
ar
X

iv
:c

s/
00

09
01

3v
2

 [c
s.

C
G

]
22

 S
ep

 2
00

0

Pattern Matching for Sets of Segments∗

Alon Efrat† Piotr Indyk‡ Suresh Venkatasubramanian§

October 25, 2018

Abstract

In this paper we present algorithms for a number of problems in geometric pattern matching where
the input consist of a collections of segments in the plane. Our work consists of two main parts. In
the first, we address problems and measures that relate to collections of orthogonal line segments in the
plane. Such collections arise naturally from problems in mapping buildings and robot exploration.

We propose a new measure of segment similarity called acoverage measure, and present efficient
algorithms for maximising this measure between sets of axis-parallel segments under translations. Our
algorithms run in timeO(n3polylogn) in the general case, and run in timeO(n2polylogn) for the case
when all segments are horizontal. In addition, we show that when restricted to translations that are
only vertical, the Hausdorff distance between two sets of horizontal segments can be computed in time
roughlyO(n3/2polylogn). These algorithms form significant improvements over the general algorithm
of Chew et al. that takes timeO(n4 log2 n).

In the second part of this paper we address the problem of matching polygonal chains. We study the
well known Fréchet distance , and present the first algorithm for computing the Fréchet distance under
general translations. Our methods also yield algorithms for computing a generalization of the Fréchet
distance, and we also present a simple approximation algorithm for the Fréchet distance that runs in
timeO(n2polylogn).

∗A full version of this paper can be found at http://graphics.stanford.edu/∼alon/papers/segmatch.ps.gz
†Computer Science Department, Stanford University,Email: alon@cs.stanford.edu. Work supported in part by a Rothschild

Fellowship and by DARPA contract DAAE07-98-C-L027
‡Computer Science Department, Stanford University.Email: indyk@cs.stanford.edu.
§AT&T Labs – Research.Email: suresh@research.att.com.

http://arxiv.org/abs/cs/0009013v2
http://graphics.stanford.edu/~alon/papers/seg_match.ps.gz

INTRODUCTION 1

1 Introduction

Traditionally, geometric pattern matching employs as a measure of similarity the Hausdorff distance h(A,B),
defined ash(A,B) = maxp∈A minq∈B d(p, q) for two point setsA andB. However, when the patterns to
be matched are line segments or curves (instead of points), this measure is less than satisfactory. It has been
observed that measures like the Hausdorff measure that are defined on point sets are ill-suited as measures
of curve similarity, because they destroy the continuity inherent in continuous curves.

This paper addresses problems in geometric pattern matching where the inputs are sets of line segments.
Our work consists of two main parts; in the first part we consider the problem of matching (under translation)
segments that are axis-parallel (i.e either horizontal or vertical), and in the second we consider the problem
of matching polygonal chains under translation. We study two different measures in this context; the first is
a novel measure called thecoverage measure, which captures the similarity between orthogonal segments
that may partially overlap with one another. The other is thewell known Fréchet distance, first proposed by
Maurice Fréchet in 1906 as a measure of distance between distributions, which has often been referred to as
a natural measure of curve similarity [3, 16, 26]. We discusseach measure in detail below.

1.1 Mapping and orthogonality

The motivation for considering instances of pattern matching where the input line segments are orthogonal
comes from the domain ofmapping, in which a robot is required to map the underlying structureof a
building by moving inside the building, and “sensing” or “studying” its environment.

In one such mapping project at the Stanford Robotics laboratory1 the robot is equipped with a laser
range finder which supplies the distance from the robot to itsnearest neighbor in a dense set of directions
in a horizontal plane. We call the resulting distances map apicture. Figure 1(a) shows the robot used at
Stanford for this purpose the laser range finder installed onthe robot.

During the mapping process, the robot must merge into a single map the series of pictures that it captures
from different locations in the building.

(a) (b) (c)

Figure 1: Left: The robot, and the laser range finder installed on it. Middle: Typical “picture” obtained by
the robot of a corridor (after segmentation). Right: The corridor itself

Since the dead reckoning of the robot is not very accurate, itcannot rely solely on its motion to decide how
the pictures are placed together. Thus, we need a matching process that can align (by using overlapping
regions) the different pictures taken from different points of the same environment. In addition, we need to
determine whether the robot has returned to a point already visited. We make the reasonable assumption
that buildings walls are almost always either orthogonal orparallel to each other, and that these walls are

1 The interested reader can find more information at the URLunderdog.stanford.edu

INTRODUCTION 2

frequently by far the most dominant objects in the pictured.This is especially significant in the case that the
robot is inside a corridor, where there is a lack of detail needed for good registration. In some cases most
of the picture consists merely of two walls with a small number of other segments. See Figure 1(b),(c) for a
typical picture and the real region that the laser range finder senses.

This application suggests the study of matching sets of horizontal and vertical segments. Observe that
we may restrict ourself to alignments undertranslation, as it is easy to find the correct rotation for matching
sets of orthogonal segments. Formally, letA = {a1 . . . an} andB = {b1, . . . bn} be two sets of orthogonal
line segments in the plane, and letε be a given parameter. A pointp of a horizontal (resp. vertical) segment
a ∈ A is coveredif there is a point of a horizontal (resp. vertical) segmentb ∈ B whose distance from
p is ≤ ε, where the distance is measured using theℓ∞ norm. Letw(A,B) denote the collection of sub-
segments ofA consisting of covered points. LetCov(A,B) be the total length of the segments ofw(A,B).
The maximum coverage problemis to find a translationt∗ in the translation plane (TP) that maximizes
Cov(t) = Cov(t+A,B). To the best of our knowledge, this measure is novel.

The coverage measure is especially relevant in the case of long segments e.g. inside a corridor, when we
might be interested in partially matching portions of long segments to portions of other segments.

Our Results In Section 2 we present an algorithm that solves the Coverageproblem between sets of
axis-parallel segments in timeO(n3 log2 n) and the Coverage problem between horizontal segments in time
O(n2 log n) Note that the known algorithms for matching arbitrary sets of line segments are much slower.
For example, the best known algorithm for finding a translation that minimizes the Hausdorff Distance
between two sets ofn segments in the plane runs in timeO(n4 log2 n) [2, 9]. We also show that the that the
combinatorial complexity of the Hausdorff matching between segments isΩ(n4), even if all segments are
horizontal. This strengthens the bounds shown by Rucklidge [14], and demonstrates that our algorithms,
much like the algorithms of [7, 8] are able to avoid having to examine each cell ofF individually. Note that
all our results extend to the case when segments areweightedand the coverage is now a weighted sum of
interval lengths.

In Section Section 3 we consider the related problem of matching horizontal segments under vertical
translations (under the Hausdorff measure). It has been observed that if horizontal translations are allowed,
then this problem is 3SUM-hard [5], indicating that finding asub-quadratic algorithm may be hard. How-
ever, we present an algorithm running in timeO(n3/2 max{logcM, logc n, 1/εc))}, for some fixed constant
c, which is sub-quadratic in most cases. Here,M denotes the ratio of the diameter to the closest pair of
points in the sets of segments (where pairs of points must lieon different segments).

