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Abstract

Drugs and other chemical compounds are often modeled agqudy shapes, where each vertex represents an
atom of the molecule, and covalent bonds between atoms aresented by edges between the corresponding ver-
tices. This polygonal shape derived from a chemical comgd@ioften called itsnolecular graphand can be a path,
atree, or in general a graph. An indicator defined over thieouar graph, th&Viener indexhas been shown to
be strongly correlated to various chemical properties efdbmpound. The Wiener index conjecture for trees states
that for any integer (except for a finite set), one can find a tree with Wiener indexThis conjecture has been
open for quite some time, and many authors have presentesiieatal progress on this problem. In this paper, we
present further progress towards proving this conjecturihreugh the design of efficient algorithms, we show that
enumerating all possible trees to verify this conjectused@ne by all the previous approaches) is not necessary, but
instead searching in a small special family of trees suffites achieving the first polynomial (im) time algorithm
to verify the conjecture up to integer More precisely, we:] present an infinite family of trees and prove various
properties of these treeg;) show that a large number of integers, up to at la@8{compared with the previous
best10?) are representable as Wiener indices of trees in this sctdaimily, (:7) provide several efficient algorithms
for computing trees with given Wiener indicesy) implement our algorithms and experimentally show thatrthe
performance is asymptotically much better than their tatical worst-case upper bound.

Keywords: Wiener Index, Combinatorial Chemistry, Matrix SearchiGgaph Theory

1 Introduction

Drugs and other chemical compounds are often modeled asugapiolygonal shapes — paths, trees, graphs etc.
Each vertex in the polygonal path or tree represents an atahe enolecule, and covalent bonds between atoms are
represented by edges between the corresponding vertibés pdlygonal shape derived from a chemical compound
is often called itsnolecular graph As the geometry of proteins play an important role in deteimng the function of

the protein, so can the topological properties of the mdéeagraphs of chemical compounds be correlated to their
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Figure 1: The molecular graph of the compouwnd, 5-trimethyl-4-ethyl heptane [15].

chemical properties. For some time now, the biochemicalnoaonity has been using topological indices in an attempt
to correlate a compounds molecular graph with experimigrgathered data regarding the compounds characteristics.

Usage of topological indices in biology and chemistry begat©47 when chemist Harold Wiener developed the
most widely known topological descriptor [22, 29], the Waelindex, and used it to determine physical properties of
types of alkanes known as paraffins[47]. In general, togoldgndices are one of the oldest and most widely used
descriptors in quantitative structure activity relatibips: Quantitative structure activity relationships (F8As a
popular computational biology paradigm in modern drug gie$il2, 34]. It attempts to encode biological activity
such as inhibition or activation into numerical measuresdiyelation of mass amounts of data from an initial screen-
ing of hundreds or thousands of candidate drug compounds.da&ta is mapped into a structural “activity space”
consisting of various descriptors with the hope that the@sees capture or estimate properties of chemical com-
pounds. Constructions of new drugs then proceed by notimdésired activity spaces and creating new compounds
which occupy those regions of space.

QSAR has experienced rigorous recent investigation [2220732], and has been used to help develop a wide
variety of drugs in medicine with a diversity ranging frormcar [49], to infectious diseases such as AIDS [37, 42]
and malaria [3, 4], to antipsychotics [45] and anti-inflanbong agents [8]. Recent techniques in QSAR include
molecular field analysis [41], quantum similarity [5, 4],rpele swarms [1],k-nearest neighbor principles [48, 26],
neural networks [2, 46, 40], and topological indices [22, 20, 32]. The power of QSAR in quickly identifying lead
drug candidates gives great motivation to both developevg techniques and further improving current techniques.

Amongst the topological indices used as descriptors in Q3A&Wiener index is by far the most popular index,
as it has been shown that the Wiener index has a strong dawredeith the chemical properties of the compound [17,
31, 39]. Therefore, to construct a compound with a certagperty correlated to some Wiener index, the objective
becomes to build substructures in the target chemical cangbgiving the compound that Wiener index. This in turn
leads to the following important problem: given a Wienerérdfind a compound with that Wiener index.

An overwhelming majority of the chemical applications oé Wiener index deal with chemical compounds that
have acyclic organic molecules [24, 43] (for work involviagslic compounds see [14, 44]). The molecular graphs of
these compounds are trees [23]. See Figure 1 of the molegmalph of such a chemical compound. Therefore most
of the prior work on Wiener indices deals with trees, relgtihe structure of various trees to their Wiener indices
(asymptotic bounds on the Wiener indices of certain famidiEtrees, expected Wiener indices of random trees etc.).
For these reasons, we concentrate on the Wiener indicesesf &is well (see Dobrynét al.[15] for a recent survey).

