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Abstract

We provide combinatorial algorithms for the unsplittable flow problem (UFP) that either
match or improve the previously best results. In the UFP we are given a (possibly directed)
capacitated graph with n vertices and m edges, and a set of terminal pairs each with its own
demand and profit. The objective is to connect a subset of the terminal pairs each by a single
flow path subject to the capacity constraints such that the total profit of the connected pairs
is maximized. We consider three variants of the problem. First is the classical UFP in which
the maximum demand is at most than the minimum edge capacity. It was previously known to
have an O(

√
m) approximation algorithm; the algorithm is based on the randomized rounding

technique and its analysis makes use of the Chernoff bound and the FKG inequality. We provide
a combinatorial algorithm that achieves the same approximation ratio and whose analysis is
considerably simpler. Second is the extended UFP in which some demands might be higher than
edge capacities. Our algorithm for this case improves the best known approximation ratio. We
also give a lower bound that shows that the extended UFP is provably harder than the classical
UFP. Finally, we consider the bounded UFP in which the maximum demand is at most 1

K
times

the minimum edge capacity for some K > 1. Here we provide combinatorial algorithms that
match the currently best known algorithms. All of ours algorithms are strongly polynomial and
some can even be used in the online setting.

1 Introduction

We consider the unsplittable flow problem (UFP). We are given a directed or undirected graph
G = (V,E), |V | = n, |E| = m, a capacity function u on its edges and a set of l terminal pairs of
vertices (sj , tj) with demand dj and profit rj . A feasible solution is a subset S of the terminal pairs
and a single flow path for each such pair such that the capacity constraints are fully met. The
objective is to maximize the total profit of the satisfied terminal pairs. The well-known problem of
maximum edge disjoint paths (EDP) is the special case in which all demands, profits and capacities
are equal to 1.

Previous results: As already shown in [9], the EDP (and hence the UFP) is NP-complete.
An O(

√
m) approximation algorithm is known for the EDP [10] (for additional positive results see

[18, 19]). In [20], Srinivasan presented an O(
√

m) approximation algorithm for the UFP under the
assumption that all edge capacities are equal. His algorithm was based on the randomized rounding
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technique and its analysis involved several important probabilistic tools, such as the Chernoff bound
and the FKG inequality. Kolliopoulos and Stein [12] considered a more general case of the UFP;
their only assumption was that dmax ≤ umin (i.e., the maximal demand is at most the minimal edge
capacity). This assumption is known as the ‘no-bottleneck’ assumption. We will refer to UFP with
this assumption as the classical UFP. Their result is an O(

√
m log m) approximation algorithm; it

is based on good rounding techniques for some packing integer programs. Finally, by extending
[20], Baveja and Srinivasan [2] provided an O(

√
m) approximation algorithm for the classical UFP;

this is still the best approximation factor known for the problem. As before, the analysis of their
algorithm involves the Chernoff bound and the FKG inequality.

In an interesting paper, Guruswami et al. [7] presented an O(
√

m log m log log m) approximation
algorithm for the classical UFP. While weaker than the aforementioned approximation guarantee
given by [2], the significance of their result is that its analysis is considerably simpler: it is based
on basic randomized rounding. In the same paper the authors also considered combinatorial al-
gorithms. Surprisingly, under certain conditions, they were able to achieve approximation ratios
which are only slightly worse than those given by randomized rounding. Specifically, under the
assumption that dmax/dmin is at most polynomial, their algorithm is an O(

√
m log m log log m)

approximation algorithm. Here, dmax and dmin denote the maximum and minimum demands re-
spectively. This raised the following natural question: is it possible to match the O(

√
m) given by

[2] with a combinatorial algorithm? In this paper, we answer this question in the affirmative.
Another interesting result presented in [7] is an almost matching lower bound of Ω(m1/2−ε) for

any ε > 0 under the assumption that P 6= NP (a weaker bound was obtained independently by Ma
and Wang [16]). The bound is shown for the directed EDP and hence it also applies to the classical
UFP. Showing a similar bound for the undirected case is still an important open question.

Let us now consider the general UFP without the no-bottleneck assumption (specifically, some
demands might be higher than some capacities). We will refer to this case as the extended UFP.
The results of [7] imply an O(

√
m log m max{log log m, log(dmax/umin)}) approximation algorithm

based on randomized rounding where umin denotes the minimum edge capacity. Moreover, their
combinatorial algorithm can be seen to yield an O(

√
m log m log(dmax/dmin)) approximation guar-

antee.
We now consider the special case of UFP in which dmax ≤ 1

K umin for K > 1. We will refer to
this case as the K-bounded UFP. For K = Ω(log n), a constant approximation is shown in [17]

by using randomized rounding. For constant K, an approximation ratio of O(n
1

K−1 ) was shown
in [2] by using randomized rounding; the same approximation ratio can be obtained from [1] by

combinatorial methods (see [3]). An improved ratio of O(n
1
K ) is obtained in [12] by randomized

rounding. However, prior to this work, no matching combinatorial algorithm was known.

Our results: Our main result is a combinatorial algorithm that achieves the O(
√

m) approxi-
mation ratio of [2]. Our algorithm has the advantage that its analysis is substantially simpler. This
improves the combinatorial algorithm of [7] by eliminating the log m log log m factor and, more im-
portantly, removing the assumption that dmax/dmin is at most polynomial. Essentially, our result
shows how a purely combinatorial algorithm can replace a randomized rounding based one.

