
On a Conjecture on Wiener Indices in Combinatorial Chemistry�
Yih-En Andrew Ban

Department of Biochemistry, Duke University
Durham, North Carolina 27708, USA.

aban@cs.duke.edu

Sergey Beregy
Department of Computer Science, University of Texas at Dallas,

Box 830688, Richardson, TX 75083, USA.
besp@utdallas.edu

Nabil H. Mustafa
Department of Computer Science, Duke University

Durham, North Carolina 27708, USA.
nabil@cs.duke.edu

Abstract

Drugs and other chemical compounds are often modeled as polygonal shapes, where each vertex represents an
atom of the molecule, and covalent bonds between atoms are represented by edges between the corresponding ver-
tices. This polygonal shape derived from a chemical compound is often called itsmolecular graph, and can be a path,
a tree, or in general a graph. An indicator defined over this molecular graph, theWiener index, has been shown to
be strongly correlated to various chemical properties of the compound. The Wiener index conjecture for trees states
that for any integern (except for a finite set), one can find a tree with Wiener indexn. This conjecture has been
open for quite some time, and many authors have presented incremental progress on this problem. In this paper, we
present further progress towards proving this conjecture —through the design of efficient algorithms, we show that
enumerating all possible trees to verify this conjecture (as done by all the previous approaches) is not necessary, but
instead searching in a small special family of trees suffices, thus achieving the first polynomial (inn) time algorithm
to verify the conjecture up to integern. More precisely, we (i) present an infinite family of trees and prove various
properties of these trees, (ii) show that a large number of integers, up to at least108(compared with the previous
best104) are representable as Wiener indices of trees in this succinct family, (iii) provide several efficient algorithms
for computing trees with given Wiener indices, (iv) implement our algorithms and experimentally show that their
performance is asymptotically much better than their theoretical worst-case upper bound.

Keywords: Wiener Index, Combinatorial Chemistry, Matrix Searching,Graph Theory

1 Introduction

Drugs and other chemical compounds are often modeled as various polygonal shapes — paths, trees, graphs etc.
Each vertex in the polygonal path or tree represents an atom of the molecule, and covalent bonds between atoms are
represented by edges between the corresponding vertices. This polygonal shape derived from a chemical compound
is often called itsmolecular graph. As the geometry of proteins play an important role in determining the function of
the protein, so can the topological properties of the molecular graphs of chemical compounds be correlated to their�Research supported by NSF under grant CCR-00-86013.yCorresponding Author.

1

v1 v2 v3v8 v9 v10v4 v5 v6 v7v11v12
Figure 1: The molecular graph of the compound2; 4; 5-trimethyl-4-ethyl heptane [15].

chemical properties. For some time now, the biochemical community has been using topological indices in an attempt
to correlate a compounds molecular graph with experimentally gathered data regarding the compounds characteristics.

Usage of topological indices in biology and chemistry beganin 1947 when chemist Harold Wiener developed the
most widely known topological descriptor [22, 29], the Wiener index, and used it to determine physical properties of
types of alkanes known as paraffins[47]. In general, topological indices are one of the oldest and most widely used
descriptors in quantitative structure activity relationships: Quantitative structure activity relationships (QSAR) is a
popular computational biology paradigm in modern drug design [12, 34]. It attempts to encode biological activity
such as inhibition or activation into numerical measures bycorrelation of mass amounts of data from an initial screen-
ing of hundreds or thousands of candidate drug compounds. The data is mapped into a structural “activity space”
consisting of various descriptors with the hope that these spaces capture or estimate properties of chemical com-
pounds. Constructions of new drugs then proceed by noting the desired activity spaces and creating new compounds
which occupy those regions of space.

QSAR has experienced rigorous recent investigation [22, 17, 20, 32], and has been used to help develop a wide
variety of drugs in medicine with a diversity ranging from cancer [49], to infectious diseases such as AIDS [37, 42]
and malaria [3, 4], to antipsychotics [45] and anti-inflammatory agents [8]. Recent techniques in QSAR include
molecular field analysis [41], quantum similarity [5, 4], particle swarms [1],k-nearest neighbor principles [48, 26],
neural networks [2, 46, 40], and topological indices [22, 17, 20, 32]. The power of QSAR in quickly identifying lead
drug candidates gives great motivation to both developing new techniques and further improving current techniques.

Amongst the topological indices used as descriptors in QSAR, the Wiener index is by far the most popular index,
as it has been shown that the Wiener index has a strong correlation with the chemical properties of the compound [17,
31, 39]. Therefore, to construct a compound with a certain property correlated to some Wiener index, the objective
becomes to build substructures in the target chemical compound giving the compound that Wiener index. This in turn
leads to the following important problem: given a Wiener index, find a compound with that Wiener index.

An overwhelming majority of the chemical applications of the Wiener index deal with chemical compounds that
have acyclic organic molecules [24, 43] (for work involvingcyclic compounds see [14, 44]). The molecular graphs of
these compounds are trees [23]. See Figure 1 of the moleculargraph of such a chemical compound. Therefore most
of the prior work on Wiener indices deals with trees, relating the structure of various trees to their Wiener indices
(asymptotic bounds on the Wiener indices of certain families of trees, expected Wiener indices of random trees etc.).
For these reasons, we concentrate on the Wiener indices of trees as well (see Dobryninet al. [15] for a recent survey).

1.1 Problem definition

Definition 1.1 (Wiener Index) Given an undirected graphG = (V;E), denote byd(vi; vj) the length of the shortest
path between two distinct verticesvi; vj 2 V . The Wiener indexW (G) is defined asW (G) =Xi Xj>i d(vi; vj) (1)

2

In this paper, we will present results on the Wiener index problems where the graphG is a tree. While the case of
graphs has been solved, a major conjecture in this area is whether every positive integer is the Wiener index of some
tree.

Conjecture 1.1 (Wiener Index Conjecture [11, 21, 33])Except for some finite set, every positive integer is the Wiener
index of some tree.

Towards this goal, we present a family of trees and design fast efficient algorithms for the Inverse Wiener problem,
defined as follows [25].

Problem 1.1 (Inverse Wiener Problem,P=) Given an integern, construct a tree whose Wiener index isn.

An algorithm for solving the problemP= can be used to verify the above conjecture — the algorithm forproblemP=
can be appliedn times to verify the conjecture up to any integern. However, there can be a faster algorithm, and so
we introduce the following problem.

Problem 1.2 (Inverse Wiener Covering Problem,P�) Given an integern, for everyi � n construct a tree with
Wiener indexi.
1.2 Previous work

Intensive work has been done on the theory of Wiener indices,both in the chemistry and biology community as well
as in the mathematics community. There are broadly two typesof problems that all of the previous work has addressed
— Wiener indexproblem for graphs, and theInverse Wiener indexproblem. The Wiener index problem deals with
properties of the Wiener index of various substructures, i.e. the efficient computation of the index, the upper and lower
bound on the index values etc., and the relation of the Wienerindex to other qualities of the graph. The Inverse Wiener
problem seeks to answer, given an integern, the question about the existence of a treeT such thatW (T) = n, and
when this is the case, how to compute it efficiently.

