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Abstract

We consider the Connected Facility Location problem. We are given a graph G = (V, E) with costs
{ce} on the edges, a set of facilities F ⊆ V , and a set of clients D ⊆ V . Facility i has a facility opening
cost fi and client j has dj units of demand. We are also given a parameter M ≥ 1. A solution opens
some facilities, say F , assigns each client j to an open facility i(j), and connects the open facilities by a
Steiner tree T . The total cost incurred is

∑

i∈F fi +
∑

j∈D
djci(j)j + M

∑

e∈T ce. We want a solution
of minimum cost.

A special case of this problem is when all opening costs are 0 and facilities may be opened anywhere,
i.e., F = V . If we know a facility v that is open, then the problem becomes a special case of the single-
sink buy-at-bulk problem with two cable types, also known as the rent-or-buy problem.

We give the first primal-dual algorithms for these problems and achieve the best known approxima-
tion guarantees. We give a 8.55-approximation algorithm for the connected facility location problem and
a 4.55-approximation algorithm for the rent-or-buy problem. Previously the best approximation factors
for these problems were 10.66 and 9.001 respectively [8]. Further, these results were not combinatorial
— they were obtained by solving an exponential size linear programming relaxation. Our algorithm
integrates the primal-dual approaches for the facility location problem [11] and the Steiner tree prob-
lem [1, 3]. We also consider the connected k-median problem and give a constant-factor approximation
by using our primal-dual algorithm for connected facility location. We generalize our results to an edge
capacitated variant of these problems and give a constant-factor approximation for these variants.

Keywords : Approximation algorithms, Primal-dual algorithms, Facility location, Connected facility
location, Steiner trees.

1 Introduction

Facility location problems have been widely studied in the Operations Research community (see for e.g.
[20]). These problems can be described as follows: we are given a graph G = (V,E), a set of facilities
F ⊆ V , and a set of clients D ⊆ V . We want to open some facilities from the set F and assign each demand
to one of these open facilities. Facilities may have opening costs. This class of problems has a wide range
of applications. For example, a company might want to open its warehouses at some locations so that its
total cost of opening warehouses and servicing customers is minimized.

Many modern day applications occur in settings where the open facilities also want to communicate with
each other. Here one desires a two-layer solution where the demand points are first clustered around hubs
(facilities) and the hubs are then interconnected to allow them to communicate with one another. One such
example is telecommunication network design [2, 21]. A common model of a telecommunication network
consists of a central core and a set of endnodes. The core consists of a set of interconnected core nodes
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which have switching capability. Each core node also incurs some switch cost. Designing the network
involves selecting a subset of core nodes, connecting the core nodes to each other and routing traffic from
the endnodes to the selected core nodes. Here the clients are the endnodes of the network, and the facilities
are the core nodes. The opening cost of a facility corresponds to the switch cost of the corresponding core
node.

We capture such a setting by requiring that the open facilities be connected to each other by a Steiner
tree, i.e., a tree which connects all the open facilities but may also include other non-facility nodes. A
Steiner tree is less restrictive than a spanning tree and is appealing because of the simplicity and scalability
of the tree architecture. This is the Connected Facility Location (ConFL) problem. We are given a graph
G = (V,E) with costs {ce} on the edges, a set of facilities F ⊆ V and a set of demand nodes or clients
D ⊆ V . Client j has dj units of demand and facility i has an opening cost of fi. We are also given a
parameter M ≥ 1. A solution to ConFL opens some facilities, say F , and assigns each demand to an open
facility. Let cij denote the shortest distance between nodes i and j in G (with respect to the costs ce). If client
j gets assigned to facility i(j), we incur an assignment cost proportional to the demand dj and the distance
ci(j)j . Further, the solution must connect the open facilities by a Steiner tree T . The cost of connecting
facilities is simply the cost of the Steiner tree T scaled by a factor of M . In a telecommunication network,
the parameter M reflects the more expensive cost of interconnecting the core nodes with high bandwidth
links. The total cost of the solution is the sum of the cost of opening the facilities in F , the assignment costs
of demands, and the cost of connecting the open facilities. More precisely, the cost of this solution is

∑

i∈F

fi +
∑

j∈D

djci(j)j + M
∑

e∈T

ce.

Our objective is to find a solution of minimum cost. This problem has recently attracted the interest of both
the operations research community [14, 18, 19] and the computer science community [8, 9, 12, 13].

The Rent-or-Buy Problem. A special case of this problem is when all opening costs are 0 and facilities
may be opened anywhere, i.e., F = V . This problem has many interesting applications.

Suppose we know that a facility v is opened by the optimal solution. Then the problem becomes a special
case of the single-sink buy-at-bulk problem with two cable types, also known as the rent-or-buy problem.
Here the clients want to send traffic to a special sink vertex v. We need to construct a tree which connects the
clients to v and install sufficient capacity on the tree edges to route this traffic. We can either rent capacity
on an edge, the renting cost being proportional to the amount of capacity rented, or we can pay a one-time
expense of M per unit length and buy unlimited capacity. The objective is to find a tree with minimum cost.

Applications and Previous Work. Connected Facility Location arises as a natural problem in various
important applications. Krick et al. [15] consider a data management/caching problem. Here we have some
users issuing read and write requests for data objects. Each object has to be stored in a memory module
by paying a certain storage cost — an object may be replicated and stored in multiple locations. Given a
placement of objects, a read request for an object issued at node j is served by the nearest location, i(j), that
has a copy of the object; a write request however needs to update all copies of the object. Krick et al. [15]
show that with a small loss in performance, this can be modeled by a single multicast tree connecting all
locations that hold a copy of the object. A write request at j first sends a message to i(j) which then initiates
the update of all copies via the multicast tree. The goal is to find a placement of objects to memory modules
that minimizes the sum of the storage, read and write request costs. This is exactly in the framework of
connected facility location. The facilities are the memory modules and the clients are the nodes issuing
read/write requests. The facility cost is the storage cost associated with the memory module. The demand
of a client is the number of requests issued by the node. Here the connectivity requirement is imposed by
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the need to maintain consistency of data. The scaling parameter M corresponds to the total number of write
requests for an object.

The rent-or-buy problem is a non-trivial special case of ConFL that arises in diverse scenarios. It ab-
stracts a setting in which demand points need to be clustered around centers and the centers have to be
connected further up. Karger & Minkoff [12] introduced the maybecast problem which is a probabilistic
version of the Steiner tree problem. Each demand point j is activated independently with probability pj .
Given a fixed Steiner tree on D ∪ {v}, when demand j is activated, all edges on its path to v (the root)
become active. The goal is to find a Steiner tree that minimizes the expected cost of the active edges. Gupta
et. al. [8] arrived at the rent-or-buy problem by considering the problem of provisioning a virtual private
network (VPN) where each VPN endpoint specifies only an upper bound on the amount of incoming and
outgoing traffic. In both cases it is shown that there is an optimal or near-optimal solution in which the
demand points are first clustered around hubs using shortest-length paths, and the hubs are then connected
to the root by a Steiner tree. Thus both these problems reduce to the rent-or-buy problem.

Ravi & Selman [21] gave a constant-factor approximation algorithm for a close variant of this problem
where the open facilities have to be connected by a tour. Their algorithm is based on solving an exponential
size linear program using the ellipsoid method and rounding the LP solution, which makes the algorithm very
inefficient in practice. Karger & Minkoff [12] gave a combinatorial algorithm, but the constant guarantee
is much larger. Independently Krick et al. [15] also gave a combinatorial algorithm with an even larger
constant. The rent-or-buy problem is a special case of the single-sink buy-at-bulk problem for which Guha,
Meyerson and Munagala [6] gave a constant-factor approximation algorithm. The constant was improved
by Talwar [25]. Gupta et al. [8] gave an algorithm with an approximation guarantee of 10.66 for ConFL
and 9.001 for the rent-or-buy problem. This is also based on rounding an exponential size LP as in [21],
and suffers from the same drawbacks. Previously these were the best known guarantees. Kumar et al. [17]
implemented a heuristic for the rent-or-buy problem and used it to construct VPN trees. They report that the
algorithm outperforms standard heuristics over a wide range of parameter values. However they could not
give any worst case performance guarantee.

Our Results. We give a primal-dual 8.55-approximation algorithm for the connected facility location
problem and a 4.55-approximation algorithm for the rent-or-buy problem. Thus we give a combinatorial
algorithm and also achieve the current best approximation ratios. Our algorithm is conceptually simple and
can be easily implemented. We feel that the algorithm will also perform well in practice and justify its
theoretical merit.