1.2 The Fréchet distance

In the second part of the paper, we consider measures for matching polygonal chains under the Fréchet
distance. Let us define a curve as a continuous mappingP : [a, a′] → R

2. The Fréchet distance between
two curvesP andQ, dF (P,Q) is defined as:

dF (P,Q) = inf
α,β

max
t∈[0,1]

‖f(α(t))− g(α(t))‖

whereα, β range over continuous increasing functions from[0, 1]→ [a, a′] and[0, 1]→ [b, b′] respectively.
Alt and Godau proposed the first algorithm for computing the Fréchet distance between two polygonal

chains (with no transformations). Their method is elegant and simple, and runs in timeO(pq), wherep andq
are the number of segments in the two polygonal chains. In hisPh.D thesis [20]. Michael Godau presents an
extensive study of the complexity of computing the Fréchetdistance. He shows that computing the Fréchet
distance between two simplicial objects is NP-hard, for anydimensiond ≥ 3.

Although the Fréchet distance is a natural measure for curve similarity, its applicability has been limited
by the fact that no algorithms exist to minimise the Fréchetdistance between curves under various transfor-
mation groups. Prior to our work, the only result on computing the Fréchet distance under transformations
was presented by Venkatasubramanian [25]. He computesmint∈TPx dF (P,Q + t) ≤ ε, whereTPx is the
set of translations along a fixed direction, in timeO(n5polylogn) (wheren = p + q). In fact, our methods

MAXIMUM COVERAGE AMONG SETS OF SEGMENTS 3

can be viewed as a generalization of his methods and can be used to solve his problem in the same time
bound.

Our Results In Section 4 we present the first algorithm for computing the Fréchet distance between two
polygonal chains minimized under translations2. The algorithm is based on a reduction to a dynamic graph
reachability problem; its running time isO(n10polylogn).

If we drop the restriction that the functionsα, β must be increasing, we obtain a measure that we call the
weakFréchet distance , denoted bydF̃ . Our methods can be used to decide whethermint∈TP dF̃ (P,Q+t) ≤
ε; in this case, the underlying graph is undirected, yieldingan algorithm that runs in timeO(n4polylogn).

With the exact algorithms being rather expensive, it is natural to ask whether approximations can be
obtained efficiently. A simple observation shows that we canobtain an(ε, β)-approximation to the Fréchet
distance under translations in timeO(n2poly(log n, 1/β)).

2 Maximum Coverage Among Sets Of Segments

Let A = {a1 . . . an} andB = {b1, . . . bn} be two sets of axis-parallel line segments in the plane, and let ε
be a given parameter. Recall the coverage measureCov(A,B) as defined in the introduction.

2.1 Computing coverage with axis-parallel segments

We first consider the case that the setsA andB consists of both horizontal and vertical segments. LetAh

(resp.Bh) be a set ofn horizontal segments and letAv (resp.Bv) be a set ofn vertical segments. Letε be
a given parameter. LetA = Ah ∪ Av and letB = Bh ∪ Bv. Let Cov(t + A,B) = Cov(t + Ah, Bh) +
Cov(t+Av , Bv).

We first need the following lemma, whose proof is deferred to Appendix A. LetS = {s1 . . . sm} be a
set of non-vertical segments inR2. For each segmentsi ∈ S we define the functionssi(x)→ R as follows:
For everyx ∈ R, si(x) is they-coordinate of the intersection point ofs and the vertical line passing through
x, if such an intersection point exists. We setsi(x) to be0 otherwise. LetsumS(x) = Σm

i=1si(x), and let
max(sumS(·)) = maxx∈R sumS(x). Furthermore, letT = T (τ) be a subset ofS consisting of horizontal
segments that can move vertically at constant speed i.e they-coordinates of the endpoints of eachsi ∈ T
are given byy = aiτ + bi.

Lemma 2.1 Given a set of non-vertical segmentsS with a subsetT of horizontal moving segments, we can
maintainmax(sumS(·)) under segment insertions or deletions in amortized timeO(

√

|S|) per operation.
In addition, we can maintainmax(sumS(·)) under atime-decreasingstep (τ ← τ −∆) in O(1) time.

Theorem 2.2 We can find a translationt that maximizesCov(t + A,B) in timeO(n3 log2 n), wheren =
|A|+ |B|
Proof: The proposed algorithm is a line-sweep algorithm, with the sweep line moving from top to bottom.
For a segmentbi ∈ B let b+i denote the rectangle consisting of all points whoseℓinfty distance frombi is
at mostε. Let B+ denote the union

⋃n
i=1 b

+
i . Note that any two rectanglesb+i , b

+
j intersect in at most two

points, so by [12] the complexity of the boundary ofB+ isO(n). ConsiderE = {p1 . . . p2n}, the set of the
2n endpoints of the segments ofA. Define thelayer Li = B+ − pi, which is the region in theTP of all
translationst that shiftpi into B+ i.e t+ pi ∈ B+. LetBh (resp.Bv) be the collection of layers created by
the horizontal (resp. vertical) segments ofA. As the line sweep traverses the translation plane from top to
bottom, we encounter events whereℓ intersects a horizontal boundary segment of eitherBh orBv.
Horizontal Boundaries Of Bh: Let Cov(x) : R→ R be the value ofCov(t+Ah, Bh), wheret is the point
on ℓ vertically abovex. Consider the contribution toCov(t + Ah, Bh) from the interaction between the

2Actually, we solve the decision version of the problem: For agivenε, determine whethermint∈TP dF (P,Q+ t) ≤ ε.

MAXIMUM COVERAGE AMONG SETS OF SEGMENTS 4

segmentsa ∈ Ah, b ∈ Bh. This contribution to the function consists of a piecewise linear function, consists
of five segments: It is zero for value ofx which are very far from the regions of interaction betweena andb,
it is a constant that equals the minimum of the length ofa andb whenx is near the region of intersection, and
it consists of two segments of slopes are1 and−1, connecting these segments. These segments exist for all
instances of the line sweep where its horizontal distance tothe boundary of the rectangle ofBj corrsponds
to ai is≤ ε. There areO(n2) update operations, and each update can be processed inO(n log2 n) time from
Lemma Lemma 2.1.
Horizontal Boundaries Of Bv. For two vertical segmentsai ∈ A, bj ∈ B, let Tij be the set of translations
for which the horizontal distance fromai to bj is at mostε. Assume w.l.o.g that|ai| > |bj |. Let UPij

denote all translationst for which the upper endpoint ofai is covered byt+ bj, (i.e. its distance from some
point of t+ bj is at mostε) but the lower endpoint ofai is not covered. Similarly, letDOWNij denote all
translationst for which the lower endpoint ofai is covered byt + bj, but the upper endpoint ofai is not
covered and letMIDij denote all translationst for which both endpoints ofai are covered.