Computing Wiener Index. The straightforward way for computing the Wiener index for any graphG is to compute
distances between all pairs of vertices. This approach has at least
(n2) running time since it has to check all

�n2�
pairs. Furthermore, for a pair(u; v), it could takeO(n) time to compute the distanced(u; v), therefore with running
timeO(n3). One could use Johnson’s algorithm [30] for all pairs shortest paths on sparse graphs to findd(u; v) for
all u; v 2 V in timeO(jV j2 log jV j + jEjjV j) (using Fibonacci heaps), yielding the same time bound algorithm for
computing Wiener index for general graphs.

For trees, although the number of edges isO(n), the number of pairs of vertices is stillO(n2). However, the
Wiener index of a tree can be computed inO(n) time, through a plethora of computational methods [10, 13, 36].

Relation to other qualities. The Wiener index of a tree has surprising relations to other quantities defined over
the tree. The line graph, denoted byL(G), of a graphG has a vertex for each edge ofG and two vertices in the
line graph are connected by an edge if and only if the two corresponding edges inG are adjacent to a common
vertex. The Wiener index of the line graph of a tree has the following relation to the Wiener index of the tree [9]:W (L(T)) = W (T) � �n2�. Given a treeT , a Laplacian matrix can be defined overT , whose eigenvalues are called
Laplacian eigenvalues. See [35] for details. Let�1; : : : ; �n be the Laplacian eigenvalues ofT . Then it was shown
in [35] thatW (T) = nPn�1i=1 1�i : Similar relation exists between the Wiener index of a tree and its radius.

Upper and lower bounds. Given special graphs withn vertices, often closed form expressions exist for their
Wiener index. See Figure 2 for some examples. It is easy to seethat a pathPn of lengthn has Wiener index�(n3),
and a complete graphKn has Wiener index�(n2). Also, note that the Wiener index of every other graph or treeG
must be between these two values,W (Kn) � W (G) � W (Pn). In combinatorial chemistry, researchers have looked
at specific polymers and alkanes, and formulated the bounds on their Wiener indices. For example, Bonchevet al. [7]
present formulations of the Wiener index for linear polymers, star-like polymers, B-Combs etc. Similarly Rückeret

3

al. [44] exhaustively enumerate cycloalkanes, computing their Wiener indices, and tabulating their variation and actual
numerical bounds on the Wiener index.

There has also been some work on looking at asymptotic valuesof the Wiener index for random trees. Entringeret
al. [16] show that for several classes of random trees (e.g. binary trees) withn vertices,W (T) = �(n5=2) asn goes
towards1.

Inverse problem. The inverse Wiener problem is easily solvable for graphs: given an integern, there always exists
a graphG such thatW (G) = n, and it is computable in constant time. This was shown by Goldmanet al. [21]: as
mentioned before, a complete graphKn hasW (Kn) = n(n � 1)=2 while a star graphSn hasW (Sn) = (n � 1)2.
Observe that adding an edge toSn decreases the Wiener index by1, and this can be iteratively repeated till a complete
graph is reached. This gives a continuous interval of Wienerindices fromn(n� 1)=2 to (n � 1)2. The next interval
defined bySn+1 andKn+1 overlaps this interval and so forth, thus showing that anyn has a graph with Wiener indexn.

However, once the graph is restricted to trees, Goldmanet al. note that the problem becomes complicated and the
complexity is unknown. In fact, the complexity of this question is left unsolved in Chenet al. [11] and Gutman and
Yeh where it is conjectured [25], and conjectured that apartfrom a finite set, all integers do have corresponding trees
with the required Wiener indices. Later Lepović and Gutman[33] present a exhaustive search algorithm that verifies
this conjecture up to integer1206, still leaving the Inverse Wiener conjecture open. Goldmanet al. attempt to solveP= by defining a recurrence relation on Wiener indices of trees by using dynamic programming to construct trees from
smaller subtrees. Using their exponential time algorithm,they are able to verify the above conjecture for integers up
to 10000. However, the Inverse Wiener conjecture remains open.

1.3 Our results

We present progress towards proving the Wiener index conjecture by showing that searching all possible trees is not
necessary — a small parameterized subset suffices. More specifically, our contributions are:� We present a family of trees,F , and give reasons why it is a good candidate to analyze, rather than searching

over the (exponential) space of all possible trees. This contrasts with the previous work of Goldmanet al.[21]
where they addressed problemP= by exhaustively checking trees using an exponential time algorithm.� We presentO(k) time algorithms for computing the Wiener index of a tree inF , wherek � n is a tree parameter.
In our algorithms,k will be a small constant.� We conjecture that the Wiener indices of our proposed familyof trees cover all the integers except a small finite
set. We further present a succinct four parameter family of trees that we also conjecture can express all integers.� We present several efficient algorithms for the problemP=, using variants of Frederickson and Johnsons ma-
trix searching algorithm, and a novel use of decomposition by sorted sequences in timeO(nk), wherek is a
decomposition parameter, and by exploiting the special structure of the Wiener polynomial (in terms of the tree
parameters) for our family of trees. We present empirical results on the efficiency of this algorithm, indicating
that this algorithm isordersof magnitude faster than that using the Frederickson and Johnson technique.� We present several efficient algorithms for the problemP�, and give empirical results showing that it is faster
by a factor ofO(pn) than the naive implementation.

Finally, we believe that the approaches given in this paper can be used as general techniques for tree construction
problems in combinatorial biology and chemistry when it is necessary to deal with tree classes.

2 Family of Trees

First, we state that given a treeT = (V;E), one can assign integer weights to the edges of the tree such that the sum
of the edge weights is exactly the Wiener index of the tree.

4

�(n2 log n)(n� 1)2 �(n3)
Figure 2: An illustration of various trees withn vertices, and their corresponding Wiener indices.

Lemma 2.1 (Dobrynin et al. [15]) Given T = (V;E), one can assign weightsw(e) for each e 2 E such thatW (T) =Pe2E w(e).
PROOF. Look at the set of all paths from every vertex inV to every other vertex inV . The Wiener index is simply the
sum of the lengths of these paths. For an edgee 2 E, the number of all possible paths passing through the edgee is
simply the product of the sizes of the two subtrees formed by deleting the edgee. Let this number be the weightw(e)
of the edgee. Then it follows that W (T) =Xi Xj>i d(vi; vj) =Xe w(e)

Previous work has tended to focus on enumerating all possible trees and computing the Wiener index of each
such tree [21]. This approach results in exponential time algorithms, and hence the previous limited computational
results [21, 25, 33]. We follow a different path by defining a family of trees which allow efficient algorithms for the
inverse Wiener problem. The required family of trees must satisfy the following desirable conditions:� Simple generation.The required trees must be easy to generate using a set of integer parameters.� Low-order polynomials. The Wiener index of a tree must be a low degree polynomial function of the input

parameters. Low degree polynomials are easy to compute, andmathematically one can cover a larger set of
integers using lower degree polynomials due to their higherdensity.