For the extended UFP, we improve [7] and obtain a combinatorial O(
√

m log(dmax/umin)) ap-
proximation algorithm. Notice that both the log m factor and the dependence on dmin are gone. In
addition, under the assumption that P 6= NP , we prove a lower bound for the extended UFP over
directed graphs. Specifically, we show that unless P = NP , it is impossible to approximate the
extended UFP better than O(m1−ε) for any ε > 0. This proves that the extended UFP is strictly
harder than the classical UFP.
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For the K-bounded UFP, we obtain an O(Kn
1
K ) combinatorial approximation algorithm. This

matches the previously best approximation guarantee. We note that we can replace n with D where
D is an upper bound on the length of the longest path ever used in an optimal solution (which is
obviously at most n).

All of our algorithms are shown to be strongly polynomial. Although the same applies to some
algorithms based on randomized rounding, in our case the strong polynomiality is easy to obtain.
This can be seen as one advantage of the combinatorial algorithms. Another advantage is that the
algorithms are versatile and can be used in other settings. Here, we consider the online setting in
which the network is known in advance but requests arrive one by one and a decision has to be made
without knowing which requests follow. We present online algorithms whose competitive ratio is
only slightly worse than that of the off-line algorithms. We also show that one of our algorithms is
optimal in the online setting by improving a lower bound of [1].

Let us conclude with a summary of the main results in this paper:

• Classical UFP (dmax ≤ umin) - Combinatorial strongly polynomial O(
√

m) approximation
algorithm.

• Extended UFP (arbitrary dmax, umin) - Combinatorial strongly polynomial O(
√

m log(2 +
dmax

umin
)) approximation algorithm; A lower bound of Ω(m1−ε) and of Ω(m

1
2
−ε

√

log(2 + dmax

umin
))

for directed graphs.

• Bounded UFP (dmax ≤ 1
K umin) - Combinatorial strongly polynomial O(Kn

1
K ) approximation

algorithm.

Recent results: Finally, let us mention some recent results that appeared after the original
publication of the current paper. Chekuri and Khanna [5] considered approximation ratios in
terms of the number of nodes n (and not the number of edges m as before). They were able
to provide n1−ε approximation algorithms for EDP for some value of ε. Kolman [13] generalized
their result to the UFP under the no-bottleneck assumption and the assumption that profits equal
demands. Moreover, improvements of their result were recently obtained by Varadarajan and
Venkataraman [21] and by Hajiaghayi and Leighton [8]. Another extensive line of work concerns
algorithms for the UFP whose performance depends on the expansion of the underlying undirected
graph. Among the recent results is the work of Kolman and Scheideler [14, 15] who showed an
O(∆α−1(umax/umin) log n) approximation algorithm where ∆ is the maximum degree and α is the
expansion of the graph. Later, Chakrabarti et al. [4] provided a capacity-independent bound of
O(∆α−1 log2 n); this improves [15] for the case where umax/umin is large.

2 Notation

Let G = (V,E), |V | = n, |E| = m, be a (possibly directed) graph and a capacity function u : E →
R

+. An input request is a quadruple (sj , tj , dj , rj) where (sj, tj) is the source-sink terminal pair, dj

is the demand and rj is the profit. The input is a set of the above quadruples for j ∈ T = {1, . . . , l}.
Let D be a bound on the length of any routing path; note that D is at most n.

We denote by umin (umax) the minimum (maximum) edge capacity in the graph. Similarly, we
define dmin, dmax, rmin and rmax to be the minimum/maximum demand/profit among all input
requests. We define two functions on sets of requests, S ⊆ T :

r(S) =
∑

j∈S

rj , d(S) =
∑

j∈S

dj .
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A feasible solution is a subset P ⊆ T and a route Pj from sj to tj for each j ∈ P subject to the
capacity constraints, i.e., the total demand routed through an edge is bounded by the its capacity.
Some of our algorithms order the requests so we will usually denote by Lj(e) the relative load
of edge e after routing request j, that is, the sum of demands routed through e divided by u(e).
Without loss of generality, we assume that any single request can be routed. That is possible since
we can just ignore unroutable requests. Note that this is not the dmax ≤ umin assumption made in
the classical UFP.

Before describing the various algorithms, we begin with a simple useful lemma:

Lemma 2.1 Given a sequence {a1, . . . , an}, a non-increasing non-negative sequence {b1, . . . , bn}
and two sets X,Y ⊆ {1, . . . , n}, let Xi = X ∩{1, . . . , i} and Y i = Y ∩{1, . . . , i}. If for some α and
for every 1 ≤ i ≤ n

∑

j∈Xi

aj > α
∑

j∈Y i

aj

then
∑

j∈X

ajbj > α
∑

j∈Y

ajbj

Proof: Denote bn+1 = 0. Since bj − bj+1 is non-negative,

∑

j∈X

ajbj =
n

∑

i=1

(bi − bi+1)
∑

j∈Xi

aj

> α

n
∑

i=1

(bi − bi+1)
∑

j∈Y i

aj = α
∑

j∈Y

ajbj

3 Algorithms for the UFP

3.1 Algorithm for the Classical UFP

In this section we present the combinatorial algorithm for the classical UFP (i.e., the case in which
dmax ≤ umin). The algorithm’s approximation ratio is the same as that of the currently best known
algorithm. Later, we will see that this algorithm can be easily made strongly polynomial and that
it can even be used in the extended case.

