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Abstract

In this paper we present algorithms for a number of problengebmetric pattern matching where
the input consist of a collections of segments in the planar Wbrk consists of two main parts. In
the first, we address problems and measures that relateléottahs of orthogonal line segments in the
plane. Such collections arise naturally from problems ippirag buildings and robot exploration.

We propose a new measure of segment similarity calledvarage measuyand present efficient
algorithms for maximising this measure between sets ofpaiallel segments under translations. Our
algorithms run in timeD(n3polylogn) in the general case, and run in tirGén2polylogn) for the case
when all segments are horizontal. In addition, we show thHagmwrestricted to translations that are
only vertical, the Hausdorff distance between two sets oizbotal segments can be computed in time
roughlyO(n3/2?polylogn). These algorithms form significant improvements over theega! algorithm
of Chew et al. that takes tim@(n* log® n).

In the second part of this paper we address the problem ohingtpolygonal chains. We study the
well known Fréchet distance , and present the first algorfibr computing the Fréchet distance under
general translations. Our methods also yield algorithmsdonputing a generalization of the Fréchet
distance, and we also present a simple approximation #hgoifior the Fréchet distance that runs in
time O(n?polylogn).
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1 Introduction

Traditionally, geometric pattern matching employs as asueaof similarity the Hausdorff distance h(A,B),
defined asi(A4, B) = max,c4 mingep d(p,q) for two point setsA and B. However, when the patterns to
be matched are line segments or curves (instead of poihis)neasure is less than satisfactory. It has been
observed that measures like the Hausdorff measure thaefired on point sets are ill-suited as measures
of curve similarity, because they destroy the continuityeirent in continuous curves.

This paper addresses problems in geometric pattern mgteliiare the inputs are sets of line segments.
Our work consists of two main parts; in the first part we coasttie problem of matching (under translation)
segments that are axis-parallel (i.e either horizontalestical), and in the second we consider the problem
of matching polygonal chains under translation. We study different measures in this context; the first is
a novel measure called tlowverage measuyevhich captures the similarity between orthogonal segment
that may partially overlap with one another. The other isvilel known Fréchet distance, first proposed by
Maurice Fréchet in 1906 as a measure of distance betwekibdi®ns, which has often been referred to as
a natural measure of curve similarify [3] {6}, 26]. We disceessh measure in detail below.

1.1 Mapping and orthogonality

The motivation for considering instances of pattern maughivhere the input line segments are orthogonal
comes from the domain ahapping in which a robot is required to map the underlying structofea
building by moving inside the building, and “sensing” orddying” its environment.

In one such mapping project at the Stanford Robotics labofhthe robot is equipped with a laser
range finder which supplies the distance from the robot togerest neighbor in a dense set of directions
in a horizontal plane. We call the resulting distances majcture Figure[l(a) shows the robot used at
Stanford for this purpose the laser range finder installethemobot.

During the mapping process, the robot must merge into assimgbp the series of pictures that it captures
from different locations in the building.

(@) (b) ()

Figure 1: Left: The robot, and the laser range finder inglatle it. Middle: Typical “picture” obtained by
the robot of a corridor (after segmentation). Right: Theidor itself

Since the dead reckoning of the robot is not very accuratanihot rely solely on its motion to decide how
the pictures are placed together. Thus, we need a matchouggs that can align (by using overlapping
regions) the different pictures taken from different psiaf the same environment. In addition, we need to
determine whether the robot has returned to a point alreaited. We make the reasonable assumption
that buildings walls are almost always either orthogongbamallel to each other, and that these walls are

! The interested reader can find more information at the WRilerdog.stanford.edu
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frequently by far the most dominant objects in the picturBtis is especially significant in the case that the
robot is inside a corridor, where there is a lack of detaildegkfor good registration. In some cases most
of the picture consists merely of two walls with a small numbkeother segments. See Figlte 1(b),(c) for a
typical picture and the real region that the laser range findpses.

This application suggests the study of matching sets okbntal and vertical segments. Observe that
we may restrict ourself to alignments undemslation as it is easy to find the correct rotation for matching
sets of orthogonal segments. Formally,det= {a; ...a,} andB = {b1,...b,} be two sets of orthogonal
line segments in the plane, and 4dbe a given parameter. A poiptof a horizontal (resp. vertical ) segment
a € A is coveredif there is a point of a horizontal (resp. vertical) segmerg B whose distance from
p is < &, where the distance is measured using#henorm. Letw(A, B) denote the collection of sub-
segments ofl consisting of covered points. L&loV A, B) be the total length of the segmentswefA, B).
The maximum coverage problem to find a translation* in the translation planeT{P ) that maximizes
Co(t) = Co(t + A, B). To the best of our knowledge, this measure is novel.

The coverage measure is especially relevant in the case@&lgments e.g. inside a corridor, when we
might be interested in partially matching portions of loegments to portions of other segments.

Our Results In Section[R we present an algorithm that solves the Covepagielem between sets of
axis-parallel segments in ting@(n? log? n) and the Coverage problem between horizontal segmentsén tim
O(n?logn) Note that the known algorithms for matching arbitrary séténe segments are much slower.
For example, the best known algorithm for finding a transtatihat minimizes the Hausdorff Distance
between two sets of segments in the plane runs in tirgén* log? n) [B, []. We also show that the that the
combinatorial complexity of the Hausdorff matching betwesegments i§)(n*), even if all segments are
horizontal This strengthens the bounds shown by Rucklidgg [14], amdodstrates that our algorithms,
much like the algorithms of JT) 8] are able to avoid havingstaraine each cell of individually. Note that

all our results extend to the case when segmentsvaightedand the coverage is now a weighted sum of
interval lengths.