We present an infinite family of trees, satisfying the above criteria, whose structure allows for the realization of a
vast number of Wiener indices. DefineTk(r1; : : : ; rk) to be the tree withV = fs1; : : : ; skg [�t11; : : : ; t1r1 ; : : : ; tk1; : : : ; tkrk	
and E = f(si; si+1); 1 � i � (k � 1)g [f(tjl ; sj); 1 � j � k; 1 � l � rjg:
Note thatm = jV j =Pi ri + k. TreeTk is thus defined byk parametersri; i = 1 : : :k. Figure 3 illustrates the struc-
ture of the family of trees. An interesting question arises whether the Wiener index ofTk(r1; : : : ; rk) can be computed
in sub-lineartime in the number of verticesm of Tk. We answer it in affirmative below. We will again compute the
Wiener index of the tree family by computing the weight of each edge and summing it up, as in Lemma 2.1.

5

T1 T2 T3
Figure 3: Examples of trees -T1 (3), T2 (3; 4), andT3 (1; 2; 2).

Fact 2.2 W (Tk(r1; : : : ; rk)) = k�1Xi=10� iXj=1(rj + i) � kXj=i+1(rj + (k � i))1A + (m � k) � (m� 1) (2)

PROOF. Summing up the weights,w(u; v), of all the edges(u; v) 2 E as defined in Lemma 2.1, we getW (Tk(r1; : : : ; rk)) = k�1Xi=1 w((si; si+1)) + kXj=1 rjXl=1 w((tjl ; sj))
It can be verified that w((tjl ; sj)) = 1 � (kXi=1 ri + (k � 1)) = (m � 1)
and w((si; si+1)) = (iXj=1 rj + i) � (kXj=i+1 rj + (k � i))
Hence, W (Tk(r1; : : : ; rk)) = k�1Xi=10�(iXj=1 rj + i) � (kXj=i+1 rj + (k � i))1A + (m � k) � (m� 1)
Lemma 2.3 The Wiener index of a treeTk(r1; : : : ; rk) can be computed inO(k) time.

PROOF. Let Xi = Pij=1 rj, andYi = Pkj=i+1 rj. NumbersXi andYi can be computed inO(k) time, for all1 � i � k in an incremental fashion. Note that
Pij=1(rj + i) = Xi + �i+12 �. Similarly,

Pkj=i+1 rj + (k � i) =Yi + �k+12 �� �i+12 �. By Equation 2,W (Tk(r1; : : : ; rk)) can be computedO(k) time.

We have implemented the above algorithm for the computationof Wiener indices ofTk. We now experiment to
find out the set of Wiener indices not covered by our family of treesTk. We omit details, but we verified that integers
up to108, except for a few numbers, can be represented asW (Tk), for somek, leading us to state the following.

Conjecture 2.1 Except a setS1 (Table 1) of56 numbers� 193, all integers can be represented byW (Tk).
Actually, our experiments indicate that all numbersn, 103 � n �108, can be presented byW (Tk), wherek � 5.

However, it seems that the Wiener indices of the treesTk, k � 4, do not cover all integers except a finite set and we
illustrate that by listing the set of numbers,S2 (Table 1), less than106 that are not representable. Based on the above
results, we strengthen conjecture 2.1 by replacing the infinite family of treesTk by a single family of trees fork = 5.

6

Conjecture 2.2 Except a setS3 (Table 1) of102 numbers� 557, all integers can be represented byW (T5).
We have verified this conjecture forn up to108. Fork = 5, the Wiener index ofT5(r1; : : : ; r5) simplifies toW (T5(r1; : : : ; r5)) = r1 � (r1 + 3r2 + 4r3 + 5r4 + 6r5 + 14) +r2 � (r2 + 3r3 + 4r4 + 5r5 + 11) +r3 � (r3 + 3r4 + 4r5 + 10) +r4 � (r4 + 3r5 + 11) +r5 � (r5 + 14) + 20:
Note the symmetry between the parametersr1 andr5 and similarly between parametersr2 andr4. We exploit this

symmetric property strongly in our algorithms.
We recall Lagrange’s Theorem in number theory, that every integer can be represented as a sum of four squares [28].

For example, the polynomial for the Wiener index (in terms ofri) for T5(r1; : : : ; r5) consistsonlyof quadratic and lin-
ear terms. That gives the intuition that a properly chosen four parameter family of trees might be sufficient to represent
any Wiener index. One way to remove one parameter would be to impose a constraint on the functionW (T5). After
some experimentation, we discovered that the constraintr1 = r5 still allows for the representation of all integers as
Wiener indices, except for a certain finite set. Consider thefamily of treesT5(r1; : : : ; r5) such thatr1 = r5. We denote
this family of trees byF (�), whereF (r1; r2; r3; r4) = T5(r1; r2; r3; r4; r1). Then simplifying the Wiener formula forW (T5(r1; : : : ; r5)) gives,W (F (r1; r2; r3; r4)) = r1�(8r1+8r2+8r3+8r4+28)+r2�(r2+3r3+4r4+11)+r3�(r3+3r4+10)+r4�(r4+11)+20:

(3)
We were unable to prove thatW (F (r1; r2; r3; r4)) covers all integers using tools from (additive) number the-

ory [38]. We believe that it is solvable forn > 1177 and leave it as an open question.

Conjecture 2.3 Except a setS4 (Table 1) of181 numbers� 1177, all integers can be represented byW (F).
3 Algorithm for the problem P=
In this section we give a suite of algorithms for finding treeswhose Wiener index isn, given the integern as input to
the algorithm. First, observe that the value of eachri is bounded in terms ofn.

Claim 3.1 Given an integern, any treeT of familyF (r1; r2; r3; r4) withW (T) = n must have0 � ri � pn.

Recall that each tree inF (V;E) is defined by four parametersr1; r2; r3 andr4. Givenn, the objective is to find
a treeT 2 F (V;E) such thatW (T) = n. We call the set of all 4-tuples(r1; r2; r3; r4) theconfiguration spaceofW (F (�)). To find a given integern, we want to search this configuration space. The straightforward way of computingF (V;E) is to exhaustively traverse this configuration space, i.e. iterate over all possibleri’s, and computeW (T) for
each 4-tuple. By Claim 3.1, the running time isO(n2).

However, on examining Equation 3, one finds that the equationis monotone in all parametersri. Therefore, a fast
algorithm is as follows. Iterate over all values ofr1; r2, andr3. So suppose thatr1, r2 andr3 are some fixed constants,
say
1;
2 and
3 respectively. Perform the binary search over the sequenceW (F (
1;
2;
3; r4)), 0 � r4 � pn, to
find if W (T) = n for some value ofr4. The running time therefore reduces toO(n3=2 logn).