We partition the set of requests T into two disjoint sets. The first, T1, consists of requests for
which dj ≤ umin/2. The rest of the requests are in T2. For each request j and a given path P from
sj to tj define

F (j, P ) =
rj

dj
∑

e∈P
1

u(e)

,

a measure of the profit gained relative to the added network load.
Given a set of requests, we use simple bounds on the values of F . The lower bound, denoted

αlb, is defined as rmin

n and is indeed a lower bound on F (j, P ) since P cannot be longer than n
edges and the capacity of its edges must be at least dj . The upper bound, denoted αub, is defined
as rmaxumax

dmin
and is clearly an upper bound on F (j, P ).
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PROUTE
run Routine2(T1) and Routine2(T2) and choose the better solution

Routine2(S):
for each k from blog αlbc to dlog αube

run Routine1(2
k, S) and choose the best solution

Routine1(α, S):
sort the requests in S according to a non-increasing order of rj/dj

for each j ∈ S in the above order

if ∃ path P from sj to tj s.t. F (j, P ) > α and ∀e ∈ P,Lj−1(e) +
dj

u(e) ≤ 1

then route the request on P and for e ∈ P set Lj(e) = Lj−1(e) +
dj

u(e)

else reject the request

Theorem 3.1 Algorithm PROUTE is an O(
√

m) approximation algorithm for the classical UFP.

Proof: First, we look at the running time of the algorithm. The number of iterations done in
Routine2 is:

log
αub

αlb
= log(n

rmax

rmin

umax

dmin
)

which is polynomial. Routine1 looks for a non overflowing path P with F (j, P ) > α. The latter
condition is equivalent to

∑

e∈P
1

u(e) <
rj

djα and thus a shortest path algorithm can be used.

Consider an optimal solution routing requests in Q ⊆ T . For each j ∈ Q let Qj be the route

chosen for j in the optimal solution. The total profit of eitherQ∩T1 orQ∩T2 is at least r(Q)
2 . Denote

that set by Q′ and its index by i′ ∈ {1, 2}, that is, Q′ = Q∩ Ti′ . Now consider the values given to
α in Routine2 and let α′ = 2k′

be the highest such that r({j ∈ Q′ | F (j,Qj) > α′}) ≥ r(Q)/4. It
is clear that such an α′ exists. From now on we limit ourselves to Routine1(α

′, i′) and show that a
good routing is obtained by it. Denote by P the set of requests routed by Routine1(α

′, i′) and for
j ∈ P denote by Pj the path chosen for it.

Let Q′
high = {j ∈ Q′ | F (j,Qj) > α′} and Q′

low = {j ∈ Q′ | F (j,Qj) ≤ 2α′} be sets of higher
and lower ‘quality’ routes in Q′. Note that the sets are not disjoint and that the total profit in each
of them is at least r(Q)

4 by the choice of α′. From the definition of F ,

r(Q′
low) =

∑

j∈Q′
low

F (j,Qj)
∑

e∈Qj

dj

u(e)
≤ 2α′

∑

j∈Q′
low

∑

e∈Qj

dj

u(e)

≤ 2α′
∑

j∈Q

∑

e∈Qj

dj

u(e)

= 2α′
∑

e

∑

j∈Q|e∈Qj

dj

u(e)

≤ 2α′
∑

e

1 = 2mα′

where the last inequality is true since an optimal solution cannot overflow an edge. Therefore,

r(Q) ≤ 8mα′.
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Now let Eheavy = {e ∈ E | Ll(e) ≥ 1
4} be a set of the heavy edges after the completion of

Routine1(α
′, i′). We consider two cases. The first is when |Eheavy| ≥

√
m. According to the

description of the algorithm, F (j, Pj) > α′ for every j ∈ P. Therefore,

r(P) =
∑

j∈P

F (j, Pj)
∑

e∈Pj

dj

u(e)

≥ α′
∑

j∈P

∑

e∈Pj

dj

u(e)

= α′
∑

e

∑

j|e∈Pj

dj

u(e)

= α′
∑

e

Ll(e) ≥
1

4

√
mα′

where the last inequality follows from the assumption that more than
√

m edges are loaded more
than fourth their capacity. By combining the two inequalities we get

r(Q)

r(P)
≤ 32

√
m = O(

√
m),

which completes the first case.
From now on we consider the second case where |Eheavy| <

√
m. Denote by R = Q′

high \P. We

compare the profit given by our algorithm to that found in R by using Lemma 2.1. Since
rj

dj
is a

non increasing sequence, it is enough to bound the total demand routed in the prefixes of the two
sets. For that we use the notation Rk = R ∩ {1, . . . , k} and Pk = P ∩ {1, . . . , k} for k = 1, . . . , l.
For each request j ∈ Rk the algorithm cannot find any appropriate path. In particular, the path
Qj is not chosen. Since j ∈ Q′

high, F (j,Qj) > α′ and therefore the reason the path is not chosen
is that it overflows one of the edges. Denote that edge by ej and by Ek = {ej | j ∈ Rk}.

