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Approximating the Degree-Bounded Minimum
Diameter Spanning Tree Problem!

Jochen Kénemann,? Asaf Levin,? and Amitabh Sinha*

Abstract. We consider the problem of finding a minimum diameter spanning tree with maximum node degree
B in a complete undirected edge-weighted graph. We provide an O (,/logp n)-approximation algorithm for
the problem. Our algorithm is purely combinatorial, and relies on a combination of filtering and divide and
conquer.
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1. Introduction. The importance of algorithms for designing efficient networks in
today’s interconnected world can hardly be overstated. The operative word here is “effi-
cient,” and, indeed, there are many (often conflicting) ways to measure the efficiency of a
network. Suppose a telecommunication company is building a communication network.
While budgeting constraints may require the company to minimize total cost, there are
also quality of service and technological constraints which may require the network to
have low diameter and low degree.

Low diameter is essential to ensure that any pair of nodes can communicate fast.
It is also useful to force reliability constraints, as explained in the following (see also
[13] and [19]): Assume that an edge e fails with probability 1 — p,, and that all failures
occur independently. Then the probability that a path ey, e;, ..., e; is operational is
Dey X Pey X -+ X p,,. Given a certain threshold value for the desired reliability, there
is a corresponding parameter D such that the diameter of the network defined by edge
lenxgth (|log p.|).ck is required to be at most D. Therefore, the reliability constraint is
transformed into a diameter constraint.

Degree constraints appear naturally in graph-theoretic abstractions of communication
network design problems. As an example, consider the so-called /P multicast [8], [9]
problem where we would like to disseminate centrally stored information from a server
node to a set of client hosts. The standard solution is to compute a tree in the given
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graph that spans the server node and all client nodes. We then send data packets from
the root along each of its incident edges in the tree. An internal node forwards incoming
information to its descendants in the tree. The number of descendants of a node in this
tree is proportional to the amount of work that the node has to do and it is hence natural
to aspire to compute spanning trees of low maximum degree (see also [5], [7], and
[20D).

Our work is motivated by precisely these considerations. We proceed by defining our
problem.

1.1. Problem Definition. Formally, we consider the following bounded degree min-
imum diameter spanning tree problem (BDST): given an undirected complete graph
G = (V, E) whose edges are endowed with a metric length function {/.}.cg and a pa-
rameter B > 2, we want to find a spanning tree T of G of maximum node-degree at
most B. At the same time we want to minimize the diameter of T, i.e. we would like to
minimize
A(T) := max dist] (u, v),
u,veV

where di stIT (u, v) denotes the /-length of the unique (u, v)-path in 7.

Let the height of a tree T rooted at node r be the maximum number of edges on any
(r, v)-path, where v is a leaf node in T and denote it by height (7). We also use n and
m to denote | V| and | E|, respectively.

For B = 2, BDST can be approximated within a constant using approximation
algorithms for the Traveling Salesperson problem. In this paper we consider the case
B > 3.

1.2. Our Contribution. Our main result is an O(,/loggz n) approximation algorithm
for BDST. The algorithm is described and analyzed in Section 2. There are two main
ideas in the algorithm. First, we break up the graph into clusters of low diameter. For
each cluster, we compute a balanced (B — 1)-ary tree. We then compute a global tree
over the clusters, and show that the resulting tree has low diameter.

Our algorithm is the first known sublogarithmic approximation for this problem. An
O (logg n) approximation is trivial; any complete balanced (B — 1)-ary spanning tree of
the graph will do.

Our result directly leads to an improvement of a recent paper by Arkin et al. [1]
on the Freeze-Tag problem. Here, we are given an undirected graph G = (V, E) with
non-negative edge-lengths /, for all edges e € E. Initially there is an awake robot at a
given node vy € V and each vertex v € V contains r, asleep robots. Our model allows
an awake robot at node v to traverse an edge e € E that is incident to v in time /.. Awake
robots can now wake up asleep robots by moving to their location in G. Once awake,
the new robots can help in waking up other robots. The goal in the Freeze-Tag problem
is to minimize the makespan, i.e. the time it takes to wake up all robots.