Remark. The above approach can be modified to solve the following problem inO(n3=2 logn)) time: Given
an integern andm � 5(pn + 1), construct a tree of sizem whose Wiener index isn. The algorithm can actually
enumerateall trees inF (r1; r2; r3; r4) using the same time.

We show how to improve the above algorithm. Suppose thatr1 =
1 andr2 =
2 are fixed. Consider the matrixM of valuesW (T) for all 0 � r3; r4 � pn, i.e. the matrixMij = W (F (
1;
2; i; j)). Again from the equation 3, it

7

follows thatM is a sorted matrix, i.e. each row and column ofM is nondecreasing. We therefore apply the searching
technique of Frederickson and Johnson [18] for searching for a number in a sorted matrix. One can think of the
previous algorithm of performing binary search overr4 as performing binary search over each row of the matrixM ,
i.e. each rowi corresponds to a fixed parameter valuer3 = i, with the value ofr4 varying across the row, andr1 =
1
andr2 =
2. Frederickson and Johnson’s technique performs polynomial search overM , saving an extra logarithmic
factor by amortizing the search using the fact that not only the rows are non-decreasing, but the columns are non-
decreasing as well, and one can interleave the binary searchbetween rows and columns to finally get the searching
time asO(pk), wherek is the number of elements ofM less thann (k = O(n) sinceM containsO(n) elements).
We still need to iterate over all possible values forr1 andr2, giving the total searching time of our Wiener searching
algorithmO(n3=2). Furthermore, note that if we allow the use of computing square roots in constant time, then the
equation 3, givenr1 =
1; r2 =
2; r3 =
3, reduces to a quadratic equationW (F (
1;
2;
3; r4)) = n which can be
solved in constant time. If one of the roots is a non-negativeinteger, that root is the required value ofr4.
3.1 Decomposition using sorted sequences

We now analyze the structure of equation 3 more closely and use it to present an even more efficient algorithm for
our problem. The first thing to note is the symmetry of the equation betweenr2 andr4, i.e. r1 “contributes” equally
to (the coefficients of)r2 andr4, and similarlyr3 “contributes” equally to (the coefficients of)r2 andr4. Therefore,
instead of fixingr1 andr2 as before and trying to findr3 andr4 values more efficiently, we fixr1 =
1; r3 =
3. As
explained above, this is crucial sincer1 andr3 contribute symmetrically tor2 andr4. ThenW (F (
1; r2;
3; r4)) = r2 � (8
1 + r2 + 3
3 + 11) + r4 � (8
1 + r4 + 3
3 + 11) + 4r2r4 +K(
1;
3)= (r2 + r4) � (8
1 + 3
3 + 11) + r22 + r24 + 4r2r4 +K(
1;
3)= (r2 + r4) � (8
1 + 3
3 + 11) + (r2 + r4)2 + 2r2r4 +K(
1;
3);
whereK(
1;
3) = (
23 + 8
21) + (8
1
3) + (28
1 + 10
3) + 20 is a constant.

Lemma 3.2 Given integersr2; r4; s2; s4;
1; d1;
3; d3,W (F (
1; r2;
3; r4)) � W (F (
1; s2;
3; s4)) =) W (F (d1; r2; d3; r4)) � W (F (d1; s2; d3; s4));
if r2 + r4 � s2 + s4 and8(d1 �
1) + 3(d3 �
3) � 0.

PROOF. Assume thatW (F (
1; r2;
3; r4)) � W (F (
1; s2;
3; s4)). We will show that the increment in the Wiener
index for the configuration(
1; r2;
3; r4) is larger than the increment for the configuration(
1; s2;
3; s4), i.e.W (F (d1; r2; d3; r4))�W (F (
1; r2;
3; r4)) � W (F (d1; s2; d3; s4)) �W (F (
1; s2;
3; s4))(r2 + r4)(8d1 + 3d3 + 11� 8
1 � 3
3 � 11) � (s2 + s4)(8d1 + 3d3 + 11� 8
1 � 3
3 � 11)(r2 + r4)(8(d1 �
1) + 3(d3 �
3)) � (s2 + s4)(8(d1 �
1) + 3(d3 �
3))
Since8(d1 �
1) + 3(d3 �
3) � 0, and(r2 + r4) � (s2 + s4), the proof follows.

We now use Lemma 3.2 to identify large subsets of the configuration space that can be searched to find a specific
element much more efficiently.

Setr1 = r3 = 0. Definew((a; b)) = W (F (0; a; 0; b)) and
((a; b)) = a + b. Let P = h pi = (ai; bi)j0 �ai; bi � pn i be sorted byw(�; �). Then the sequence ofjP j = n pairs represents the Wiener indices of all possible
pairs of parametersr2 and r4. Let P 0 = hpi1 ; : : : ; piki be the longest subsequence ofP such that the sequenceC(P 0) = h
(pi1); : : : ;
(pik)i is increasing.P 0 of size
(pn) can be found in timeO(n log logn) [19, 27, 6]. Note
that two conditions hold for any two elementspij ; pij0 2 P 0 such thatij � ij0 :

1. w(pij) � w(pij0) and

8

2.
(pij) �
(pij0).
Lemma 3.3 Given the subsequenceP 0 described above, and an integern such thatn = W (F (r1; a; r3; b)), where
the values ofr1 andr3 are known, one can find the values ofa andb in O(logn) time.

PROOF. Note that in the previous algorithm, we used the binary search over one variable or used Frederickson and
Johnson’s technique to avoid the binary search, but we had toperform
(pn) computations to findr2 = a andr4 = b. Now we will show that if the subset of configuration space satisfies certain criteria, likeP 0, then we can search
in O(logn) steps.

We need to finda andb such thatW (F (r1; a; r3; b)) = n where(a; b) 2 P 0. Note thatP 0 is increasing in bothW (F (0; ai; 0; bi)) and inC(P 0). Take any two pairspij = (aij ; bij) andpij0 = (aij0 ; bij0) of P 0, j � j0. Thenaij + bij � aij0 + bij0 from 2. above, and for any positiver1 andr3, 8(r1 � 0) + 3(r3 � 0) � 0. Thus the conditions
of Lemma 3.2 are satisfied andW (F (0; aij ; 0; bij)) � W (F (0; aij0 ; 0; bij0)) =) W (F (r1; aij ; r3; bij)) � W (F (r1; aij0 ; r3; bij0))w(aij ; bij) � w(aij0 ; bij0) =) W (F (r1; aij ; r3; bij)) � W (F (r1; aij0 ; r3; bij0)) (4)

The last inequality in the displayed formula 4 says that the Wiener index of the 4-tuple(r1; aij ; r3; bij) will always
be less than the Wiener index of(r1; aij0 ; r3; bij0) if j � j0, regardlessof the value ofr1 andr3. Therefore we can
do binary search since we haveP 0 sorted byW (F (0; ai; 0; bi)) already. We only know that the order of the pairs is
preserved, although the values ofw(�) have changed (since the values ofr1 andr3 have changed). At each step of the
binary search we have to recomputew(�) for each pair, and proceed accordingly.