1.1 Problem definition

Definition 1.1 (Wiener Index) Given an undirected grapfy = (V, E), denote byl(v;, v;) the length of the shortest
path between two distinct vertices v; € V. The Wiener indeX’ () is defined as

W(G) = chz(vi,vj) (1)

i j>i



In this paper, we will present results on the Wiener indexbfms where the grapfi is a tree. While the case of
graphs has been solved, a major conjecture in this area iherhevery positive integer is the Wiener index of some
tree.

Conjecture 1.1 (Wiener Index Conjecture [11, 21, 33])Except for some finite set, every positive integer is the &vien
index of some tree.

Towards this goal, we present a family of trees and desigrefisient algorithms for the Inverse Wiener problem,
defined as follows [25].

Problem 1.1 (Inverse Wiener Problem,P-) Given an integer., construct a tree whose Wiener indexis

An algorithm for solving the problen?— can be used to verify the above conjecture — the algorithrpifoblem P—
can be applied times to verify the conjecture up to any integerHowever, there can be a faster algorithm, and so
we introduce the following problem.

Problem 1.2 (Inverse Wiener Covering Problem,P<) Given an integem, for every: < n construct a tree with
Wiener index.

1.2 Previous work

Intensive work has been done on the theory of Wiener indloath in the chemistry and biology community as well
as in the mathematics community. There are broadly two tgppsoblems that all of the previous work has addressed
— Wiener indexproblem for graphs, and tHaverse Wiener indegroblem. The Wiener index problem deals with
properties of the Wiener index of various substructuresthe efficient computation of the index, the upper and lower
bound on the index values etc., and the relation of the Wiienkex to other qualities of the graph. The Inverse Wiener
problem seeks to answer, given an integethe question about the existence of a tfesuch thai¥ (7') = n, and
when this is the case, how to compute it efficiently.

Computing Wiener Index.  The straightforward way for computing the Wiener index fiay graphG is to compute
distances between all pairs of vertices. This approach hiesast2(n?) running time since it has to check aig)
pairs. Furthermore, for a pajt, v), it could takeO(n) time to compute the distanegu, v), therefore with running
time O(n®). One could use Johnson’s algorithm [30] for all pairs skstnpaths on sparse graphs to fifd:, v) for
all u,v € Vintime O(|V|?1log|V| + | E||V]) (using Fibonacci heaps), yielding the same time bound ahgorfor
computing Wiener index for general graphs.

For trees, although the number of edge®)is:), the number of pairs of vertices is stili(n?). However, the
Wiener index of a tree can be computediin) time, through a plethora of computational methods [10, 83, 3

Relation to other qualities. The Wiener index of a tree has surprising relations to otliantjties defined over
the tree. The line graph, denoted By(), of a graphG has a vertex for each edge 6fand two vertices in the
line graph are connected by an edge if and only if the two spording edges i’ are adjacent to a common
vertex. The Wiener index of the line graph of a tree has thieviehg relation to the Wiener index of the tree [9]:
W(L(T)) = W(T) — (5). Given a tre€l’, a Laplacian matrix can be defined o€y whose eigenvalues are called
Laplacian eigenvalues. See [35] for details. Ret. .., A, be the Laplacian eigenvalues 6f Then it was shown
in [35] thatWW(T') = n Z?:_f Ai Similar relation exists between the Wiener index of a treitsradius.

Upper and lower bounds.  Given special graphs with vertices, often closed form expressions exist for their
Wiener index. See Figure 2 for some examples. It is easy tthsea path?, of lengthn has Wiener inde®(n?),

and a complete graph,, has Wiener inde®®(n?). Also, note that the Wiener index of every other graph or &ree
must be between these two valuB$(K,,) < W(G) < W (P,). In combinatorial chemistry, researchers have looked
at specific polymers and alkanes, and formulated the boumtissir Wiener indices. For example, Bonclehal.[7]
present formulations of the Wiener index for linear polymestar-like polymers, B-Combs etc. Similarly Riicleer



al. [44] exhaustively enumerate cycloalkanes, computing tv&ner indices, and tabulating their variation and actual
numerical bounds on the Wiener index.

There has also been some work on looking at asymptotic valfiteg Wiener index for random trees. Entringer
al. [16] show that for several classes of random trees (e.grypinees) withn vertices,IW (T') = ©(n°/?) asn goes
towardsx.