In Section Sectiof]3 we consider the related problem of niragchorizontal segments under vertical
translations (under the Hausdorff measure). It has beesradud that if horizontal translations are allowed,
then this problem is 3SUM-hard][5], indicating that findingub-quadratic algorithm may be hard. How-
ever, we present an algorithm running in tifén3/2 max{log® M, log®n, 1/£°))}, for some fixed constant
¢, which is sub-quadratic in most cases. Helvé,denotes the ratio of the diameter to the closest pair of
points in the sets of segments (where pairs of points mushlidifferent segments).

1.2 The Fréchet distance

In the second part of the paper, we consider measures fohimgtpolygonal chains under the Fréchet
distance. Let us define a curve as a continuous mappinda, a’] — R2. The Fréchet distance between
two curvesP and@, dr (P, Q) is defined as:

4r (P.Q) = inf maxx [ f(a(1)) — gla(®)]

wherea, 3 range over continuous increasing functions fiom| — [a,a] and[0, 1] — [b, '] respectively.

Alt and Godau proposed the first algorithm for computing thiecRet distance between two polygonal
chains (with no transformations). Their method is elegadtsimple, and runs in tim@(pq), wherep andg
are the number of segments in the two polygonal chains. IRHB thesis[J30]. Michael Godau presents an
extensive study of the complexity of computing the Frédlistance. He shows that computing the Fréchet
distance between two simplicial objects is NP-hard, for @inyensiond > 3.

Although the Fréchet distance is a natural measure forecsinailarity, its applicability has been limited
by the fact that no algorithms exist to minimise the Frécligtance between curves under various transfor-
mation groups. Prior to our work, the only result on compuitine Fréchet distance under transformations
was presented by Venkatasubramanijaf [25]. He compuiegrp, dp(P,Q + t) < &, whereT P, is the
set of translations along a fixed direction, in tién°polylogn) (wheren = p + ¢). In fact, our methods



MAXIMUM COVERAGE AMONG SETS OF SEGMENTS 3

can be viewed as a generalization of his methods and can detaiselve his problem in the same time
bound.

Our Results In Section[§# we present the first algorithm for computing thecRet distance between two
polygonal chains minimized under translatign¥he algorithm is based on a reduction to a dynamic graph
reachability problem; its running time &(n'°polylogn).

If we drop the restriction that the functions 5 must be increasing, we obtain a measure that we call the
weakFréchet distance , denoted ¢y. Our methods can be used to decide whethiet,crp dz (P, Q+t) <
e; in this case, the underlying graph is undirected, yieldingalgorithm that runs in timé(n*polylogn).

With the exact algorithms being rather expensive, it is r@tto ask whether approximations can be
obtained efficiently. A simple observation shows that we @atain an(s, 3)-approximation to the Fréchet
distance under translations in tintgn?poly(logn, 1/3)).

2 Maximum Coverage Among Sets Of Segments

LetA ={a;...a,} andB = {b1,...b,} be two sets of axis-parallel line segments in the plane, eind |
be a given parameter. Recall the coverage meaSarveA, B) as defined in the introduction.

2.1 Computing coverage with axis-parallel segments

We first consider the case that the sdtand B consists of both horizontal and vertical segments. A'et
(resp.B") be a set of, horizontal segments and ld’ (resp.B") be a set of. vertical segments. Letbe
a given parameter. Let = A" U AV and letB = B" U B". Let Cout + A, B) = Cou t + A" B") +
Cout + AY, BY).

We first need the following lemma, whose proof is deferred ppéndix[A. LetS = {s;...s,,} be a
set of non-vertical segmentsk¥. For each segment € S we define the functions;(z) — R as follows:
For everyz € R, s;(x) is they-coordinate of the intersection point ©&nd the vertical line passing through
x, if such an intersection point exists. We sgfr) to be0 otherwise. Letsung(z) = ¥, s;(x), and let
max(sunk(-)) = maxger SUNE(x). Furthermore, leT” = T'(7) be a subset af consisting of horizontal
segments that can move vertically at constant speed i.g-thrdinates of the endpoints of eaghe T
are given byy = a;7 + b;.

Lemma 2.1 Given a set of non-vertical segmestwith a subsefl” of horizontal moving segments, we can
maintainmax(sung(-)) under segment insertions or deletions in amortized tidig/[S|) per operation.
In addition, we can maintaimax(sum(-)) under atime-decreasingtep ¢ <— 7 — A) in O(1) time.

Theorem 2.2 We can find a translation that maximizes<Co\t + A, B) in time O(n?® log® n), wheren =
|A] + [ B

Proof:. The proposed algorithm is a line-sweep algorithm, with teep line moving from top to bottom.
For a segment; € B letb;” denote the rectangle consisting of all points whésefty distance fronb; is

at moste. Let B+ denote the uniokJ;i_, b;. Note that any two rectanglég’, b;" intersect in at most two
points, so by[[12] the complexity of the boundary®f is O(n). ConsiderE = {p; ...pa,}, the set of the
2n endpoints of the segments df Define thelayer L; = B+ — p;, which is the region in thdP of all
translationg that shiftp; into B i.et + p; € B*. Let B" (resp.Bv) be the collection of layers created by
the horizontal (resp. vertical) segmentsAf As the line sweep traverses the translation plane fromdop t
bottom, we encounter events whérimtersects a horizontal boundary segment of eitbfeor V.

Horizontal Boundaries Of B": Let CoVx) : R — R be the value oCoWt + A", B"), wheret is the point
on ¢ vertically abover. Consider the contribution t€oVt + A", B") from the interaction between the

2Actually, we solve the decision version of the problem: Fgivene, determine whethenin,crp dr (P, Q 4 t) < ¢.
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segments, € A" b € B". This contribution to the function consists of a piecewisear function, consists

of five segments: Itis zero for value ofwhich are very far from the regions of interaction betweeandb,

it is a constant that equals the minimum of the length ahdb whenz is near the region of intersection, and

it consists of two segments of slopes arend—1, connecting these segments. These segments exist for all
instances of the line sweep where its horizontal distan¢keet®oundary of the rectangle &f; corrsponds

to a; is < e. There are)(n?) update operations, and each update can be procesédd Ing? n) time from
Lemma Lemm4 2]1.