Lemma 3.2 Ek ⊆ Eheavy

Proof: Let ej ∈ Ek be an edge with j ∈ Rk, a request corresponding to it. We claim that when
the algorithm fails to find a path for j, Lj(ej) ≥ 1

4 . For the case i′ = 1, the claim is obvious since
the demand dj ≤ umin/2 and in particular, dj ≤ u(ej)/2. Thus, the load of ej must be higher than
u(ej)/2 for the path Qj to overflow it. For the case i′ = 2, we know that umin/2 < dj ≤ umin.
In case u(ej) > 2umin, the only way to overflow it with demands of size at most dmax ≤ umin

is when the edge is loaded at least u(ej) − umin ≥ u(ej)/2. Otherwise, u(ej) ≤ 2umin and since
dj ≤ umin ≤ u(e) we know that the edge cannot be empty. Since we only route requests from T2

the edge’s load must be at least umin/2 ≥ u(ej)/4.

Since each request in Rk is routed through an edge of Ek in the optimal solution, d(Rk) ≤
∑

e∈Ek u(e). The highest capacity edge f ∈ Ek is loaded more than fourth its capacity since it is

in Eheavy and therefore d(Pk) ≥ u(f)
4 . By Lemma 3.2, |Ek| ≤ |Eheavy| <

√
m and hence,

d(Rk) <
√

m · u(f) ≤ 4
√

m · d(Pk).

We use Lemma 2.1 by combining the inequality above on the ratio of demands and the nonin-
creasing sequence

rj

dj
. This yields

∑

j∈R

rj

dj
dj ≤ 4

√
m

∑

j∈P

rj

dj
dj ,
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or,
r(R) ≤ 4

√
m · r(P).

Since Q′
high ⊆ R∪ P,

r(Q′
high) ≤ r(R) + r(P) ≤ (1 + 4

√
m)r(P).

Recall that r(Q′
high) ≥ r(Q)/4 and therefore

r(Q)

r(P)
≤ 4 + 16

√
m = O(

√
m).

3.2 Strongly Polynomial Algorithm

Routine1 is strongly polynomial. Routine2 however calls it log αub

αlb
times. Therefore, it is polyno-

mial but still not strongly polynomial. We add a preprocessing step whose purpose is to bound the
ratio αub

αlb
. Recall that l denotes the number of requests.

SPROUTE(T ):
run Routine3(T1) and Routine3(T2) and choose the better solution

Routine3(S):
For each edge such that u(e) > l · dmax set u(e) to be l · dmax.
Throw away requests whose profit is below rmax

l .
Take the better out of the following two solutions:

Route all requests in Stiny = {j ∈ S | dj ≤ umin

l } on any simple path.
Run Routine2(S \ Stiny).

Theorem 3.3 Algorithm SPROUTE is a strongly polynomial O(
√

m) approximation algorithm
for the classical UFP.

Proof: Consider an optimal solution routing requests inQ ⊆ S. Since the demand of a single request
is at most dmax, the total demand routed through a given edge is at most l · dmax. Therefore, Q is
still routable after the first preprocessing phase. The total profit of requests whose profit is lower
than rmax

l is rmax. In case r(Q) > 2rmax, removing these requests still leaves the set Q′ whose total

profit is at least r(Q) − rmax ≥ r(Q)
2 . Otherwise, we take Q′ to be the set containing the request

of highest profit. Then, r(Q′) is rmax ≥ r(Q)
2 . All in all, after the two preprocessing phases we are

left with an UFP instance for which there is a solution Q′ whose profit is at least r(Q)
2 .

Assume that the total profit in Q′ ∩ Stiny is at least r(Q)
4 . Since the requests in Stiny have a

demand of at most umin

l and there are at most l of them, they can all be routed on simple paths

and the profit obtained is at least r(Q)
4 . Otherwise, the profit in Q′ \Stiny is at least r(Q)

4 and since
algorithm PROUTE is an O(

√
m) approximation algorithm, the profit we obtain is also within

O(
√

m) of r(Q).
The preprocessing phases by themselves are obviously strongly polynomial. Recall that the

number of iterations performed by Routine2 is log(n rmax

rmin

umax

dmin
). The ratio of profits is at most l

by the second preprocessing phase. The first preprocessing phase limits umax to l · dmax. So, the
number of iterations is at most log(nl2 dmax

dmin
). In case S = T1, dmax ≤ umin

2 and dmin ≥ umin

l since
tiny requests are removed. For S = T2, dmax ≤ umin and dmin ≥ umin/2. We end up with at most
O(log n + log l) iterations which is strongly polynomial.

7



3.3 Algorithm for the Extended UFP

In this section we show that the algorithm can be used for the extended case in which demands
can be higher than the lowest edge capacity.

Instead of using just two sets in SPROUTE, we define a partition of the set of requests T into
2+max{dlog dmax/umine, 0} disjoint sets. The first, T1, consists of requests for which dj < umin/2.
The set Ti for i > 1 is of requests for which 2i−3umin < dj ≤ 2i−2umin. The algorithm is as follows:

ESPROUTE(T ):
let Z be {i | Ti 6= ∅}
for each i ∈ Z

run Routine3(Ti) on the resulting graph
choose the best solution obtained

Theorem 3.4 Algorithm ESPROUTE is a strongly polynomial O(
√

m log(2+ dmax

umin
)) approxima-

tion algorithm for the extended UFP.

