
This is a pre-published versionThis is a pre-published version

An Efficient Algorithm for Finding Maximum

Cycle Packings in Reducible Flow Graphs

Xujin Chen and Wenan Zang∗†

Department of Mathematics
University of Hong Kong

Hong Kong, China

Abstract

Reducible flow graphs occur naturally in connection with flow-charts of computer pro-
grams and are used extensively for code optimization and global data flow analysis. In this
paper we present an O(n2m log(n2/m)) algorithm for finding a maximum cycle packing in
any weighted reducible flow graph with n vertices and m arcs; our algorithm heavily relies
on Ramachandran’s earlier work concerning reducible flow graphs.

Keywords. feedback set, cycle packing, network flow, algorithm, complexity.

∗Supported in part by the Research Grants Council of Hong Kong (Project No. HKU 7054/03P).
†Corresponding author. E-mail: wzang@maths.hku.hk.

1

1 Introduction

Let G be a digraph with a nonnegative integral weight w(e) (resp. w(v)) on each arc e (resp.

vertex v). A collection C of distinct cycles C1, C2, . . . , Ck of G together with nonnegative integers

m(C1), m(C2), . . . , m(Ck) is called a cycle packing with respect to w if for each arc e (resp.

vertex v) of G, the sum
∑

e∈Ci
m(Ci) ≤ w(e) (resp.

∑
v∈Ci

m(Ci) ≤ w(v)); a set X of arcs

(resp. vertices) in G is called a feedback arc (resp. vertex) set if X intersects every cycle in G.

The cycle packing problem is to find a cycle packing C with maximum weight
∑

Ci∈C m(Ci), and

the feedback arc (resp. vertex) set problem consists in finding a feedback arc (resp. vertex) set

X with minimum weight
∑

x∈X w(x). These two problems form a primal-dual pair in integer

programming and thus are closely tied to each other. While the latter is a well-known NP -

hard problem [12] and has been studied extensively, the present paper concerns itself with the

former, which also arises in a variety of applications. Recently, Caprara, Panconesi, and Rizzi [7]

gave a thorough and detailed analysis of the hardness and approximablity of the cycle packing

problem on unweighted undirected graphs. We point out that a slight modification of their

approaches can lead to essentially the same statements for the problem on unweighted digraphs;

that is, it admits no fully polynomial time approximation scheme unless P = NP , and can be

approximated within a factor of 1
2 log n , where n is the number of vertices in the input digraph

and the base of log is 2. In this paper we focus our study of the cycle packing problem on

reducible flow graphs.

Reducible flow graphs (or simply reducible graphs) occur naturally in connection with flow-

charts of computer programs and are used extensively for code optimization and global data flow

analysis, so they have attracted tremendous research efforts in the past three decades. Hopcroft

and Ullman [17] obtained the first efficient algorithm for recognizing reducible flow graphs, which

was improved by Tarjan [24]. The reader is referred to Hecht and Ullman [15] for various good

characterizations of all reducible flow graphs. In [22], Shamir gave a linear time algorithm for

finding minimum feedback vertex sets in reducible graphs, and an O(n2m log(n2/m)) algorithm

was discovered by Ramachandran [19] for finding a minimum weighted feedback arc set in an

arc-weighted reducible graph and for finding a minimum weighted feedback vertex set in a

vertex-weighted reducible graph with n vertices and m arcs. In [20], Ramachandran managed

to prove that the cardinality of a minimum feedback arc set in a reducible flow graph is equal to

the cardinality of a maximum collection of arc disjoint cycles, thereby establishing a conjecture

of Frank and Gyarfas [11]; her proof also contains an O(min{mn5/3, m2}) algorithm for finding

the corresponding set of arc disjoint cycles. We remark that, first, although Ramachandran’s

proof [20] is concerning the unweighted case, it yields the corresponding minimax theorem in

2

the weighted case; that is, in any arc-weighted reducible flow graph, the maximum weight of a

cycle packing is equal to the minimum weight of a feedback arc set. Moreover, this minimax

relation implies the corresponding theorem for the vertex-weighted case (the unweighted version

is due to Frank and Gyafas [11]). Second, Ramachandran’s proof [20], algorithmic in nature,

can be further extended to find maximum cycle packings in weighted reducible flow graphs.

One subroutine of this approach, called O(n) times, is a maximum flow algorithm, in which the

so-called newly added arcs must be saturated by the flows at each step, so the augmenting path

method for the maximum flow has to be applied; this leads to a gap between the time complexity

of this algorithm and that of Ramachandran’s algorithm [19] for the feedback set problem on

weighted reducible flow graphs as, to the best of our knowledge, none of the most efficient

maximum flow algorithms currently known for general networks is based on the augmenting

path method directly. The purpose of this paper is to bridge this complexity gap and present

an O(n2m log(n2/m)) algorithm for finding a maximum cycle packing in any weighted reducible

flow graph. Our algorithm heavily relies on Ramachandran’s earlier work [19, 20] and thoroughly

exploits the laminar structure of reducible flow graphs. Moreover, it can use any fastest (integral)

maximum flow algorithm as its subroutine.

The remainder of this paper is organized as follows. In section 2, we give some preliminary

results on reducible flow graphs and network flows. In section 3, we describe Ramachandran’s

algorithms and results, present our algorithm, and establish its correctness. In section 4, we

conclude this paper with some remarks and open problems.

2 Preliminaries

Let us now introduce some notions and terminologies. Let G = (V, A) be a digraph. We

denote by (u, v) an arc in A from its tail u to its head v. A walk in G is a finite sequence

W = v0e1v1 . . . ekvk, whose terms are alternately vertices and arcs, such that ei = (vi−1, vi) for

1 ≤ i ≤ k. If v0, v1, . . . , vk are distinct, then W is called a path from v0 to vk or a v0 − vk path;

if v0, v1, . . . , vk−1 are distinct, vk = v0, and k ≥ 2, then W is called a cycle. Graph G is called

acyclic if it contains no cycles. For convenience, we let P [u, v] denote the section of a path P

from u to v.