ThusCov(t+ ai, bj) is zero whent /∈ UPij ∪MIDij ∪DOWNij, Cov(t+ ai, bj) is a constant when
t ∈ MIDij , and it is a decreasing (resp. increasing) linear function that depends only on they-coordinate
of t whent ∈ UPij (resp.t ∈ DOWNij). Therefore, we can represent the contribution ofai andbj to
Cov(ai, t + bj) by a horizontal segmentuij(τ) of length2ε that starts aty = 0 and moves upwards with
constant velocity as the line sweep intersectsDOWNij. It remains constant at a maximum height asℓ
passes thruMIDij and moves downwards to 0 asℓ passes throughUPij .

This suggests the following operations on the data structures, using Lemma 2.1. Consider the rectangle
bj of the vertical decompostion ofLi, (which corresponds to translations for whichai is in the vicinity of
bj). We dividebj into three rectanglesbij,UP , bij,MID andbij,DOWN , which are the intersection regions
of bj andUPij , MIDij andDOWNij. As the linesweep hits the upper boundary of a rectanglebij,UP ,
we insert the moving segmentuij(τ) into T (τ). Whenℓ reaches the upper boundary ofbij,MID we insert
a horizontal moving segmentu′ij(τ) chosen such that thatuij(τ) + u′ij(τ) equalsMaxij . This is done in
order to avoid deleting or changinguij(τ). Whenℓ reaches the upper boundary ofbij,DOWN , we insert
into T (τ) the segmentu′′ij(τ) which is also decreases linearly asτ decreases, and is choosen such that
u(τ)ij + u′(τ)ij + u′′ij(τ) equalsCov(ai, t+ bj) at this translationt, t ∈ DOWNij. Overall, we add three
(moving) segments for each rectangles ofLi, and since the number of these rectangles isO(n2), it follows
that the overall running time of the algorithm isO(n3 log2 n). Note also that at each update, we decrease
the current “time”τ ; this is a constant time operation per update.

2.2 Maximum coverage for horizontal segments

This is a line-sweep algorithm reminiscient of the Chew-Kedem [7] and Chewet al. [8] algorithm for
computing the similarity between point-sets in the plane, under theℓ∞ norm. As in Section 2.1, we define
layersLi for each endpointpi of segments inA. Construct a horizontal decomposition ofLi, breaking it
into a collectionBi = {βi1 βi2 . . .} of O(n) interior-disjoint rectangles.

Let S denote the set ofvertical segments on the boundaries of the layersLi (for i = 1 . . . 2n). Let T be
a segment tree constructed on the segments ofS. During the algorithm we sweep the translation planeTP
using a vertical sweep lineℓ. Onceℓ meets a segmente ∈ S, we inserte into T . No segment is deleted.

Let µ be a node ofT . Let Iµ be the horizontal infinite strip whosey-span is the interval ofµ and let
Sµ ⊆ S denote the segments on or to the left ofℓ which correspond toµ i.e. the segments whosey-span
containsIµ but notIfather(µ). We maintain the following fields with each nodeµ of T . All of these are set
to zero at the beginning of the algorithm:

• lastµ: the lastx event at which a segment was inserted intoSµ.

• Posµ: the number of segments inSµ resulting from the right (resp. left) endpoint of a segmenta ∈ A
meeting a left (resp. right) vertical segment of some layer.We call such an event aPositive event

• Negµ: the number of segments inSµ resulting from the left (resp. right) endpoint of a segmenta ∈ A
meeting a left (resp. right) vertical segment of some layer.We call such an event aNegative event.

MATCHING HORIZONTAL SEGMENTS UNDER VERTICAL TRANSLATION 5

• wµ: The maximal coverage obtained by segments stored atSµ itself.

• Covµ: The maximal coverage obtained by events of “segments” stored at the descendants nodes ofµ
includingµ itself.

Performing an insertion: Onceℓ hits a new segments ∈ S, we first find all nodesµ for which s ∈ Sµ as
in a standard segment tree. Next, for each such nodeµ, we increase eitherPosµ orNegµ by one, according
to the type ofs. Next we add towµ the quantity(Posµ −Negµ)d, whered is the horizontal distance from
the previous insertion event intoSµ, (stored atlastµ) till the current position of theℓ. We updateCovµ for
eachµ in bottom-up fashion, namely:Covµ = max{Covleft(µ),Covright(µ)} + wµ. Each insertion can be
performed inO(log n) time, so the overall running time of the algorithm isO(n2 log n). When the algorithm
terminates, we report a translationtoutput that corresponds to the maximum value ofCovroot(T) obtained by
the algorithm.
Remark: The algorithm can easily be modified to handle theweightedcase, where each segment has a
weight, and the contribution to the coverage of a segment is the length of the covered portions times the
weight of the segment. This is useful when some segments are more important than others.

Theorem 2.3 Let t∗ ∈ TP be the leftmost translation that maximisesCov(t + A,B). Then when the
line-sweep passes throught∗, (t∗ +A,B) = Covroot(T).

Proof: We first make the following observation. Consider the infinite horizontal rayr emerging fromt∗

to the left. Letx1 . . . xl be thex-coordinates of the events encountered along this ray, ordered from left to
right. LetPosi (resp.Negi) be defined as the number of positive intersection points ofr to the left ofxi,
with boundaries of layers that corresponds to positive (resp. negative) events, as described above. Clearly

Cov(t∗A,B) = Σl
i=1(Posi −Negi)(xi − xi−1) (1)

On the other hand, the sum of the right hand side of (1) equals the sum of the fieldswµ, taken over all
nodesµ of the segment tree on the path from the root to the leaf node containingt∗, at the instance when the
line sweep intersectst∗. This follows from the fact that each eventxi is also an event in one of the nodesµ
along this path. Therefore this sum equalsCovroot(T), since the sum of the fieldswµ along every path from
the root to a leaf equalsCov(t + A,B) at any translationt stored at that leaf, andt∗ by our assumption is
maximal.

2.3 A lower bound

Rucklidge [14] showed that given a parameterε and two familiesA andB of segments in the plane, the
combinatorial complexity of the regions in the translations plane (TP) of all translationst for whichh(t +
A,B) ≤ ε is in the worst caseΩ(n4), whereh(A,B) is the one way Hausdorff distance fromA to B. We
show that theΩ(n4) bound holds even in the case that all segments arehorizontal(the proof is deferred to
Appendix B). This implies:

Theorem 2.4 The region of all translationst for whichCov(A, t+B) is maximal has combinatorial com-
plexityΩ(n4).

3 Matching Horizontal Segments Under Vertical Translation

In this section we describe a sub-quadratic algorithm for the Hausdorff matching between setsA andB of
horizontal segment, when translations are restricted to the vertical direction.

Let ρ∗ = mint h(t + A, b) wheret varies over all vertical translations, andh(·, ·) is the one-way Haus-
dorff distance. LetM denote the ratio of the diameter to the closest pair of segments inA ∪ B. Further, let
[M] denote the set of integers{1 . . .M}.