In many settings there is an additional requirement that at most k facilities can be opened. We call this
variant of ConFL the Connected k-Median problem. We use our primal-dual algorithm to get a 15.55-
approximation algorithm for this problem. To the best of our knowledge, this is the first time anyone
has considered this problem, though the connected k-center problem has been considered earlier [5]. We
generalize our results to an edge capacitated version of these problems. These differ from the uncapacitated
versions in the facility location aspect. We now require clients to be connected to facilities via cables which
have a fixed cost of σ per unit length and a capacity of u. Multiple cables may be laid along an edge. The
cost of connecting facilities is still M times the cost of the tree T . We give a constant-factor approximation
for these capacitated variants.

Our Techniques. Connected Facility Location has elements of both the facility location and the Steiner
tree problem. Without the connectivity requirement, the problem is simply the uncapacitated facility location
problem. Once we know which facilities to open, we can assign each demand to the closest open facility
and connect the open facilities by a Steiner tree.

However, a simple strategy that first decides which facilities to open by running a facility location
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algorithm, and then connects the open facilities by a Steiner tree, performs poorly. For example, in the
rent-or-buy problem, this would just open a facility at each demand point, but connecting all the open
facilities might incur a huge cost. Thus there is an implicit cost imposed on each facility by the connectivity
requirement. To ensure that it is economically viable to open a facility we need to cluster enough demand
at the facility. Previously [7, 12] the clustering was achieved by solving a Load Balanced Facility Location
(LBFL) instance, where we want each open facility to serve at least M clients. The disadvantage of this
approach is that by reducing to LBFL we throw away problem specific information. The LBFL instance
is solved using a black box and makes no use of the fact that the need to cluster demands is imposed by
the connectivity requirement of ConFL. Further we only know a bicriteria approximation for LBFL, so the
demand lower bound on a facility is only approximately satisfied which increases the approximation ratio.

Our algorithm is based on a novel application of the primal-dual schema. The basic idea is to consider
an integer programming formulation of the problem and the dual of its linear programming relaxation, and
construct simultaneously an integer primal solution and a dual solution. The dual linear program can be
interpreted as comprising two parts; a part resembling the dual of the facility location problem and a part
corresponding to the dual of the Steiner tree problem. The algorithm is in two phases. The first phase is a
facility location phase where we decide which facilities to open, connect demands to facilities and cluster
the demands at each facility. At the end of this phase, we obtain a primal facility location solution and a
feasible dual solution. In the primal solution the demands are clustered so that each open facility serves
at least M demand points, satisfying the demand lower bound. We do this by charging some of the cost
incurred to the Steiner tree portion of the dual solution, thereby exploiting the fact that any ConFL solution
also needs to connect the facilities it opens. Despite the added clustering requirement, our algorithm has a
fairly simple description. Each demand j keeps raising its dual variable, αj , till it gets connected to a facility
and is ‘near’ a point at which M demands are clustered. All other variables simply respond to this change
trying to maintain feasibility or complementary slackness. Phase 2 is a Steiner phase where we connect the
open facilities by a Steiner tree. The dual solution constructed in this phase is not feasible, but we show that
the infeasibility is bounded by a small additive factor.

Previous Work on Primal-Dual Algorithms. Our work reinforces the belief that the primal-dual schema
is extremely versatile. The first truly primal-dual approximation algorithm was given by Bar-Yehuda & Even
(see [4]) for the vertex cover problem. Subsequently, primal-dual algorithms have especially flourished in
the area of network-design problems. One of the first such algorithms was by Agrawal, Klein & Ravi [1]
for the generalized Steiner problem on networks. Goemans & Williamson [3] further refined the primal-
dual method and highlighted its usefulness by extending it to a large class of network-design problems;
see [4, 26] for a survey of this and earlier work. The basic mechanism involves raising the dual variables
and setting primal variables till an integral primal solution is found satisfying the primal complementary
slackness conditions. Next a reverse delete step is used to remove any redundancies in the primal solution.
This relaxes the dual slackness conditions. The approximation ratio of the algorithm is this relaxation factor.

Jain & Vazirani [11] gave an elegant primal-dual algorithm for various facility location problems which
could not be solved by the earlier schema. They remove redundancies while relaxing the primal slackness
conditions. They also show that their algorithm can be used to solve other facility location variants, most
notably the k-median problem using a Lagrangian relaxation.

We need to integrate both the above approaches. As observed earlier simply running a facility location
algorithm and then a Steiner tree algorithm performs poorly. The added requirement is that each open
facility should serve a significant amount of demand. Our algorithm inherits the versatility of the algorithm
by [11] and we use it to solve the Connected k-Median problem using similar ideas.
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Subsequent Work. Since the publication of an extended abstract of this paper [24], two results of interest
have been obtained.

Kumar, Gupta and Roughgarden [16] considered the multicommodity rent-or-buy problem and gave a
constant-factor approximation algorithm. Here there are multiple source-sink pairs and each source wants
to send traffic to its sink. We need to build a network connecting each source-sink pair and install enough
capacity on the edges to route this traffic. We may either rent capacity by paying a cost proportional to
the capacity rented or buy unlimited capacity paying a fixed cost of M per unit length. Their algorithm is
however much more involved and they get a much worse approximation factor. It remains a very interesting
open problem to see whether the techniques used here and in [16] can be extended or adapted to solve the
multiple source-sink buy-at-bulk problem with multiple types of cables.

Gupta, Kumar and Roughgarden [9] very recently gave a randomized approximation algorithm for the
rent-or-buy problem with a ratio of 2 + ρST . This improves upon our result but it is not clear if their
algorithm can be derandomized. For connected facility location they give a 10.1-approximation algorithm.

2 A Linear Programming Relaxation

In what follows, i will be used to index facilities, j to index the clients and e to index the edges in G. We
will use the terms client and demand point interchangeably.

ConFL can be formulated naturally as an Integer Program. We assume that we know a facility v that
is opened and hence belongs to the Steiner tree constructed by the optimal solution. We can make this
assumption because we can try all |F| different possibilities for v.

We can now write an integer program (IP) for ConFL as follows:

min
∑

i

fiyi +
∑

j

dj

∑

i

cijxij + M
∑

e

ceze (IP)

s.t.
∑

i

xij ≥ 1 for all j

xij ≤ yi for all i, j

yv = 1
∑

i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j

xij, yi, ze ∈ {0, 1} (1)

Here yi indicates if facility i is open, xij indicates if client j is connected to facility i and ze indicates
if edge e is included in the Steiner tree. Relaxing the integrality constraints (1) to xij , yi, ze ≥ 0 gives us a
linear program (LP).

3 A Primal-Dual Approximation Algorithm

We now show that the integrality gap of (LP) is at most 9 by giving a primal-dual algorithm for this problem.
For simplicity, we assume that all dj are equal to 1. We show how to get rid of this assumption in Section 3.3.

3.1 The Rent-or-Buy Problem

We first consider the case where all opening costs are 0 and F = V , i.e., a facility can be opened at any
vertex of V . The linear program (LP) now simplifies to:
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min
∑

j

∑

i

cijxij + M
∑

e

ceze (P1)

s.t.
∑

i

xij ≥ 1 for all j

∑

i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j

xij , ze ≥ 0

The dual of this linear program is:

max
∑

j

αj (D1)

s.t. αj ≤ cij +
∑

S⊆V :i∈S,v/∈S

θS,j for all i 6= v, j (2)

αj ≤ cvj for all j (3)
∑

j

∑

S⊆V :e∈δ(S),v /∈S

θS,j ≤ Mce for all e (4)

αj , θS,j ≥ 0

Intuitively, αj is the payment that demand j is willing to make towards constructing a feasible primal
solution. Constraint (2) says that a part of the payment αj goes towards assigning j to a facility i. The
remaining part goes towards constructing the part of the Steiner tree that joins i to v.

Algorithm Description

We begin with a simplifying assumption. We assume that a facility can be opened anywhere along an edge.
We collectively refer to vertices in V and internal points on an edge as locations. We reserve the term
facility for a vertex in F . We may assume that for any edge e = (u,w), ce is equal to cuw, the shortest path
distance from u to w. The metric c is extended to a metric on locations by considering e to be composed of
infinitely many edges of infinitesimal length. So for points p on e the distance cup varies continuously and
monotonically from 0 to ce as we go from u to w, and cwp = ce − cup. For any other vertex r 6= u,w, we
set crp = min(cru + cup, crw + cwp). Finally for any two points p, q on edges e1 = (u,w), e2 respectively,
cpq = min(cuq + cup, cwq + cwp).