Proof: We choose i′ as the index that maximizes the profit in Q ∩ Ti′ and the proof essentially
follows the proofs of Theorem 3.1 and Theorem 3.3. The only part which has to be modified is
Lemma 3.2. The following lemma replaces it:

Lemma 3.5 Ek ⊆ Eheavy

Proof: Let ej ∈ Ek be an edge with j ∈ Rk, a request corresponding to it. We claim that when
the algorithm fails to find a path for j, Lj(ej) ≥ 1

4 . For the case i′ = 1, the claim is obvious as

before. For the case i′ > 1, we know that 2i′−3umin < dj ≤ 2i′−2umin. In case u(ej) > 2i′−1umin,
the only way to overflow it with demands of size at most 2i′−2umin is when the edge is loaded at
least u(ej)− 2i′−2umin ≥ u(ej)/2. Otherwise, u(ej) ≤ 2i′−1umin and since j is routed through this
edge in the optimal solution dj ≤ u(ej). Therefore, the edge cannot be empty. Since we only route
requests from Ti′ the edge’s load must be at least 2i′−3umin ≥ u(ej)/4.

We now analyze the running time of the algorithm. Note that |Z| ≤ l and hence ESPROUTE
calls Routine3 at most l times. Moreover, the set Z can be computed directly from T without
having to go through all possible indices i (namely, for each request j compute the i for which
2i−3umin < dj ≤ 2i−2umin and add this i to Z). For T1, the number of iterations of Routine2 is the
same as in SPROUTE. For a set Ti, i > 1, the number of iterations of Routine2 is log(n rmax

rmin

umax

dmin
).

As before, the preprocessing of Routine3 reduces this number to log(nl2 dmax

dmin
). Since the ratio dmax

dmin

is at most 2 in each Ti, we conclude that ESPROUTE is strongly polynomial.

4 Algorithms for the K-bounded UFP

In the previous sections we considered the classical and the extended UFP. In this section we
present better algorithms for the K-bounded UFP in which dmax ≤ 1

K umin for some K ≥ 2. Our
algorithms are based on the exponential scale technique presented in [1].
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4.1 Algorithms for Bounded Demands

In this section we present two algorithms for the bounded UFP. The first deals with the case
in which the demands are in the range [umin

K+1 , umin

K ]. As a special case, it provides an O(
√

n)
approximation algorithm for the half-disjoint paths problem where edge capacities are all the same
and the demands are exactly half the edge capacity. The second is an algorithm for the K-bounded
UFP where demands are only bounded by umin

K from above. Recall that D is an upper bound on
the length of any routing path and in particular, D ≤ n.

EKROUTE(T ):
µ← 2D
sort the requests in T according to a non-increasing order of rj/dj

for each j ∈ T in the above order
if ∃ a path P from sj to tj s.t.

∑

e∈P (µLj−1(e) − 1) < D
then route the request on P and for e ∈ P set Lj(e) = Lj−1(e) + 1

b
K·u(e)
umin

c

else reject the request

BKROUTE(T ):

µ← (2D)1+
1

K−1

sort the requests in T according to a non-increasing order of rj/dj

for each j ∈ Ti in the above order
if ∃ a path P from sj to tj s.t.

∑

e∈P (µLj−1(e) − 1) < D

then route the request on P and for e ∈ P set Lj(e) = Lj−1(e) +
dj

u(e)

else reject the request

Note that algorithm EKROUTE uses a slightly different definition of L. This ‘virtual’ relative
load allows it to outperform BKROUTE on instances where the demands are in the correct range.

Theorem 4.1 Algorithm EKROUTE is a strongly polynomial O(K · D 1
K ) approximation algo-

rithm for the UFP with demands in the range [umin

K+1 , umin

K ]. Algorithm BKROUTE is a strongly

polynomial O(K ·D 1
K−1 ) approximation algorithm for the K-bounded UFP.

Proof: The first thing to note is that the algorithms never overflow an edge. For the first algorithm,
the demands are at most umin

K and the only way to exceed an edge capacity is to route request j

through an edge e that holds at least bK·u(e)
umin

c requests. For such an edge, Lj−1(e) ≥ 1 and µLj−1(e)−
1 ≥ µ− 1 ≥ D. For the second algorithm, it is sufficient to show that in case Lj−1(e) > 1− 1

K for

some e then µLj−1(e)− 1 ≥ D; that is true since µLj−1(e)− 1 ≥ ((2D)1+
1

K−1 )1−
1
K − 1 = 2D− 1 ≥ D.

Therefore, the algorithms never overflow an edge.
Now we lower bound the total demand accepted by our algorithms. We denote by Q the set of

requests in the optimal solution and by P the requests accepted by either of our algorithms. For
j ∈ Q denote by Qj the path chosen for it in the optimal solution and for j ∈ P let Pj be the path
chosen for it by our algorithm. We consider prefixes of the input so let Qk = Q ∩ {1, . . . , k} and
Pk = P ∩ {1, . . . , k} for k = 1, . . . , l. We prove that

d(Pk) ≥
∑

e u(e)(µLk(e) − 1)

6KDµ
1
K

.
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The proof is by induction on k and the induction base is trivial since the above expression is zero.
Thus, it is sufficient to show that for an accepted request j

∑

e∈Pj
u(e)(µLj (e) − µLj−1(e))

6KDµ
1
K

≤ dj .