A rooted directed graph or a flow graph is a digraph G with a distinguished vertex r, called

its root, such that there is a path in G from r to every vertex in G. Let G = (V, A, r) be a flow

graph, and let u, v ∈ V . We say that u dominates v (or u is a dominator of v) if every r − v

path in G passes through u. Note that u dominates itself. Let R be a subgraph of G. A vertex

v in R is called an entry vertex of R if v = r or if there is an arc (u, v) of G with u outside

3

R. A DAG of G is a maximal acyclic subgraph of G rooted at r. A depth first search DAG of

G is a DAG containing a directed spanning tree T with root r grown by the depth first search

(DFS) algorithm [23, 25]; it can be seen from the definition that this DAG is obtained from T

by adding a maximal subset of arcs in G so that no cycle is created. Graph G is called reducible

if the depth first search DAG of G is unique. Unless G is acyclic, DFS also discovers back arcs,

which are arcs of G not included in the depth first search DAG.

The following characterizations of reducible flow graphs will be used repeatedly in this paper.

Theorem 2.1. Let G = (V, A, r) be a flow graph, and let D = (V, AD, r) be an arbitrary

depth first search DAG of G with back arc set B = A\AD. Then the following statements are

equivalent.

(i) G is reducible;

(ii) G contains no F as a subgraph (see Fig. 1);

(iii) D is the unique DAG of G;

(iv) The arc set A of G can be partitioned into two sets A1 and A2 such that (V, A1, r) is a

DAG of G and u dominates v in G for each (v, u) in A2;

(v) Every cycle C of G contains exactly one back arc e ∈ B. Moreover, the head of e is an

entry vertex of C which dominates any other vertex on C.

Proof. The equivalence of (i)-(iv) can be found in [15, 16]. The implication (i)⇒(v) is

contained in [22], and the converse (v)⇒(i) follows from (ii) and the fact that no vertex of the

cycle in F dominates all other vertices on this cycle. �

FIG. 1. The Forbidden Subgraph F .

r

Let G = (V, A, r) be a reducible flow graph and let u, v be two vertices in G. Observe that

if u dominates v then there is a DAG path from u to v. (2.1)

4

(Indeed, let P be a path from r to v in the depth first search DAG. Then P passes through u since

u dominates v. Hence P [u, v] is as desired.) As shown by Aho and Ullman [3], the dominator

relation on G can be represented in the form of a tree rooted at r. Let Vh denote the set of

heads of all back arcs in G. The head dominator tree Th of G, introduced by Ramachandran

[19, 20], represents the domination relation restricted to Vh ∪ {r}: the descendants of a vertex

u in Th are precisely the vertices in Vh dominated by u in G. For each u ∈ Vh ∪ {r}, let

(u1, v1), (u2, v2), . . . , (uk, vk) be all the back arcs in G whose heads are dominated by u. The

set Vu = {u′ ∈ V : u′ lies on a DAG path from u to some ui, for 1 ≤ i ≤ k} is called the

dominated back arc vertex set of u, and the subgraph of G induced by Vu is denoted by Gs(Vu)

in Ramachandran [19, 20] (see Fig. 2).

FIG. 2. The Head Dominator Tree Th and Gs(Vu).

r

u u

r

v1 v2
v

v1 v2
vu

w w

x y v1 v2

x y

z

G Th Gs(Vu)

Let us now exhibit some properties enjoyed by the dominated back arc vertex sets and the

subgraphs induced by them.

Lemma 2.2. Let G = (V, A, r) be a reducible flow graph and let u, v be two vertices in Vh ∪{r}.
Then the following statements hold.

(i) u dominates all vertices in Vu;

(ii) Gs(Vu) is a reducible flow graph rooted at u;

(iii) u is the unique entry vertex of Gs(Vu) in G;

(iv) If Gs(Vu) and Gs(Vv) have a common vertex, then either u dominates v or v dominates u.

Proof. (i) This observation is due to Ramachandran [19, 20].

(ii) By the definition of Vu, Gs(Vu) is a flow graph rooted at u. Suppose, on the contrary,

that Gs(Vu) is not a reducible flow graph rooted at u. Then Theorem 2.1(ii) guarantees the

existence of an F (see Fig. 1) rooted at u in Gs(Vu); denote this F by H. Let P be a DAG path

5

from r to u. By (i), u is the only common vertex of P and Gs(Vu). Thus P ∪H is an F rooted

at r in G, contradicting Theorem 2.1(ii).

(iii) Suppose to the contrary that v is an entry vertex of Gs(Vu) with u �= v. Then v �= r

since, by (i), u dominates v. So there exists an arc (w, v) of G with w �∈ Vu. By (i) and the

definition of Vu, (w, v) is not a back arc. Now let P be a DAG path from r to w. Observe

that v is not on P (for otherwise P [v, w] ∪ {(w, v)} would be a cycle contained in the DAG, a

contradiction), and that P passes through u (for otherwise P ∪ {(w, v)} would be an r − v path

that avoids u, but u dominates v by (i), a contradiction). By the definition of Vu, there exists

a back arc (ui, vi) such that u dominates vi and v is on a DAG path Q from u to ui. Since the

DAG of G is acyclic, the DAG paths P [u, w] ∪ {(w, v)} and Q[v, ui] have no vertex in common

except v. Thus P [u, w] ∪ {(w, v)} ∪ Q[v, ui] is a DAG path from u to ui that passes through w.

Hence w ∈ Vu, this contradiction implies the uniqueness of the entry vertex of Gs(Vu).