Now the algorithm can be completed. Setr1 = r3 = 0, and compute the setP in timeO(n logn) by sorting
all tuples(0; r2; 0; r4) by their Wiener indices. Now find the largest increasing subsequence ofP in the ordered
sequenceC(P). This subsequence satisfies the two properties, i.e. increasing with respect toW (P) andC(P). From
Lemma 3.2, the order of this subsequence would remain unchanged with varying values ofr1 andr3. We store this
subsequence as an ordered sequence of pairsP1. Now iteratively extract largest increasing subsequencePi in roundi till the last roundk. Store these ordered setsP = fP1; : : : ; Pkg. Now, we vary the values ofr1 andr3 from 1 topn. Since we don’t know which sequence could containn, we have to search in allk sequences. In each sequence
we do binary search as in Lemma 3.3, achieving the worst case total timeO(nk logn). Note thatk � pn — we can
always defineP = fP1; : : : ; Ppng, wherePi = f(i; 1); : : : ; (i;pn)g. Then, from the monotonicity of the functionF (�), eachPi is an increasing sequence in the Wiener index.

Two natural questions arise: how practical are these schemes, and is further speedup possible. In the next sub-
section, we empirically show that this sequence decomposition results in a practically near-linear time algorithm for
our problem. Second, theO(logn) overhead of search inP can be removed, and we now improve the running time
of the algorithmSequen
eDe
omposition to O(nk). Recall that the setsP = fP1; : : : ; Pkg were defined withr1 = r3 = 0. Lets defineQ(
1;
3) = fQ1(
1;
3); : : : ; Qk(
1;
3)g, whereQi(
1;
3) is an ordered sequence of inte-
gers,hW (F (
1; aij ;
3; bij))j(aij ; bij) 2 Pii. Essentially, the previous algorithm performed a binary search over each
setQi(j; l), for all 1 � i � k, 1 � j; l � pn, thus getting total timeO(nk logn). Now, instead we will do searches
simultaneously over subsets ofQ(
1;
3). LetQi(
1) = fQi(
1; 0); : : : ; Qi(
1;pn)g be a subset ofQ(
1;
3) of sizejQi(
1)j = pn. Assume we can search overQi(
1) in timeT (jQij). Then, the total running time becomeskXi=1 pnX
1=0T (jQij) = pn kXi=0 T (jQij)
Now we need to show how to search overQi(
1) efficiently. To this end, form the matrixM where each row ofM ,
denoted byMj is a set, i.e.M is the matrix such thatMj = Qi(
1; j), wherei and
1 are fixed.M is a

pn � jQij
matrix.

Lemma 3.4 If the matrixM is associated with the setQi(
1), M is a sorted matrix.

9

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20000 40000 60000 80000 100000 120000 140000

#
 F

 c
a

ll
s

Wiener Index

Wiener Index vs. Runtime

Binary Search
Sequence Decomposition

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20000 40000 60000 80000 100000 120000 140000

#
 F

 c
a

ll
s

Wiener Index

Wiener Index vs. Runtime

Binary Search
Sequence Decomposition

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#
 F

 c
a

ll
s

Wiener Index

Wiener Index Sum vs. Runtime

Binary Search
Sequence Decomposition

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#
 F

 c
a

ll
s

Wiener Index

Wiener Index Sum vs. Runtime

Binary Search
Sequence Decomposition

(a) (b)

Figure 4: Figure showing the running times of the algorithms, measured by the number of calls toF (�)
The proof follows from the fact thatF (�) is monotone in all its parameters. From Lemma 3.4, it followsthat we

can apply the Frederickson and Johnson technique to search over the setQi(
1) in timeT (jQij) = minfpn; jQijg =O(pn), similar to the description in the previous subsection. Thus, the total running time becomesO(pn � pnk) =O(nk).
Theorem 3.5 Given an integern, one can find (if they exist) integers
1;
2;
3 and
4 such thatW (F (
1;
2;
3;
4)) =n in timeO(nk + n logn), wherek is a decomposition parameter.

3.2 Experimental value ofk
It is worthwhile to step back and survey what we have accomplished by the above techniques. The above algorithm
can be thought of as an “output-sensitive” algorithm — it hasworst case running time ofO(nk). According to the
discussion above, the first largest increasing sequence that we extract has size at least

pn. However, empirically
we find that the largest increasing sequence has size much larger thanO(pn). This is verified empirically below, by
comparing this algorithm, denoted as AlgorithmSequen
eDe
ompositionwith the binary search algorithm, denoted
as AlgorithmBinarySear
h.

We first run the above two algorithms for the inverse Wiener problem for Wiener indicesn = 1000; 2000; : : :;140; 000.
For eachn, we measure the the running time by counting the number of calls to W (F (�)) of both AlgorithmBinarySear
h, and AlgorithmSequen
eDe
omposition. The results are shown in Figure 4 (a). As expected, the
running time for various integersn varies quite a lot (since some searches are lucky to find the number easily) but on the
whole it can be easily seen thatBinarySear
hmakes many more calls toW (F (�)) thanSequen
eDe
omposition.
We “smooth” out the spikes in the figure to get a better understanding of the running times of the algorithms by
summing the running times over discrete intervals. We run the algorithms over all the numbers in the interval[1000 � i; 1000 � i + 400℄, wherei = 1; 2; : : : ; 200. Figure 4 (b) shows the resulting graph, where the value of the
curve atx = i shows the sum of the running times for the integers in[1000 � i; 1000 � i + 400℄. The many orders of
magnitude in speed is obvious in this figure.

4 Algorithm for the problem P�
The problemP� for our class of treesF (�) is as follows: given an integern, for every integer0 � m � n, compute
the configuration(a1; a2; a3; a4) such thatW (F (a1; a2; a3; a4)) = m.

10

Of course, problemP�can be solved byn calls to problemP=, yielding aO(n2k) time algorithm, and with the
worst case running time ofO(n5=2). However, the problemP�can be solved inO(n2) time by computingW (F (�))
for every tuplea = (a1; a2; a3; a4), where0 � ai � pn, i = 1; : : : ; 4. For each tuple, we mark off the integerW (F (�)) in an array. After all tuples have been computed, the locations in the array not marked indicate integers not
representable. As before, we will measure the running time of the algorithm by the number of calls to the function.
Using equation 3 we can bounda1 �p(n� 20)=8, ai � pn� 20; i = 2; 3; 4. Therefore the complexity of the naive
algorithm is bounded bybp(n� 20)=8
 � bpn� 20
3. For largen, this is approximatelyn2=(2p2) and we denote it
asTnaive(n). Our goal is to design an algorithm that solvesP�using a substantially smaller number of computations
of W (F (�)). The first idea is to make a bound fora that further restricts the search space. We will call our new
algorithm aspush algorithm. The algorithm will sequentially try to cover integers in increasing order. Lets(a) = dp2(2a1 + a2 + a3 + a4 + 7=2)e
and letm be the smallest number whose expressionW (F (�)) = m is not computed yet. The value ofs can be bounded
from below.