Note that for any e ∈ Pj , Lj(e)−Lj−1(e) ≤ 1
K for both algorithms. In addition, for both algorithms

Lj(e)−Lj−1(e) ≤ 3
dj

u(e) where the factor 3 is only necessary for EKROUTE where the virtual load is

higher than the actual increase in relative load. The worst case is when K = 2, u(e) = (1.5−ε)umin

and dj = (1
3 + ε)umin: the virtual load increases by 1

2 whereas
dj

u(e) is about 2
9 . Looking at the

exponent,

µLj(e) − µLj−1(e) = µLj−1(e)(µLj(e)−Lj−1(e) − 1)

= µLj−1(e)((µ
1
K )K(Lj(e)−Lj−1(e)) − 1)

≤ µLj−1(e)µ
1
K K(Lj(e)− Lj−1(e))

≤ µLj−1(e)µ
1
K 3K

dj

u(e)

where the first inequality is due to the simple relation xy − 1 ≤ xy for 0 ≤ y ≤ 1, 0 ≤ x and that
for e ∈ Pj, Lj(e) − Lj−1(e) ≤ 1

K . Therefore,
∑

e∈Pj

u(e)(µLj (e) − µLj−1(e)) ≤
∑

e∈Pj

µLj−1(e)µ
1
K 3Kdj

= 3Kµ
1
K dj

∑

e∈Pj

µLj−1(e)

= 3Kµ
1
K dj(

∑

e∈Pj

(µLj−1(e) − 1) + |Pj |)

≤ 3Kµ
1
K (D + D)dj

= 6KDµ
1
K dj

where the last inequality holds since the algorithm routes the request through Pj and the length of
Pj is at most D.

The last step in the proof is to upper bound the total demand accepted by an optimal algorithm.
Denote the set of requests rejected by our algorithm and accepted by the optimal one by Rk =
Qk \ Pk. For j ∈ Rk, we know that

∑

e∈Qj
(µLj−1(e) − 1) ≥ D since the request is rejected by our

algorithm. Hence,

D · d(Rk) ≤
∑

j∈Rk

∑

e∈Qj

dj(µ
Lj−1(e) − 1)

≤
∑

j∈Rk

∑

e∈Qj

dj(µ
Lk(e) − 1)

=
∑

e

∑

j∈Rk|e∈Qj

dj(µ
Lk(e) − 1)

=
∑

e

(µLk(e) − 1)
∑

j∈Rk |e∈Qj

dj

≤
∑

e

(µLk(e) − 1)u(e),

10



where the last inequality holds since the optimal algorithm cannot overflow an edge.
By combining the two inequalities shown above,

d(Qk) ≤ d(Pk) + d(Rk) ≤ d(Pk) + d(Pk)
6KD

D
µ

1
K = (1 + 6Kµ

1
K )d(Pk).

The algorithm followed a non-increasing order of
rj

dj
and by Lemma 2.1 we obtain the same inequality

above for profits. So, the approximation ratio of the algorithm is

1 + 6Kµ
1
K = O(K · µ 1

K ),

which, by assigning the appropriate values of µ, yields the desired results.

4.2 A Combined Algorithm

In this section we combine the two algorithms presented in the previous section: the algorithm for
demands in the range [umin

K+1 , umin

K ] and the algorithm for the K-bounded UFP. The result is an

algorithm for the K-bounded UFP with an approximation ratio of O(K ·D 1
K ).

We define a partition of the set of requests T into two sets. The first, T1, includes all the
requests whose demand is at most 1

K+1 . The second, T2, includes all the requests whose demand

is more than 1
K+1 and at most 1

K .

CKROUTE(T ):
Take the best out of the following two possible solutions:

Route T1 by using BKROUTE and reject all requests in T2

Route T2 by using EKROUTE and reject all requests in T1

Theorem 4.2 Algorithm CKROUTE is a strongly polynomial O(K · D 1
K ) approximation algo-

rithm for the K-bounded UFP.

Proof: LetQ denote an optimal solution in T . Since BKROUTE is used with demands bounded by
1

K+1 its approximation ratio is O(KD
1
K ). The same approximation ratio is given by EKROUTE.

Either T1 or T2 have an optimal solution whose profit is at least r(Q)
2 and therefore we obtain the

claimed approximation ratio.

5 Lower Bounds

In this section we show that in cases where the demands are much larger than the minimum edge
capacity, the UFP becomes very hard to approximate, namely, Ω(m1−ε) for any ε > 0. We also
show how different demand values relate to the approximability of the problem. The lower bounds
are for directed graphs only.

Theorem 5.1 [6] The following problem is NPC:

2DIRPATH:
INPUT: A directed graph G = (V,E) and four nodes x, y, z, w ∈ V
QUESTION: Are there two edge disjoint directed paths,

one from x to y and the other from z to w in G ?

11



Theorem 5.2 For any ε > 0, the extended UFP cannot be approximated better than Ω(m1−ε).

Proof: For a given instance A of 2DIRPATH with |A| edges and a small constant ε, we construct

an instance of the extended UFP composed of l copies of A, A1, A2, . . . , Al where l = |A|d 1
ε
e. The

instance Ai is composed of edges of capacity 2l−i. A special node y0 is added to the graph. Two
edges are added for each Ai, (yi−1, xi) of capacity 2l−i − 1 and (yi−1, zi) of capacity 2l−i. All l
requests share y0 as a source node. The sink of request 1 ≤ i ≤ l is wi. The demand of request i is
2l−i and its profit is 1. This is illustrated in Figure 1 for the case l = 4. Each diamond indicates
a copy of A with x, y, z, w being its left, right, top and bottom corners respectively. The number
inside each diamond indicates the capacity of A’s edges in this copy.

