S4

MPI-I-98-2-002 F. Jacquemard, C. Meyer, C. Weidenbach Uni�cation in Extensions of Shallow Equational

Theories

MPI-I-98-1-031 G.W. Klau, P. Mutzel Optimal Compaction of Orthogonal Grid Drawings

MPI-I-98-1-030 H. Br�onniman, L. Kettner, S. Schirra,

R. Veltkamp

Applications of the Generic Programming Paradigm in

the Design of CGAL

MPI-I-98-1-029 P. Mutzel, R. Weiskircher Optimizing Over All Combinatorial Embeddings of a

Planar Graph

MPI-I-98-1-028 A. Crauser, K. Mehlhorn, E. Althaus,

K. Brengel, T. Buchheit, J. Keller,

H. Krone, O. Lambert, R. Schulte,

S. Thiel, M. Westphal, R. Wirth

On the performance of LEDA-SM

MPI-I-98-1-027 C. Burnikel Delaunay Graphs by Divide and Conquer

MPI-I-98-1-026 K. Jansen, L. Porkolab Improved Approximation Schemes for Scheduling

Unrelated Parallel Machines

MPI-I-98-1-025 K. Jansen, L. Porkolab Linear-time Approximation Schemes for Scheduling

Malleable Parallel Tasks

MPI-I-98-1-024 S. Burkhardt, A. Crauser, P. Ferragina,

H. Lenhof, E. Rivals, M. Vingron

q-gram Based Database Searching Using a Su�x Array

(QUASAR)

MPI-I-98-1-023 C. Burnikel Rational Points on Circles

MPI-I-98-1-022 C. Burnikel, J. Ziegler Fast Recursive Division

MPI-I-98-1-021 S. Albers, G. Schmidt Scheduling with Unexpected Machine Breakdowns

MPI-I-98-1-020 C. R�ub On Wallace's Method for the Generation of Normal

Variates

MPI-I-98-1-019 2nd Workshop on Algorithm Engineering WAE '98 -

Proceedings

MPI-I-98-1-018 D. Dubhashi, D. Ranjan On Positive In
uence and Negative Dependence

MPI-I-98-1-017 A. Crauser, P. Ferragina, K. Mehlhorn,

U. Meyer, E. Ramos

Randomized External-Memory Algorithms for Some

Geometric Problems

MPI-I-98-1-016 P. Krysta, K. Lory�s New Approximation Algorithms for the Achromatic

Number

MPI-I-98-1-015 M.R. Henzinger, S. Leonardi Scheduling Multicasts on Unit-Capacity Trees and

Meshes

MPI-I-98-1-014 U. Meyer, J.F. Sibeyn Time-Independent Gossiping on Full-Port Tori

MPI-I-98-1-013 G.W. Klau, P. Mutzel Quasi-Orthogonal Drawing of Planar Graphs

MPI-I-98-1-012 S. Mahajan, E.A. Ramos,

K.V. Subrahmanyam

Solving some discrepancy problems in NC*

MPI-I-98-1-011 G.N. Frederickson, R. Solis-Oba Robustness analysis in combinatorial optimization

MPI-I-98-1-010 R. Solis-Oba 2-Approximation algorithm for �nding a spanning tree

with maximum number of leaves

MPI-I-98-1-009 D. Frigioni, A. Marchetti-Spaccamela,

U. Nanni

Fully dynamic shortest paths and negative cycle

detection on diagraphs with Arbitrary Arc Weights

MPI-I-98-1-008 M. J�unger, S. Leipert, P. Mutzel A Note on Computing a Maximal Planar Subgraph

using PQ-Trees

MPI-I-98-1-007 A. Fabri, G. Giezeman, L. Kettner,

S. Schirra, S. Sch�onherr

On the Design of CGAL, the Computational Geometry

Algorithms Library

MPI-I-98-1-006 K. Jansen A new characterization for parity graphs and a coloring

problem with costs

MPI-I-98-1-005 K. Jansen The mutual exclusion scheduling problem for

permutation and comparability graphs

MPI-I-98-1-004 S. Schirra Robustness and Precision Issues in Geometric

Computation

MPI-I-98-1-003 S. Schirra Parameterized Implementations of Classical Planar

Convex Hull Algorithms and Extreme Point

Compuations

MPI-I-98-1-002 G.S. Brodal, M.C. Pinotti Comparator Networks for Binary Heap Construction

MPI-I-98-1-001 T. Hagerup Simpler and Faster Static AC

0

Dictionaries

MPI-I-97-2-012 L. Bachmair, H. Ganzinger, A. Voronkov Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Bachmair, H. Ganzinger Strict Basic Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with

Complex Values