(iv) Suppose to the contrary that there is no domination relation between u and v. Then

by (i) we have u �∈ Gs(Vv) and v �∈ Gs(Vu). Let w ∈ Gs(Vu) ∩ Gs(Vv). By (ii), there is a u − w

path P contained in Gs(Vu). From P we deduce that Gs(Vv) has an entry vertex different from

v, contradicting (iii). �

Lemma 2.3. Let G = (V, A, r) be a reducible flow graph. Then there is an O(n log n + m)

algorithm for finding a DFS order π of the head dominator tree Th such that, for any two

vertices u and v on Th with π(u) < π(v), vertex u is not dominated by v, and every path from

v to u in G contains a back arc, where n = |V | and m = |A|.
Proof. Let D be the DAG of G. Since D is acyclic, there is a linear time algorithm for

finding an ordering σ of all the vertices of D such that if (a, b) is an arc of D then σ(a) < σ(b)

(see topological sorting in [1]). Now let π be the DFS order of Th starting from r such that, for

any two children a, b of the same vertex on Th, π(a) < π(b) iff σ(a) < σ(b) (that is, among the

unscanned arcs leaving each vertex u on Th, we always search (u, v) with the smallest order σ(v)

first). Then π is as desired. To justify it, let u and v be two vertices on Th with π(u) < π(v).

If u is dominated by v, then there is a path from v to u in Th. Since π is a DFS order of Th

starting from r, we have π(v) < π(u), a contradiction. Thus u is not dominated by v. It remains

to show that there is no path from v to u in D.

Suppose to the contrary that D contains a v − u path P . If u dominates v, then P together

with a path from u to v in D (recall (2.1)) would lead to a cycle in D, a contradiction. Let

us consider the case when v is not dominated by u. Now we have r /∈ {u, v}. Let w be the

nearest common ancestor of u and v on Th, and let x, y be the two children of w on Th such

6

that u ∈ Gs(Vx) and v ∈ Gs(Vy). By Lemma 2.2(iv), Vx and Vy are vertex disjoint. It can also

be seen from Lemma 2.2(iii) that P passes through x. In view of (2.1), there is a path Q from

y to v in D. So P ∪Q contains a path from y to x in D. Hence σ(y) < σ(x). It follows that the

DFS specified in our algorithm would yield π(v) < π(u), a contradiction.

Since sorting k numbers can be done in time O(k log k), the time complexity of our algorithm

is O(n log n + m). �

To solve the (weighted) feedback vertex set problem and the (unweighted) maximum cycle

packing problem on reducible flow graphs, Ramachandran [19, 20] invented several sophisticated

network flow techniques. In this paper we shall apply her novel ideas and develop her methods.

As usual, a flow network N = (V, A, s, t, c) is a digraph G = (V, A) with two distinguished

vertices, a source s and a sink t, and a nonnegative integral capacity c(u, v) on each arc (u, v).

See Ahuja, Magnanti and Orlin [1] and Ford and Fulkerson [10] for in-depth accounts of network

flow theory. It is clear that any subgraph (V ′, A′) of G with {s, t} ⊆ V ′ corresponds to a

subnetwork N ′ = (V ′, A′, s, t, c) of N . For convenience, we let |x| denote the value of a flow x.

Lemma 2.4. Let N ′ = (V ′, A′, s, t, c) be a subnetwork of a flow network N = (V, A, s, t, c), and

let μ and μ′ be the maximum s − t flow values of N and N ′, respectively. Suppose λ and λ′ are

two nonnegative integers satisfying λ′ ≤ μ′ and λ′ ≤ λ ≤ μ. Then there is an O(nm log(n2/m))

algorithm for finding an s − t flow x of N such that |x| = λ ≥ ∑
(u,t)∈A′ x(u, t) ≥ λ′, where

n = |V | and m = |A|.
Proof. Let us construct a network N̄ = (V̄ , Ā, s, q, c) from N as follows: first add two new

vertices p and q and two new arcs (p, q) and (t, q) with capacities c(p, q) = λ′ and c(t, q) = λ−λ′,
then subdivide each arc (u, t) in A′ into two arcs (u, ū), (ū, t) and add one arc (ū, p) such that

c(u, ū) = c(u, t) and c(ū, t) = ∞ = c(ū, p). The construction of N̄ is illustrated in Fig. 3,

where the arcs in A′ are bold lined. Notice that in N̄ , vertex s remains to be the source while

q becomes the sink. We claim that the maximum s − q flow value of N̄ is λ.

To justify the claim, by the max-flow min-cut theorem we may turn to verify that the capacity

of a minimum s− q cut of N̄ is λ. Since [V̄ \{q}, {q}] is clearly an s− q cut of N̄ with capacity

λ, it suffices to show that any s − q cut [U, Ū] in N̄ is of capacity at least λ, where s ∈ U

and q ∈ Ū . This is true if {(p, q), (t, q)} ⊆ [U, Ū]. So we may assume that {p, t} ∩ Ū �= ∅ and

that Ū contains all ū for all (u, t) ∈ A′ (for otherwise [U, Ū] is of capacity ∞). If t ∈ Ū , then

[U\{p}, V \(U\{p})], an s− t cut of N , has capacity at least μ by the max-flow min-cut theorem,

therefore the capacity of [U, Ū] is at least μ (≥ λ) by the definition of N̄ . It remains to consider

the case when t ∈ U . Now we have p ∈ Ū by the previous assumption. Observe that [U, Ū]

7

contains the arc (t, q) with capacity c(t, q) = λ − λ′, and that the capacity of [U, Ū]\{(t, q)} is

at least that of [(U ∩ V ′)\{t}, (V ′\U) ∪ {t}], which is an s − t cut in N ′ with capacity at least

μ′ (≥ λ′). Thus the capacity of [U, Ū] is at least λ − λ′ + μ′ ≥ λ, as claimed.