MATCHING HORIZONTAL SEGMENTS UNDER VERTICAL TRANSLATION 6

Theorem 3.1 LetA andB be two set of horizontal segments, and letε < 1 be a given parameter. Then we
can find a vertical translationt for whichh(t+A,B) ≤ (1+ ε)ρ∗ in timeO(n3/2poly(logM, log n, 1/ε)).

We first relate our problem to a problem in string matching:

Definition 3.2 (Interval matching): given two sequencest = t[1] . . . t[n] andp = p[1] . . . p[m], such that
p[i] ∈ [M] and t[i] is a union of disjoint intervals{a1i . . . b1i } ∪ {a2i . . . b2i } . . . with endpoints in[M], find
all translationsj such thatp[j] ∈ t[i + j] for all i. Thesize of the input to this problem is defined as
s = sumi|t[i]|+m.

We also define thesparseinterval matching problem, in which bothp[i] andt[i] are allowed to be equal
to a special empty set symbol∅, which matches any other symbol or set. The sizes in this case is defined as
sumi|t[i]| plus the number of non-empty pattern symbols. Using standard discretization techniques [6, 11],
we can show that the problem of(1 + ε)-approximating the minimum Hausdorff distance between twosets
of n horizontal intervals with coordinates from[M] under vertical motion can be reduced to solving an
instance of sparse interval matching with sizes = O(n).

Having thus reduced the problem of matching segments to an instance of sparse interval matching, we
show that:
• The (non-sparse) interval matching problem can be solved intimeO(s3/2polylogs).
• The same holds even if the pattern is allowed to consists of unions of intervals.
• The sparse interval matching problem of sizes can be reduced toO(logM) non-sparse interval matching
problems, each of sizes′ = O(s polylogs).

These three observations yield the proof of Theorem 3.1. In the remainder of this section, we sketch
proofs of the above observations.
The interval matching problem. Our method follows the approach of [1, 13] and [4]; therefore, we sketch
the algorithm here, omitting detailed proofs of correctness.

Firstly, we observe that the universe sizeM can be reduced toO(s), by sorting the coordinates of
the points/interval endpoints and replacing them by their rank, which clearly does not change the solution.
Then we reduce the universe further toM ′ = O(

√
s) by merging some coordinates, i.e. replacing several

coordinatesx1 . . . xk by one symbol{x1 . . . xk}, in the following way. Each coordinate (sayx) which
occurs more than

√
s times int or p is replaced by a singleton set{x} (clearly, there are at mostO(

√
s)

such coordinates). By removing those coordinates, the interval [M] is split into at mostO(
√
s) intervals.

We partition each interval into smaller intervals, such that the sum of all occurrences of all coordinates in
each interval isO(

√
s). Clearly, the total number of intervals obtained in this wayis

√
s. Finally, we replace

all coordinates in an interval by one (new) symbol from[M ′] whereM ′ = O(
√
s). By replacing each

coordinatex in p andt by the number of a set to whichx belongs, we obtain a “coarse representation” of
the input, which we denote byp′ andt′.

In the next phase, we solve the interval matching problem forp′ and t′ in time Õ(nM ′) using a Fast
Fourier Transform-based algorithm (see the above references for details). Thus we exclude all translations
j for which there isi such thatp[i] is not included in theapproximationof t[i+ j]. However, it could be still
true thatp[i] /∈ t[i+ j] while p′[i] ∈ t′[i+ j]. Fortunately, the total number of such pairs(i, j) is bounded by
the number of new symbols (i.e.M ′) times the number of pairs of all occurrences of any two (old)symbols
corresponding to a given new symbol (i.e.O(

√
s
2
)). This gives a total ofO(s3/2) pairs to check. Each

check can be done inO(log n) time, since we can build a data structure over each set of intervals t[i] which
enables fast membership query. Therefore, the total time need for this phase of the algorithm is̃O(s3/2),
which is also a bound for the total running time.

The generalization to the case wherep[i] is a union of intervals follows in essentially the same way, so
we skip the description here.
The sparse-to-non-sparse reduction.The idea here is to map the input sequences to sequences of length
P , whereP is a random prime number from the range{c1s logM . . . c2s logM} for some constantsc1, c2.
The new sequencesp′ andt′ are defined asp′[i] = ∪i′:i′modP=i p[i

′] andt′[i] = ∪i′:i′modP=i t[i
′]. It can be

COMPUTING THE FRÉCHET DISTANCE UNDER TRANSLATION 7

shown (using similar ideas as in [6]) that if a translationj does notresult in a match betweenp andt, it will
remain a mismatch betweenp′ andt′ with constant probability. Therefore, all possible mismatches will be
detected with high probability by performingO(logM) mappings modulo a random prime.

4 Computing The Fréchet Distance Under Translation

In this section, we present algorithms for computing the Fr´echet distance between two polygonal chains.
Recall that the Fréchet distance between two curvesP andQ, dF (P,Q) is defined as:

dF (P,Q) = inf
α,β

max
t∈[0,1]

‖f(α(t))− g(α(t))‖

whereα, β range over continuous increasing functions from[0, 1]→ [a, a′] and[0, 1]→ [b, b′] respectively.
Dropping the restriction thatα, β are increasing functions yields a measure we call theweakFréchet

distance, denoted bydF̃ . It can be easily seen that bothdF anddF̃ are metrics.
Let the curvesP andQ be length-parameterized byr, s. In other words,P = P (r), Q = Q(s), where

0 ≤ r, s ≤ 1. For any fixedε, letFε(P,Q), thefree space, be defined as

Fε(P,Q) = {(r, s) | ‖P (r)−Q(s)‖ ≤ ε}

where‖ · ‖ is the underlying norm3. The free space captures the space of parameterizations that achieve a
Fréchet distance of at mostε. In the sequel we will denote the free space byFε when the parametersP and
Q are clear from the context.

Let a polygonal chainP : [0, n]→ R
2 be a curve such that for eachi ∈ {0, . . . , n−1}, P|[i,i+1] is affine

i.eP (i + λ) = (1 − λ)P (i) + λP (i + 1), 0 ≤ λ ≤ 1. For such a chainP , denote|P | = n. LetPi denote
the segmentP|[i,i+1]. For two polygonal chainsP,Q where|P | = p, |Q| = q, and a fixedε, the free space
Fε ⊆ [0, p] × [0, q] is given (as before) by:

Fε(P,Q) = {(r, s) | ‖P (r)−Q(s)‖ ≤ ε}

Let F ij
ε = Fε ∩ (Pi × Qj). Observe thatF ij

ε = Fε(Pi, Qj). It can be seen [3] thatF ij
ε is the affine

inverse of a unit ball with respect to the underlying norm. Consequently,F ij
ε is convex.