The intuition behind our algorithm is as follows. Suppose each client had at least M units of demand.
Then, the optimal solution would locate a facility at each of these clients and connect them by a Steiner
tree. So, our algorithm first clusters the demands in groups of M and then builds a Steiner tree joining these
clusters.

Initially, all the dual variables are 0. The algorithm runs in two phases. In the first phase, we cluster the
demands in groups of M . Once we have this, we run the second phase where we build the Steiner tree.

Phase 1. We raise the dual variables αj for all demands in this phase. We have a notion of time, t. Initially
t = 0. As time increases, we raise the dual variables αj at unit rate. We shall also tentatively open some
locations. At t = 0, v is tentatively open and all other locations are closed.
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At some point of time, we say that demand j is tight with a location i if αj ≥ cij . Let Sj be the set of
vertices with which j is tight at some point of time. When we raise αj , we also raise θSj ,j at the same rate.
This will ensure feasibility of constraints (2). So, it is enough to describe how to raise the dual variables αj .

Demands can be in two states: frozen or unfrozen. When a demand j gets frozen, we stop raising its dual
variable αj . So if demand j is unfrozen at time t, αj = t. After j is frozen, it does not become tight with
any new location, i.e., a location not in Sj . Initially, all demands are unfrozen.

We start raising the αj of all demands at unit rate until one of the following events happens (if several
events happen, consider them in any order):

1. j becomes tight with a tentatively open location i: j becomes frozen.

2. There is a closed location i with which at least M demands are tight: tentatively open i. All of the
demand points tight with i become frozen.

We now raise the αj of unfrozen demands only. We continue this process until all demands become
frozen. Figure 3.1 shows a sample run of the algorithm with M = 2 and 5 demand points. Note that
although there is a continuum of points along an edge, to implement the above process we only need to
know the time when the next event will take place. This can be obtained by keeping track of, for every edge
and every demand j, the portion of the edge that is tight with j.

Now we decide which locations to open. Let L be the set of tentatively open locations. We say that
i, i′ ∈ L are dependent if there is demand j which is tight with both these locations. We say that a set of
locations is independent if no two locations in this set are dependent. We find a maximal independent set L ′

of locations in L as follows: arrange the locations in L in the order they were tentatively opened. Consider
the locations in this order and add a location to L′ if no dependent location is already present in L′. We open
the locations in L′. Observe that v ∈ L′.

We assign a demand j to an open location as follows. If j is tight with some i ∈ L ′, assign j to i.
Otherwise let i be the location in L that caused j to become frozen. So j is tight with i. There must be some
previously opened location i′ ∈ L′ such that i and i′ are dependent. We assign j to i′. Let σ(j) denote the
location to which j is assigned.

We now have to build a Steiner tree on L′. First we augment the graph G to include edges incident on
open non-vertex locations. Let {i1, . . . , ik} be the open locations on edge e = (u,w) ordered by increasing
distance from u, with i1 6= u, ik 6= w. We add edges (u, i1), (i1, i2), . . . , (ik−1, ik), (ik, w) to G.

Phase 2. For a location i ∈ L′, let Di be the set of demands tight with i. Let D ′ =
⋃

i∈L′−{v} Di. First,
we set αj = 0 for all j. We raise the αj value of demands in D′ only, and simulate the primal-dual algorithm
for the (rooted) Steiner tree problem.

Initially, the minimal violated sets (MVS) are the singleton sets {i} for i ∈ L ′−{v}. For a set S, define
DS =

⋃

i∈S∩L′ Di. The tree T that we shall construct is empty to begin with. For each MVS S, j ∈ DS ,
we raise αj at rate 1/|DS |. We also raise θS,j , at the same rate. This ensures that

∑

j θS,j grows at rate 1 for
any MVS S. Note that we are not ensuring feasibility of constraints (2), (3).

We say that an edge goes tight if (4) holds with equality for that edge. We raise the dual variables till an
edge e goes tight. We add e to T and update the minimal violated sets. This process continues till there is
no violated set, i.e., we have only one component (so v is in this component). Now we consider edges of T
in the reverse order they were added and remove any redundant edges. This is our final solution.

Analysis

Let
(

α(1), θ(1)
)

,
(

α(2), θ(2)
)

be the value of the dual variables at the end of Phases 1 and 2 respectively.
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closed location unfrozen demand

tentatively open location frozen demand

Figure 3.1: A sample run with M = 2. (a) The initial state, (b) t = 1, (c) i becomes tight with demands 1
and 2; i is tentatively opened and 1, 2 become frozen, (d) The final solution. Demand 3 reaches i and gets
frozen; l becomes tight with demands 4 and 5 and is tentatively opened, causing demands 4 and 5 to freeze.

Lemma 3.1 The dual solution
(

α(1), θ(1)
)

is feasible.

Proof : It is easy to see that (2) is satisfied. Indeed, once j gets tight with i, αj and
∑

S:i∈S,v/∈S θS,j are
raised at the same rate. Similarly, (3) is satisfied.

Now consider an edge e = (u,w). Let l(j) be the contribution of j to the left hand side of (4) for this

edge, i.e., l(j) =
∑

S:e∈δ(S),v /∈S θ
(1)
S,j . Suppose cju ≤ cjw. So, j becomes tight with u before it gets tight

with w. Consider a point p on the edge (u,w) at distance x from u. If p were the last point on this edge with
which j became tight with (before it became frozen), then l(j) ≤ x. Define f(j, x) as 1 if j is tight with p
and j was not frozen at the time at which it became tight with p, otherwise f(j, x) is 0. So, we can write
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l(j) ≤
∫ ce

0 f(j, x)dx. Interchanging the summation and the integral in (4), we get

∑

j

∑

S⊆V :e∈δ(S),v /∈S

θ
(1)
S,j ≤

∑

j

∫ ce

0
f(j, x)dx =

∫ ce

0

∑

j

f(j, x)dx

Now for any x,
(
∑

j f(j, x)
)

≤ M . Otherwise, we have more than M demands that are tight with a point
such that none of these demands are frozen — a contradiction. So

∫ ce

0

∑

j f(j, x)dx is at most Mce which
proves the lemma.

Lemma 3.2 At the end of Phase 1, the assignment cost of any demand j is at most 3α
(1)
j .

Proof : This clearly holds if j is tight with a location in L′. Otherwise let j be assigned to i. Let i′ be the
tentatively open facility that caused j to become frozen. It must be the case that i and i ′ are dependent. So
there is a demand k which is tight with both i and i′. Let ti′ be the time at which i′ was tentatively opened.
Define ti similarly. It is clear that α

(1)
j ≥ ti′ .

Now, cij ≤ cik + cki′ + ci′j ≤ 2α
(1)
k + α

(1)
j . Also, α

(1)
k ≤ ti′ . Otherwise, at time t = α

(1)
k , k is tight

with both i and i′. Suppose it becomes tight with i first (the other case is similar). If i is tentatively open
at this time, then k will freeze and so it will never become tight with i′. Therefore, i can not be tentatively
open at this time. But then, k must freeze by the time i becomes tentatively open, i.e., α

(1)
k ≤ ti ≤ ti′ . So,

α
(1)
k ≤ ti′ ≤ α

(1)
j . This implies that cij ≤ 3α

(1)
j .

Lemma 3.3 If i is an open location and j ∈ Di, cσ(j)j ≤ α
(1)
j .

We now bound the cost of the tree T . Recall that D ′ =
⋃

i∈L′−{v} Di.

Lemma 3.4 cost(T ) ≤ 2 ·
∑

j∈D′ α
(2)
j .

Proof : Consider Phase 2. At any point of time, define the variable θS , where S is a minimal violated set,
as

∑

j θS,j. We observed that θS grows at rate 1. Thus, Phase 2 simulates the primal-dual algorithm for the
rooted Steiner tree problem with v as the root. So, the cost of the tree is bounded by 2 ·

∑

S θS [4, 1, 26],

where the sum is over all subsets of vertices S. But
∑

S θS =
∑

j∈D′ α
(2)
j .

Lemma 3.5 Consider a demand j. If i 6= v, then α
(2)
j ≤ cσ(j)j + cij +

∑

S⊆V :i∈S,v/∈S θ
(2)
S,j . Further,

α
(2)
j ≤ cσ(j)j + cvj .