Lemma 4.1 If W (F (a)) = m thens(a) > pm.

PROOF. The lemma follows from the fact thatW (F (a)) < 2(2a1 + a2 + a3 + a4 + 7=2)2. We prove the inequality=) 2(2a1 + a2 + a3 + a4)2 �W (F (a)) � 0=) a1(8a1 + 8a2 + 8a3 + 8a4 + 28) + a2(4a2 + 4a3 + 4a4 + 14) + a3(4a3 + 4a4 + 14)+a4(4a4 + 14) + 49=2�W (F (a)) � 0=) a2(3a2 + a3 + 3) + a3(3a3 + a4 + 4) + a4(3a4 + 3) + 9=2 > 0:
The algorithm searches for the solution ofW (F (a)) = m;m � n in increasing order ofs(a). Let M be the

current value ofs(a). The algorithm enumerates all tuplesa so thats(a) = M . Let m0 be the smallest number not
representable asW (F ()) 1. By Lemma 4.1, if there is solution forW (F (a)) = m0 thenM must be greater than

pm0.
If current value ofM is at most

pm0, we increaseM to bpm0
. We implemented the push algorithm and tested it forn = 106. Let Tpush(n) be the number of computations ofW (F (�)). The number of computationsTpush is essentially
quadratic, see Figure 5. However, notice that the push algorithm demonstrates a speedup factor of 42 versusTnaive.

The second algorithm we implemented,sweep algorithm, sweeps tuplesa according to the increasing suma1+a2+a3 + a4. The sweep algorithm runs faster than the push algorithm. The ratioTnaive(n)=Tsweep(n) is approximately
66, as illustrated in Figure 5(b).

We implemented another algorithm that we calljump algorithm. The idea is to sweep tuplesa lexicographically
and skip tuples that do not produce new numbers. We maintain the smallest numberm0 whose representation is not
yet found. Suppose thata1 =
1; a2 =
2 anda3 =
3 are fixed constants and the algorithm starts search fora4. Letf denote the functionf(a4) = W (F (
1;
2;
3; a4)). f is monotone and the equationf(a4) = m0 is quadratic. By
solving this quadratic equation, we can find the largest value a�4 so thatf(a�4) is at mostm0. Thena4 takes values
from a�4 to

pn. The experiments show that

1. forn < 105, the sweep algorithm is faster than others, and

2. forn � 105, the jump algorithm is faster than others, and

3. the speedup of the jump algorithm with respect to the naivealgorithm grows withn.

We did a nonlinear fit of the data using the Levenberg-Marquardt algorithm and the running time of the jump algorithm
fits the polynomial equation1:5841n1:51474. The asymptotic standard errors of the fit are 0.000655467 for the exponent
and 0.0141145 for the coefficient, indicating an accurate fit.

The jump algorithm allows us to verify Conjecture 2.3 up to108. The running time is 4.6 days on 360Mhz SGI
MIPS R12K. We estimate that the sweep and naive algorithms would need 82.1 days and 14.1 years, respectively.

1Note thatm0 must be greater than 1177 since 1177 is not representable asW (F ()).
11

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

8
x 10

9

push
sweep
jump

0 2 4 6 8 10

x 10
5

40

60

80

100

120

140

160

180

200

push
sweep
jump

Figure 5: a) The graphs ofTpush; Tsweep; Tjump, and b) the ratiosTnaive versus the functions.

5 Conclusion

We studied the problems related to Wiener indices that have applications in computational chemistry and biology. We
proposed a family of treesF such that their Wiener indices are well distributed, and we conjectured that they cover all
the positive integers except a finite set of numbers. The conjecture is stronger than the conjecture by Goldman [21]
made for general trees. We verified our conjecture for large numbers up to108.

We designed several efficient algorithms for the problem of finding a tree whose Wiener index is a given number.
The algorithm that guarantees to find a tree inF , if any, has running timeO(n1:5) and is based on sorted matrix
searching technique. The algorithm exploits the properties of the Wiener functionW (F (a)) and one can show that for
general functionf(a) = �(W (F (a))) a lower bound for solvingf(a) = n is actually
(n2). The second algorithm
is based on the longest increasing subsequences. Furthermore, we modified the algorithm using sorted matrices and
improve the runtime by a factor ofO(logn). The last algorithm runs 100 times faster than the first one for n = 2 �105.

We developed three algorithms for the problem of finding all Wiener indices less than a given number. The first two
algorithms have essentially quadratic running time. The third algorithm runs faster and there is a strong evidence that
the actual running time is sub-quadratic. This algorithm allows us to verify the main conjecture that we put forward in
this paper for large integers, thereby strengthening our belief in an affirmative answer.

An interesting topic for future research is to consider trees with regards to other chemical and physical parameters
such as the number of carbon atoms, boiling points, densities, and melting points.

12

References

[1] A GRAFIOTIS, D., AND NO, W. C. Feature selection for structure-activity correlation using binary particle swarms.J. Med.

Chem. 45(2002), 1098–1107.

[2] A GRAFIOTIS, D., NO, W. C., AND LOBANOV, V. On the use of neural network ensembles in QSAR and QSPR.J. Chem.

Info. Comp. Sci.(2002). To appear.

[3] A GRAWAL , V., SRIVASTAVA , R., AND KHADIKAR , P. QSAR studies on some antimalarial sulfonamides.Bioorganic and

Medicinal Chemistry 9(2001), 3287–3293.

[4] BESALU, E., GALLEGOS, A., AND CARBO-DORCA, R. Topological quantum similarity indices and their use inQSAR:

Application to several families of antimalarial compounds. MATCH 44(2001), 41–64.

[5] BESALU, E., GIRONES, X., AMAT, L., AND CARBO-DORCA, R. Molecular quantum similarity and the fundamentals of

QSAR. Accounts of Chemical Research(2002). ACS ASAP.

[6] BESPAMYATNIKH , S.,AND SEGAL, M. Enumerating longest increasing subsequences and patience sorting.Inform. Process.

Lett. 76, 1-2 (2000), 7–11.

[7] BONCHEV, D., MARKEL , E., AND DEKMEZIAN , A. Topological analysis of long-chain branching patternsin polyolefins.

J. Chem. Inf. Comput. Sci. 41(2001), 1274–1285.

[8] BOUNAIM , L., V ILLA , M., SMEYERS, N., SENENT, M., EZZAMARTY , A., AND SMEYERS, Y. Ab initio structural study

and qsar of certain ibuprofen derivatives as possible antiinflammatory agents.Folia Chimica Theoretica Latina 28(2000),

88–98.