Horizontal Boundaries Of B“. For two vertical segmenis; € A, b; € B, let7;; be the set of translations
for which the horizontal distance from; to b; is at moste. Assume w.l.o.g thala;| > |b;|. LetUD;;
denote all translationsfor which the upper endpoint af; is covered by + b;, (i.e. its distance from some
point of t 4 b; is at moste) but the lower endpoint af; is not covered. Similarly, leDOW N;; denote all
translationst for which the lower endpoint of; is covered byt + b;, but the upper endpoint af; is not
covered and led/ 1 D;; denote all translationsfor which both endpoints aof; are covered.

ThusCot + a;, b;) is zero whent ¢ UP;; U M1D;; U DOW N;j, CoUt + a;, b;) is a constant when
t € MI1D;;, and it is a decreasing (resp. increasing) linear functiat depends only on thecoordinate
of t whent € UP;; (resp.t € DOW N;;). Therefore, we can represent the contributiorupindb; to
CoVa;,t + b;) by a horizontal segment;;(7) of length2e that starts ay = 0 and moves upwards with
constant velocity as the line sweep interse®@W N;;. It remains constant at a maximum height/as
passes thri/1D;; and moves downwards to 0 &passes throughtl F;;.

This suggests the following operations on the data strastursing Lemmf 3.1. Consider the rectangle
b; of the vertical decompostion df;, (which corresponds to translations for whichis in the vicinity of
b;). We divideb; into three rectangles;; ;7p, b;; mrrp andb;; pow v, Which are the intersection regions
of b; andU P;;, M1D;; and DOW N;;. As the linesweep hits the upper boundary of a rectabglep,
we insert the moving segment;(7) into 7'(7). When/ reaches the upper boundarytef s;p We insert
a horizontal moving segment; () chosen such that that; () + u;;(7) equalsMaz;;. This is done in
order to avoid deleting or changing;(7). When/ reaches the upper boundary f pow n, we insert
into 7'(7) the segment.;;(7) which is also decreases linearly aglecreases, and is choosen such that

u(T)ij + ' (7)ij + uf; (1) equalsCoua;, t + b;) at this translatiort, t € DOW N;;. Overall, we add three
(moving) segments for each rectangles.gfand since the number of these rectangled(is?), it follows

that the overall running time of the algorithman3log?n). Note also that at each update, we decrease
the current “time”r; this is a constant time operation per update. u

2.2 Maximum coverage for horizontal segments

This is a line-sweep algorithm reminiscient of the Chew-&®md[7] and Chewet al. [B] algorithm for
computing the similarity between point-sets in the plamejex the/., norm. As in Sectiof 2]1, we define
layers L; for each endpoinp; of segments imM. Construct a horizontal decomposition bf, breaking it
into a collectionB; = {5;1 B;2 . ..} of O(n) interior-disjoint rectangles.

Let S denote the set ofertical segments on the boundaries of the layey¢for i = 1...2n). Let T be
a segment tree constructed on the segment d@uring the algorithm we sweep the translation pldme
using a vertical sweep liné Oncel meets a segmentc S, we inserte into 7. No segment is deleted.

Let 1 be a node off. Let I, be the horizontal infinite strip whogespan is the interval of. and let
S, € & denote the segments on or to the left’offhich correspond te i.e. the segments whogespan
containsl,, but not/;.,(,)- We maintain the following fields with each nogeof 7. All of these are set
to zero at the beginning of the algorithm:

e last,: the lastr event at which a segment was inserted ififo

e Pos,: the number of segments H), resulting from the right (resp. left) endpoint of a segmemrt A
meeting a left (resp. right) vertical segment of some layég.call such an eventRositive event

e Neg,: the number of segments ), resulting from the left (resp. right) endpoint of a segment A
meeting a left (resp. right) vertical segment of some layé.call such an eventldegative event
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e w,: The maximal coverage obtained by segments storéy] dtelf.

e Cov,: The maximal coverage obtained by events of “segmentsédtat the descendants nodeg.of
including p itself.

Performing an insertion: Once/ hits a new segment € S, we first find all nodeg: for whichs € S, as

in a standard segment tree. Next, for each such podee increase eithePos, or Neg,, by one, according
to the type ofs. Next we add tav, the quantity(Pos, — Neg,,)d, whered is the horizontal distance from
the previous insertion event intg),, (stored afast,,) till the current position of thé. We updateCoy, for
eachy in bottom-up fashion, namelyCov, = max{CoVs(,), COV;.igns(u)} + wy. Each insertion can be
performed inD(log n) time, so the overall running time of the algorithmO$n? log n). When the algorithm
terminates, we report a translatiof,,; that corresponds to the maximum valueGdv, ., obtained by
the algorithm.

Remark: The algorithm can easily be modified to handle #reightedcase, where each segment has a
weight, and the contribution to the coverage of a segmeiiteidength of the covered portions times the
weight of the segment. This is useful when some segments @ important than others.