Proof : If j /∈ D′, α
(2)
j = θ

(2)
S,j = 0 and the inequalities above hold. So fix a demand j ∈ D ′ and facility i,

i 6= v. During the execution of Phase 2, let St be the component to which j contributes at time t. Consider
the earliest time t′ for which i ∈ St′ . After this time, both the left hand side and right hand side of (2)
increase at the same rate, so we only need to bound the increase in αj by time t′. Let l = σ(j). Since we

are raising αj , it must be the case that j ∈ Dl and so, clj ≤ α
(1)
j . We claim that t′ ≤ Mcli. This is true

since St always contains l, and by time t = Mcli all of the edges along the shortest path between l and i
would have grown tight. Since αj increases at a rate of at most 1/M , the increase in αj by time t′ is at most
Mcli

M ≤ clj + cij . This proves the first inequality. The second inequality is proved similarly.

It is clear that the θ
(2)
S,j values satisfy (4), so we have shown that

(

α′, θ(2)
)

is a feasible dual solution,

where α′
j = max(α

(2)
j − cσ(j)j , 0). We can now prove the main theorem. Let OPT be the cost of the

optimal solution.

9
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Figure 3.2: Extending the tree in OPT to a Steiner tree on the open locations.

Theorem 3.6 The above algorithm produces a solution of cost at most 5 · OPT .

Proof : Note that α
(2)
j ≤ α′

j + cσ(j)j . By Lemma 3.4, cost(T ) ≤ 2
∑

j α′
j + 2

∑

j∈D′ cσ(j)j ≤ 2 ·OPT +

2
∑

j∈D′ α
(1)
j . By Lemmas 3.3 and 3.2, the assignment cost of j is at most α

(1)
j if j ∈ D′, and at most 3α

(1)
j

otherwise. Adding all terms, we see that the cost of our solution is at most 5 · OPT .

In Phase 2 we can use any ρST -approximation algorithm to build the Steiner tree on the open locations
and get an approximation ratio of 3+ρST . We assume that ρST ≤ 2. Let C∗, S∗ denote the assignment and
Steiner tree costs of an optimal solution, OPT . The tree in OPT yields a Steiner tree on the open locations
if we connect each l ∈ L′ to the tree in OPT via the shortest l−j− i∗(j) path for j ∈ Dl, where i∗(j) is the
facility to which j is assigned in OPT (see Fig. 3.2). For any l ∈ L′ the cost of adding the connecting edges
is M(length of the shortest l−j−i∗(j) path for j ∈ Dl) ≤

∑

j∈Dl
(ci∗(j)j +clj) since |Dl| ≥ M . Summing

over all l ∈ L′, the cost of the tree obtained is at most S∗+C∗+
∑

j∈D′ cσ(j)j . So we can bound the total cost

of our solution by
∑

j cσ(j)j +ρST

(

S∗+C∗+
∑

j∈D′ cσ(j)j

)

≤ 3
∑

j α
(1)
j +ρST ·OPT ≤ (3+ρST ) ·OPT

using Lemmas 3.3 and 3.2. Taking ρST = 1.55 [23] we get the following.

Theorem 3.7 There is a 4.55 · OPT -approximation algorithm for the rent-or-buy problem.

Our solution may be infeasible since a non-vertex location may be opened as a facility. Let e = (u,w)
be an edge and suppose we open locations on the internal points of e. Let De be the set of demands which
are assigned to such locations. Let Du ⊆ De be the set of demands that reach their assigned location on e
via u, i.e., cσ(j)j = cuj + cσ(j)u for j ∈ Du. Dw is defined similarly. The Steiner tree T must contain at
least one of u or w. If both u,w ∈ T , we assign clients in Du to u and clients in Dw to w without increasing
the cost. Suppose u ∈ T,w /∈ T . Let l be the open location which is farthest from u on e. We assign all
demands in Du to u. If |Dw| < M , we assign clients in Dw to u and remove edges in T that lie along e;
otherwise we reassign all clients in Dw to w and add all of e to T . Note that T is still a Steiner tree on the
open locations. It is easy to see that the total cost only decreases. Thus, we can shift all open locations to a
vertex of G without increasing the total cost.

Let C,S denote the assignment and Steiner tree costs of our solution. We now bound the quantity
2C + S. We will use this result in Section 5 where we consider a generalization to edge capacities.

Lemma 3.8 The solution obtained satisfies 2C + S ≤ 7.55 · OPT .

Proof : 2C + S ≤ (C + S) + 3
∑

j α
(1)
j ≤ 7.55 · OPT .

10



3.2 The General Case

We now consider the case where F , need not be V and facility i has an opening cost fi ≥ 0. Since facilities
may only be opened at specific locations, it is possible that an edge is used both to route demand from a
client to a facility, and also as an edge in the Steiner tree to connect facilities. We call the former type of
edge a facility location edge and the latter a Steiner edge. For convenience we assume that fv = 0. Clearly,
this does not affect the approximation ratio of the algorithm. Recall that i indexes the facilities in F . The
primal and dual LPs are:

min
∑

i6=v

fiyi +
∑

j

∑

i

cijxij + M
∑

e

ceze (P2)

s.t.
∑

i

xij ≥ 1 for all j

xij ≤ yi for all i 6= v, j

xvj ≤ 1
∑

i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j

xij , yi, ze ≥ 0

max
∑

j

αj −
∑

j

βvj (D2)

s.t. αj ≤ cij + βij +
∑

S⊆V :i∈S,v/∈S

θS,j for all i 6= v, j (5)

αj ≤ cvj + βvj for all j
∑

j

βij ≤ fi for all i 6= v (6)

∑

j

∑

S⊆V :e∈δ(S),v /∈S

θS,j ≤ Mce for all e

αj , βij , θS,j ≥ 0

3.2.1 Overview of the algorithm

The basic idea is similar to the algorithm in the previous section. We still want to gather at least M demands
at every facility that we open so that the cost of connecting this facility to other open facilities by Steiner
edges can be amortized against the gathered demand. However, while earlier where we could tentatively
open any location with which M demands are tight, we cannot do that here since the set of candidate facility
locations F may be a very small subset of V . Also, we need to pay a facility opening cost before we can
open a facility.

We will not quite be able to meet the demand requirement of M at every facility we open, but we will
ensure that for every open facility, there are M demands gathered at a point “near” the facility (see Fig. 3.3).
In Phase 1 of the algorithm, we will open facilities and assign each client to an open facility. Additionally,
for each open facility we will connect it to the point near it at which M demands are gathered using Steiner
edges, and we will argue that we can pay for the cost of buying this path by the combined dual of the
gathered demands. These components act as the terminals upon which the Steiner tree is constructed in
Phase 2, whose cost we bound as in the previous section.

11
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Figure 3.3: Steiner edges connecting an open facility to the point “nearby” where M demands are gathered.

3.2.2 Details of the algorithm

Phase 1. Most of the changes are in this phase. A location still refers to a vertex in V or a point along an
edge. We will only open facilities at locations in F ⊆ V . Initially all dual variables are 0 and only facility
v is tentatively open. We also declare location v to be a terminal location. Recall that demand j is said to
be tight with location i if αj ≥ cij . As in the previous section, we will grow each dual variable αj till j
becomes tight with a location, referred to as a terminal location, with which at least M demands are tight.
Once this happens however, we do not freeze j yet. Since we have to assign client j to an open facility
and also have to pay for opening facilities, we continue to increase αj till j becomes tight with a tentatively
open facility. While doing so, if j becomes tight with a facility that is not yet open, then it starts contributing
toward the facility opening cost of this facility.

To describe the primal-dual process in detail we define a few additional concepts. As before, a demand
can be frozen or unfrozen. Further, a demand j could either be free or be a slave. At t = 0, each demand j
is free and unfrozen. We say that demand j is bound to a location l if j is tight with l and was free when it
became tight with l. Define the weight of a location l as the number of demands that are bound to l. We say
that a facility i has been paid for if

∑

j βij = fi.
At any point of time, define Sj to be the set of vertices with which demand j is tight. When j becomes

tight with a facility i, we have two options — we can raise βij or we can raise θSj ,j . We raise θSj ,j
1 at the

same rate and continue this till j becomes tight with a terminal location, that is, a location that has at least
M demands bound to it. At this point we say that j becomes a slave — it is no longer free. Similarly, when
j becomes tight with a location l that is not a facility, we may or may not raise θSj ,j (we have this option
since constraint (5) only applies to facilities i). We first increase θSj ,j till j becomes tight with a terminal
location and is declared to be a slave. After this point we start raising βij for each facility i ∈ Sj and do not
raise θSj ,j any more. More precisely, we raise the αj of every unfrozen demand, be it free or a slave, at unit
rate until one of the following events happens:

1. The weight of some location l becomes at least M : declare l to be a terminal location. If j is free and
tight with l, it now becomes a slave. From this point on we raise only βij for facilities i in Sj (there
may be none if the current αj < mini cij) as described above.