Inverse problem. The inverse Wiener problem is easily solvable for graphgeman integer, there always exists

a graphG such that¥V () = n, and it is computable in constant time. This was shown by Galuet al.[21]: as
mentioned before, a complete grafih hasW (K,,) = n(n — 1)/2 while a star graply,, hasW (S,) = (n — 1)
Observe that adding an edgedp decreases the Wiener index byand this can be iteratively repeated till a complete
graph is reached. This gives a continuous interval of Wiémgices fromn(n — 1)/2to (n — 1)%. The next interval
defined byS, +1 and K, 1 overlaps this interval and so forth, thus showing thatarmas a graph with Wiener index
n.

However, once the graph is restricted to trees, Goldetah. note that the problem becomes complicated and the
complexity is unknown. In fact, the complexity of this questis left unsolved in Cheet al.[11] and Gutman and
Yeh where it is conjectured [25], and conjectured that afpanh a finite set, all integers do have corresponding trees
with the required Wiener indices. Later Lepovit and Gutrif&8] present a exhaustive search algorithm that verifies
this conjecture up to integér06, still leaving the Inverse Wiener conjecture open. Goldregal. attempt to solve
P_ by defining a recurrence relation on Wiener indices of trgasding dynamic programming to construct trees from
smaller subtrees. Using their exponential time algorittiray are able to verify the above conjecture for integers up
to 10000. However, the Inverse Wiener conjecture remaies op

1.3 Ourresults

We present progress towards proving the Wiener index cangby showing that searching all possible trees is not
necessary — a small parameterized subset suffices. Mordisalbg our contributions are:

o We present a family of treed;, and give reasons why it is a good candidate to analyze,rréthe searching
over the (exponential) space of all possible trees. Thisrasts with the previous work of Goldmat al[21]
where they addressed probléfn by exhaustively checking trees using an exponential tigerghm.

o We presen® (k) time algorithms for computing the Wiener index of a treéFiywherek < n is a tree parameter.
In our algorithmsf will be a small constant.

¢ We conjecture that the Wiener indices of our proposed faofityees cover all the integers except a small finite
set. We further present a succinct four parameter familyesfdt that we also conjecture can express all integers.

o We present several efficient algorithms for the probleém using variants of Frederickson and Johnsons ma-
trix searching algorithm, and a novel use of decompositipsdrted sequences in tini@(nk), wherek is a
decomposition parameter, and by exploiting the speciatsire of the Wiener polynomial (in terms of the tree
parameters) for our family of trees. We present empiricailiits on the efficiency of this algorithm, indicating
that this algorithm i®rdersof magnitude faster than that using the Frederickson andsawhtechnique.

o We present several efficient algorithms for the probles and give empirical results showing that it is faster
by a factor ofO(1/n) than the naive implementation.

Finally, we believe that the approaches given in this paperbe used as general techniques for tree construction
problems in combinatorial biology and chemistry when ités@ssary to deal with tree classes.

2 Family of Trees

First, we state that given a trdé= (V, £/), one can assign integer weights to the edges of the tree Batthe sum
of the edge weights is exactly the Wiener index of the tree.
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Figure 2: An illustration of various trees withvertices, and their corresponding Wiener indices.

Lemma 2.1 (Dobryninet al. [15]) GivenT = (V, E), one can assign weights(e) for eache € FE such that
WAT) = e w(e)-

PROOF Look at the set of all paths from every vertexlinto every other vertex ify’. The Wiener index is simply the
sum of the lengths of these paths. For an edgeF, the number of all possible paths passing through the edge
simply the product of the sizes of the two subtrees formeddbgtohg the edge. Let this number be the weight(e)

of the edge:. Then it follows that
W(T) =) dlvi,v) = wle)
iG> e

Previous work has tended to focus on enumerating all passibes and computing the Wiener index of each
such tree [21]. This approach results in exponential tigerithms, and hence the previous limited computational
results [21, 25, 33]. We follow a different path by definingaanily of trees which allow efficient algorithms for the
inverse Wiener problem. The required family of trees mussiethe following desirable conditions:

¢ Simple generation.The required trees must be easy to generate using a setgéiiqtarameters.

¢ Low-order polynomials. The Wiener index of a tree must be a low degree polynomialtfanof the input
parameters. Low degree polynomials are easy to computematitematically one can cover a larger set of
integers using lower degree polynomials due to their higeesity.

We present an infinite family of trees, satisfying the abavteda, whose structure allows for the realization of a
vast number of Wiener indices. Defifig(r, . . ., %) to be the tree with

Vi={s1,..,seU{ts, ...ttt )

and
E={(s5,5041), 1 <i<(k=1)FU{(t],s;5), 1 <j<hk, 1<I<r;}.

Note thatm = |V| = ", r; + k. TreeT} is thus defined by parameters;, i = 1. .. k. Figure 3 illustrates the struc-
ture of the family of trees. An interesting question ariséether the Wiener index G, (r1, . . ., 7x) can be computed
in sub-lineartime in the number of vertices of 7. We answer it in affirmative below. We will again compute the
Wiener index of the tree family by computing the weight offeadge and summing it up, as in Lemma 2.1.
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Figure 3: Examples of treesis (3), 12 (3,4), and7s (1, 2, 2).