Theorem 2.3 Lett* € TP be the leftmost translation that maximis€s(t + A, B). Then when the
line-sweep passes through (t* + A, B) = COV,01(T)-

Proof: We first make the following observation. Consider the infifibrizontal rayr emerging fromt*

to the left. Letz; ... x; be thex-coordinates of the events encountered along this rayreddeom left to
right. Let Pos; (resp.Neg;) be defined as the number of positive intersection pointstofthe left ofz;,
with boundaries of layers that corresponds to positivep(reggative) events, as described above. Clearly

Co(t*A, B) = Ei-:l(Posi — Neg;)(x; — xi—1) Q)

On the other hand, the sum of the right hand sid€]of (1) eqbelsum of the fields,,, taken over all
nodesy of the segment tree on the path from the root to the leaf nodairongt*, at the instance when the
line sweep intersects. This follows from the fact that each eventis also an event in one of the nodes
along this path. Therefore this sum equalsv,,.;(r), since the sum of the fields,, along every path from
the root to a leaf equal€o(t + A, B) at any translatiort stored at that leaf, antf by our assumption is
maximal. [ |

2.3 Alower bound

Rucklidge [1#] showed that given a parameteand two familiesA and B of segments in the plane, the
combinatorial complexity of the regions in the translasigniane TP) of all translationg for which h(t +

A, B) < eis in the worst cas@(n?), whereh(A, B) is the one way Hausdorff distance framto B. We
show that the2(n*) bound holds even in the case that all segmentharizontal (the proof is deferred to
Appendix[B). This implies:

Theorem 2.4 The region of all translations for whichCov(A,t + B) is maximal has combinatorial com-
plexity Q(n?).

3 Matching Horizontal Segments Under Vertical Translation

In this section we describe a sub-quadratic algorithm ferHlausdorff matching between setsand B of
horizontal segment, when translations are restrictedaaéhtical direction.

Let p* = min; h(t + A, b) wheret varies over all vertical translations, ahd, -) is the one-way Haus-
dorff distance. Lef\/ denote the ratio of the diameter to the closest pair of setgriel U B. Further, let
[M] denote the set of integefs ... M }.
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Theorem 3.1 Let A and B be two set of horizontal segments, and:let 1 be a given parameter. Then we
can find a vertical translation for whichh(t + A, B) < (1+ ¢)p* in timeO(n®/?poly(log M, logn, 1/¢)).

We first relate our problem to a problem in string matching:

Definition 3.2 (Interval matching): given two sequences= t[1]... t[n; andp = p[1]... p[m], such that
p[i] € [M] andt[i] is a union of disjoint intervalda} ...b}} U {a?...b7} ... with endpoints infM], find

all translations j such thatp[j] € t[i + j] for all . Thesize of the input to this problem is defined as
s = sum|tli]| +m.

We also define theparseinterval matching problem, in which bogii] andt[i] are allowed to be equal
to a special empty set symblwhich matches any other symbol or set. The siirethis case is defined as
sum|t[i]| plus the number of non-empty pattern symbols. Using stahdiscretization techniquef [6,]11],
we can show that the problem @f + ¢)-approximating the minimum Hausdorff distance betweendets
of n horizontal intervals with coordinates frofd/] under vertical motion can be reduced to solving an
instance of sparse interval matching with size O(n).

Having thus reduced the problem of matching segments tosaarioe of sparse interval matching, we
show that:

e The (non-sparse) interval matching problem can be solve'mimO(s?’/ 2polylogs).
e The same holds even if the pattern is allowed to consistsiohgrof intervals.
e The sparse interval matching problem of sizean be reduced t©(log M) non-sparse interval matching
problems, each of siz€ = O(s polylogs).

These three observations yield the proof of Theoferh 3.1hénrémainder of this section, we sketch
proofs of the above observations.
The interval matching problem. Our method follows the approach ¢f [I]13] aff [4]; therefove sketch
the algorithm here, omitting detailed proofs of correctnes

Firstly, we observe that the universe sik€ can be reduced t@(s), by sorting the coordinates of
the points/interval endpoints and replacing them by thagiky which clearly does not change the solution.
Then we reduce the universe further = O(,/s) by merging some coordinates, i.e. replacing several
coordinatesr; ...z, by one symboKz; ...z}, in the following way. Each coordinate (say which
occurs more thar/s times int or p is replaced by a singleton sét} (clearly, there are at mosg2(y/s)
such coordinates). By removing those coordinates, theveit@\/] is split into at mostO(,/s) intervals.
We partition each interval into smaller intervals, such tha sum of all occurrences of all coordinates in
each interval i$)(/s). Clearly, the total number of intervals obtained in this isy/s. Finally, we replace
all coordinates in an interval by one (new) symbol froi’] where M’ = O(y/s). By replacing each
coordinater in p andt by the number of a set to whichbelongs, we obtain a “coarse representation” of
the input, which we denote by andt’.

In the next phase, we solve the interval matching problempf@nd¢’ in time O(nM’) using a Fast
Fourier Transform-based algorithm (see the above refesefur details). Thus we exclude all translations
j for which there ig such thap/[i] is not included in th@pproximationof ¢[i + j]. However, it could be still
true thatp[i] ¢ t[i + j] while p'[i] € ¢'[i + j]. Fortunately, the total number of such pdiisj) is bounded by
the number of new symbols (i.8/’) times the number of pairs of all occurrences of any two (siahbols
corresponding to a given new symbol (i.€.(,/5%)). This gives a total of)(s3/2) pairs to check. Each
check can be done if(log n) time, since we can build a data structure over each set of/aig#[i| which
enables fast membership query. Therefore, the total tined fier this phase of the algorithm 6(33/2),
which is also a bound for the total running time.

The generalization to the case whefd is a union of intervals follows in essentially the same way, s
we skip the description here.

The sparse-to-non-sparse reductionThe idea here is to map the input sequences to sequencegtif len
P, whereP is a random prime number from the ranggslog M ... caslog M} for some constants, cs.
The new sequences andt’ are defined ag’[i] = Uyr.imoap—i pli’] @andt'[i] = Ujr.imoar—; t[i']. It can be
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shown (using similar ideas as {f [6]) that if a translatjotioes notesult in a match betwegnandt, it will
remain a mismatch betweehandt’ with constant probability. Therefore, all possible misohats will be
detected with high probability by performir@(log /') mappings modulo a random prime.