[9] BUCKLEY, F. Mean distance in line graphs.Congr. Numer. 32(1981), 153–162.

[10] CANFIELD , E. R., ROBINSON, R. W., AND ROUVRAY, D. H. Determination of the wiener molecular branching index for

the general tree.J. Computational Chemistry 6(1985), 598–609.

[11] CHEN, J., GUTMAN , I., AND YEH, Y. On the sum of all distances in graphs.Tamkang J. of Mathematics 25(1994), 83–86.

[12] CORWIN, H., KURUP, A., GARG, R., AND GAO, H. Chem-bioinfomatics and qsar: a review of qsar lacking positive

hydrophobic terms.Chemical Reviews 101(2001), 619–672.

[13] DANKELMANN , R. Computing the average distance of an interval graph.Information ProcessingLetters 48(1993), 311–314.

[14] DAS, A., DÖMÖTÖR, G., GUTMAN , I., JOSHI, S., KARMARKAR , S., KHADDAR, D., KHADDAR , T., KHADIKAR , P.,

POPOVIC̀, L., SAPRE, N., SAPRE, N., AND SHIRHATTI , A. A comparative study of the wiener, schultz, and szeged indices

of cycloalkanes.J. Serb. Chem. Soc. 62(1997), 235–239.

[15] DOBRYNIN, A. A., ENTRINGER, R., AND GUTMAN , I. Wiener index of trees: Theory and applications.Acta Applicandae

Mathematicae 66(2001), 211–249.

[16] ENTRINGER, R. C., MEIR, A., MOON, J.,AND SZÉKELY, L. Wiener index of trees from certain families.Australias. J. of

Combinatorics 10(1994), 211–224.

[17] ESTRADA, E., AND URIARTE, E. Recent advances on the role of topological indices in drug discovery research.Current

Medicinal Chemistry 8(2001), 1573–1588.

[18] FREDERICKSON, G. N., AND JOHNSON, D. B. Generalized selection and ranking: sorted matrices.SIAM Journal of

Computing 13, 1 (1984), 14–30.

13

[19] FREDMAN, M. On computing the length of the longest increasing subsequence.Discrete Math 11(1975), 29–35.

[20] GOLBRAIKH , A., BONCHEV, D., XIAO , Y.-D., AND TROPSHA, A. Novel chiral topological descriptors and their applica-

tions to QSAR. InProc. of the European Sympos. on Quant. Structure-ActivityRelationships, 13th, Duesseldorf, Germany,

Aug. 27 - Sept. 1, 2000(2001), p. 219223.

[21] GOLDMAN , D., ISTRAIL, S., LANCIA , G., AND PICCOLBONI, A. Algorithmic strategies in combinatorial chemistry. In

Proc. 11th ACM-SIAM Sympos. Discrete Algorithms(2000), pp. 275–284.

[22] GOZALBES, R., DOUCET, J.,AND DEROUIN, F. Application of topological descriptors in QSAR and drugdesign: history

and new trends.Current Drug Targets: Infectious Disorders 2(2002), 93–102.

[23] GUTMAN , I., AND POLANSKY, O. E. Mathematical concepts in organic chemistry. Springer-Verlag, Berlin, 1986.

[24] GUTMAN , I., AND POTGIETER, J. J. Wiener index and intermolecular forces.J. Serb. Checm. Soc. 62(1997), 185–192.

[25] GUTMAN , I., AND YEH, Y. The sum of all distances in bipartite graphs.Math. Slovaca 45(1995), 327–334.

[26] HOFFMAN, B., CHO, S., ZHENG, W., WYRICK , S., NICHOLS, D., MAILMAN , R., AND TROPSHA, A. A QSAR modeling

of dopamine D1 agonists using comparative molecular field analysis, genetic algorithms-partial least squares, and k nearest

neighbor methods.J. Med. Chem. 42(1999), 317–3226.

[27] HUNT, J.,AND SZYMANSKI , T. A fast algorithm for computing longest common subsequences.Communications of ACM

20 (1977), 350–353.

[28] IRELAND, K. F., AND ROSEN, M. I. A classical introduction to modern number theory. Springer-Verlag, New York, 1990.

[29] IVANCIUC , O. QSAR comparative study of Wiener descriptor for weighted molecular graphs.J. Chem. Inf. Comput. Sci. 40

(2000), 1412–1422.

[30] JOHNSON, D. B. Efficient algorithms for shortest path in sparse networks. Journal of ACM 24(1977), 1–13.

[31] KATRITZKY , A., LOBANOV, V., AND KARELSON, M. Normal boiling points for organic compounds: Correlation and

prediction by a quantitative structure-property relationship. J. Chem. Inf. Comput. Sci. 38(1998), 28–41.

[32] KRENKEL, G., CASTRO, E.,AND TOROPOV, A. A. Improved molecular description based on the optimization of correlation

weights of local graph invariants.Int. J. of Mol. Sci. 2(2001), 57–65.

[33] LEPOVIĆ, M., AND GUTMAN , I. A collective property of trees and chemical trees.J. Chem. Inf. Comput. Sci. 38(1998),

823–826.

[34] MARTIN , Y. C. 3D QSAR. current state, scope, and limitations.Perspect. Drug Discovery Des. 12(1998), 3–32.

[35] MERRIS, R. An edge version of the matrix-tree theorem and the wienerindex. Linear and Multilinear Algebra 25(1989),

291–296.

[36] MOHAR, B., AND PISANSKI, T. How to compute the wiener index of a graph.Journal of Mathematical Chemistry 2(1988),

267–277.

[37] NAIR , A., JAYATILLEKE , P., WANG, X., M IERTUS, S.,AND WELSH, W. Computational studies on tetrahydropyrimidine-2-

one HIV-1 protease inhibitors: improving three-dimensional quantitative structure-activity relationship comparative molecu-

lar field analysis models by inclusion of calculated inhibitor and receptor-based propertes.J. Med. Chem. 45(2002), 973–983.

[38] NATHANSON, M. B. Additive Number Theory: Inverse Problems and the Geometry of Sumsets. No. 165 in Graduate Texts

in Mathematics. Springer, New York, 1996.

14

[39] NEEDHAM, D., WEI, I.-C., AND SEYBOLD, P. Molecular modeling of the physical properties of alkanes. J. Am. Chem.

Soc. 110(1988), 4186–4194.

[40] OCHOA, C., CHANA , A., AND STUD, M. Applications of neural networks in the medicinal chemistry field. Current

Medicinal Chemistry: Central Nervous System Agents 1(2001), 247–256.

[41] POLOGAR, B., AND FERGUSON, D. QSAR and CoMFA: a perspective on the pratical application to drug discoverty.Drug

Design and Discovery 17(2000), 4–12.