Consider the points of intersection of a single cellCij = F ij
ε with the line segment from(i, j) to

(i, j + 1). SinceCij is convex, there are at most two such points, which we denote as aij, bij , whereaij is
belowbij. Similarly, letcij anddij be the points of intersection ofCij with the line segment from(i, j) to
(i+ 1, j), wherecij is to the left ofdij.

(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

a
ij

bij

cij d
ij

Figure 2: A single cell in the free space

We define an order on the points as follows: For any two pointsp1 = (x1, y1), p2 = (x2, y2), p1 ≤ p2 if
x1 ≤ x2 andy1 ≤ y2.

Let an(x, y)-monotone path be a path that is increasing in bothx andy coordinates. Alt and Godau [3]
observed that the existence of a(x, y)-monotone path inFε from (0, 0) to (p, q) is a necessary and sufficient

3In this section, we will consider thel2 norm unless otherwise specified.

COMPUTING THE FRÉCHET DISTANCE UNDER TRANSLATION 8

condition for dF (P,Q) ≤ ε. A similar property holds fordF̃ ; namely, the existence ofany non-self-
intersecting path inFε from (0, 0) to (p, q) implies thatdF̃ (P,Q) ≤ ε. Denote the property “(p, q) is
reachable from(0, 0)” as propertyP (similarly defineP̃).

We wish to solve a decision problem for the Fréchet distancebetweenP andQ minimised over transla-
tions i.e givenε, we wish to check whethermint dF (P,Q+ t) ≤ ε

The configuration space A critical eventis one that can change the truth value ofP. Each such event
is one of the following two types: (1) The intersection points aij, bij , cij , dij appear (or disappear). (2) For
two cellsCij andCkj, k > i, aij andakj (or bkj) change their relative vertical ordering. Analogously, for
two cellsCij andCik, k > j the pointscij andcik (or dik) change their relative horizontal ordering.

Type 2 events correspond to the creation or deletion oftunnels. For any pointr in the space[0, p]×[j, j+
1], let k be therightmostinterval such thatr projected onto the interval[akj, bkj] lies between the endpoints
of the interval. We definert (r) = k. For any pointr ∈ [i, i + 1]× [0, q], let k be thetopmostinterval such
thatr projected onto the interval[cik, dik] lies between the endpoints of the interval. We define4 ut(r) = k.

AsQ translates, each of thexij, x ∈ {a, b, c, d} can be represented as a functionxij(t) : R
2 → [0, 1].

Proposition 4.1 For a pointxij , the functionxij(t) is a second degree polynomial in the coordinates oft.

From free space to a graph Our algorithm for computingdF (P,Q) is based on a reduction of the problem
to a directed graph reachability problem. Intuitively, we can think of a monotone path in the free space as
a path in a directed graph (actually a DAG). The advantage of this approach is that we can exploit known
methods for maintaining graph properties dynamically in anefficient manner. Thus, as we traverse the space
of translations, we need not recompute the free space at eachcritical event.

LetV =
⋃

i,j{vaij , vbij , vcij , vdij} andT =
⋃

i,j,i<k≤p{taijk, tbijk} ∪
⋃

i,j,j<k≤q{tcijk, tdijk}where0 ≤ i ≤ p
and0 ≤ j ≤ q. The vertices inV ∪T are associated with points of the free space. More precisely, vertexvxij
is associated with the pointxij (wherex is one of{a, b, c, d}). Vertextxijk is associated with the projection
of pointxij onto the interval[akj, bkj] (x ∈ {a, b}), and vertextyijk is associated with the projection of point
yij onto the interval[cik, dik] (y ∈ {c, d}). We definef(v) = p, wherep is the point associated with vertex
v.

Let V 1
ij = {vaij , vbij} ∪

⋃

l<i≤rt(alj)
talji ∪

⋃

l<i≤rt(blj)
tblji and V 2

ij = {vcij , vdij} ∪
⋃

l<j≤ut(cil)
tcilj ∪

⋃

l<j≤ut(dlj)
tdilj. V 1

ij denotes the set of vertices associated with points on the line segment from(i, j) to

(i, j + 1). Similarly,V 2
ij denotes the set of vertices associated with points on the line segment from(i, j) to

(i+ 1, j). In addition,V 1
ij andV 2

ij contain vertices associated with points whosetunnelscross the cellCij.

We now describe the construction of the edge set for each(i, j). Firstly, setE1
ij = {(v, vbij) | v ∈ V 1

ij}
and setE2

ij = {(v, vdij) | v ∈ V 2
ij} For eachv ∈ V 1

ij, let n(v) = argminv′∈V 1
i+1,j

,f(v′)≥v f(v
′) Similarly,

for eachv ∈ V 2
ij, letn(v) denote the vertex inV 2

i,j+1 having the same property. LetE3
ij = {(v, n(v)) | v ∈

V 1
ij ∪ V 2

ij}. Finally, setE4
ij = {(vbij , vci,j+1), (v

d
ij , v

a
i+1,j)}. Now, we setEij = E1

ij ∪ E2
ij ∪E3

ij ∪ E4
ij .

Let E =
⋃

i,j Eij . This yields the directed graphG = (V ∪ T,E). Note that|V ∪ T | = O(pq(p + q))
and|E| = O(pq(p + q)). Also, it is easy to see that for any edge(u, v) ∈ E, the straight line fromf(u)
to f(v) is an (x, y)-monotone path. We first show that reachability in the graphG is equivalent to path
construction inFε. The proof of this theorem is straightforward and is deferred to Appendix C.

Theorem 4.2 An (x, y)-monotone path from(0, 0) to (p, q) exists inFε iff vbpq is reachable fromva00 and
f(va00) = (0, 0), f(vbpq) = (p, q).

For every edgee ∈ E, let γ(e) ⊆ R
2 be the set of translationst such that in the graphG constructed

4The termrt denotes aright tunnel; ut denotes anupper tunnel.

COMPUTING THE FRÉCHET DISTANCE UNDER TRANSLATION 9

from the free spaceFε(P,Q + t), the edgee is present. LetΓ be the arrangement of all theγ(e). We first
establish a bound on the complexity ofΓ.

The following three propositions (which we state without proof), follow from Proposition 4.1. Roughly
speaking, with each edgee we can associate a boolean combination of predicatesP1, P2, . . . , Pk, where
each predicate compares some constant degree polynomial tozero. (i.e the regions are semi-algebraic sets).
• For any regionγ(e), the boundaries consist of segments of curves described by constant degree polyno-
mials.
• For an edgee ∈ Eij−T×T , the regionγ(e) is a constant number of simple regions of constant description
complexity.
• For an edge of the form(txijk, t

x
ijk+1), x ∈ {a, b, c, d}, the regionγ(e) consists of a set of simple regions

of total description complexityk.

Lemma 4.3 |Γ| = O(p2q2(p+ q)4).

Proof Sketch: There areO(pq(p+ q)) edges. For each edgee, the complexity of the associated region can
be at mostO(p+ q). Since any pair of constant degree polynomials intersect ina constant number of points,
the overall complexity ofΓ is given by(pq(p+ q)× (p + q))2.