8
7

8

4
3

4

2
1

2

1
0

1

y0

w1 w2 w3 w4

Figure 1: The UFP instance for the case l = 4

We claim that for a given Y ES instance of 2DIRPATH the maximal profit gained from the
extended UFP instance is l. We route request 1 ≤ i ≤ l through [y0, x1, y1, x2, y2, . . . , yi−1, zi, wi].
Note that the path from xj to yj and from zj to wj is a path in Aj given by the Y ES instance.

For a NO instance, we claim that at most one request can be routed. That is because the path
chosen for a request i ends at wi. So, it must arrive from either zi or xi. The only edge entering
xi is of capacity 2l−i − 1 so zi is the only option. The instance Ai is a NO instance of capacity
2l−i through which a request of demand 2l−i is routed form zi to wi. No other path can therefore
be routed through Ai so requests j > i are not routable. Since i is arbitrary, we conclude that at
most one request can be routed through the extended UFP instance and that its profit is 1.

The gap created is l = |A| 1ε and the number of edges is l · (|A| + 2) = O(l1+ε). Hence, the gap

is Ω(m
1

1+ε ) = Ω(m1−ε′) and since ε is arbitrary we complete the proof.

Theorem 5.3 For any ε > 0, the extended UFP with any ratio dmax/umin ≥ 2 cannot be approxi-

mated better than Ω(m
1
2
−ε

√

blog(dmax

umin
)c).

Proof: For a given instance A of 2DIRPATH with |A| edges and a small constant ε, we construct
an instance of the extended UFP with the given ratio dmax/umin. We begin with describing our
basic building block from which the UFP instance will be built. Let k, l be some parameters to be
chosen later and let δ < 1

lk be a small constant. The ith building block, denoted Bi, is illustrated

in Figure 2. It contains k2 + k(k−1)
2 copies of the graph A with edge capacity 2l−i + kδ. For any

two integers 1 ≤ a ≤ k and 1 ≤ b ≤ 2k − a there is a copy of A located at position (a, b) on a
two-dimensional grid. There are 2k input nodes and 2k output nodes. The first k input nodes xi

j ,

1 ≤ j ≤ k, are located at (0, j) whereas the next k input nodes zi
j, 1 ≤ j ≤ k, are at (0, k + j). The

output nodes yi
j, 1 ≤ j ≤ k, are located at (k + 1, j) and wi

j, 1 ≤ j ≤ k, are at (k − j + 1, 0). The
edges are described by their location on the grid and are all of length one on that grid. A copy of
A located at (a, b) is connected through its z node to an edge above it (the edge from (a, b + 1) to
(a, b)), through its w node to the edge below it, through x to the left edge and through y to the
right edge. For each 1 ≤ j ≤ k there exist k + 1 horizontal edges,

((0, j), (1, j)), ((1, j), (2, j)), . . . , ((k, j), (k + 1, j)).

12



The capacity of each of these edges is 2l−i. For 1 ≤ j ≤ k we also add k − j + 1 horizontal edges

((0, k + j), (1, k + j)), . . . , ((k − j, k + j), (k − j + 1, k + j))

and k + j vertical edges

((k − j + 1, k + j), (k − j + 1, k + j − 1)), . . . , ((k − j + 1, 1), (k − j + 1, 0)).

The capacity of each of these edges is 2l−i + jδ.
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3δ

4δ

4δ

4δ

4δ

4δ

4δ

4δ

4δ

4δ

3δ

3δ
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3δ
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2δ

2δ

2δ

2δ

2δ
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δ

δ

δ

δ δ

δ
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2: Bi for the case k = 4. Each diamond corresponds to a copy of A with edge capacity
2l−i + kδ. Edge capacities are 2l−i plus the indicated amount.

The UFP instance consists of the l blocks B1, B2,. . . ,Bl and is illustrated in Figure 3. There are
k additional nodes denoted y0

j , 1 ≤ j ≤ k, which act as input nodes. For 1 ≤ i ≤ l, 2k connecting

edges of capacity 2l are used, (yi−1
j , xi

j) and (yi−1
j , zi

j), 1 ≤ j ≤ k. The request set consists of

requests denoted r(i,j) for 1 ≤ i ≤ l, 1 ≤ j ≤ k from y0
j to wi

j with demand 2l−i + jδ. All requests
are of profit 1.

We claim that for a given Y ES instance of 2DIRPATH the maximal profit gained from
the extended UFP instance is l · k, that is, all requests can be routed. We route request r(i,j)

through [y0
j , x

1
j , y

1
j , x

2
j , y

2
j , . . . , y

i−1
j , zi

j , w
i
j ]. Note that the path from xi

j to yi
j is a horizontal path

in Bi through k copies of A and the path from zi
j to wi

j is a path in Bi going through the point

(k − j + 1, k + j) and passing 2k − 1 copies of A. The load in Bi on the edges of the path from xi
j

to yi
j is 2l−i−1 + jδ + 2l−i−2 + jδ + . . . + 1 + jδ ≤ 2l−i− 1 + lkδ ≤ 2l−i. The load in Bi on the edges

of the path from zi
j to wi

j is 2l−i + jδ. Therefore, no edge is overloaded and the total profit gained
is as claimed.