FIG. 3. The Construction of N̄ = (V̄ , Ā, s, q, c) from N and N ′.

u u

c(u, t) ∞
ū ∞

λ′
s t s q

t p
∞

v̄
∞ λ−λ′

c(v, t)
v v

N =(V, A, s, t, c) and N ′=(V ′, A′, s, t, c) N̄ = (V̄ , Ā, s, q, c)

Now let x̄ be a maximum s − q flow in N̄ . Clearly, x̄(p, q) = λ′ and x̄(t, q) = λ − λ′. For

each e ∈ A, set x(e) = x̄(u, ū) if e = (u, t) ∈ A′ for some u, and set x(e) = x̄(e) otherwise. It

follows from flow conservation and the construction of N̄ that x is an s − t flow of N and

λ = |x̄| = x̄(p, q) + x̄(t, q)

=
∑

u:(u,t)∈A′
x̄(u, ū) +

∑
(w,t)∈A\A′

x̄(w, t)

=
∑

(w,t)∈A

x(w, t) = |x| ≥
∑

(u,t)∈A′
x(u, t) =

∑
u:(u,t)∈A′

x̄(u, ū) ≥ x̄(p, q) = λ′.

Thus x is as desired. Since a maximum flow in N̄ can be found [13] in time O(|V̄ ||Ā| log(|V̄ |2/|Ā|))
= O(nm log(n2/m)), we are done. �

To establish the correctness of our algorithm, we need to decompose a flow in a network into

flows on paths. So the following theorem (see [1]) will be applied.

Theorem 2.5 (Flow Decomposition Theorem). Let x be an integral s − t flow with value

k in an acyclic network N = (V, A, s, t, c). Then there is an O(nm) algorithm for finding s − t

paths P1, P2, . . . , P� and corresponding nonnegative integers y1, y2, . . . , y�, such that

• � ≤ m,

• ∑�
i=1 yi = k, and

• ∑
i: (u,v)∈Pi

yi = x(u, v) for any (u, v) ∈ A,

where n = |V | and m = |A|. �

For simplicity, we denote the above path flow decomposition of x by {y1P1, y2P2, . . . , y�P�}.

8

3 Algorithm

Let G = (V, A, r) be a reducible flow graph with a nonnegative integral weight w(e) on each arc

e ∈ A, and let Vh, Th, and Gs(Vu) be the same as given in the preceding section. In [19, 20],

Ramachandran solved the (weighted) feedback set problem and the (unweighted) cycle packing

problem on reducible flow graphs by using clever network flow techniques, and the following

networks played important roles in her algorithms.

For each u ∈ Vh ∪ {r}, the maximum flow network of G with respect to head u is a flow

network Gm(u) obtained from Gs(Vu) by first splitting each head v in Gs(Vu) ∩ Vh into two

vertices v and v′ and then adding a new vertex t. Each DAG arc entering (resp. leaving) the

original head v in G corresponds to one that enters (resp. leaves) the newly formed head v, and

each back arc entering the original v corresponds to one that enters v′ in Gm(u). Moreover,

there is an arc (v′, t) with infinity capacity. The capacity of any other arc in Gm(u) is equal

to its corresponding weight in G. In Gm(u), vertices u and t are interpreted as the source and

sink, respectively. We propose to call v′ the image of v.

For each u ∈ Vh ∪ {r}, the mincost maximum flow network of G with respect to head u is a

flow network Gmm(u) obtained inductively as follows: If u is a vertex with no child in Th, set

Gmm(u) = Gm(u); else, let v1, v2, . . . , vk be all the children of u on Th, and let the maximum

flow value of Gmm(vi) be ci for 1 ≤ i ≤ k. Then the vertex set of Gmm(u) is the same as that

of Gm(u), and the arc set of Gmm(u) consists of all arcs in Gm(u), Gmm(vi) for i = 1, 2, . . . , k,

and Fu = {(u, vi) : i = 1, 2, . . . , k}. The capacity of each arc (u, vi) in Fu is set to be ci. Set Fu

is called the mincost-arc set for head u.

For G = (V, A, r) in Fig. 2, the construction of Gm(u) and Gmm(u) is illustrated in Fig.

3. Now we are ready to present Ramachandran’s algorithms.

Ramachandran’s Algorithm for finding a minimum (weighted) feedback arc set [19]

Input: An arc-weighted reducible flow graph G = (V, A, r).

Output: A weight of a minimum feedback vertex set of G.

begin

1. Preprocess G: Label the heads of back arcs in G in postorder (see [25]). Derive the head

dominator tree Th for G. Introduce a pointer from each vertex i in Th (except r) to its parent

hi. Let the number of vertices in Th be h.

2. For i = 1, 2, . . . , h process vertex i:

a. Find the capacity of minimum cut, ci, in Gm(i).

b. If i �= h then introduce an arc of weight ci from hi to i in G. (Note that G changes during

9

the execution of the algorithm so that Gm(i) is the same as Gmm(i) if G were unchanged.)

3. Output ch as the weight of a minimum feedback set of G.

end

The arc introduced in step 2b from hi to i is called a newly added arc.

Ramachandran’s Algorithm for finding a maximum (unweighted) cycle packing [20]

Input: A reducible flow graph G = (V, A, r).

Output: A maximum collection of arc disjoint cycles in G.

Description: Set the weight of each arc equal to 1. In step 2a of the above algorithm, let

the children of head i in Th be i1, i2, . . . , ik. Let Fi1 ,Fi2 , . . . ,Fik be the maximum flow on

Gm(i1), Gm(i2), . . . , Gm(ik), respectively, found by the algorithm. During the ith execution of

step 2, extend these flows to a feasible flow F for Gm(i) by saturating the newly added arcs

from i to ij , for j = 1, 2, . . . , k. Then find a maximum flow Fi by successively finding an

augmenting path from i to t with no newly added arcs, and pushing the flow along it until no

such an augmenting path can be found. (At this point a maximum flow and a minimum cut

for Gm(i) are obtained.) The maximum flow for Gm(h) corresponds to a maximum collection

of arc disjoint cycles in G with cardinality ch.

FIG. 4. The Construction of Gm(u) and Gmm(u).

r

u u u
c1 c2 c1 c2

v1 v2 v1 v2 v1 v2
v v v

w w w

x y x y x y

z

v′
1 v′

2 v′
1 v′

2 v′
1 v′

2
u′ u′ u′

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

t t t

Gm(u) Gmm(u) Gmm(r)

The results established by Ramachandran are summarized in the following theorems.