In [1] Arkin et al. present an O (log A) approximation algorithm for the Freeze-Tag
problem where A is the largest degree in the graph. The authors also show that an w-
approximation for the BDST problem implies the same guarantee also for the Freeze-Tag
problem. The main insight used in this reduction is that a wake-up schedule corresponds
to an arborescence in G that is rooted at vy and has out-degree at most », + 1 for
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each node v € V. A minimum-makespan wake-up schedule corresponds to a minimum
diameter degree-bounded arborescence. Our algorithm therefore implies an O (y/Iog n)
approximation algorithm for the Freeze-Tag problem.

More recently, Arkin et al. [2] improved upon [1] in several special cases. In the general
Freeze-Tag problem as stated above they obtain an O(L/d - logn + 1) approximation
where L is the length of the longest edge in E and d is the diameter of G. Our algorithm
remains the best known result for the Freeze-Tag problem in the general setting.

Finally, in [1], Arkin et al. show that itis NP-hard to obtain an approximation algorithm
with performance guarantee better than 5/3 for the Freeze-Tag problem. This implies
that the BDST problem has no (5/3 — ¢)-approximation either for any & > 0 unless
NP =P.

1.3. Related Work. The problem considered in this paper extends a long line of previous
work on constrained network design. In the following we give a survey of those results
that are closely related to our work.

The most basic related problem is the minimum degree spanning tree problem where
we are given an undirected graph G = (V, E) and the goal is to find a spanning tree of G
whose maximum node-degree is minimized. The best known algorithm for this problem
is due to Fiirer and Raghavachari [11] who show how to compute a spanning tree with
maximum degree A*+ 1 where A* is the smallest maximum degree of any spanning tree
of G. The algorithms in [11] extend to the Steiner case. For directed graphs, Krishnan and
Raghavachari [16] present a quasi-polynomial-time algorithm that computes a directed
spanning tree with maximum out-degree O (B + logn).

The minimum diameter spanning tree problem is the following: given an undirected
graph G = (V, E) and length function defined over its edge set {/,}.cr, we want to find
a spanning tree of G of minimum diameter. This problem is equivalent to finding the
shortest paths tree from the absolute 1-center of G (see [15]), and, therefore, is solvable
in O(mn + n? logn) time.

The problem of computing diameter-constrained trees has also been studied empir-
ically. We point the reader to a recent paper by Gouveia and Magnanti [13] and the
references therein.

Hassin and Levin [14] considered the hop-constrained spanning tree problem: given
an undirected graph G = (V, E), costs ¢, for all edges e € E, and a symmetric require-
ment matrix (u;;) € N™*"; the goal is to find a minimum-cost spanning tree 7 in G
such that for all 7, j € V, the unique (i, j)-path in 7 has at most u;; edges. The authors
consider the special case of this problem where u;; € {1,2, 00}, foralli, j € V, and
present a constant factor approximation algorithm for this case.

Minimizing the diameter of a tree is closely related to minimizing the so-called
maximum dilation. Let G = (V, E) be an undirected graph with non-negative lengths
I, for all edges e € E. Let dg(u, v) be the length of a minimum-length (u, v)-path in
G. Consider a spanning tree 7' of graph G. The dilation of the pair of nodes u,v € V
in T is defined to be the ratio d7 (u, v)/dg(u, v). A tree T is called a k-tree-spanner if
the dilation of all pairs of nodes u, v € V is at most k. In [6] Cai and Corneil showed
how to compute a 1-tree-spanner in polynomial time if it exists. The authors also give
a polynomial-time algorithm to compute a 2-tree-spanner in the case where every edge
has unit length.
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Low-dilation trees also occur in the context of metric space approximation. Any
general metric space can be thought of as a pair (G, [) of an undirected graph G = (V, E)
and a vector [/ of non-negative lengths for all edges in E. The distance between two points
u,v € V in the corresponding metric space is then given by dg (u, v). Bartal [3], [4]
considered the question of approximating a general metric space by a tree metric (T, ).
In particular he showed that for a given metric (G, ) there is a probability distribution
over tree metrics 7 such that the expected dilation of any pair of nodes u, v € V[G] is
O(log(n) loglog(n)). Subsequently, Fakcharoenphol et al. [10] improved upon [3], and
Bart98 and showed that for any general metric (G, ) there is a probability distribution
over tree metrics with expected maximum dilation O (logn).