For a NO instance, we claim that at most one request can be routed. Assume request r(i,j) is

routed through the UFP instance. Request r(i,j) is of demand 2l−i + jδ and by tracing back the
request from its sink wi

j it can be seen that the capacities of the edges are such that the request
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Figure 3: The UFP instance for the case l = 4, k = 4. All shown edges have capacity 2l.

must be routed through a vertical path from (k− j +1, k+ j) to the sink. This immediately implies
that any request r(̂i,ĵ) with î > i cannot be routed since it must exit Bi through one of the y nodes
and thus cross the path of request r(i,j) in one of the A junctions. In addition, a request r(i,ĵ) with

ĵ < j cannot be routed since the sink wi
ĵ

is located to the right of the vertical path and thus must

cross it as well. By using the two observations above we conclude that at most one request can be
routed through the extended UFP instance and its profit is 1.

The ratio dmax

umin
created is at most 2l and hence we choose l = blog(dmax

umin
)c. In addition, we choose

k = |A|1/ε. The number of edges used is m = l(3k2 + 4k + (k2 + k(k−1)
2 ) · |A|) = O(l · k2 · |A|) =

O(l ·k2+ε). Therefore, the gap created is lk = Ω(m
1

2+ε

√

blog(dmax

umin
)c) and by choosing a small ε the

proof is completed.

6 Online Applications

6.1 Online Algorithms

Somewhat surprisingly, variants of the algorithms considered so far can be used in the online
setting with slightly worse bounds. For simplicity, we present here an algorithm for the unweighted
K-bounded UFP in which rj = dj for every j ∈ T .

First note that for the unweighted K-bounded UFP, both EKROUTE and BKROUTE can
be used as online deterministic algorithms since sorting the requests becomes unnecessary. By
splitting T into T1 and T2 as in CKROUTE we can combine the two algorithms:

ONLINECKROUTE(T ):
Choose one of the two routing methods below with equal probabilities:

Route T1 by using BKROUTE and reject all requests in T2

Route T2 by using EKROUTE and reject all requests in T1

Theorem 6.1 Algorithm ONLINECKROUTE is an O(K · D 1
K ) competitive online algorithm

for the unweighted K-bounded UFP.

Proof: The expected value of the total accepted demand of the algorithm for any given input is the
average between the total accepted demands given by the two routing methods. Since each method
is O(K ·D 1

K ) competitive on its part of the input, the theorem follows.
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6.2 Online Lower Bound

In this section we show an Ω(K · n 1
K ) lower bound for deterministic online algorithms in the

unweighted K-bounded UFP. This matches the upper bound of EKROUTE and slightly improves
the previously known lower bound of Ω(n

1
K ) [1]. The lower bound is proved over a line network of

length n. For simplicity, we assume that n = rK for some integer r. Otherwise, we can just use
the largest r such that rK ≤ n and prove the lower bound over a part of the line. All the requests
are of demand 1

K and the edge capacities are all 1.
The lower bound can be represented by a subtree of a tree of height K with an outdegree of

n
1
K . Each node in the subtree corresponds to one or more requests over some interval. The root

corresponds to requests over the interval [0, n]. Node j in level 0 ≤ i ≤ K corresponds to the
interval [rK−i · j, rK−i · (j + 1)]. Note that the segments corresponding to a node’s children are a
partition of its own segment.

The lower bound is constructed together with its corresponding subtree by a DFS traversal of
the tree. The traversal begins at the tree’s root. At each node, the algorithm is given at most K
requests over the interval corresponding to the current node. If the algorithm does not accept any
of the K requests, the node’s children are not traversed and the next node in the DFS traversal is
visited. Otherwise, once the algorithm accepts a request, we start traversing each of its children
recursively.

Note that in case we arrive at a leaf in the tree, the algorithm cannot accept any requests over
its interval. That is because its interval is contained in K other accepted intervals; one for each of
the node’s ancestors. Therefore, the sequence of requests is well defined.

We need the following simple lemma for trees:

Lemma 6.2 For a tree in which the out-degree of each node is either zero (a leaf) or δ > 1, the
number of leaves is at least δ − 1 times larger than the number of internal nodes.

Proof: We use induction on the tree growing from the root up. A tree with just one node (leaf) has
the required property. Then, a tree that grows is a replacement of a leaf in an internal node and δ
leaves. Therefore, the number of leaves has grown by δ− 1 while the number of internal nodes has
grown by 1. The required ratio is maintained.

Theorem 6.3 The competitive ratio of any deterministic online algorithm for the K-bounded UFP

is at least Ω(K · n 1
K ).

Proof: The algorithm’s value from the input described above is the number of internal nodes in the
subtree. That is because the algorithm accepts one request from each internal node but no requests
from the leaves. A better solution for the same input is to accept all the requests represented by
the leaves of the subtree. In that case, the value is K times the number of leaves since each leaf
corresponds to K intervals. That is an allowed assignment since the intervals corresponding to the
leaves do not intersect. By comparing the two solutions and using the previous lemma, we obtain
the stated lower bound on the competitive ratio.

7 Conclusion

We presented algorithms based on combinatorial methods for all three variants of the UFP that
either match or improve the previously known results. Due to their relatively simple description
we believe that further analysis should lead to additional performance guarantees. Also, the algo-
rithms might perform better over specific networks. An interesting open question is to find more
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cases where combinatorial algorithms can replace or even improve algorithms based on randomized
rounding.
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