Fact 2.2 ’
W(Tk(r1, k) =Y (Z(m +i) Y (4 (k- i))) +(m—k)-(m-1) 2)

i=1 j=1 j=i+1
PROOF Summing up the weights;(u, v), of all the edgesu, v) € E as defined in Lemma 2.1, we get

k—

1 k T
W(Tk(re, ..., r)) = w((si,5i41)) +ZZ“’ (t],35)

i=1 j=11=1

It can be verified that

and , A
w((siysiv1)) = (Q_ri+i) - (Y v+ (k=1))
j=1 j=i+1
Hence,
k-1 k
W(Tk(r1,. .., => Zr]—l—z (> mi+ (k=) | +(m—k) (m—1)
=1 j=1 j=i+1
Lemma 2.3 The Wiener index of a trég; (ry, . .., r;) can be computed i (k) time.

PROOF Let X; = 2;21 r;, andY; = Z;?:Hl Ty NumbersX; andY; can be computed iﬁ)(k) time, for all
1 < i < kinan incremental fashion. Note that’_, (r; + i) = X; + (“}'). Similarly, Z] g (k=) =

Vi + (*3h) — ("th). By Equation 2)¥ (Tj (r1, . . ., 7)) can be computed (k) time.

We have implemented the above algorithm for the computatfdifiener indices off/;. We now experiment to
find out the set of Wiener indices not covered by our familyreés7;,. We omit details, but we verified that integers
up to10%, except for a few numbers, can be represented &8;, ), for somek, leading us to state the following.

Conjecture 2.1 Except a seb; (Table 1) of56 numbers< 193, all integers can be represented By(7}).

Actually, our experiments indicate that all numbers0® < n <108, can be presented By (7} ), wherek < 5.
However, it seems that the Wiener indices of the tfBest < 4, do not cover all integers except a finite set and we
illustrate that by listing the set of numbers;, (Table 1), less thaih0® that are not representable. Based on the above
results, we strengthen conjecture 2.1 by replacing theifafiamily of treesT}, by a single family of trees fok = 5.



Conjecture 2.2 Except a sebs (Table 1) ofl02 numbers< 557, all integers can be represented By(T5).

We have verified this conjecture farup to10®. Fork = 5, the Wiener index of 5(r1, . . ., r5) simplifies to

W(Tg,(?“l,...,?“g,)) =7 7“1—|—37“2—|—47“3—|—57“4—|—67°5—|—14)+

(

(7“2 + 37“3 + 47“4 + 57“5 + 11) +
rs - (7“3 + 37“4 + 47“5 + 10) +

(

(

2

T4 rq+ 3rs + 11) +

s + 14) + 20

s

Note the symmetry between the parametgrandr; and similarly between parametersandr,. We exploit this
symmetric property strongly in our algorithms.

We recall Lagrange’s Theorem in number theory, that evdpgier can be represented as a sum of four squares [28].
For example, the polynomial for the Wiener index (in terms;pfor 75(r1, . . ., r5) consistonlyof quadratic and lin-
ear terms. That gives the intuition that a properly chosenparameter family of trees might be sufficient to represent
any Wiener index. One way to remove one parameter would bapose a constraint on the functi&i(75). After
some experimentation, we discovered that the constraint r5 still allows for the representation of all integers as
Wiener indices, except for a certain finite set. Considefdh@ly of treesT(r1, . . ., rs) such that; = r5. We denote
this family of trees byF'(-), whereF (ry, o, 73, r4) = Ts(r1, ra, 3, 74, 71). Then simplifying the Wiener formula for
W(Ts(r1,...,7r5)) gives,

W(F(?“l, Tr9, T3, 7“4)) = 7“1'(87“1—|—87“2+87“3+87“4—|—28)+7“2'(7“2—|—37“3—|—47“4—|—11)—|—7“3'(7“3+37°4—|—10)—|—7“4~(7“4—|—11)—|—20.
3)
We were unable to prove th&¥ (F(ry,r2,r3,74)) covers all integers using tools from (additive) number the-
ory [38]. We believe that it is solvable fer > 1177 and leave it as an open question.

Conjecture 2.3 Except a seb, (Table 1) ofl81 numbers< 1177, all integers can be represented By(F).

3 Algorithm for the problem P_

In this section we give a suite of algorithms for finding tregsse Wiener index is, given the integen as input to
the algorithm. First, observe that the value of eacts bounded in terms of.