Whereas the common criteria in low dilation trees and metric space approximation is
to bound the maximum dilation (i.e. the distances in the resulting tree with respect to the
original distances), we are concerned with bounding the performance of the tree with
respect to the optimal tree. This significant difference allows us to use a better lower
bound, and to derive a better approximation algorithm.

In [18] Ravi considered the problem of broadcasting a bit of information from a root
node to all other nodes in a given undirected graph. As a subproblem he considered
the BDST problem in (non-complete) undirected graphs G = (V, E) with non-negative
lengths /, for all edges e € E. The goal is to compute a spanning tree 7 in G of minimum
diameter whose maximum node-degree is bounded by a given parameter B > (. The
paper shows how to compute a tree whose diameter is O (log n) times that of any spanning
tree with maximum degree B and whose maximum degree is O (B - log” n).

We also direct the reader to a paper by Marathe et al. [17] that introduced a for-
mal model for network design optimization problems with two criteria. The authors
study spanning trees and Steiner trees under combinations of diameter, degree, and cost
constraints.

2. Algorithm and Analysis

2.1. Overview. The main idea behind our algorithm is filtering. Let « > 0 be a thresh-
old, where distances more than « are called long and distances less than « are short. We
partition the node set of G into clusters such that the diameter of each cluster is low, but
the number of clusters is also small. We do this by filtering the node set so that we retain
one representative node for each cluster, and define an artificial degree bound for this
representative node to account for the degree capacity of the entire cluster.

We obtain our performance guarantee from the following two observations. Since the
number of clusters is small, any balanced tree which spans the representatives has a small
number of long edges. Moreover, since each cluster has a small diameter, the overhead
added to any path by the expansion of the representative nodes into trees spanning the
clusters is also small. The rest of this paper shows that such a threshold exists and yields
our claimed performance guarantee.

A graphic illustration of the algorithm on a sample input instance is shown in Figure 1.

2.2. Algorithm. Given an appropriately chosen threshold «, the first step of our algo-
rithm is to find representatives R = {vy, ..., v,} € V and a partition of V into pairwise
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Fig. 1. (a) An input instance, with B = 3. (b) Partition into clusters Vi, ..., Vs with representatives R =
{vi, ..., vs}. (c) Global tree T4 spanning R, shown by thick edges. (d) Local trees T7, ..., T5 on clusters

Vi, ..., Vs shown using thin edges. (¢) Edges of 78 redistributed to leaves of 7; to preserve degree bound of
3 at each node. (f) Final solution.
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Algorithm 1—GlobTree(R, { By }ycr): Compute a
tree T on the nodes in R such that node v € R has
node degree at most B, for all v € R.

I: LetR = {vy, ..., vg}suchthat B, > ... > B,

2. T <@

3: d; <~ By, foralll < j <g

4: fori =2to q

5:  Letl < j <ibe smallest with d; > 0.

6: Addedge (vj,v;)toT.

7. di <—d;j —1.

8 di<~d —1.

9: end for

10: return Tree T with root v;.
disjoint sets:
€)) V=Vu...uYy,

such that v; € V; and dist;(v;,u) < 3-aforalll <i < g and for all u € V;.
Roughly speaking, we then construct a low-degree and low-diameter tree on the nodes
of R. This tree determines the global structure of our solution. In addition we construct
low-diameter degree- B-bounded trees for the nodes of each set V;, 1 < i < g. We finish
by replacing the nodes from R in the global solution by the respective spanning trees.

In the following we assume that we have a guess for the optimum diameter A. This
is justified since the diameter of an optimum tree is within the interval [maX.cg [, n -
max.cg ] and we can perform a binary search in order to find a proper approximate
guess (i.e. a guess within twice the optimum diameter).