4 Computing The Fréchet Distance Under Translation

In this section, we present algorithms for computing thecket distance between two polygonal chains.
Recall that the Fréchet distance between two cuResdQ, dr (P, Q) is defined as:

A (P,Q) = inf max || f(a(t)) — g(a())]
whereq, 5 range over continuous increasing functions frioni] — [a, o] and[0, 1] — [b, V'] respectively.

Dropping the restriction that, 8 are increasing functions yields a measure we callvibakFréchet
distance, denoted hy;. It can be easily seen that boflr andd ; are metrics.

Let the curvesP and(@ be length-parameterized bys. In other words,P = P(r),Q = Q(s), where
0 <r,s < 1. Forany fixet, let F.(P, Q), thefree spacebe defined as

Fe(P,Q) = {(r,s) [ [1P(r) = Q(s)|| < &}

where|| - || is the underlying norfh The free space captures the space of parameterizatidnactiiave a
Fréchet distance of at mastIn the sequel we will denote the free spacefywhen the parameter and
Q are clear from the context.

Let a polygonal chaitP : [0, 7] — R? be a curve such that for eaéke {0,...,n—1}, Bjii+1 1s affine
ieP(i+A) =(1—-XP(i)+AP(i+1),0 < X< 1. Forsuch a chai, denote| P| = n. Let P; denote
the segment?; ;). For two polygonal chain®, @ where|P| = p,|Q| = ¢, and a fixec, the free space
F. C[0,p] x [0, q] is given (as before) by:

Fe(P,Q) = {(r;s) | [|P(r) = Q(s)]| < e}

Let £ = F. N (P; x Q;). Observe that"’ = F.(P;,Q;). It can be seer{]3] thak}” is the affine
inverse of a unit ball with respect to the underlying normn&sguentlyF is convex.

Consider the points of intersection of a single @gJl = F with the line segment fronti, j) to
(¢,j + 1). SinceC}; is convex, there are at most two such points, which we dersoig; 2;;, wherea;; is
belowb;;. Similarly, letc;; andd;; be the points of intersection @f;; with the line segment fron{, j) to

(i +1,7), wherec; is to the left ofd,;.
(ii+1) g d”. (i+1,j+1)
g

a.
1

(i) (i+1,))

Figure 2: A single cell in the free space

We define an order on the points as follows: For any two pgints (x1,y1),p2 = (z2,y2), p1 < po if
71 < 2 andy; < yo.

Let an(x, y)-monotone path be a path that is increasing in ho#éindy coordinates. Alt and Godalfj [3]
observed that the existence ofa y)-monotone path ik from (0, 0) to (p, ¢) is a necessary and sufficient

3In this section, we will consider thie norm unless otherwise specified.
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condition fordp(P,Q) < e. A similar property holds for;; namely, the existence @ny non-self-
intersecting path i, from (0,0) to (p, ¢) implies thatd;(P,Q) < e. Denote the property(b,q) is
reachable fron0, 0)” as propertyP (similarly defineP).

We wish to solve a decision problem for the Fréchet distdrete/eenP and@ minimised over transla-
tions i.e givere, we wish to check whethenin; dp(P,Q +1t) < e

The configuration space A critical eventis one that can change the truth valuefaf Each such event
is one of the following two types: (1) The intersection peiaf;, b;;, c;;, d;; appear (or disappear). (2) For
two cellsCy; andCy;, k > 4, a;; anday; (or by;) change their relative vertical ordering. Analogously, fo
two cellsC;; andCyy,, k > j the pointsc;; andc;y, (or d;;;) change their relative horizontal ordering.

Type 2 events correspond to the creation or deletidomfels For any point- in the spacé0, p| x [j, 7+
1], let k be therightmostinterval such that projected onto the intervéd,,;, by;] lies between the endpoints
of the interval. We definet (r) = k. For any point- € [i,7 + 1] x [0, ¢, let k& be thetopmostinterval such
thatr projected onto the intervét;, d;x] lies between the endpoints of the interval. We défintér) = k.

As @ translates, each of the, » € {a, b, c,d} can be represented as a function(t) : R? — [0, 1].

Proposition 4.1 For a pointz;;, the functionz;;(¢) is a second degree polynomial in the coordinates of

From free space to a graph Our algorithm for computing (P, Q) is based on a reduction of the problem
to a directed graph reachability problem. Intuitively, wandhink of a monotone path in the free space as
a path in a directed graph (actually a DAG). The advantaggisfapproach is that we can exploit known
methods for maintaining graph properties dynamically irfficient manner. Thus, as we traverse the space
of translations, we need not recompute the free space ak:eiacbl event.

LetV =, {vw, iy Vijs Vi 41 andT = Ui ji<k< {ta, pied Y Ui <h<qltiin 6 4.t where0) <i <p
and0 < j <gq. The vertices |rV UuT are assouatedp WI'[Jh pomts of the free space. I</Iore precigefiexv;

is associated with the poiat; (wherex is one of{a, b, c,d}). Vertext? ik is associated with the prolectlon
of pointz;; onto the intervalay;, by;] (z € {a,b}), and vertex? ik 1S assomated with the projection of point
y;; onto the intervalc;y, dix] (v € {c,d}). We definef (v) = p, Wherep is the point associated with vertex
V.

Let ‘/zi = { ]’ ’Lj} U Ul<z<rt(al]) tl]z U Ul<2<rt (b1 )tl]z and ‘/;2 = {Uﬁ z]} U Ul<]<ut(cll) tzl] U
Uicji<ut(a,) flj denotes the set of vertices associated with points on teesligment fron{s, j) to
(4,7 +1). S|m|larly, i3 2 denotes the set of vertices associated with points on teeségment froni, j) to
(i +1,7). In addition,V;} andV;3 contain vertices associated with points whagenelscross the celC;;.