Lemma 4.4 Letγk = γ((txijk, t
x
ij,k+1)), wherex ∈ {a, b, c, d}. Then for alll such thati ≤ l < k, γk ⊆ γl.

Proof: Whenever the edge(txijk, t
x
ijk+1) is present, all edges of the form(txij,l, t

x
ijl+1), i ≤ l < k must also

be present.

Theorem 4.2 indicates that the graph property that we need tomaintain is the reachability ofvbpq from
va00. The algorithm is now as follows: Fix a traversal of the arrangement of regions. Check reachability at
the starting cell. Each time an edge is crossed in the traversal, it corresponds to the deletion (and insertion)
of edges in the graph, which we use to update the graph and check for reachability. Stop whenever the above
property holds, returning YES, else return NO.

Theorem 4.5 Iff there exists a translationt such thatdF (P,Q+ t) ≤ ε, the above algorithm will terminate
with a YES.
Proof: Consider a type 1 critical event, where the intervalaij , bij is created. This interval corresponds to the
edge(vaij , v

b
ij). Hence, this event corresponds to entering the region associated with the above edge. Similar

arguments hold for other type 1 critical events.
Suppose we have a type 2 critical event, where the pointakj rises aboveaij (in their relative vertical

ordering). Note that this event does not change the reachability of (p, q) in the free space unless rt(aij) >
k. If this is the case, then the event results in setting rt(aij) = k, implying that all edges of the form
(taijl, t

a
ij,l+1), l ≥ k are deleted, which corresponds to leaving the regions corresponding to this set of edges5.

Conversely, it can be seen that any transition from one cell of the arrangement to another corresponds to
a critical event. We defer the details to a full version of thepaper.

It now remains to analyse the complexity of the above algorithm. A transition between cells yieldsO(1)
updates, except in the case described in Theorem 4.5 above, where a transition occurs across the boundary
of regionr((taij,l−1, t

a
ijl)) into the regionr((taij,k−1, t

a
ijk)), causingΘ(l − k) updates. However, note that in

this event, it must be the case that all the regionsr((taij,m, t
a
ij,m+1), k ≤ m < l−1 intersect at this transition

point (from Lemma 4.4), and thus the cost of this transition can be distributed among these cells. Hence, the
total number of updates is given by Lemma 4.3.

To determine reachability, we must now traverse the arrangement. For ease of notation, we will assume
that p = Θ(q) and setn = p + q. The arrangement consists ofO(n3) regions, each described byO(n)

5Note that since the regions corresponding to this set of edges are nested (by Lemma 4.4), such a transition is indeed possible.
In fact, the existence of such a critical point implies that all of these regions intersect in at least one point that is also contained in
r((taij,k−1, t

a
ijk)). The critical event can be interpreted as the result of the translation across this point.

COMPUTING THE FRÉCHET DISTANCE UNDER TRANSLATION 10

curves of constant description complexity. Let us fixr (we will specify the value ofr later). It can be shown
(using the theory of cuttings [17, 19]) that we can compute a subsetR of the regions of sizeO(r log r) with
the property that if we compute the vertical decomposition of eachsuper-cellin the arrangement ofR, each
of the resultingprimitive super-cells(of constant complexity) is intersected byO(n3/r) regions.

Lemma 4.6 Given a graphG = (V,E), |V | = N, |E| = M , designated nodess, t ∈ V , and a set of
k edgesE′ ⊂ E, s-t reachability inG can be maintained over edge insertions and deletions fromE′ in
total timeO(min(Nω,Mk) + k2U), whereU is the number of such updates (ω is the exponent for matrix
multiplication).

Proof: Let V ′ be the set of endpoints of edges inE′. We compute the graphG′ = (V ′′ = V ′ ∪ {s, t}, E′′),
where(u, v) ∈ E′′ if there is a directed path fromu to v in G. Note that|V ′′| ≤ 2k. The computation of
this graph can be done by performing a full transitive closure onG that takes timeO(nω). Alternatively, we
can performO(k) depth-first searches (one from each vertex inV ′′) to constructG′.

Now, to process updates, we update the graph using a standarddynamic update procedure that takes
timeO(k2 log k) time (amortized) per update[24], yielding the result.

The algorithm now proceeds as follows: Each primitive super-cell has a set of edges associated with it
(one for each region that intersects it). We use the above lemma to perform an efficient dynamic reachability
test for each cell of the original arrangement in this primitive super-cell. When we move to the next primitive
super-cell, we recompute the induced graph and repeat the process.

We now compute the value ofr. The total number of cells in the arrangement isO(n8) by Lemma 4.3.
There areO(r2n2 log2 r) primitive super-cells, each intersected byO(n3/r) regions. Consider a single
primitive super-celli. We apply Lemma 4.6 withN = M = O(n3), k = O(n3/r), andU = Ui, whereUi

is the number of cells ini. The current value ofω is approximately2.376 [18], and thusmin(Nω,Mk) =
Mk = n6/r for all r = Ω(1). The cost of processingi is thereforen6/r + n6Ui/r

2. Summing over all
primitive super-cells, and replacingΣUi by O(n8), we obtain the overall running time of the algorithm to
beO(n8r log2 r + n14/r2). Balancing, we obtain an overall running time ofO(n10polylogn).

Theorem 4.7 Given two polygonal chainsP,Q, |P | = p, |Q| = q, andε > 0, we can check ifdF (P,Q) ≤ ε
in timeO(n10polylogn).

The weak Fréchet distance As described earlier, the weak Fréchet distance (denoted by dF̃) relaxes the
constraint that the parametrizations employed must be monotone. Note that for any two curvesP,Q, the
following inequality is true:dH(P,Q) ≤ dF̃ (P,Q) ≤ dF (P,Q) Also, by the result of Godau [20], all three
measures collapse to one if both curves are convex. The aboveinequality is significant because it suggests
that the weak Fréchet distance may serve as a relaxed curve matching measure with possibly more tractable
algorithms.

As it turns out, this is indeed the case. Our techniques from the previous algorithm apply here as well,
with two key differences. Firstly, since the paths need not be monotone, we no longer need the concept
of a tunnel, thus reducing the number of critical events thatneed to be examined toO(pq). Secondly, the
underlying graph is now undirected, and there are efficient procedures for maintaining connectivity in an
undirected graph [22]. We defer details to a full version of the paper, and summarize the result as:

Theorem 4.8 Given two polygonal chainsP,Q, |P | = p, |Q| = q, andε > 0, we can check ifmint dF (P,Q+
t) ≤ ε in timeO(n4polylogn), wheren = O(p+ q).

An approximation scheme An (ε, β)-approximation (defined by Heffernan and Schirra [21]) fordF (P,Q)
under translations can be obtained from the following observation:

Lemma 4.9 Given polygonal chainsP,Q, let t be the translation that maps the first point ofQ to the first
point ofP . ThendF (P,Q+ t) ≤ 2d∗, whered∗ = mintranslationst dF (P,Q+ t).