Claim 3.1 Given an integer., any treel” of family F'(ry, ra, r3, 74) with W(T') = n must haveé) < r; < /n.

Recall that each tree ifi(V, E) is defined by four parameters, 3, r3 andr,. Givenn, the objective is to find
atreeT € F(V, E) such thatV(7T) = n. We call the set of all 4-tuple-, 2, r3, 74) the configuration spacef
W(F(-)). Tofind a given integer, we want to search this configuration space. The straigh¢fiatway of computing
F(V, E) is to exhaustively traverse this configuration space, iezaie over all possiblg’s, and computé? (T') for
each 4-tuple. By Claim 3.1, the running time($n?).

However, on examining Equation 3, one finds that the equatioronotone in all parameters. Therefore, a fast
algorithmis as follows. Iterate over all valuesief r», andrs. So suppose that, r» andrs are some fixed constants,
sayci, ca andes respectively. Perform the binary search over the sequBRCE(cy, 2, c3,74)), 0 < rq4 < /n, O
find if W (7') = n for some value of.,. The running time therefore reduces@¢n®/? log n).

Remark. The above approach can be modified to solve the followindlpro in O(n®/? logn)) time: Given
an integem andm < 5(y/n + 1), construct a tree of siza&« whose Wiener index is. The algorithm can actually
enumeratall trees inF'(ry, 2, r3, r4) Using the same time.

We show how to improve the above algorithm. Supposeithat ¢; andr, = ¢» are fixed. Consider the matrix
M of valuesW (T') for all 0 < r3, 74 < \/n, i.e. the matrixi/;; = W (F(e1,c2,1,7)). Again from the equation 3, it



follows that M is a sorted matrix, i.e. each row and columméfis nondecreasing. We therefore apply the searching
technique of Frederickson and Johnson [18] for searching foumber in a sorted matrix. One can think of the
previous algorithm of performing binary search ovgras performing binary search over each row of the matfix

i.e. each row corresponds to a fixed parameter vatge= ¢, with the value of-, varying across the row, and = ¢;
andrs = c¢2. Frederickson and Johnson’s technique performs polyri@®sach overl/, saving an extra logarithmic
factor by amortizing the search using the fact that not oné/rows are non-decreasing, but the columns are non-
decreasing as well, and one can interleave the binary seéateleen rows and columns to finally get the searching
time asO(V/k), wherek is the number of elements @f less tham (k = O(n) sinceM containsO(n) elements).
We still need to iterate over all possible valuesfprandrs, giving the total searching time of our Wiener searching
algorithmO(n?/?). Furthermore, note that if we allow the use of computing sguiaots in constant time, then the
equation 3, givem; = ¢1,rs = ca2, 73 = c3, reduces to a quadratic equatidi( 7' (¢, c2, c3, 74)) = n which can be
solved in constant time. If one of the roots is a non-negatiteger, that root is the required valuengf

3.1 Decomposition using sorted sequences

We now analyze the structure of equation 3 more closely ardtus present an even more efficient algorithm for
our problem. The first thing to note is the symmetry of the ¢cignabetween-, andry, i.e. r; “contributes” equally
to (the coefficients ofy, andr,, and similarlyrs “contributes” equally to (the coefficients of) andr,. Therefore,
instead of fixingr; andr, as before and trying to fings andr, values more efficiently, we fix; = ¢y, 73 = ¢3. As
explained above, this is crucial sineeandrs contribute symmetrically to, andr,. Then

W(F(e1,72,¢3,r4)) = r2-(8c14+ra+3cs+11)+rs-(8¢cy +ra+ 3cs+ 11) + 4rars + K(c1, c3)
= (ro+rs) (8c1+3es+11)+ rg + ri + 4drary + K(eq,c3)
= (ro4ra)- (8c1 4+ 3cs+ 11) + (ro + 74)? 4 2rary + K(c1, c3),

whereK (c1, c3) = (c + 8¢%) + (8cies) + (28¢1 + 10e3) + 20 is a constant.
Lemma 3.2 Given integerss, r4, s2, 54, ¢1,dq, ¢, ds,

W(F(e1,r2,c3,74)) > W(F(c1,82,¢3,84)) = W(F(d1,7r2,ds,r4)) > W(F(d1, s2,ds, s4)),
if 7o + 74 > 52 + 54 and8(dy — ¢1) + 3(ds — ¢3) > 0.

PROOFR Assume thatV (F'(ci,rq, c3,74)) > W(F(c1, s2,¢3,54)). We will show that the increment in the Wiener
index for the configuratiolicy, 72, ¢, r4) is larger than the increment for the configuratien, ss, s, s4), i.e.