We now describe the construction of the edge set for ¢agh. Firstly, set}; = {(v,v};) | v € V}}}

and setE?; = {(v,vf;) | v € V;3} For eachw € V}}, letn(v) = argminv’é‘/iil,jvf(v’)_v f (') Similarly,

for eachv € V3, letn(v ) denote the vertex i}, ; having the same property. L&Y, = {(v,n(v)) | v €

ViU V3L Finally, setB; = {(v};,vf ;. 1), (v, v, ;). Now, we setEs;; = Ef; U E% U ES U EL.
LetE = U, ; Eij. ThIS yields the directed grapghl = (V U T, E). Note that|V UT| = O(pq(p + q))
and|E| = (pq(p + q)). Also, it is easy to see that for any edge v) € E, the straight line fromf (u)

to f(v) is an(z,y)-monotone path. We first show that reachability in the grépls equivalent to path
construction inf.. The proof of this theorem is straightforward and is deféteeAppendix €.

Theorem 4.2 An (z, y)-monotone path fronf0, 0) to (p, ¢) exists inFy iff vb is reachable fromyg, and

F(t80) = (0.0), F(28,) = (p.q).

For every edge <€ F, lety(e) C R? be the set of translationssuch that in the grapti’ constructed

“The termrt denotes aight tunnel ut denotes ampper tunnel
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from the free spacé (P, Q + t), the edge: is present. Lel" be the arrangement of all thee). We first
establish a bound on the complexityIaf

The following three propositions (which we state withoudq), follow from Propositior 4]1. Roughly
speaking, with each edgewe can associate a boolean combination of predicRie$, ..., P;, where
each predicate compares some constant degree polynora&iato(i.e the regions are semi-algebraic sets).
e For any regiony(e), the boundaries consist of segments of curves describedristant degree polyno-
mials.
e Foranedge € E;; —T x T, the regiony(e) is a constant number of simple regions of constant desonipti
complexity.
e For an edge of the forn(¢;,.. t7;. 1), = € {a,b,c,d}, the regiony(e) consists of a set of simple regions
of total description complexity.

Lemma 4.3 [I'| = O(p>¢*(p + q)%).

Proof Sketch: There areD(pq(p + ¢)) edges. For each edgethe complexity of the associated region can
be at mosO(p + ¢q). Since any pair of constant degree polynomials intersegtionstant number of points,
the overall complexity of is given by(pq(p + q) x (p + q))>. [ |

Lemma 4.4 Letyy, = v((tj4, t7; k1)), Wherez € {a, b, c,d}. Then for alll such thati <1 <k, v C .

Proof: Whenever the edg@?,. 7 ,) is present, all edges of the forty; ;. ¢7,,,),i < < k must also
be present. |

Theorem[4]2 indicates that the graph property that we neethintain is the reachability fo,q from
vgp- The algorithm is now as follows: Fix a traversal of the ag@ment of regions. Check reachability at
the starting cell. Each time an edge is crossed in the traletsorresponds to the deletion (and insertion)
of edges in the graph, which we use to update the graph an#l traeachability. Stop whenever the above
property holds, returning YES, else return NO.

Theorem 4.5 Iff there exists a translationsuch thatir (P, Q +t) < ¢, the above algorithm will terminate
with a YES.

Proof: Consider atype 1 critical event, where the intewal b;; is created. This interval corresponds to the
edge(v? IR v?.). Hence, this event corresponds to entering the region iassdavith the above edge. Similar
arguments hold for other type 1 critical events.
Suppose we have a type 2 critical event, where the pgintises above;; (in their relative vertical
ordering). Note that this event does not change the redihalfi (p, ¢) in the free space unlesgdt;) >
k. If this is the case, then the event results in settirig;yf = k, implying that all edges of the form
(t;?jl, %,l+1)7l > k are deleted, which corresponds to leaving the regions sporeling to this set of edgﬁas
Conversely, it can be seen that any transition from one €éflearrangement to another corresponds to
a critical event. We defer the details to a full version of plager. |

It now remains to analyse the complexity of the above alfgoritA transition between cells yield3(1)
updates, except in the case described in Thegrgm 4.5 abbeee & transition occurs across the boundary
of regionr((t7; ,_1.t7;;)) into the region((¢f; 1,1%,6)) causing@(l — k) updates. However, note that in
this event, it must be the case that all the regiots; ,,,, t{; ., 1), kK < m < 1—1intersect at this transition
point (from Lemmd 4]4), and thus the cost of this transitian be distributed among these cells. Hence, the
total number of updates is given by Lemfnd 4.3.

To determine reachability, we must now traverse the arrmege For ease of notation, we will assume
thatp = ©(q) and setn = p + ¢. The arrangement consists ©fn?) regions, each described I6y(n)

SNote that since the regions corresponding to this set ofdpenested (by Lemn@A), such a transition is indeedtpessi
In fact, the existence of such a critical point implies tHabathese regions intersect in at least one point that is atstained in
r((t, k-1, ti;r)). The critical event can be interpreted as the result of tnestation across this point.
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curves of constant description complexity. Let usifixve will specify the value of later). It can be shown
(using the theory of cutting$ [ILF,]19]) that we can computelesstR of the regions of siz€ (r log ') with
the property that if we compute the vertical decompositibeazhsuper-cellin the arrangement 68, each
of the resultingprimitive super-cellgof constant complexity) is intersected By(n?/r) regions.

Lemma 4.6 Given a graphG = (V, E),|V| = N,|E| = M, designated nodes,t € V, and a set of
k edgeskE’ C E, s-t reachability inG can be maintained over edge insertions and deletions ff&rn
total timeO(min(N¥, Mk) + k*U), whereU is the number of such updates is the exponent for matrix
multiplication).