We now detail the process of finding the partition from (1). We proceed in iterations:
in iteration 1 < i < g, we compute the set V; and its representative v;. For ease of
notation, we use Uiy to denote the set of nodes that are at a distance of at least y from
the first i — 1 representatives {vy, ..., v;—1}. In order to define these sets formally, let
covy,(v,U) ={u € U : disty(v,u) < y} be the set of nodes in U that are within a
distance of y of vertex v (we also say that v y-covers the nodes in cov, (v, U)). Then
welet U =V forall y > 0.Fori > 1 we define U = V\ U, ;;_; cov, (v;, V).

Leta be a given threshold. Initeration i we then pick vertex v; € U/ that-covers most
nodes in Uf“, ie. weletv; = argmax,eye |cove (v, Ui3°‘)|, and V; = covsy (v;, Uf"‘).

The algorithm stops as soon as all nodes in V are within a distance of at most 3« from
some representative. We assume that this happens after g iterations. We have U ;i, =0
and Uf"‘ # Pforall 1 <i < gq.Figure 1(b) shows the partition with ¢ = 5 on the input
instance shown in Figure 1(a).

In order to compute the final tree, we go through two main steps:

Global structure. Let u € R be a representative and let U C V be its set from the
computed partition. We let the degree bound for node u be

) B,=U|-(B—2)+2.
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Algorithm 2—BDST(G, A): Compute a degree B tree of diameter no more than

O(/loggn)A.

I: o < A/\/loggn.

2:i <« 0,R<0 [Fig. 1(a)]
3: U13°’ ~V

4: while Uf"‘ #*0

5. v <« argmaxveU’a|cova(v, Ui3“)|.

6: V, <~ COV3a(U,‘, U[-3a).

7. By, < |Vi|[(B—=2)+2

8: R <« RU{y}.

9: i<« i+1.
10: end while [Fig. 1(b)]
11: T¢ <GlobTree(R, {B,}vcr)). [Fig. 1(c)]
12: for1 <i <gq
13:  T; < Tree spanning V; of degree at most B and minimum height. [Fig. 1(d)]
14:  Replace v; by T;, and distribute the edges in 74 incident on v; over the nodes of

T; so that the maximum degree of any node in 7; is minimized. [Fig. 1(e)]

15: end for
16: return resulting tree 7°°*. [Fig. 1()]

We then compute a tree 7% = GlobTree(R, {B,},cr) on the nodes R of low height.
See Algorithm 1 for the details, and Figure 1(c) for an illustration on the input instance
of Figure 1(a).

Local structure. Letu € R be arepresentative node in R and let U be its corresponding
set in the partition. We then let T, be a tree spanning with the nodes of U of minimum
height, i.e. all internal nodes in 7, except for those with only leaves as children have
degree B. This is shown in Figure 1(d).

Finally, we compute the final tree 7*** by taking the global tree 7¢ and replacing
each node v € R by the tree T,,. We distribute the edges that are incident to v in 78 over
the nodes of T, evenly, such that the maximum degree of any node of T, is as small as
possible. This is shown in Figure 1(e), with the final solution in Figure 1(f).

A listing outline of the algorithm is shown in Algorithm 2. We will show that its
output is always a tree of degree no more than B. We do a binary search over A to
obtain a tree of minimum diameter. In the following we analyze the performance of the
algorithm, assuming the correct value for A is fed to Algorithm 2.

2.3. Performance Ratio

THEOREM 1. Suppose that there is atree T* with maximumnode-degree B and diameter
A. Then Algorithm BDST(G, A) produces a tree T *°* with maximum node-degree B and

diameter O (y/loggn - A).

Theorem 1 is the main result we are trying to prove. We prove it at the end of this section,
using a sequence of lemmas which follow.
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LEMMA 1. The maximum degree of T°** is no more than B.

PROOF. Letu € R be a representative node and let U be its corresponding vertex set
in the computed partition of V. Recall the definition of the degree-bound B,, for node u
from (2). Algorithm GlobTree guarantees that vertex # € R has degree at most B, in
TS forallu € R.