COMPUTING THE FRÉCHET DISTANCE UNDER TRANSLATION 11

Proof: Let t∗ be the translation such thatdF (P,Q + t∗) = d∗. Clearly, the first point inQ is at mostd∗

away from the first point ofP . Applying the translationt′ = t− t∗ toQ, no point inQ is moved more than
d∗ units away from its associated point inP . Hence,dF (P,Q+ t∗ + t′) = dF (P,Q+ t) ≤ 2d∗.

Applying the standard discretization trick in a ball of radius d∗ around the first point ofP , we obtain an
(ε, β)-approximation for anyβ > 0. Note that this scheme is very efficient, running in timeO(n2poly(log n,
1/β)).

REFERENCES 12

References

[1] K. Abrahamson, Generalized string matching,SIAM Journal on Computing, 16 (1987), 1039–51.

[2] Pankaj K. Agarwal and Micha Sharir and S. Toledo, Applications of parametric searching in geo-
metric optimization,J. Algorithms, 17 (1994), 292–318.

[3] H. Alt and M. Godau Computing the Fréchet distance between two polygonal curves,International
J. of Computational Geometry and Applications5 (1995), 75–91.

[4] A. Amir, M. Farach, Efficient 2-dimensional approximatematching of half-rectangular figures,In-
formation and Computation, 118 (1995), 1–11.

[5] Gill Barequet and Sariel Har-Peled, Some Variants of Polygon Containment and Minimum Haus-
dorff Distance under Translation are 3sum-Hard,ProceedingsthAnnual ACM-SIAM Symposium on
Discrete Algorithms1999.

[6] D. Cardoze, L. Schulman, Pattern Matching for Spatia l Point Sets, Proc. 39th FOCS, 1998.

[7] L.P. Chew and K. Kedem, Improvements on geometric pattern matching problems,Proceedings 3rd
Scand. Workshop on Algorithms Theory, LNCS #621, 1992, 318–325.

[8] L.P. Chew, D. Dor, A. Efrat, and K. Kedem, Geometric Pattern Matching ind-Dimensional Space,
Proceedings of the 3rd European Symposium on Algorithms (ESA)LNCS #979, 1995, 264–279.
Also in Discrete and Computational Geometry, to appear.

[9] L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets, Geomet-
ric pattern matching under Euclidean motion,Computational Geometry: Theory and Applications7
(1997), 113-124.

[10] M. Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Mathematico di
Palermo22 (1906), 1–74.

[11] P. Indyk, R. Motwani, S. Venkatasubramanian, Geometric Matching Under Noise: Combinatorial
Bounds and Algorithms, 10th Symposium on Discrete Algorithms (SODA), 1999.

[12] K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free transla-
tional motion amidst polygonal obstacles,Discrete and Computational Geometry1 (1986), 59–71.

[13] S. R. Kosaraju, Efficient string matching. manuscript,1987.

[14] W. Rucklidge, Lower Bounds for the Complexity of the Hausdorff Distance, Proceedings
5thCandian Conf. Computational Geometry1993, 145–150.

[15] H. Alt, J. Blömer, M. Godau, and H. Wagener. Approximation of convex polygons. InProc. 17th
International Colloquium on Automata, Languages and Programming, volume 443 ofLNCS, 703–
716. Springer-Verlag, 1990.

[16] P. Bogacki and S. Weinstein. Generalized fréchet distance between curves. In M. Daehlen, T. Lyche,
and L. L. Schumaker, editors,Mathematical Methods for Curves and Surfaces II, 25–32. Vanderbilt
University Press, 1998.

[17] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer.Discrete Comput. Geom., 9(2):145–
158, 1993.

[18] D. Coppersmith and S. Winograd. Matrix multiplicationvia arithmetic progressions.Journal of
Symbolic Computation, 9:1–6, 1990.

REFERENCES 13

[19] M. de Berg and O. Schwarzkopf. Cuttings and applications. Internat. J. Comput. Geom. Appl.,
5:343–355, 1995.

[20] Michael Godau.On the complexity of measuring the similarity between geometric objects in higher
dimensions. PhD thesis, Department Mathematik u. Informatik, Freie Universitt Berlin, December
1998.

[21] P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congruence.Compu-
tational Geometry: Theory and Applications, 4(3):137–156, 1994.

[22] J. Holm, K. Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge and biconnectivity. In Proc. 30th ACM Symposium
on Theory of Computing, pages 79–89. ACM, 1998.

[23] S. Khanna, R. Motwani, and R. Wilson. On certificates andlookahead in dynamic graph problems.
Algorithmica, 21(4):377–394, 1998.

[24] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure
in digraphs. InProc. 40th IEEE Symposium on Foundations of Computer Science. IEEE, October
1999.

[25] S. Venkatasubramanian.Geometric Shape Matching and Drug Design. PhD thesis, Department of
Computer Science, Stanford University, August 1999.

[26] A. Winzen and H. Niemann. Matching and fusing 3D-polygonal approximations for model gen-
eration. InProc. IEEE International Conference on Image Processing, volume 1, pages 228–232,
Austin, Texas, 1994.

REFERENCES 14

A Proof of Lemma 2.1

Definition A.1 For a geometric objectR let X(R), the x-span ofR, denote the interval of thex-axis
between the leftmost and the rightmost point ofR′, whereR′ is the orthogonal projection ofR on thex-axis.

Claim A.2 LetP = {(x1, y1), . . . (xm, ym)} be a point set. We can construct in timeO(m log2m) a data
structure forP such that given a query segments, the point(xk, yk) that maximizes they-value of the set
{s(xi) + yi | xi ∈ X(s), 1 ≤ i ≤ m} can be found in timeO(log2m).
Proof: If X(P) ⊆ X(s), then(xk, yk) is clearly a vertex of the convex hull ofP , and once the convex
hull is computed, we can find(xk, yk) in time O(log n). To answer the query in the case thatX(P) is
not contained inX(s), we construct a sorted balanced binary treeΨ = Ψ(P) on the set{x1 . . . xm}. For
each nodeµ ∈ Ψ let Pµ denote the points in the subtree ofµ, and letXµ denote thex-span ofPµ. We
constructCµ, the convex hull ofPµ, for each nodeµ of Ψ. Once a query segments is given, we find a set
U of O(log |P |) nodes ofΨ with the property that for each nodeµ ∈ U , Xµ is contained inX(s), and in
addition, each(xi, yi) ∈ P for which xi ∈ X(s) appears in exactly one of the setsPµ, for µ ∈ U . We
perform the query suggested by the previous claim onCµ for eachµ ∈ U .