Proof: Let V' be the set of endpoints of edgesih We compute the grap?’ = (V" = V' U {s,t}, E"),
where(u,v) € E” if there is a directed path from to v in G. Note that|V”| < 2k. The computation of
this graph can be done by performing a full transitive clesamG that takes time)(n®). Alternatively, we
can performO(k) depth-first searches (one from each verteXif) to construct’.

Now, to process updates, we update the graph using a stadgaathic update procedure that takes
time O(k? log k) time (amortized) per updafe]24], yielding the result. |

The algorithm now proceeds as follows: Each primitive stqmdr has a set of edges associated with it
(one for each region that intersects it). We use the aboveketo perform an efficient dynamic reachability
test for each cell of the original arrangement in this priveisuper-cell. When we move to the next primitive
super-cell, we recompute the induced graph and repeat tice $s.

We now compute the value of The total number of cells in the arrangemendig:®) by Lemma[4]3.
There areO(r?n?log? r) primitive super-cells, each intersected ®yn?/r) regions. Consider a single
primitive super-celli. We apply Lemm& 416 witthv = M = O(n3), k = O(n3/r), andU = U;, whereU;
is the number of cells in. The current value af is approximately2.376 [[L§], and thusmin(N¥, Mk) =
Mk = nS/r for all » = Q(1). The cost of processingis thereforen’ /r + nSU; /r2. Summing over all
primitive super-cells, and replacingl; by O(n®), we obtain the overall running time of the algorithm to
be O(n®rlog?r + n'*/r?). Balancing, we obtain an overall running time®@fn'° polylogn).

Theorem 4.7 Given two polygonal chainB, @, |P| = p,|Q| = g, ande > 0, we can check (P, Q) < ¢
in time O(n'°polylogn).

The weak Fréchet distance As described earlier, the weak Fréchet distance (denotef} prelaxes the
constraint that the parametrizations employed must be tmoeo Note that for any two curves @, the
following inequality is truedy (P, Q) < d;(P, Q) < dr(P, Q) Also, by the result of Godad [R0], all three
measures collapse to one if both curves are convex. The abegeality is significant because it suggests
that the weak Fréchet distance may serve as a relaxed catehimg measure with possibly more tractable
algorithms.

As it turns out, this is indeed the case. Our techniques flmrptevious algorithm apply here as well,
with two key differences. Firstly, since the paths need rtionotone, we no longer need the concept
of a tunnel, thus reducing the number of critical events tiesd to be examined ©(pq). Secondly, the
underlying graph is now undirected, and there are efficieotqdures for maintaining connectivity in an
undirected graph22]. We defer details to a full versionhef paper, and summarize the result as:

Theorem 4.8 Given two polygonal chainB, @, | P| = p, |Q| = ¢, ande > 0, we can check ifain; dp (P, Q+
t) < e intime O(n*polylogn), wheren = O(p + q).

An approximation scheme An (e, 3)-approximation (defined by Heffernan and Schifra [21])det P, Q)
under translations can be obtained from the following olzg@n:

Lemma 4.9 Given polygonal chain®, @, lett be the translation that maps the first point@fto the first
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Proof: Lett* be the translation such thdg (P, Q + t*) = d*. Clearly, the first point inQ is at mostd*
away from the first point of>. Applying the translation’ = ¢ — ¢* to 2, no point in@ is moved more than
d* units away from its associated pointih Hencedr(P,Q +t* +t') = dp(P,Q + t) < 2d*. [ |

Applying the standard discretization trick in a ball of nagli* around the first point of?, we obtain an
(¢, B)-approximation for any3 > 0. Note that this scheme is very efficient, running in ti@e:?poly (log n,

1/8)).
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A Proof of LemmalZ]l

Definition A.1 For a geometric objec? let X (R), the z-span ofR, denote the interval of the-axis
between the leftmost and the rightmost poinkbfwhereR’ is the orthogonal projection ok on thex-axis.

ClaimA.2 LetP = {(z1,%1),. . (zm,ym)} be a point set. We can construct in tit¢m log? m) a data
structure for P such that given a query segmenthe point(xy, yx) that maximizes thg-value of the set
{s(z;) +yi | z; € X(s),1 < i < m} can be found in tim& (log? m).

Proof: If X(P) C X(s), then(xg,yx) is clearly a vertex of the convex hull d?, and once the convex
hull is computed, we can fin@x, yx) in time O(logn). To answer the query in the case tB&{P) is
not contained inX (s), we construct a sorted balanced binary tiee- ¥(P) on the sefz; ...z,,}. For
each nodg: € V let P, denote the points in the subtree jaf and letX,, denote ther-span ofP,. We
constructC),, the convex hull ofP,, for each nodg. of ¥. Once a query segmeatis given, we find a set
U of O(log|P|) nodes of¥ with the property that for each nogec U, X, is contained inX(s), and in
addition, each(x;,y;) € P for whichz; € X(s) appears in exactly one of the sets, for p € U. We
perform the query suggested by the previous clain®’prior eachu € U. |

Based on Clainj A]2, we describe the data structure as folldvesm = |S|. First observe that the
maximum must be obtained at an endpoint of a segmet. ofVe partitionS into S; andS,. The set
S, contains at least: — /m of the segment of. It is updated aftex/m insertions or deletion operations
into/from S Once it is updated, we explicitly compute the functsumy, (-), and construct the data structure
¥ = g, of Claim[A.2 for the vertices of the graph eting, (). As easily observed, the complexity of the
graph ofsung, (-) is O(m), since a vertex of this function occurs only at endpoint oégnsent ofS;, thus
the time needed to constudt= Vs, . The setS; = S\ S; has cardinality< /m. Each time a segment is
inserted (resp. deleted) into/fro& it is inserted (resp. deleted) into/frofy. Once the size of; exceeds
v/m, we setS; to beS, constructl, and emptySs.