Theorem 3.1 [19]. In any arc-weighted reducible flow graph G = (V, A, r), a minimum

(weighted) feedback arc set can be found in time O(n2m log(n2/m)), where n = |V | and m = |A|.
Theorem 3.2 [20]. In any reducible flow graph G = (V, A, r), the cardinality of a minimum

feedback arc set in a reducible flow graph is equal to the cardinality of a maximum collection of

10

arc disjoint cycles. Moreover, the corresponding set of arc disjoint cycles can be found in time

O(min{mn5/3, m2}), where n = |V | and m = |A|.
As remarked in Section 1, Ramachandran’s proof [20] not only yields the corresponding

minimax theorem in the weighted case but also can be further extended to find maximum

(weighted) cycle packings in weighted reducible graphs. The purpose of this paper is to present

a faster algorithm for the maximum (weighted) cycle packing problem than this direct extension.

Our algorithm is built heavily on Ramachandran’s work [19, 20], and can use any maximum flow

algorithm as its subroutine. Recall that in Ramachandran’s algorithm [20] the maximum flow

must saturate all newly added arcs; this requirement will be relaxed in our algorithm, and it is

this relaxation that leads to improved efficiency.

Theorem 3.3. In any arc-weighted reducible flow graph G = (V, A, r), a maximum (weighted)

cycle packing can be found in time O(n2m log(n2/m)), where n = |V | and m = |A|.

We break the proof of Theorem 3.3 into a series of lemmas.

Lemma 3.4. Let π be the DFS search order as described in Lemma 2.3 and let a and b be two

vertices in Vh with π(a) < π(b). Then

(i) a′ (the image of a) is not contained in Gmm(b), and b′ is contained in Gmm(a) iff a

dominates b;

(ii) There is no path from b to a in Gmm(r);

(iii) Either Gmm(a)\{t} and Gmm(b)\{t} are vertex disjoint or Gmm(b) is contained in Gmm(a);

(iv) Gmm(a) is an acyclic digraph rooted at a.

Proof. Since π(a) < π(b), by Lemma 2.3, a is not dominated by b, and hence by Lemma

2.2(i), a /∈ Vb. So a′ (the image of a) is not contained in Gmm(b). From the construction of

Gmm(a) we see that b′ is contained in Gmm(a) iff b ∈ Va iff a dominates b by Lemma 2.2(i) and

the definition of Va. So (i) follows.

Suppose to the contrary that Gmm(r) contains a path P from b to a. In view of the con-

struction of Gmm(r), none of t and v′ (the image of v) for all v in G is contained in P . Thus P

only contains DAG arcs and newly added arcs. Let us now replace each newly added arc (u, v)

on P with a DAG path from u to v (see (2.1)). Then the resulting path is a DAG path from b

to a, contradicting Lemma 2.3. Thus we have (ii).

Suppose Gmm(a)\{t} and Gmm(b)\{t} have a vertex in common. From the construction

we deduce that Gs(Va) and Gs(Vb) have a vertex in common. By Lemma 2.2(iv), a dominates

11

b (recall that a is not dominated by b) and thus by definition Vb ⊆ Va. It follows from the

construction that Gmm(b) is contained in Gmm(a). Hence (iii) holds.

By Lemma 2.2(ii), Gs(Va) is a reducible graph rooted at a. Let D be the DAG of Gs(Va) and

let D′ be the digraph obtained from D by adding all newly added arcs in Gmm(a). It follows

from Lemma 2.2(i) and (2.1) that D′ is acyclic. Suppose Gmm(a) contains a cycle C. Then the

construction of Gmm(a) implies that none of t and v′ (the image of v) for all v in Va is contained

in C. Thus C is entirely contained in D′, contradicting the fact that D′ is acyclic. By (2.1), D

is a digraph rooted at a, so is Gmm(a) in view of the construction. Thus (iv) is established. �

Recall the construction of Gm(u) and Gmm(u) and the definition of the mincost-arc set Fu

for head u, it is easy to see that Gmm(u) is obtained from Gm(u) by adding all arcs in Fv for all

vertices v in Gs(Vu)∩ (Vh ∪{r}). The arcs in Gmm(u) but not in Gm(u) are precisely the newly

added arcs as defined above. Observe that the set of all the newly added arcs in Gmm(u) forms

the subtree of Th rooted at u.

An r− t flow x in Gmm(r) is called good if x(u, v) ≤ ∑
a′∈Gmm(v) x(a′, t) holds for any newly

added arc (u, v) of Gmm(r). For example, for Gmm(r) in Fig. 4, an r − t flow x is good if

x(r, u) ≤ x(u′, t) + x(v′1, t) + x(v′2, t), x(u, v1) ≤ x(v′1, t), and x(u, v2) ≤ x(v′2, t). Our objective

is to prove that a good integral maximum r − t flow of Gmm(r) corresponds to a maximum

(weighted) cycle packing of G.

Lemma 3.5. There is an O(n2m log(n2/m)) algorithm for finding a good integral maximum

r − t flow x in Gmm(r), where n = |V | and m = |A|.
Proof. Let x be an arbitrary integral maximum r − t flow in Gmm(r). We may assume that

x is not good and so

(1) some newly added arc (p, q) of Gmm(r) satisfies

x(p, q) >
∑

a′∈Gmm(q)

x(a′, t).

Let π be the DFS order of Th exhibited in Lemma 2.3, and let (u, v) be a newly added arc

among all those (p, q) described in (1) such that

(2) π(v) is minimized, that is, π(v) ≤ π(q) for any above-mentioned arc (p, q).

By Lemma 3.4(iv), Gmm(r) is acyclic, so, by Theorem 2.5, x admits a path flow decompo-

sition {y1P1, y2P2, . . . , y�P�}. Without loss of generality, we assume that P1, P2, . . . , Pα are all

the paths in this decomposition that pass through v. Using Theorem 2.5, we get

(3)
∑α

j=1 yj ≥ x(u, v) for the above newly added arc (u, v).