[42] PUNGPO, P., WOLSCHANN, P., AND HANNONGBUA, S. Quantitative structure-activity relationships of HIV-1 reverse

transcriptase inhibitors, using hologram QSAR. InProc. of the European Sympos. on Quant. Structure-ActivityRelationships,

13th, Duesseldorf, Germany, Aug. 27 - Sept. 1, 2000(2001), pp. 206–210.

[43] ROUVRAY, D. H. Should we have designs on topological indices?Elsevier, Amsterdam, 1983, pp. 159–177.

[44] RÜCKER, G., AND RÜCKER, C. On topological indices, boiling points, and cycloalkanes. J. Chem. Inf. Comput. Sci. 39

(1999), 788–802.

[45] TEHAN, B., LLOYD , E., AND WONG, M. Atypical antipsychotics: Modelling, QSAR and databasesearching. InProc.

of the European Sympos. on Quant. Structure-Activity Relationships, 13th, Duesseldorf, Germany, Aug. 27 - Sept. 1, 2000

(2001), pp. 345–348.

[46] TETKO, I., KOVALISHYN , V., LUIK , A., AND L IVINGSTON, D. Application of volume learning artificial neural network

to calculate 3D QSAR models with enhanced predictive properties. InProc. of the European Sympos. on Quant. Structure-

Activity Relationships, 13th, Duesseldorf, Germany, Aug.27 - Sept. 1, 2000(2001), pp. 229–234.

[47] WIENER, H. Structural determination of paraffin boiling points.J. Amer. Chem. Soc. 69(1947), 17–20.

[48] ZHENG, W., AND TROPSHA, A. A novel variable selection QSAR approach based on the k-nearest neighbor principle.J.

Chem Inf. Comp. Sci 40(2000), 167–177.

[49] ZHU, L., HOU, T., AND XU, X. Three-dimensional quantitative structure-activity relationship study on paullones as CDK

inhibitors using CoMSIA and CoMFA.J. Mol. Model 7(2001), 223–230.

15

S1 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27,30, 33, 34, 37, 38, 39, 41, 43, 45,

47, 51, 53, 55, 60, 61, 69, 72, 73, 77, 78, 83, 85, 87, 89, 91, 99,101, 106, 113, 117, 129, 133, 147,

157, 159, 173, 193S2 1, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27,30, 33, 34, 37, 38, 39, 41, 43,

45, 47, 51, 53, 55 56, 60, 61, 69, 72, 73, 75, 77, 78, 79, 83, 85, 87, ,89, 91, 99, 101, 102, 106,

113, 117, 125 129, 131, 133, 135, 141, 143, 147, 149, 157, 159,165, 173, 181, 193,195, 197, 199,

203, 213, 217, 219, 229, 246, 261, 277, 279, 281, 285, 293, 301, 309, 325, 333, 341, 357, 369,

373, 375, 389, 421, 453, 469, 485, 493, 501, 509, 517, 533, 549, 557, 565, 581, 617, 629, 677,

693, 725, 741, 757, 773, 781, 789, 805, 837, 869, 901, 933, 965, 997, 1029, 1045, 1061, 1093,

1101, 1109, 1173, 1189, 1237, 1317, 1381, 1413, 1445, 1477, 1493, 1509, 1541, 1573, 1605, 1637,

1669, 1701, 1733, 1845, 1861, 1893, 1909, 1973, 2085, 2101, 2149, 2277 2293, 2341, 2373, 2405,

2437, 2469, 2501, 2597, 2629, 2693, 2725, 2853, 2885, 2981, 3029, 3109, 3237, 3365, 3493, 3525,

3557, 3589, 3653, 3813, 3877, 3909, 4069, 4389, 4581, 4645, 4773, 4901, 4933, 4965, 5029, 5157,

5285, 5413, 5541, 5669, 5797, 6309, 6437, 6501, 6533, 6757, 7205, 7461, 7973, 8229, 8357, 8485,

8613, 8997, 9125, 9381, 9509, 10021, 10149, 10533, 11045, 11557, 12325, 12453, 12581, 12709,

12965, 13605, 13861, 13989, 14629, 15717, 16677, 17701, 17829, 17957, 18213, 18725, 19237,

19749, 20773, 21285, 21797, 22821, 23589, 23845, 23973, 24869, 26917, 28965, 29989, 31013,

31525, 32037, 32549, 33061, 34085, 35109, 35621, 36133, 37157, 39461, 40229, 43301, 44325,

46373, 47397, 48421, 49445, 49957, 50469, 51493, 53541, 55589, 57637, 59685, 61733, 63781,

65829, 66853, 67877, 69925, 70437, 70949, 75045, 76069, 79141, 84261, 88357, 90405, 92453,

94501, 95525, 96549, 98597, 100645, 102693, 104741, 106789, 108837, 110885, 118053, 119077,

121125, 122149, 126245, 133413, 134437, 137509, 145701, 146725 149797, 151845, 153893,

155941, 157989, 160037, 166181, 168229, 172325, 174373, 182565, 184613, 190757, 193829,

198949, 207141, 215333, 223525, 225573, 227621, 229669, 233765, 244005, 248101, 250149,

260389, 280869, 293157, 297253, 305445, 313637, 315685, 317733, 321829, 330021, 3382

416037, 418085, 432421, 461093, 477477, 510245, 526629, 534821, 543013, 551205, 575781,

583973, 600357, 608549, 641317, 649509, 674085, 706853, 739621, 788773, 796965, 805157,

813349, 829733, 870693, 887077, 895269, 936229, 985381S3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21,22, 23, 24, 25, 26, 27, 28, 29, 30,

33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55,57, 58, 60, 61, 64, 69, 72, 73, 77,

78, 81, 83, 85, 87, 89, 91, 93, 97, 99, 101, 106, 113, 114, 117, 129, 133, 137, 141, 143, 145, 147,

149, 157, 159, 165, 173, 189, 193, 205, 213, 217, 219, 229, 249, 265, 281, 285, 301, 309, 325, 357,

373, 389, 417, 433, 557S4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 49, 50, 51, 52, 53,54, 55, 57, 58, 60, 61, 64, 67, 68, 69,

70, 71, 72, 73, 74, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93,94, 97, 99, 101, 102, 106, 107, 110,

113, 114, 115, 117, 118, 120, 121, 124, 127, 129, 130, 131, 133, 137, 141, 142, 143, 145, 147, 149,

157, 159, 160, 165, 173, 174, 175, 177, 183, 189, 193, 194, 197, 203, 205, 208, 213, 214, 217, 219,

226, 227, 229, 235, 241, 242, 249, 257, 265, 267, 269, 270, 275, 281, 285, 288, 295, 301, 309, 311,

325, 327, 330, 335, 337, 349, 357, 373, 389, 393, 403, 405, 417, 419, 433, 435, 461, 467, 481, 484,

501, 527, 529, 533, 545, 557, 565, 575, 613, 657, 701, 729, 747, 757, 837, 857, 935, 1061, 1177

Table 1: Table presenting the various sets of integers related to the conjectures.

16