In order to maintain the maximumnax(sunk(-)), we do the following. Once a segment is inserted
or deleted intaS;, we explicitly compute (the graph ofums(-) which is piecewise linear of complexity
O(y/m). With each segmerntof this graph (not to be confused with the segmentS)ofe perform a query
in ¥s,. The maximum obtained is isax(sumg(-)).

Next we describe the modifications of the data structureenbatthe case where (some of) the segments
of S move vertially in a constant speed with the time parametetet X’ = {z;...z,,} denote ther-
coordinates of the endpoints of the segments ofThey are not time dependent. Lgtr, 7) denote the
y-value of the sum function at the coordinatiorat timer. Clearly as long as no insertions or deletions
are taken place i&¥, y(x, 7) moves (vertically) at a constant velocity. It is well knovact that the convex
hull of such a set of points can go throughim) combinatorial changes, which we can compute in time
O(mlogm). This suggest the following modification to the data streetof 7 as follows. As before, each
nodey. is associated as before with the convex liyll= C,,(t), but now these convex hulls might change
in time. However, as argued, the total number of changesgbeiirough is onlyO(m log? m). The query
process remains the same.

B Proof of Theorem[Z4

Assume for the construction that= 1/2. The first component in the construction (see Figlre 3) is#te
Bj consisting of2n points, which are

{(i,1/2 —i/n) and (i,—1/2 —i/n —1/4n?), fori=1...n}.
Thus thei*” pair (i,1/2 —i/n)* and (i,—1/2 —i/n — 6)7 (i.e., the Minkowski sum of these points and

the/;n fty ball) form two close vertically aligned squares, where tap getween them is of unit width, and
of height1/4n?. Theit" pair is located at distance/n below thez-axis. We add the segmeR,, which
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A
y-axis
By is a segment of length By is a segment of length
z-axis
JEess A
“"A; consists of a set af segment
i of length2n. The vertical distance R
. . ! between consequtive segments ja~.
A, is a set ofn point, o q 9 o
whose distance i$/n from each other; , : - -
S B] consists ofn pais of points
14
LN ]

By, consists ofn points (not shown), which
are the centers of unit squares.

Figure 3: The lower bound construction for= 3. The setB is not shown explicitly; onlyB™ is shown.

is the long horizontal segment between the pojrts, —1/4) and(0, —1/4) and the segmer;” between
(n,—1/4) and(2n, —1/4). Let B, = B, U B/ U BY".

The setA; consists ofn horizontal segments of lengtin, each separated by a gapiof.? from the
next one. The left endpoint of all of them is on thaxis, and the middle one is on theaxis. By shifting
them vertically, each segment in turn is not completely ocedeat some time, when it passes between the
gaps between one of the pairsBf. In all other cases, all the segments are completely covéaiteelregion
in TP corresponds to all translatiorior which h(t + Ay, By) < 1 consists of2(n?) horizontal strips,
each of length.

The setB, consists of then points (—(1 + 1/n?)i,—5) (for i = 1...n). Thus BJ createsn unit

squares along the ling = —5, with a gap ofl /n? between them. The set; consist ofn points along
the horizontal ling —1/2n,—5) (fori = 1...n). Observe thatl; fits completely into each of the squares
of Bf. However, by sliding4; horizontally, alongy = —5 or anywhere at distance 1 from h, each of

the points of4; “falls” at some stage into each of the gaps between each aftthares of3;", The region
Sy = {t|h(t+ Az, B2) < 1} consists of)(n?) vertical strips inTP, each of high®. Letting A = A; U Ay

andB = B; U By, the regionS = {t| h(t + A, B) < 1} is merely the intersection ¢f; andS2, which is
clearly of complexityQ(n?), thus proving our claim.

C Proof of Theorem[@4d2

Supposev?, is reachable froms§, and f(v§,) = (0,0), f(vh,) = (p,q). Let the path inG bev; =
VG, V2, - ., Uk = vf,q. Replace each vertex by its associated point(v;). As observed above, if we now
connect the pointg (vy), f(v2),. .., f(vx) by straight lines, we obtain g, y)-monotone path.

Conversely, suppose there exists(any)-monotone pathw from (0,0) to (p,¢) in F.. Then(0,0) €
Coo and(p, q) € Cp—1,4—1 and thusf (v(,) = (0,0) andf(vf,q) = (p, q). Without loss of generality, we can
assume thaiv consists of a sequence of line segments, where the endpbieésh segment are one of the
zi;'s (x = {a, b, c,d}).

We will show by induction on the number of segments ttfgtis reachable fromy,. Assume that the
claim holds for the firs&: segments on the path. Consider tiiet 1) segment. Let the endpoints be
wr, wa. By the induction hypothesisy; is reachable fromy,.

Case 1:Let bothw, wy be of the formz;;, yi; respectively, where,y € {a,b}. If rt(f(w1)) > &,
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then the vertex{;, exists for alll < k, and thus there exists a paih, t7; ;1. .., t};;. Sincef(t};;) is
on the same interval a&wy) and must be below it, there exists an edge fmj]rp to ws in By . If on the
other hand, itf (w;)) < k, there must exist one vertexX = 2z i < | < k such thatf (w’) > f(w1), and
rt(f(wy) < I. We construct a path frona; to w’ and repeat.

Case 2: Let bothw; andw, be of the formz;;, y;;, respectively, where:,y € {c,d}. An argument
similar to Case 1 applies here.

Case 3:Letw; = a;; andw, = dji;. Without loss of generality we can assume that i andl = j + 1.
There exists an edge fron§; to v%), which is a predecessor of ;. ;) (using E,), and there exists an edge
from vf,jﬂ) to v,ffl, thus yielding the desired path. Other cases can be hangieaatrically.

Thus, by induction the theorem holds.