12

Set Qj = Pj [v, t] for 1 ≤ j ≤ α. By Lemma 2.2(iii) and the construction of Gmm(v), v is the

only entry vertex of Gmm(v)\{t}. It follows from Theorem 2.5 and once again the construction

of Gmm(v) that

(4) for each arc (a, b) of Gmm(v), we have x(a, b) =
∑α

j=1: (a,b)∈Qj
yj .

We extract from Gmm(r) a flow network G′
mm(v) with source v, sink t, and capacity function

c′ as follows: G′
mm(v) is the union of Gmm(v) and all Qj for j = 1, 2, . . . , α, and for each arc

(a, b) of G′
mm(v) its capacity

(5) c′(a, b) is set to be c(a, b) if (a, b) is an arc in Gmm(v) and to be
∑α

j=1: (a,b)∈Qj
yj if (a, b)

is outside Gmm(v).

Fig. 5 illustrates the construction of G′
mm(v1) for the network depicted in Fig. 4. Suppose

P1 = ruv1wxv′1t, P2 = ruv1wu′t, P3 = ruv1vv2yv′2t, and P4 = ruv2yu′t are all the paths in the

flow decomposition. Then P1, P2, P3 are all the paths through v1, so Q1 = v1wxv′1t, Q2 = v1wu′t,
and Q3 = v1vv2yv′2t. Thus G′

mm(v1) is as shown below.

FIG. 5. The Construction of G′
mm(v1).

r

u

v1 v2 v1 v1 v2
v v

w w w

x y x x y

v′
1 v′

2 v′
1 v′

1 v′
2

u′ u′

t t t

(a) Path flow decomposition (b) Gmm(v1) (c) G′
mm(v1)

{y1P1, y2P2, y3P3, y4P4}

Since {y1Q1, y2Q2, . . . , yαQα} is a path flow decomposition of a v− t flow in G′
mm(v) of value∑α

i=1 yi, and x(u, v) is not more than the maximum flow value of network Gmm(v) (recall the

construction of Gmm(r)), (3), (5), and Lemma 2.4 (with Gmm(v), G′
mm(v),

∑α
j=1 yj and x(u, v)

in place of N ′, N , λ and λ′ over there, respectively) guarantee the existence of an integral v − t

flow z in G′
mm(v) such that

(6)
∑α

j=1 yj = |z| ≥ ∑
a′∈Gmm(v) z(a′, t) ≥ x(u, v).

Define an integral vector x′ on the arcs of Gmm(r) by

(7) x′(a, b) = x(a, b) if (a, b) is outside G′
mm(v) and x′(a, b) = z(a, b)+x(a, b)−∑α

j=1:(a,b)∈Qj
yj

otherwise.

13

(8) x′ is also an integral maximum r − t flow in Gmm(r).

Using (5), (7) and the v − t flow z, it is easy to see that x′ satisfies the capacity constraint

and conserves at each vertex, so x′ is an r − t flow. Observe that

∑
a′∈Gmm(r)

x′(a′, t) =
∑

a′ /∈G′
mm(v)

x′(a′, t) +
∑

a′∈G′
mm(v)

x′(a′, t)

=
∑

a′ /∈G′
mm(v)

x(a′, t) +
∑

a′∈G′
mm(v)

[z(a′, t) + x(a′, t) −
α∑

j=1:(a′,t)∈Qj

yj] (by (7))

=
∑

a′∈Gmm(r)

x(a′, t) +
∑

a′∈G′
mm(v)

z(a′, t) −
α∑

j=1

yj

=
∑

a′∈Gmm(r)

x(a′, t).

Since x is a maximum r − t flow in Gmm(r), so is x′, and hence we have (8).

(9) x′(a′, t) ≤ x(a′, t) for any vertex a′ ∈ G′
mm(v)\Gmm(v).

Indeed, since (a′, t) is contained in G′
mm(v) for a′ ∈ G′

mm(v)\Gmm(v), from (7) we deduce

that x′(a′, t) = z(a′, t)+x(a′, t)−∑α
j=1: (a′,t)∈Qj

yj ≤ c′(a′, t)+x(a′, t)−∑α
j=1: (a′,t)∈Qj

yj = x(a′, t)

by (5), as desired.

We propose to prove that

(10) for any newly added arc (p, q) of Gmm(r) with π(q) ≤ π(v),

x′(p, q) ≤
∑

a′∈Gmm(q)

x′(a′, t). (3.1)

To this end, observe that, by Lemma 3.4(iv), Gmm(v) is a digraph rooted at v, so is G′
mm(v)

by the construction. Hence, by Lemma 3.4(ii), we have

(11) G′
mm(v) contains no vertex a ∈ Vh ∪ {r} with π(a) < π(v).

Let us now verify that

(12) x′(u, v) ≤ ∑
a′∈Gmm(v) x′(a′, t).

By (11), u is outside G′
mm(v). Thus by (7) we have x′(u, v) = x(u, v). For each arc (a, b)

in G′
mm(v), by Theorem 2.5 we get x(a, b) ≥ ∑α

j=1:(a,b)∈Qj
yj , so x′(a, b) ≥ z(a, b) (recall (7)).

It follows from (6) that x′(u, v) = x(u, v) ≤ ∑
a′∈Gmm(v) z(a′, t) ≤ ∑

a′∈Gmm(v) x′(a′, t). Hence

(12) is proved.

Let us turn to consider an arbitrary newly added arc (p, q) of Gmm(r) with (p, q) �= (u, v)

and π(q) ≤ π(v). Since the newly added arcs form the arc set of the head dominator tree Th,

(u, v) is the unique newly added arc entering v. By (11), we get

14

(13) π(q) < π(v) and hence (p, q) is outside G′
mm(v) by (11).

Thus, by Lemma 3.4(iii), either Gmm(q)\{t} and Gmm(v)\{t} are vertex disjoint or Gmm(v) is

contained in Gmm(q); we shall deal with these two cases separately.