The local tree T, has |U| nodes each with capacity B and there are exactly |U| — 1
edges in T,,. Hence the total available capacity of the nodes in U for edges outside 7, is

UI-B=2-(U|=1) = B,

This means that there is a way of distributing the edges of T'¢ that are incident to node
u over all nodes of 7, such that the maximum degree in 7°*** is at most B. |

We now prove that 7°°* has diameter O (y/logg n - A). We say that a path P in the
tree T°P* is an rl-path if P is the unique path connecting a leaf to the root in 7°°*. We
also say that an edge uv € E is shortif u,v € V; for some 1 <i < g, and uv is long
otherwise. Our proof of the diameter bound has two parts: the first part shows that the
maximum number of long edges on any rl-path in 7°°* is O (,/logy n). The second part
shows that there are O (logg n) short edges on any rl-path in 7. We will show that
this suffices, using the facts that the length of any edge in our input graph is at most A,
and the length of a short edge in G is at most 6« (using triangle inequality).

First, we prove that any rl-path contains at most O (,/logy n) long edges. We begin
by creating a partition of V using 7*’s structure. We root T* at vj (chosen arbitrarily),
and let V}* be the set of nodes u € V such that the unique (v}, u)-path in 7* has length
at most ov. We let $* = {v]}, and let the set of uncovered nodes be U = V\ V" initially.

We continue until there are no uncovered nodes remaining. In iteration i > 1, let
v} € U be an uncovered node of smallest height in 7* (i.e. v’s parent in T* is already
covered). We then say that a node u is covered by v} if u is a descendant of v} (in T*)
and the length of the path from v} to u in T* is at most . We let V;* be the set of nodes
in U that are covered by v’. We remove V;* from U and repeat.

Assume that the final partition has sets V¥, .. ., V; and representatives R* = {vf, ...,
v;}. Since the subtree 7*[V*] of T* induced by the nodes of V/* is connected, a counting
argument shows that the nodes in V;* have at most

V|- (B—=2)+1
children from V\V;* in T* fori > 2. Similarly, V;* has at most | V*| - (B —2) +2 children
in T*. Let
3) By = V|- (B—2)+2
forall 1 <i < pandlet T be the tree produced by GlobTree(R*, {B}},cr+).

DEFINITION 1. {(v;, Vi)}le is called a proper collection of V for a given node set V
if the following conditions hold:

1. VicVandv; € V,forall1 <i < p.
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Z.V_[HV =fforalll <i <j <p.
3. Vil= ... = [V, B
4, distz(i,-,u) <aforalll <i <pandforalueV;.

The following lemma is useful in order to prove that the height of the global tree 78
is at most that of 7.

LEMMA 2. Let {(v;, V))}{_, be a partition of V together with a corresponding set of
representatives created by steps 1-10 of Algorithm 2. Let {(v;, V,-)}f:1 be a proper
collection of G as defined in Definition 1. We then must have

J J
) M= Z
i=1 i=1
forall1 < j < max{q, p}.

PROOF. We prove the lemma by induction over |V| = n. For n = 1 the lemma is
trivially satisfied since in this case V| = V, = V.Forn > 1, assume that the lemma
holds for all node sets with at most » — 1 nodes.

Assume now, for the sake of contradiction, that the lemma does not hold. Let j be
the minimum index such that Y _/_, |Vi| < Y_/_, |V;|. Then there must exist an index
Jo < j such that

Vig J Vi
1<i<j
and hence Vjo & covie(vi, V) forall 1 <i < j. Notice that this implies v;, € U;".

Now consider the application of the induction hypothesis for the set of nodes V' =
V\VJ-O. Since Vjo N covy (v, V) = @ for all i, the application of our algorithm with
V’ yields the exact same set of the first j — 1 representatives vy, vz, ..., vj—; and the
corresponding subsets {V;\V JO}’ of V'. Note that {V; }p l\{V o} 1s a proper collection
of V'. Therefore, by the mductlon hypothesis, we conclude that

Jj—1 J
(5) STIWVAV =Y Vil = [V,
i=1 i=1

Let us now lower bound the difference Y7, |Vi| — Y771 [Vi\V,|.
This difference can be expressed as the sum of two terms: the size of the set V; and
the increase of the sizes of the first j — 1 sets of our partition. Hence, we obtain