W(F(dlaTQad:‘}arll)) - W(F(Clarzac3ar4)) Z W(F(dlaszad3a54)) - W(F(Cla52a63a54))
(7“2 + 7“4)(8d1 + 3d3 + 11 — 861 — 363 — 11) Z (82 + 84)(8d1 + 3d3 + 11 — 861 — 363 — 11)
(r2 4+ 74)(8(dy — ¢1) 4 3(ds — c3)) > (52 + 54)(8(d1 — 1) + 3(ds — ¢3))

Since8(d; — ¢1) + 3(ds — ¢3) > 0, and(r2 + r4) > (s2 + s4), the proof follows.

We now use Lemma 3.2 to identify large subsets of the confiurapace that can be searched to find a specific
element much more efficiently.

Setr; = r3 = 0. Definew( (a,b) ) = W(F(0,a,0,b)) ande( (a,b) ) = a+b. Let P = {( p; = (as,6;)]0 <
a;, b; < +/n ) be sorted byu(-, -). Then the sequence @FP| = n pairs represents the Wiener indices of all possible
pairs of parameters, andr,. Let P’ = (p;,,...,ps,) be the longest subsequence Rfsuch that the sequence
C(P') = {e(pi,),---,c(pi,)) isincreasing.P’ of size€2(y/n) can be found in tim&(n loglog n) [19, 27, 6]. Note
that two conditions hold for any two elements, p; , € P’ such that; < ;.

1 w(p:;) < w(pij,) and



2. ¢(pi;) < c(pij,).

Lemma 3.3 Given the subsequend¥ described above, and an integersuch thatn = W (F (1, a, 3, b)), where
the values of, andrs are known, one can find the valuesxodindb in O(log n) time.

PROOF Note that in the previous algorithm, we used the binaryckeawer one variable or used Frederickson and
Johnson’s technique to avoid the binary search, but we haetiorm2(,/n) computations to find, = « and
rq = b. Now we will show that if the subset of configuration spacéss§ias certain criteria, liké”’, then we can search
in O(logn) steps.

We need to find: andb such thatV (F(ry, a, rs, b)) = n where(a, b) € P’. Note thatP’ is increasing in both
W(F(0,a;,0,b;)) and inC(P’). Take any two pairg;, = (a;;,b;;) andp;, = (ai,,b;,) of P/, j < j'. Then
a;; +bi; <a;, +b;, from2. above, and for any positive andrs, 8(r1 — 0) + 3(rs — 0) > 0. Thus the conditions
of Lemma 3.2 are satisfied and

W(F(Oaaijaoabij)) S W(F(O,Clij,,o,bij,)) — W(F(rlaaijarflabij)) S W(F(rlaaij/arflabij/))

w(ai;, bi;) <wlaiy,, b)) = W(F(r1,ai,,rs,bi)) <W(F(r1,ai,,73,bi ) (4)
The last inequality in the displayed formula 4 says that thenét index of the 4-tuplér., a;,, r3, b;;) will always

be less than the Wiener index 0f;, @i, T3, bij,) if j < j/, regardlessof the value ofr; andrs. Thérefore we can
do binary search since we haf® sorted by (F'(0, a;, 0, b;)) already. We only know that the order of the pairs is
preserved, although the valueswof-) have changed (since the values-ofandrs have changed). At each step of the

binary search we have to recomputg) for each pair, and proceed accordingly.

Now the algorithm can be completed. Sgt= r3 = 0, and compute the s&t in time O(nlogn) by sorting
all tuples(0, r2,0,r4) by their Wiener indices. Now find the largest increasing sgbence ofP in the ordered
sequenc&’( P). This subsequence satisfies the two properties, i.e. isioagavith respect tdV'(P) andC'(P). From
Lemma 3.2, the order of this subsequence would remain ugelgiawith varying values of; andrs. We store this
subsequence as an ordered sequence of Pairblow iteratively extract largest increasing subsequdhcia round
i till the last roundk. Store these ordered sé®s= {P,..., P;}. Now, we vary the values of;, andrs from 1 to
v/n. Since we don't know which sequence could containve have to search in all sequences. In each sequence
we do binary search as in Lemma 3.3, achieving the worst cgaktimeO(nk logn). Note thatt < \/n — we can
always define® = {Py,..., P 5}, whereP; = {(i,1),...,(i,/n)}. Then, from the monotonicity of the function
F(-), eachP; is an increasing sequence in the Wiener index.