2. A free j becomes tight with a terminal location l: j becomes a slave. If l = v, connect j to l and
freeze j. Otherwise we stop raising θSj ,j and raise βij for facilities i in Sj .

3. A facility i gets paid for, i.e.,
∑

j βij = fi: tentatively open i. If an (unfrozen) slave demand j is tight
with i, connect it to i and freeze j.

1The reverse — raising β ij first until j gets connected to a facility and then increasing θSj ,j also works — but we raise the dual
variables in this fashion in order to prove a guarantee for the connected k-median problem.
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4. A slave demand j becomes tight with a tentatively open facility i: connect j to i, freeze j.

We continue this process until all j become frozen. Frozen demands do not participate in any new events.
Note that every demand j starts out as free and unfrozen, then becomes a slave by becoming tight with a
terminal location, and finally gets frozen by getting connected to exactly one tentatively open facility. Let
(

α(1), β(1), θ(1)
)

be the dual solution obtained. Clearly β
(1)
vj = 0 for all j.

Let L be the set of all terminal locations. Let tl be the time at which l was declared a terminal location.
Let Dl be the set of demands bound to l. We associate a terminal facility with each l ∈ L. Consider the
demand in Dl with smallest α

(1)
j and let i be the tentatively open facility to which it is connected. We call

this demand the representative demand of location l, and denote i as the terminal facility corresponding to
l. Let the terminal facility corresponding to v be v itself. Let F be the set of all terminal facilities. We will
only open facilities from the set F .

We will pick a subset of terminal locations and open the terminal facilities corresponding to these loca-
tions. For each location l that we pick, we will connect l to its terminal facility i by buying Steiner edges
along a shortest l− i path (see Fig. 3.3). We choose the subset of terminal locations carefully so as to ensure
that a demand j does not pay for opening or connecting more than one facility. Say that two facilities i, i ′

are dependent if either (1) there is a demand j with both β
(1)
ij , β

(1)
i′j > 0, or (2) there is a location l ∈ L

and a demand j such that i is the terminal facility corresponding to l, j is in Dl, and β
(1)
i′j > 0. The second

condition is added to ensure that j does not pay for both opening i′ and for connecting i to l via Steiner
edges. We also have a notion of dependence between locations in L. We say that locations l and l ′ in L are
dependent if either there is a demand that is bound to both l and l ′, or the terminal facilities corresponding
to l and l′ are dependent. Now we greedily select a maximal independent set of locations by looking at
locations in a particular order. With each l ∈ L we associate a value φl. Let j be the representative demand
of l. Define φl = max(α

(1)
j , tl), set φv = 0. We look at the locations in L in increasing order of φl, and

select a maximal independent subset L′ of L as before. Let F ′ be the set of terminal facilities corresponding
to locations in L′. We open all the facilities in F ′. Note that v ∈ F ′.

We associate a terminal location σ(j) with each demand j. If j ∈ Dl where l ∈ L′, set σ(j) = l. Note
that σ(j) is well defined due to our independent set construction. Otherwise let l be the location in L that
caused j to become a slave. There is a previously selected location l ′ ∈ L′ such that l and l′ are dependent.
Set σ(j) = l′. Demand j is assigned to a facility i(j) ∈ F ′ as follows: if there is a facility i ∈ F ′ such that

β
(1)
ij > 0, assign j to i. Otherwise assign j to the terminal facility corresponding to σ(j).

Let D′ =
⋃

l∈L′−{v} Dl. We now form some components by adding edges connecting each l in L′ to its
terminal facility via a shortest path. Break any cycles by deleting edges. Let T ′ be the set of edges added.

Phase 2. This phase is similar to that of the previous section. G is augmented as before to include edges
incident on locations l ∈ L′. We initialize our minimal violated sets to the components of T ′. All dual
variables are initially 0. We do not raise any βij in this phase. We shall raise the αj value of demands
in D′ only. For a set S, define DS to be

⋃

l∈S∩L′ Dl. The rest of the procedure is identical to Phase 2 of
the previous section. This yields a tree T connecting all the open facilities. Let

(

α(2), 0, θ(2)
)

be the dual
solution constructed by this phase.

Remark. It is possible that T contains an edge which has a non-vertex location as an end-point — this
will happen if such a location is a leaf of the tree T . We simply delete such edges to get a new tree that only
uses edges of the original graph.
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Analysis

The proof of the following lemma is very similar to the proof of Lemma 3.1.

Lemma 3.9
(

α(1), β(1), θ(1)
)

is a feasible dual solution.

Lemma 3.10 Let l be a terminal location and i be its corresponding terminal facility. Then cil ≤

minj∈Dl
2(α

(1)
j − β

(1)
ij ) ≤ 2φl.

Proof : Let j be any demand in Dl and k be the representative demand of l, so k is connected to i. Then,
cil ≤ 2α

(1)
k ≤ 2φl. So if β

(1)
ij = 0, cil ≤ 2(α

(1)
j − β

(1)
ij ). Otherwise, let tj be the time at which j became a

slave. Note that α
(1)
j = max(tj , cij) + β

(1)
ij and clj ≤ tj , so cil ≤ 2(α

(1)
j − β

(1)
ij ).

Lemma 3.11 Let l and l′ be dependent terminal locations with φl ≤ φl′ . If i is the terminal facility corre-
sponding to l, cil′ ≤ 6φl′ .

Proof : Let k be the representative demand of location l. Let i′ be the terminal facility for l′ and k′ be the
representative demand of l′. By Lemma 3.10, cil ≤ 2φl and ci′l′ ≤ 2φl′ . Let ti and ti′ be the times at which
i and i′ got tentatively opened respectively. There are four cases to consider depending on why l and l ′ are
dependent.

1. ∃j ∈ Dl ∩ Dl′ . Since j was free when it became tight with l and l′, clj , cl′j ≤ max(tl, tl′) ≤
max(φl, φl′) = φl′ . Combined with Lemma 3.10 this gives cil′ ≤ cil + cll′ ≤ 4φl′ .

2. ∃j such that β
(1)
ij , β

(1)
i′j > 0. This implies that ci′j, cij ≤ α

(1)
j ≤ ti′ , ti. So cii′ ≤ 2ti′ ≤ 2α

(1)
k′ ≤ 2φl′ ,

and cil′ ≤ 4φl′ .

3. There is a terminal location r (could be l), demand j ∈ Dr such that i is the terminal facility for r

and β
(1)
i′j > 0. By the above argument, ci′j ≤ α

(1)
j ≤ ti′ ≤ φl′ , and cij ≤ cir + cjr ≤ 3α

(1)
j using

Lemma 3.10. So cii′ ≤ 4φl′ =⇒ cil′ ≤ 6φl′ .

4. There is a terminal location r (could be l′), demand j ∈ Dr such that i′ is the terminal facility for r

and β
(1)
ij > 0. As above, cii′ ≤ 4φl =⇒ cil′ ≤ 6φl′ .

For an open facility i, define Ci as the set of demands j for which β
(1)
ij > 0. Let CF ′ = ∪i∈F ′Ci. Note

that the sets Ci are disjoint, and all demands in Ci are assigned to i. Recall that T ′ is the set of Steiner edges
added in Phase 1.

Lemma 3.12 cost(T ′) ≤ 2
∑

j∈D′ α
(1)
j − 2

∑

j∈D′∩CF ′
β

(1)
i(j)j .

Proof : cost(T ′) ≤
∑

l∈L′ Mcill where il is the terminal facility corresponding to l. Consider any terminal

location l ∈ L′ with terminal facility i. By Lemma 3.10, cil ≤ 2(α
(1)
j − β

(1)
ij ) for any j ∈ Dl. Since |Dl| ≥

M , Mcil ≤
∑

j∈Dl
2(α

(1)
j − β

(1)
ij ) = 2

∑

j∈Dl
α

(1)
j − 2

∑

j∈Dl∩CF ′
β

(1)
i(j)j since β

(1)
ij > 0 =⇒ j ∈ CF ′

and i(j) = i for j ∈ Dl by our independent set construction. Summing over all l ∈ L′ proves the lemma.