(6) Z|V|>Z|V\le+ Vi | covaa(ui, V)| + V1.
I<i<j

Observe that in the jth iteration of our algorithm we could have chosen v, as a repre-
sentative instead of v; since vj, € U}". Therefore, we must have that

3 — 3
V| = lcova (v, U = |cove @), U,
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Using (5) together with (6) and noting that

@) Vi | covsaui, V)| + |cova@j,, U] = [V

l<i<j

finally yields

J J
AED NN
i=1 i=1
This contradicts our assumption, and the lemma follows. O

COROLLARY 1. Let {V;}!_, be the partition of V generated by steps 1-10 of Algorithm
2, and let {Vi"‘}f’:1 be the partition of V generated from the optimum tree. Let w be a
permutation of {1, ..., q} such that

Veyl = oo = Vel

Forall 1 < j <max{l, p}, we have
J J

®) S Wa) = Y1V
i=1 i=1

PROOF. The statement in (8) clearly holds for the partition {V;}7_, generated by steps
1-10 of Algorithm 2, noting that {(v}, V;*)}_, is a proper collection of V' as defined in
Definition 1.

The corollary follows by observing that reordering the sets of the partition by non-
increasing size increases the left-hand side of (8) and does not change the right-hand
side. |

We can now prove that the height of the global tree 74 is at most the height of the
tree T.

LEMMA 3. WhenT is constructed from T* by GlobTree(R, { B} },cr+), we haveheight
(T8) < height(T).

PROOF. We say that the level of node v of T is the number of edges in the unique path
from the root of 7' to v. We now claim that the level of node v; in 78 is at most the level
of node v/ in T forall 1 <i < p. We use induction over i to prove the claim.

The claim is clear fori = 1. For i > 1, assume that GlobTree connects node v} to
node v} for some s < i. It follows from (2), (3), and Corollary 1 that

XS: B; = XS: B;
j=1 j=1

and hence there must exista 1 < s’ < s such that dy > 0in GlobTree at the time when
node v; is connected. By the induction hypothesis, we know that the level of vy in T¢ is
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at most that of node v}, in 7. It follows from the definition of GlobTree that the level
of v} is at most the level of v;. Hence, the level of v; in T'¢ is at most the level of v} in
T and this finishes the induction.

Observe that the height of T4 is equivalent to the level of node v, in T'¢, and that the
height of T equals the level of v; in T'. This implies the lemma. O

LEMMA 4. Let T¢ be a tree returned by GlobTree(R, {By}ver). Then TS must be a
tree of minimum height among all trees that satisfy the given degree constraints.

PROOF. Given a tree T, we define the following total order of the nodes in 7. The
order is a breadth-first-search order, with the refinement that the nodes of each level are
ordered in non-increasing order of their corresponding sets V;. In particular, the nodes
of T are ordered vy, v2, ..., v, such thatif i < j then either level(v;) < level(v;)
or level(v;) = level(v;) and |V;| = |V;|. By construction of 7¥, we have that if
i < j in the total order of the nodes in T'¢, then |V;| > |V;|, regardless of their levels.
Moreover, every tree of minimum height for which this holds must have the same height
as height(T9).

Assume for the sake of contradiction that there exists a tree T’ such that deg; (v;) <
B, foralll <i < gandheight(T’) < height(T¥).Letvy,..., v; be the total order
induced by 7", as defined above. By the observation in the preceding paragraph, for some
i < j, wehave |V/| < |Vj’|. We call this an inversion, and, without loss of generality,
assume that 7" is a tree with the fewest number of inversions among all trees that satisfy
the degree constraints and have height less than height (7).

We show that we can reduce the number of inversions in 7’ without increasing the
tree’s height. This contradicts the inversion-minimality of 7.

Let (v}, v;) beaninversionin 7. We swap labels: relabel node v} as v} and relabel v} as
v.. The resulting tree may now violate the degree constraints at node v;. We counter this
by moving a sufficient number of v;’s children to v}. This does not increase height ("),
and reduces the number of inversions in 7", which is a contradiction. |

LEMMA 5. Any rl-path in T has at most \/logy n long edges.