Two natural questions arise: how practical are these schieamel is further speedup possible. In the next sub-
section, we empirically show that this sequence deconipagiésults in a practically near-linear time algorithm for
our problem. Second, th@(log n) overhead of search iR can be removed, and we now improve the running time
of the algorithmSequenceDecomposition to O(nk). Recall that the setP = {Py,..., Py} were defined with
ry = r3 = 0. Lets defineQ(c1, ¢3) = {@1(c1,¢3), ..., Qu(c1, c3)}, whereQ; (c1, ¢c3) is an ordered sequence of inte-
gers (W (F'(c1,aq;,¢3,b:,))|(ai;, bs;) € P;). Essentially, the previous algorithm performed a binagysfe over each
set@;(4,0), forall1 < i<k, 1< j < ./n,thus getting total timé&(nk logn). Now, instead we will do searches
simultaneously over subsets @fc, c3). Let Q;(c1) = {Qi(c1,0), ..., @Q;(c1,+/n)} be asubset 0f(cy, c3) of size
|Q;(c1)| = /n. Assume we can search ow@f(c;) in time7'(]Q;|). Then, the total running time becomes

n

kN k
Z (1) = ﬁZT(IQiI)

Now we need to show how to search oy(c, ) efficiently. To this end, form the matri%/ where each row of/,
denoted by\/; is a set, i.e.M is the matrix such that/; = Q;(c1, j), wherei ande; are fixed. M is a\/n x |Q;]
matrix.

Lemma 3.4 If the matrix}/ is associated with the s€;(c1), M is a sorted matrix.
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Figure 4: Figure showing the running times of the algorithmeasured by the number of calls&g-)

The proof follows from the fact thaf'(-) is monotone in all its parameters. From Lemma 3.4, it folltineg we
can apply the Frederickson and Johnson technigue to seachhe seQ;(c;) intime7'(|Q;|) = min{\/n, |Q:|} =
O(+/n), similar to the description in the previous subsection. sTtie total running time becoméX\/n - \/nk) =
O(nk).

Theorem 3.5 Given an integer:, one can find (if they exist) integers ¢z, ¢s ande, such thatV (F(cy, 2, ¢3,¢4)) =
n intimeO(nk + nlogn), wherek is a decomposition parameter.

3.2 Experimental value ofk

It is worthwhile to step back and survey what we have accahpti by the above techniques. The above algorithm
can be thought of as an “output-sensitive” algorithm — it hesst case running time a(nk). According to the
discussion above, the first largest increasing sequentevithaxtract has size at leagfn. However, empirically
we find that the largest increasing sequence has size mugr BwanO(y/n). This is verified empirically below, by
comparing this algorithm, denoted as AlgoritBeyuenceDecomposition with the binary search algorithm, denoted
as AlgorithmBinarySearch.

We first run the above two algorithms for the inverse Wienebfam for Wiener indices = 1000, 2000, . ..,140, 000.
For eachn, we measure the the running time by counting the number &6 ¢all’(F( - )) of both Algorithm
BinarySearch, and AlgorithmSequenceDecomposition. The results are shown in Figure 4 (a). As expected, the
running time for various integersvaries quite a lot (since some searches are lucky to find tiaueasily) but on the
whole it can be easily seen ttRatnarySearch makes many more calls & (F'( - )) thanSequenceDecomposition.

We “smooth” out the spikes in the figure to get a better undadihg of the running times of the algorithms by
summing the running times over discrete intervals. We rundlgorithms over all the numbers in the interval
[1000 - ¢, 1000 - ¢ + 400], wherei = 1,2,...,200. Figure 4 (b) shows the resulting graph, where the value @f th
curve atz = i shows the sum of the running times for the integerd #90 - ¢, 1000 - i + 400]. The many orders of
magnitude in speed is obvious in this figure.

4 Algorithm for the problem P

The problemP< for our class of tree$'(-) is as follows: given an integer, for every integed < m < n, compute
the configuratioffa,, as, as, a4) such thatV (F (a1, as, as, a4)) = m.
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Of course, problenP<can be solved by calls to problemP_, yielding aO(n?k) time algorithm, and with the
worst case running time @(n°/2). However, the problen< can be solved il®(n?) time by computingV (F( - ))
for every tuplea = (a1, as, as, a4), where0 < a; < y/n, 7 = 1,...,4. For each tuple, we mark off the integer
W (F(-)) inan array. After all tuples have been computed, the lonatin the array not marked indicate integers not
representable. As before, we will measure the running titeealgorithm by the number of calls to the function.
Using equation 3 we can boung < /(n — 20)/8, a; < +/n — 20,i = 2,3, 4. Therefore the complexity of the naive
algorithm is bounded by, /(n — 20)/8] - [v/n — 20]3. For largen, this is approximately.?/(2v/2) and we denote it
asT,4ive(n). Our goal is to design an algorithm that solvVesusing a substantially smaller number of computations
of W(F( -)). The first idea is to make a bound ferthat further restricts the search space. We will call our new
algorithm agpush algorithm The algorithm will sequentially try to cover integers irtirasing order. Let

s(a) = [\/5(201 +as+azs+as+7/2)]

and letm be the smallest number whose expres$iofy’'(-)) = m is not computed yet. The value o#tan be bounded
from below.