(14) If Gmm(q)\{t} and Gmm(v)\{t} are vertex disjoint, then (3.1) holds.

To justify (14), we first claim that Gmm(q)\{t} and G′
mm(v)\{t} are vertex disjoint. Suppose

the contrary: b is a common vertex of these two digraphs. From Lemma 3.4(iv) and the con-

struction of G′
mm(v), we see that G′

mm(v) is a digraph rooted at v. Hence there is a path P in

G′
mm(v)\{t} from v to b. It follows from (13) and Lemma 3.4(ii) that P contains an entry vertex

of Gmm(q)\{t} other than q. However, by Lemma 2.2(ii), (iii) and the construction of Gmm(q),

q is the unique entry vertex of Gmm(q)\{t}, this contradiction establishes the claim. Using the

claim, (13), and (7), we get x′(a′, t) = x(a, t) for each a′ ∈ Gmm(q), and x′(p, q) = x(p, q). In

view of (2), x(p, q) ≤ ∑
a′∈Gmm(q) x(a′, t), so we have (3.1) and hence (14).

(15) If Gmm(v) is contained in Gmm(q), then (3.1) holds.

By direct computation, we have

∑
a′∈Gmm(q)

x′(a′, t) −
∑

a′∈Gmm(q)

x(a′, t) =
∑

a′∈Gmm(q)∩G′
mm(v)

[x′(a′, t) − x(a′, t)]

=
∑

a′∈Gmm(v)

[x′(a′, t) − x(a′, t)] +
∑

a′∈Gmm(q)∩(G′
mm(v)\Gmm(v))

[x′(a′, t) − x(a′, t)] (by hypothesis)

≥
∑

a′∈Gmm(v)

[x′(a′, t) − x(a′, t)] +
∑

a′∈G′
mm(v)\Gmm(v)

[x′(a′, t) − x(a′, t)] (by (9))

=
∑

a′∈G′
mm(v)

x′(a′, t) −
∑

a′∈G′
mm(v)

x(a′, t)

=
∑

a′∈G′
mm(v)

⎡
⎣z(a′, t) + x(a′, t) −

α∑
j=1: a′∈Qj

yj

⎤
⎦ −

∑
a′∈G′

mm(v)

x(a′, t) (by (7))

= |z| −
α∑

j=1

yj = 0 (by (6)).

Thus
∑

a′∈Gmm(q) x′(a′, t) ≥ ∑
a′∈Gmm(q) x(a′, t). Notice that by (13) and (7), x′(p, q) = x(p, q),

and by (2), x(p, q) ≤ ∑
a′∈Gmm(q) x(a′, t), so we obtain (3.1) and hence (15).

Combining (12), (14) and (15), we get (10). Now let us replace x by x′ and repeat the pro-

cess. From (2), (8) and (10) we conclude that a good integral maximum r−t flow in Gmm(r) can

be obtained after at most n iterations. Since the initial maximum flow x and x′ in (7) can both

be found in O(nm log(n2/m)) time [13], the whole algorithm runs in time O(n2m log(n2/m)).

15

�

Lemma 3.6. Given a good integral r − t flow x in Gmm(r), there is an O(m2) algorithm for

finding a cycle packing of G with weight |x| and with at most m distinct cycles, where m = |A|.
Proof. The statement clearly holds if x is a zero flow. So we assume x is nonzero. Let p(u)

denote the parent of u on Th for each u ∈ Vh\{r}, let π be the DFS order of Th specified in

Lemma 2.3, and let v′, the image of v, be the vertex of Gmm(r) (recall the construction) such

that

(i) x(v′, t) > 0, and

(ii) subject to (i), π(v) is maximized.

Condition (i) guarantees the existence of an r−t path P through v′ in Gmm(r) such that x(e) > 0

for any arc e on P . Now let Q = u0u1 . . . uk denote the path from r to v on Th, where u0 = r,

uk = v, and ui = p(ui+1) for i = 0, 1, . . . , k − 1. By Lemma 2.2(ii), (iii), and the construction

of Gmm(r), ui is the only entry vertex of Gmm(ui)\{t} for 0 ≤ i ≤ k. By Lemma 3.4(iii),

Gmm(uj) is contained in Gmm(ui) whenever 0 ≤ i < j ≤ k. Hence vertices u0, u1, . . . , uk appear

sequentially on P .

Using Lemma 3.4(i), we have

(1) v′ is contained in no Gmm(u) with π(u) > π(v), and v′ is contained in Gmm(u) with

π(u) < π(v) iff u dominates v.

We claim that

(2) P [v, v′] contains no arc (p(u), u) of Th with π(p(u)) ≥ π(v).

Suppose to the contrary that such u exists. Since x(p(u), u) > 0 and x is a good flow,

x(a′, t) > 0 for some vertex a′ in Gmm(u). Thus π(a) ≥ π(u) > π(v), contradicting the selection

(ii) of v′. So we get (2).

Now let R be the path obtained from P by replacing P [ui, ui+1] with the newly added arc

(ui, ui+1) whenever x(ui, ui+1) > 0 for i = 0, 1, . . . , k − 1. Then x(e) > 0 for each arc e on

R. Let δ denote the minimum x(e) for all e on R. We define a vector x′ on the arc set of

Gmm(r) as follows: x′(e) = x(e) − δ if e is an arc on R and x(e) otherwise. From (1) and

(2), we can conclude that x′ remains to be a good flow of Gmm(r) and |x′| = |x| − δ. Let

e′ denote the arc of P entering v′, and let C be the cycle of G uniquely contained in the

union of P [v, v′] and the back arc corresponding to e′. (For the example depicted in Fig. 5,

P3[v2, v
′
2]∪ {(y, v2)} = v2yv′2t∪ {(y, v2)} contains a unique cycle v2yv2 of G in Fig. 2.) Now let

C contain C such that the multiplicity of C, m(C), is δ. Replace x by x′ and repeat the process

until x becomes a zero flow. Clearly, C is a cycle packing with weight equal to the value of the

16

initial r − t flow x and contains at most m distinct cycles.