PROOF. Let d* denote the maximum number of long edges on any rl-path in 7*. It
follows from Lemma 4 that height(7) < d* and hence, together with Lemma 3, we
have that height (T8) < d*.

By the construction of the partition V", ..., V;’ we know that an rl-path P in T* that
contains d* long edges must have length at least « - d*. Since T* has diameter at most
A it then follows that d* < A /o = ,/logy n by our choice of «. O

Lemma 5 bounds from above the contribution of long edges to the diameter of 7°"*.
We bound the contribution of short edges in the next lemma. For an rl-path P in 7°°%,
let | P |, denote the number of short edges in P.

LEMMA 6. Let P be an arbitrary rl-path in T***. Then
|P|ls = O(logg n).
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PROOF. Let Py and P, be two rl-paths in 7°°*, and let P{ 12pt and P; be their images
inT¢,ie Pf = (v], ...,v}l) and P§ = (v}, ...,vlzz).

We define a relation < on two rl-paths as follows. We say that P, < P if | Vj' | > |Vj2|
forall 1 < j < max{l;, b}, with |Vf| =0if Vji does not exist. By construction of T,
for every two paths P; and P, at least one of the following holds: P; < P, or P, < P;.
Moreover, if P; < P then since 74 is a minimum height spanning tree, [, <[} <[+ 1.

Recall that T;, denotes the local tree that spans the nodes of V;. For the purpose of
this proof, we assume that all edges of the form (v;, v;) in T'¢ such that v; is a parent of
v; are attached to leaf nodes in 7;. This assumption only increases the number of short
edges in rl-paths, and hence is valid.

Without loss of generality assume that P; < P,. Since each Ty, is a balanced (B — 1)-
ary tree, we have |Pp|; < |Pi|s + |Plg| < |Pi|s + logg n, where the second inequality
follows because 7'¢ is a minimum height spanning tree. We also have |Vl.1| < |V£1|
for i > 1, by construction of 7. Therefore, |Pi|; < |P»|; + |Plgl + height(Tvlu) <
| P2|s +21logg n. Hence, there exists a y such that | P|; € [y, y +21logg n] for all rl-paths
P in T2,

Observe that on any rl-path P in 7%, all but at most O (logy n) of the short edges
must be incident to nodes of degree B. This follows from the fact that 7% has O (logy n)
levels. Since there are n nodes in our graph, we must have that y = O(logg n). This
finishes the proof of the lemma. |

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Lemma 1 shows that 7°°* has maximum degree B.

Let P be a path in 7°*. We now bound the total length of P. The total length of P
is the sum of the total length of long edges that belong to P, and the total length of the
short edges that belong to P. By the triangle inequality a long edge in 7°°* has length
no more than A, since the graph has a spanning tree of diameter A and we are assuming
we have the correct guess of A. By Lemma 5, the number of long edges that belong to
P is at most 2,/logy n. Therefore, the contribution of long edges to the length of P is
no more than 2A,/logg n.

By the triangle inequality and (1), short edges in 7°** have length no more than
6a = 6A/,/logg n. Lemma 6 bounds the number of short edges in P to be at most
O (logg n), so the total contribution of short edges to the length of P is no more than
O(aloggn) = O(A,/logg n).

All edges must be either long or short, and therefore the length of P is O (A,/logy n).
Since the above arguments hold for all paths P in 7°"*, we conclude that the diameter
of T is at most O (A,/logg n). This completes the proof of the theorem. |

3. Open Questions. As mentioned in the Introduction, the problem of computing a
tree of minimum diameter is closely related to that of computing a tree that minimizes the
maximum dilation. An approximation algorithm for degree-bounded minimum dilation
spanning trees is still open.

Our algorithm crucially uses the fact that the input graph is a complete metric. In
particular, our algorithm does not work if we are given an (incomplete) input graph and
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a metric induced by the edge-lengths of its edges (and we are enforced to use only edges
from the input graph). Thus, an improvement over the bicriteria (O (logn), O (log” n))
approximation algorithm from [18] for this case is still open.
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