Lemma4.1 If W(F(a)) = mthens(a) > /m.
PrROOF. The lemma follows from the fact th&t' (F (a)) < 2(2a; + a2 + a3 + a4 + 7/2)%. We prove the inequality
= 2(2a; + az + az + aq4)? — W(F(a)) >0
= a1(8a1 + 8az + 8as + 8as + 28) + as(4as + das + 4daq + 14) + az(das + 4as + 14)
+as(das + 14) +49/2 — W(F(a)) > 0
=  a2(3az+az+3)+ as(3az+as+4) +as(3as +3)+9/2 > 0.

The algorithm searches for the solutioniéf(F(a)) = m, m < n in increasing order of(a). Let M be the
current value ok(a). The algorithm enumerates all tupleso thats(a) = M. Let mg be the smallest number not
representable d§"(F'()) 1. By Lemma 4.1, if there is solution fo# (F(a)) = mo thenM must be greater thagm,.

If current value ofM is at most,/m,,, we increasé\/ to | /mg]. We implemented the push algorithm and tested it for
n = 10°. Let T (n) be the number of computationsidf(F(+)). The number of computatiorfs,, s is essentially
guadratic, see Figure 5. However, notice that the pushigthgodemonstrates a speedup factor of 42 vefisus, ..

The second algorithm we implementsdeep algorithypsweeps tuples according to the increasing sunm-as+
as + as. The sweep algorithm runs faster than the push algorithre. o7, 4ive (1) /Tsweep (1) IS approximately
66, as illustrated in Figure 5(b).

We implemented another algorithm that we gathp algorithm The idea is to sweep tuplasiexicographically
and skip tuples that do not produce new numbers. We mairtaisrnallest number.,; whose representation is not
yet found. Suppose that = ¢1, a2 = ¢2 andas = ¢3 are fixed constants and the algorithm starts search.foket
f denote the functiotf(as) = W(F(e1,c2,c3,a4)). fis monotone and the equatigifa,) = mg is quadratic. By
solving this quadratic equation, we can find the largestevafuso thatf(a}) is at mostmy. Thena, takes values
from a} to/n. The experiments show that

1. forn < 105, the sweep algorithm is faster than others, and
2. forn > 10°, the jump algorithm is faster than others, and

3. the speedup of the jump algorithm with respect to the raliyerithm grows withn.

We did a nonlinear fit of the data using the Levenberg-Mardfuaigorithm and the running time of the jump algorithm
fits the polynomial equation 5841n'-°147, The asymptotic standard errors of the fit are 0.0006554@%éexponent
and 0.0141145 for the coefficient, indicating an accurate fit

The jump algorithm allows us to verify Conjecture 2.3 uplé5. The running time is 4.6 days on 360Mhz SGI
MIPS R12K. We estimate that the sweep and naive algorithmsdreeed 82.1 days and 14.1 years, respectively.

INote thatmo must be greater than 1177 since 1177 is not representablig )).
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5 Conclusion

We studied the problems related to Wiener indices that hppécations in computational chemistry and biology. We
proposed a family of trees such that their Wiener indices are well distributed, and ergectured that they cover all
the positive integers except a finite set of numbers. Theeotuie is stronger than the conjecture by Goldman [21]
made for general trees. We verified our conjecture for largabers up td 08,

We designed several efficient algorithms for the problemrafifig a tree whose Wiener index is a given number.
The algorithm that guarantees to find a treefinif any, has running time(n'->) and is based on sorted matrix
searching technigue. The algorithm exploits the propedi¢he Wiener functiom’ (7 («)) and one can show that for
general functiory(a) = ©(W (F(a))) a lower bound for solving'(a) = n is actually(n?). The second algorithm
is based on the longest increasing subsequences. Furtieenve modified the algorithm using sorted matrices and
improve the runtime by a factor 6f(log n). The last algorithm runs 100 times faster than the first one fe 2 - 10°.

We developed three algorithms for the problem of finding aéer indices less than a given number. The first two
algorithms have essentially quadratic running time. Theltalgorithm runs faster and there is a strong evidence that
the actual running time is sub-quadratic. This algorithioves us to verify the main conjecture that we put forward in
this paper for large integers, thereby strengthening oligftie an affirmative answer.

An interesting topic for future research is to considerama@h regards to other chemical and physical parameters
such as the number of carbon atoms, boiling points, deaséiel melting points.
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Table 1: Table presenting the various sets of integerseekatthe conjectures.
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