Lemma 3.13 The solution obtained satisfies, 7
∑

i∈F ′ fi+
∑

j ci(j)j+cost(T ′)+2
∑

j∈D′ cσ(j)j ≤ 7
∑

j α
(1)
j .
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Proof : We will charge each j an amount charge(j) such that

7
∑

i∈F ′

fi +
∑

j

ci(j)j + cost(T ′) + 2
∑

j∈D′

cσ(j)j ≤
∑

j

charge(j) ≤ 7
∑

j

α
(1)
j . (7)

Set charge(j) =



























ci(j)j + 7β
(1)
i(j)j if j ∈ CF ′ − D′

ci(j)j + 7β
(1)
i(j)j + 2(α

(1)
j − β

(1)
i(j)j) + 2cσ(j)j if j ∈ CF ′ ∩ D′

ci(j)j + 2α
(1)
j + 2cσ(j)j if j ∈ D′ − CF ′

ci(j)j if j /∈ D′ ∪ CF ′

.

The first inequality in (7) follows from Lemma 3.12 and the fact that for each i ∈ F ′, all j in Ci are
assigned to i and

∑

j∈Ci
β

(1)
ij = fi. To prove the second inequality, note that if j ∈ CF ′ then ci(j)j +β

(1)
i(j)j ≤

α
(1)
j . If j ∈ D′ then cσ(j)j ≤ tσ(j)j ≤ α

(1)
j − β

(1)
i(j)j as argued in Lemma 3.10. Also if j ∈ D′ − CF ′ then

ci(j)j ≤ 3α
(1)
j . So if j ∈ D′ ∪ CF ′ , charge(j) ≤ 7α

(1)
j .

Consider j /∈ D′ ∪ CF ′ . We show that ci(j)j ≤ 7α
(1)
j . Let l′ ∈ L − L′ be the location that caused j to

become a slave and let σ(j) = l ∈ L′. Clearly α
(1)
j ≥ tl′ and since j ∈ Dl′ , α

(1)
j ≥ φl′ . Since σ(j) = l, l

and l′ are dependent with φl ≤ φl′ , and i(j) is the terminal facility corresponding to l. So by Lemma 3.11,

ci(j)l′ ≤ 6φl′ . This implies that ci(j)j ≤ 7α
(1)
j .

Theorem 3.14 The above algorithm produces a solution of total cost at most 9 · OPT .

Proof : Let T ′′ be the set of Steiner edges added in Phase 2. By Lemma 3.5,
(

α′, 0, θ(2)
)

is a feasible

dual solution where α′
j = max(α

(2)
j − cσ(j)j , 0). So cost(T ′′) ≤ 2 · OPT + 2

∑

j∈D′ cσ(j)j and the cost
of tree T is at most 2 · OPT + 2

∑

j∈D′ cσ(j)j + cost(T ′). Adding this to
∑

i∈F ′ fi +
∑

j ci(j)j and using

Lemma 3.13, the total cost is at most 2 · OPT + 7
∑

j α
(1)
j ≤ 9 · OPT .

As in the previous section we can get a ratio of (7 + ρST ) by using a ρST -approximation algorithm
(ρST ≤ 2) in Phase 2 to build the Steiner tree on the components of T ′. If C∗, S∗ denote the assignment and
Steiner tree costs of an optimal solution, we can obtain a Steiner tree on the components of T ′ by connecting
each l ∈ L′ to the tree in OPT via the shortest l − j − i∗(j) path for j ∈ Dl, where i∗(j) is the facility to
which j is assigned in OPT . This tree has cost at most S∗ +C∗ +

∑

j∈D′ cσ(j)j . So the total cost is at most
∑

i∈F ′ fi +
∑

j ci(j)j +cost(T ′)+ρST

∑

j∈D′ cσ(j)j +ρST (S∗ +C∗) ≤ (7+ρST ) ·OPT by Lemma 3.13.

Theorem 3.15 Taking ρST = 1.55, the algorithm above produces a solution of cost at most 8.55 · OPT .

The following results are used in Sections 4 and 5. Let F,C, S be the facility, assignment and Steiner
costs of the solution obtained.

Lemma 3.16 (i) 14F +2C +cost(T ′)+2
∑

j∈D′ cσ(j)j ≤ 14
∑

j α
(1)
j , (ii) F +2C +S ≤ 15.55 ·OPT .

Proof : Part (ii) follows from (i). Let charge(j) be as defined in Lemma 3.13. The expression in (i) is at

most
∑

j charge(j) +
∑

j∈CF ′
(ci(j)j + 7β

(1)
j ) +

∑

j /∈CF ′
ci(j)j . For j ∈ CF ′ , ci(j)j + 7β

(1)
j ≤ 7α

(1)
j , and

for j /∈ CF ′ as argued in Lemma 3.13, ci(j)j ≤ 7α
(1)
j . The lemma follows.
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3.3 Extensions and Refinements

Arbitrary Demands. Suppose instead of unit demands each client j has a demand of dj ≥ 0. All our
results extend to this case. A simple way to handle this is to make dj copies of client j. But this only works
if the demands are integer or rational, and gives a pseudo-polynomial time algorithm. We can however
simulate this reduction. In phase 1, we raise each αj at a rate of dj . The variables βij , θS,j responding to the
increase in αj , also increase at rate dj . We modify the definitions of reachability, weight of a location, φl for
terminal location l, and terminal facility for l, to reflect this — we replace αj by αj/dj . So j has reached i if
αj/dj ≥ cij , weight(i) =

∑

j:αj≥djcij
dj and in the general case we again consider only demands j bound

to i. In the general case, for a terminal location l, let k be the demand bound to l with smallest α
(1)
j /dj

value. We set φl = max
(

α
(1)
k /dk, tl

)

and the terminal facility for location l is the tentatively open facility

to which k is connected. In phase 2, when we raise αj and θS,j, we raise them at a rate of dj
P

j∈DS
dj

≤
dj

M

so that θS increases at a rate of 1. The analogues of lemmas proved in sections 3.1 and 3.2 are easily shown
to be true and we get the same approximation ratios.

The Case M = 1. We can get significantly better results for this case. In phase 1, we run the Jain-
Vazirani facility location algorithm [11]. For completeness, we very briefly describe their algorithm.

We grow each dual variable αj uniformly at rate 1. Once αj becomes equal to cij for some facility i, we
start increasing βij and start paying toward the facility opening cost of i. When the total contribution to i
from the various clients equals fi, we declare i to be tentatively open, assign all the unassigned clients tight
with i to i, and freeze all these clients. The primal-dual process ends when all clients are frozen, so every
client is assigned to a tentatively open facility. So at the end of this process, θ

(1)
S,j = 0 for all j, S and we get a

feasible dual solution
(

α(1), β(1), 0
)

. At this point a client could be contributing towards multiple tentatively
open facilities. We call a set of facilities independent if for each client j, there is at most one facility i in the
set such that β

(1)
ij > 0. We select a maximal independent subset F ′ of tentatively open facilities and open all

these facilities.
Let CF ′ be the set of demands j such that β

(1)
ij > 0 for some open facility i. We assign each client j in

CF ′ to the unique facility i ∈ F ′ such that β
(1)
ij > 0, and every other client j /∈ CF ′ to the nearest facility in

F ′. Let i(j) denote the facility to which j is assigned. For any i in F ′, fi =
∑

j∈CF ′ :i(j)=i β
(1)
ij ; if j ∈ CF ′

we have ci(j)j + β
(1)
i(j)j = α

(1)
j and the analysis in [11] shows that for j /∈ CF ′ , ci(j)j ≤ 3α

(1)
j . For each

i ∈ F ′ we identify a client j connected to i such that β
(1)
ij > 0. Call this the primary demand point for i. We

add edges on the path from i to j to the Steiner tree and contract these edges to form a supernode wi. Also
make v a supernode, if it is not already included in some supernode. In phase 2 a Steiner tree is built on the
supernodes. Only the primary demand points pay for the Steiner tree by increasing their αjs. Let D′ ⊆ CF ′

be the set of primary demand points.

Theorem 3.17 The cost of the solution produced is at most 4 · OPT .