Based on Claim A.2, we describe the data structure as follows. Let m = |S|. First observe that the
maximum must be obtained at an endpoint of a segment ofS. We partitionS into S1 andS2. The set
S2 contains at leastm−√m of the segment ofS. It is updated after

√
m insertions or deletion operations

into/fromS Once it is updated, we explicitly compute the functionsumS1
(·), and construct the data structure

Ψ = ΨS1
of Claim A.2 for the vertices of the graph ofsumS1

(·). As easily observed, the complexity of the
graph ofsumS1

(·) is O(m), since a vertex of this function occurs only at endpoint of a segment ofS1, thus
the time needed to constuctΨ = ΨS1

. The setS2 = S \ S1 has cardinality≤ √m. Each time a segment is
inserted (resp. deleted) into/fromS, it is inserted (resp. deleted) into/fromS1. Once the size ofS1 exceeds√
m, we setS1 to beS, constructΨ, and emptyS2.

In order to maintain the maximummax(sumS(·)), we do the following. Once a segment is inserted
or deleted intoS1, we explicitly compute (the graph of)sumS(·) which is piecewise linear of complexity
O(
√
m). With each segmente of this graph (not to be confused with the segments ofS) we perform a query

in ΨS1
. The maximum obtained is ismax(sumS(·)).

Next we describe the modifications of the data structure needed in the case where (some of) the segments
of S move vertially in a constant speed with the time parameterτ . Let X ′ = {x1 . . . xm} denote thex-
coordinates of the endpoints of the segments ofS. They are not time dependent. Lety(x, τ) denote the
y-value of the sum function at the coordinationx at timeτ . Clearly as long as no insertions or deletions
are taken place inS, y(x, τ) moves (vertically) at a constant velocity. It is well known fact that the convex
hull of such a set of points can go throughO(m) combinatorial changes, which we can compute in time
O(m logm). This suggest the following modification to the data structure ofT as follows. As before, each
nodeµ is associated as before with the convex hullCµ = Cµ(t), but now these convex hulls might change
in time. However, as argued, the total number of changes theygo through is onlyO(m log2 m). The query
process remains the same.

B Proof of Theorem 2.4

Assume for the construction thatε = 1/2. The first component in the construction (see Figure 3) is theset
B′

1 consisting of2n points, which are

{(i, 1/2 − i/n) and (i,−1/2 − i/n − 1/4n2), fori = 1 . . . n} .

Thus theith pair (i, 1/2 − i/n)+ and (i,−1/2 − i/n − δ)+ (i.e., the Minkowski sum of these points and
theℓinfty ball) form two close vertically aligned squares, where the gap between them is of unit width, and
of height1/4n2. Theith pair is located at distancei/n below thex-axis. We add the segmentB′′

1 , which

REFERENCES 15

��
��
��
��
��
��
��
��

��
��
��
��

of length2n. The vertical distance

y-axis

A1 consists of a set ofn segment

between consequtive segments is1/n2.

B4 consists ofn points (not shown), which

B′′′

1
is a segment of lengthnB′′

1
is a segment of lengthn

are the centers ofn unit squares.

B′

1
consists ofn pais of points

A2 is a set ofn point,
whose distance is1/n from each other

x-axis

Figure 3: The lower bound construction forn = 3. The setB is not shown explicitly; onlyB+ is shown.

is the long horizontal segment between the points(−n,−1/4) and(0,−1/4) and the segmentB′′′
1 between

(n,−1/4) and(2n,−1/4). LetB1 = B′
1 ∪B′′

1 ∪B′′′
1 .

The setA1 consists ofn horizontal segments of length2n, each separated by a gap of1/n2 from the
next one. The left endpoint of all of them is on they-axis, and the middle one is on thex-axis. By shifting
them vertically, each segment in turn is not completely covered at some time, when it passes between the
gaps between one of the pairs ofB1. In all other cases, all the segments are completely covered. The region
in TP corresponds to all translationst for which h(t + A1, B1) ≤ 1 consists ofΩ(n2) horizontal strips,
each of lengthn.

The setB2 consists of then points (−(1 + 1/n2)i,−5) (for i = 1 . . . n). ThusB+
2 createsn unit

squares along the liney = −5, with a gap of1/n2 between them. The setA1 consist ofn points along
the horizontal line(−1/2n,−5) (for i = 1 . . . n). Observe thatA1 fits completely into each of the squares
of B+

2 . However, by slidingA1 horizontally, alongy = −5 or anywhere at distance≤ 1 from h, each of
the points ofA1 “falls” at some stage into each of the gaps between each of thesquares ofB+

2 , The region
S2 = {t |h(t+A2, B2) ≤ 1} consists ofΩ(n2) vertical strips inTP , each of hight2. LettingA = A1 ∪A2

andB = B1 ∪ B2, the regionS = {t |h(t + A,B) ≤ 1} is merely the intersection ofS1 andS2, which is
clearly of complexityΩ(n4), thus proving our claim.

C Proof of Theorem 4.2

Supposevbpq is reachable fromva00 and f(va00) = (0, 0), f(vbpq) = (p, q). Let the path inG be v1 =

va00, v2, . . . , vk = vbpq. Replace each vertexvi by its associated pointf(vi). As observed above, if we now
connect the pointsf(v1), f(v2), . . . , f(vk) by straight lines, we obtain an(x, y)-monotone path.

Conversely, suppose there exists an(x, y)-monotone pathw from (0, 0) to (p, q) in Fε. Then(0, 0) ∈
C00 and(p, q) ∈ Cp−1,q−1 and thusf(va00) = (0, 0) andf(vbpq) = (p, q). Without loss of generality, we can
assume thatw consists of a sequence of line segments, where the endpointsof each segment are one of the
xij ’s (x = {a, b, c, d}).

We will show by induction on the number of segments thatvbpq is reachable fromva00. Assume that the
claim holds for the firstk segments on the path. Consider the(k + 1)th segment. Let the endpoints be
w1, w2. By the induction hypothesis,w1 is reachable fromva00.

Case 1: Let bothw1, w2 be of the formxij , ykj respectively, wherex, y ∈ {a, b}. If rt(f(w1)) ≥ k,

REFERENCES 16

then the vertextxijl exists for alll ≤ k, and thus there exists a pathw1, t
x
ij,i+1, . . . , t

x
ijk. Sincef(txijk) is

on the same interval asf(w2) and must be below it, there exists an edge fromtxijk to w2 in E2 . If on the
other hand, rt(f(w1)) < k, there must exist one vertexw′ = xlj, i < l < k such thatf(w′) > f(w1), and
rt(f(w1) ≤ l. We construct a path fromw1 to w′ and repeat.

Case 2: Let bothw1 andw2 be of the formxij , yik respectively, wherex, y ∈ {c, d}. An argument
similar to Case 1 applies here.

Case 3:Letw1 = aij andw2 = dkl. Without loss of generality we can assume thatk = i andl = j+1.
There exists an edge fromvaij to vbij), which is a predecessor ofvci,j+1) (usingE4), and there exists an edge
from vci,j+1) to vdkl, thus yielding the desired path. Other cases can be handled symmetrically.

Thus, by induction the theorem holds.