Proof : By the arguing as in Lemma 3.5, we get that
(

α(2), 0, θ(2)
)

is now a feasible dual solution. The total

cost is bounded by
∑

i∈F ′ fi +
∑

j ci(j)j +
∑

j∈D′(ci(j)j +2α
(2)
j ) ≤

∑

j∈D′(2α
(1)
j +2α

(2)
j )+

∑

j /∈D′ ci(j)j .

For j ∈ D′ and any i, 2α
(1)
j + 2α

(2)
j ≤ 4cij + 2β

(1)
ij + 2

∑

S⊆V :i∈S,v/∈S θ
(2)
S,j , and for j /∈ D′, ci(j)j ≤

3α
(1)
j ≤ 3cij + 3β

(1)
ij for any i. So the cost is at most 4 times the value of a dual feasible solution, hence at

most 4 · OPT .

The following results are used in Sections 4 and 5. Let (F,C, S) denote the cost of the solution obtained
and T ′ be the set of Steiner edges added in Phase 1.
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Lemma 3.18 (i) 3F + C + cost(T ′) ≤ 3
∑

j α
(1)
j , (ii) F + 2C + S ≤ 6 · OPT .

Proof : 3F + C + cost(T ′) ≤
∑

j∈CF ′
(2ci(j)j + 3β

(1)
i(j)j) +

∑

j /∈CF ′
ci(j)j ≤ 3

∑

j α
(1)
j proving (i). The

expression in part (ii) is at most
(

F + C + cost(T ′)
)

+
∑

j charge(j) where,

charge(j) =

{

ci(j)j + 2α
(2)
j ; if j ∈ D′

ci(j)j ; if j /∈ D′
≤

{

3cij + β
(1)
ij + 2

∑

S⊆V :i∈S,v/∈S θ
(2)
S,j for all i, if j ∈ D′

3cij + 3β
(1)
ij for all i, if j /∈ D′

.

So
∑

j charge(j) ≤ 3 · OPT and from part (i), F + C + cost(T ′) ≤ 3 · OPT . This proves (ii).

4 The Connected k-Median Problem

The Connected k-Median problem is the same as ConFL with the additional constraint that at most k fa-
cilities can be be opened. Since v is already open, this extra constraint adds the following inequality to
the linear program (P2) for ConFL:

∑

i6=v yi ≤ k − 1. This changes the objective function of the dual
(D2) to max

∑

j αj −
∑

j βvj − k′λ, where k′ = k − 1. Constraint (6) in the dual LP gets replaced by
∑

j βij ≤ fi + λ. We use Phase 1 of the ConFL algorithm as a black box to get a 15.55-approximation for
this problem using the technique of Lagrangian relaxation. This is similar in spirit to the algorithm for the
k-median problem given by Jain & Vazirani [11].

Let (F ∗, C∗, S∗) be the cost of an optimal connected k-median solution. Suppose we fix λ, modify
the facility opening costs to fi + λ for all i 6= v, and run only Phase 1 of the ConFL algorithm to get a
(partial) primal solution (x, y, z), and a dual solution

(

α(1), β(1), θ(1)
)

. Let (F,C, T ′) be the cost of the
primal solution where T ′ denotes both the partial Steiner tree on F and its cost. Here F =

∑

i fiyi is the
unmodified facility cost. By a now familiar argument, the tree S∗ can be extended to yield a Steiner tree on
the components of T ′ of cost of at most S∗+C∗+

∑

j∈D′ cσ(j)j . So the total cost of building an approximate
Steiner tree on the open facilities is at most,

T ′ + 1.55
(

S∗ + C∗ +
∑

j∈D′

cσ(j)j

)

. (8)

Suppose that the algorithm opens exactly k ′ facilities, i.e.,
∑

i6=v yi = k′. Then, we claim that we obtain a

solution of cost at most 8.55 · OPT . To see this, note that
(

α(1), β(1), θ(1), λ
)

is a feasible solution to the

dual of the connected k-median LP and by Lemma 3.13, 7(F +k ′λ)+C+T ′+2
∑

j∈D′ cσ(j)j ≤ 7α
(1)
j =⇒

7F + C + T ′ + 2
∑

j∈D′ cσ(j)j ≤ 7
(
∑

j α
(1)
j − k′λ

)

≤ 7 · OPT . Combining this with (8), we can bound
the total cost by 7F +C + T ′ + 2

∑

j∈D′ cσ(j)j +1.55(S∗ +C∗) ≤ 7 ·OPT +1.55 ·OPT = 8.55 ·OPT .
The trick then is to guess the right value of λ so that when the facility cost is updated to fi + λ, we end up
opening k facilities. This idea was first used in [11].

Suppose the algorithm opens at most k ′ facilities when λ = 0. Then, since
(

α(1), β(1), θ(1), 0
)

is a
feasible connected k-median dual solution, we get a solution of cost at most 8.55 · OPT . So assume that at
λ = 0 the algorithm opens greater than k ′ facilities. When λ is large, say, |D|maxj cvj , the algorithm will
connect all demands to v and not open any other facility. We can show that there is a value λ = λ0 such
that depending on how we break ties between events, we get two primal solutions — one opening k1 < k′

facilities and the other opening k2 > k′ facilities, and a single dual solution. These two solutions can be
found in polynomial time by performing a bisection search in the range

[

0, |D|maxj cvj

]

and terminating
the search when the length of the search interval becomes less than 2−(poly(n)+L) where L is the number of
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bits to represent the longest edge2. The proof of this is very similar to the proof in the conference version
of [11] (see Section 3.2), so we only sketch the proof briefly at the end of this Section.

Let (x1, y1, z1) and (x2, y2, z2) be the two solutions obtained at λ = λ0, and
(

α(1), β(1), θ(1)
)

be the
common dual solution. It is important to note that the values α(1), β(1), θ(1), λ0 are used only in the analysis,
we do not need them to specify the algorithm. Let (F1, C1, T

′
1) and (F2, C2, T

′
2) denote the cost of the

solutions (x1, y1, z1) and (x2, y2, z2) respectively. A convex combination of the two solutions yields a
fractional solution (x, y, z) that opens exactly k ′ facilities. Let ak1 + bk2 = k′, a + b = 1. To avoid
cumbersome notation, let A denote the quantity 2

∑

j∈D′ cσ(j)j in the solution (x1, y1, z1) and B denote the
corresponding quantity in (x2, y2, z2). Then,

7(aF1 + bF2) + (aC1 + bC2) + (aT ′
1 + bT ′

2) + aA + bB ≤ 7
(

∑

j

α
(1)
j − k′λ

)

≤ 7 · OPT . (9)

We now round (x, y, z) to get a solution that opens at most k facilities (including v) losing a factor of 2.
If a ≥ 1

2 we take the solution (x1, y1, z1) and from (9) we get that F1 + C1 + T ′
1 + A ≤ 14 · OPT .

Otherwise we open a subset of the facilities opened by y2 as in [11] to get a solution of assignment cost at
most 2(aC1 + bC2). For each facility i ∈ y1 (i.e., opened in y1) we look at the facility in y2 closest to it.
Let N be this set of facilities. If |N | < k1 we arbitrarily add facilities from y2 to N till |N | = k1. We open
all the facilities in N . We also randomly pick a set of k ′ − k1 facilities opened by y2 but not in N , and open
these. Note that each such facility is opened with probability (k ′ − k1)/(k2 − k1) = b. We also add edges
of T ′

2 corresponding to the open facilities.
For a demand j, let i1, i2 be the facilities to which it is assigned in y1, y2 respectively. Let i3 be the

facility nearest to i1 in y2. Note that i3 is always opened. We assign j to i2 if it is open and to i3 otherwise.
Since ci3j ≤ ci1j + ci1i3 ≤ ci1j + ci1i2 ≤ 2ci1j + ci2j and a < b, the expected assignment cost is at
most, bci2j + aci3j ≤ 2(aci1j + bci2j). So the total assignment cost is at most 2(aC1 + bC2). From (9),
F2 + 2(aC1 + bC2) + T ′

2 + B ≤ 14 · OPT .
Completing the Steiner tree on the open facilities costs an additional 1.55(S ∗ + C∗) ≤ 1.55 · OPT , so

the total cost is at most 15.55 · OPT . Also if (F,C, S) denotes the cost of the solution returned, then using
Lemma 3.16 and arguing as above we get that F + 2C + S ≤ 29.55 · OPT .

Theorem 4.1 There is a 15.55-approximation algorithm for the Connected k-Median problem. Further, the
solution returned of cost (F,C, S) satisfies F + 2C + S ≤ 29.55 · OPT .

When M = 1 if we use the ConFL algorithm for M = 1 in the above procedure, we first get a partial
solution of cost (F,C, T ′) such that F + C + T ′ ≤ 6 · OPT using Lemma 3.18. Building an approximate
Steiner tree on the components of T ′ costs at most 1.55(S∗ + C∗) since an optimal Steiner tree on the
components of T ′ has cost at most S∗ + C∗.

Theorem 4.2 When M = 1, we get a solution of cost (F,C, S) such that F + C + S ≤ 7.55 · OPT and
F + 2C + S ≤ 13.55 · OPT .

4.1 Obtaining the solutions (x1, y1, z1) and (x2, y2, z2)

For a given value of λ, let the sequence for λ denote the list of events occurring in Phase 1 of the primal-
dual algorithm arranged in non-decreasing order of the time at which they take place, with ties broken in an
arbitrary, but fixed way. We say that λ is a critical point if an infinitesimal change in λ results in a change in
the sequence. One can show that if λ0 is a critical point then both the sequence for λ0 and the sequence for
λ0 ± ε can be obtained at λ = λ0 depending on how we break ties between events. Furthermore, two critical

2Note that it only takes a polynomial number of bits to represent this length, so the bisection search runs in polynomial time.
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points are separated by at least 2−(poly(n)+L), where L is the number of bits to represent the longest edge.
Suppose we terminate the bisection search when the search interval [λ2, λ1] satisfies λ1−λ2 < 2−(poly(n)+L)

and (x1, y1, z1), (x2, y2, z2) are the (partial) primal solutions at λ1, λ2 respectively that open k1 < k′ and
k2 > k′ facilities respectively. We know that there is a single critical point λ0 ∈ [λ1, λ2], so by the above
property there is a way of breaking ties between events so that we get both (x1, y1, z1) and (x2, y2, z2) as
solutions at λ = λ0. These two solutions, which can be found in polynomial time, satisfy all the required
properties. Note that we do not explicitly need to find the value of λ0 or the dual solution

(

α(1), β(1), θ(1)
)

at λ = λ0.

5 Generalization to Edge Capacities

We can extend our results to a capacitated generalization of connected facility location where edges have
capacities. Each edge has a length ce. We are given two kinds of cables; one having a cost of σ per unit
length and capacity u, the other has a cost of M per unit length and infinite capacity. We wish to open
facilities and lay a network of cables so that clients are connected to open facilities using the first kind of
cable. Further we want the facilities to be connected to each other by a Steiner tree using cables of the
second type. We may install multiple copies of a cable along an edge, if necessary, to handle the total
demand through the edge. So routing d units of demand through edge e now costs σd d

uece while earlier the
cost was simply d · ce. Assuming integer demands, the uncapacitated problem considered earlier is a special
case obtained by setting u = 1 and scaling edge costs by σ, M by 1

σ . The facility location aspect of this
problem where we only have cables of the first type and do not require that facilities be interconnected was
considered in [22].

The rent-or-buy case with F = V, fi = 0 for all i now corresponds to a rent-or-buy problem where we
can either buy unlimited capacity on an edge paying a large fixed cost of M per unit length, or rent capacity
in steps of u units, paying a cost of σ per unit length for every u units installed.

Let us first consider unit demands. We assume σ ≤ M (otherwise the optimal solution is just a Steiner
tree connecting the clients to v). We will use a Theorem proved by Hassin et al. [10] (see also [22]) in a
slightly different form.

Theorem 5.1 Let Z be a Steiner tree on a set of terminals D rooted at v where each edge has capacity u.
Let wj be a weight associated with terminal j ∈ D. We can clump the terminals into subtrees Z1, . . . , Zk

so that,

(i) Each subtree except possibly Zk has exactly u terminals and Zk has at most u terminals.

(ii) If we route flow along edges of Z from the u−1 terminals in Zi to the terminal in Zi with minimum
weight for each i < k, and route flow from the terminals in Zk to v, then we get a flow that respects
edge capacities.

If terminal j has a demand dj < u, we can clump the terminals so that each subtree Zi has demand between
u and 2u for i < k, Zk has at most u units of demand, and (ii) still holds.

We can get a (ρConFL+ρST )-approximation algorithm for this problem by using a ρConFL-approximation
algorithm for ConFL and a ρST -approximation algorithm for the Steiner tree problem.

1. Obtain a ConFL instance by setting the edge costs to c′e = σce

u and M ′ = Mu
σ . A solution to the

original instance gives a solution to the ConFL instance of no greater cost — the Steiner edges cost
the same and the cost of routing d units of demand through a facility location edge is d· σce

u ≤ σd d
uece.

We solve this relaxation approximately using the ρConFL-approximation algorithm. Let i(j) be the
facility to which j is assigned and T be the Steiner tree on the open facilities.
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Connected Facility Location

u = 1 u > 1

Unit general case 8.55 10.1
demands rent-or-buy 4.55 6.1

M = 1 4 5.55

Arbitrary general case 8.55 17.1
demands rent-or-buy 4.55 9.1

M = 1 4 7.55

Connected k-Median Problem

u = 1 u > 1

Unit general case 15.55 17.1
demands M = 1 7.55 9.1

Arbitrary general case 15.55 31.1
demands M = 1 7.55 15.1

Table 5.1: Summary of the results of Sections 3, 4 and 5.

2. Obtain a Steiner tree instance by setting the edge costs to σce with the terminals being the demand
points and vertex v. This is a relaxation, since a solution to the original instance connects all demand
points to open facilities and all open facilities to v with each edge costing at least σce, be it a facility
location edge or a Steiner tree edge (since M ≥ σ). We solve this Steiner tree instance approximately.
Let Z be the resulting tree.

3. Now we combine the two approximate solutions to get a feasible solution of cost no greater than the
sum of the costs of the two solutions. We use the above Theorem with the tree Z and wj = c′i(j)j
for demand j. Let Z1, . . . , Zk be the subtrees obtained. We first route demand in each subtree along
edges of Z as specified in the Theorem. For each subtree Zi, i < k the u units of demand collected at
the client j ∈ Zi for which c′i(j)j is minimum is then sent to facility i(j) along the path from j to i(j).

The cost of routing demand along Z is at most the cost of Z in the Steiner tree instance since each
edge of Z carries at most u units of demand. Routing demand along the path from j ∈ Zi to i(j) costs
σci(j)j ≤

∑

k∈Zi

σci(k)k

u =
∑

k∈Zi
c′i(k)k. The only facilities we use are v and the facilities opened in the

ConFL solution and these are connected by the tree T that costs the same in both the original instance
and the ConFL instance. So we get a feasible solution of cost at most (ρConFL + ρST ) · OPT . Taking
ρST = 1.55 [23] and using Theorems 3.7, 3.15 and 3.17 we have,

Theorem 5.2 There is a 10.1-approximation algorithm for Connected Facility Location with edge capaci-
ties and unit demands. For the case F = V and fi = 0 for all i, there is a 6.1-approximation algorithm. If
M = 1, we get a ratio of 5.55 in both cases.

For arbitrary demands, the algorithm above works with the same guarantee if demands may be split
across facilities. For the unsplittable case we get a somewhat worse guarantee. We approximately solve the
ConFL and Steiner tree instances as above. Let (F,C, S) denote the cost of the ConFL solution. Clients
with demand at least u send their demand directly to the facility serving it in the ConFL instance. The cost
incurred is at most twice the connection cost incurred by the ConFL instance. Again using Theorem 5.1
and routing demand as above we get a feasible solution of cost at most F + 2C + S + ρST · OPT . Using
Lemmas 3.8, 3.16 and 3.18 we get a bound on F + 2C + S that is better than the naive bound of 2ρConFL ·
OPT , and obtain the following theorem.

Theorem 5.3 There is a 17.1-approximation algorithm for Connected Facility Location with edge capac-
ities and arbitrary demands. When F = V and fi = 0 for all i, we get an approximation ratio of 9.1. If
M = 1 the ratio improves to 7.55 in both cases.

We can use the algorithm for the connected k-median problem from the previous section as a black box
to get a constant-factor approximation-algorithm for the Connected k-Median problem with edge capaci-
ties. Using Theorem 4.1 we get a 17.1- and 31.1-approximation algorithm for unit demands and arbitrary
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demands respectively. For M = 1, the approximation ratios improve to 9.1 and 15.1 respectively using
Theorem 4.2. Table 5.1 summarizes all the results.
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