Since P can be found by breadth first search in O(m) time and the number of iterations is

bounded above by the number of distinct cycles in C (which is at most m), the algorithm runs

in O(m2) time. �

Lemma 3.7. For any cycle packing C of G with k distinct cycles, where k ≤ m, there is an

integral r − t flow x of Gmm(r) such that |x| equals the weight of C.

Proof. Let C1, C2, . . . , Ck be all distinct cycles in C such that the multiplicity of each Ci,

m(Ci), is yi. Recall Theorem 2.1(v), each Ci contains precisely one back arc (vi, ui). Let Pi be the

unique path from r to ui on Th (we view Pi as a path in Gmm(r) consisting of the corresponding

newly added arcs), and let Qi denote the concatenation of Pi, Ci\{(vi, ui)}, (vi, u
′
i), and (u′

i, t)

for i = 1, 2, . . . , k. (For example, the cycle v2yv2 of G in Fig. 2 corresponds to path ruv2yv′2t
in Gmm(r).) We aim to show that {y1Q1, y2Q2, . . . , ykQk} is a path flow decomposition of a

flow x in Gmm(r) (which is acyclic by Lemma 3.4(iv)). For this purpose, it suffices to check the

capacity constraint.

Suppose to the contrary that the capacity constraint is violated on some arc (u, v). Then

(u, v) must be a newly added arc. We select such an arc so that π(v) is maximized. Thus

(i)
∑

i: (u,v)∈Qi
yi > c(u, v) and

(ii)
∑

i: (a,b)∈Qi
yi ≤ c(a, b) for all arcs (a, b) of Gmm(v).

For each i = 1, 2, . . . , k, since Ci\{(vi, ui)} is a DAG path by Theorem 2.1(v) and (u, v) is a

newly added arc, Qi passes through (u, v) iff Pi passes through (u, v) iff v dominates ui. Thus if

Qi passes through (u, v), then all the vertices on Ci are in Vv by the definition of Vv. So it follows

from the construction of Gmm(v) that Qi[v, t] is entirely contained in Gmm(v). Without loss of

generality, we assume Q1, Q2, . . . , Qα are all the paths in Q1, Q2, . . . , Qk that pass through (u, v).

In view of (ii), {y1Q1[v, t], y2Q2[v, t], . . . , yαQα[v, t]} is a path flow decomposition of a v − t flow

in Gmm(v). Observe that
∑α

i=1 yi is bounded above by the maximum flow value of Gmm(v)

which is c(u, v) by the construction of Gmm(r). Hence,
∑

i:(u,v)∈Qi
yi =

∑α
i=1 yi ≤ c(u, v), con-

tradicting (i). This completes the proof. �

We are ready to present our algorithm for finding a maximum cycle packing in any arc-

weighted reducible flow graph.

Algorithm for finding a maximum (weighted) cycle packing

Input: An arc-weighted reducible flow graph G = (V, A, r).

Output: A maximum cycle packing C of G.

17

Step 0. Construct Ramachandran’s flow network Gmm(r) (see the beginning of this section).

Step 1. Find a good integral maximum r − t flow x in Gmm(r) as described in Lemma 3.5.

Step 2. Convert x to a cycle packing C of G as described in Lemma 3.6 and return C.

The correctness of this algorithm follows instantly from Lemma 3.5-3.7. Since the dominator

tree can be constructed in linear time [14], so can be the underlying digraph of Gmm(r). By

calling the maximum flow algorithm [13] at most n times, we can get the capacities of all newly

added arcs in Gmm(r). In view of the complexity stated in each lemma, we conclude that the

algorithm runs in O(n2m log(n2/m)) time. This completes the proof of Theorem 3.3.

4 Concluding Remarks

In this paper we have obtained a polynomial time algorithm for finding a maximum weighted

cycle packing in any arc-weighted reducible flow graph. We remark that our algorithm can also

be employed to solve the maximum cycle packing problem in the vertex weighted case as the

latter can be easily transformed into the former. Moreover, there is a linear time algorithm

for finding maximum vertex-disjoint cycles in any reducible flow graph (the dual of Shamir’s

problem [22]).

Minimax relations play important roles in combinatorics and optimization. In addition to

their great theoretical interest, they often yield polynomial-time solutions of the corresponding

problems. As shown by Ramachandran [20] and by Lucchesi and Younger [18], reducible flow

graphs and planar digraphs satisfy the minimax arc theorem on packing and covering cycles.

Major open problems in this direction are to characterize all digraphs with this minimax arc

(resp. vertex) relation, for any nonnegative integral weight function defined on the arc (resp.

vertex) set. See Cai et al. [4, 5, 6] for a complete characterization of all tournaments and

bipartite tournaments and Ding et al. [8, 9] for the description of all undirected graphs.

Ramachandran [21] came up with parallel algorithms for recognizing reducible flow graphs,

for finding dominators, and for finding a minimum feedback vertex set in an unweighted reducible

flow graph. Certainly, parallel algorithms for the general cycle packing and feedback set problems

on reducible flow graphs also deserve good research efforts.

Acknowledgment. The authors are deeply indebted to two anonymous referees for their

invaluable comments and suggestions which have greatly improved the presentation of this paper.

18

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows – Theory, Algorithms, and

Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan, Improved time bounds for the maximum flow

problem, SIAM J. Comput. 18 (1989), 939-954.

[3] A. V. Aho and J. D. Ullman, Principle of Compiler Design, Addison-Wesley Reading, MA,

1977.

[4] M. C. Cai, X. T. Deng, and W. Zang, A TDI system and its application to approximation

algorithms, in: Proc. 39th IEEE Symposium on Foundations of Computer Science, Palo

Alto, CA, 1998, pp. 227-233.

[5] M. C. Cai, X. T. Deng, and W. Zang, An approximation algorithm for feedback vertex sets

in tournaments, SIAM J. Comput. 30 (2001), 1993-2007.

[6] M. C. Cai, X. T. Deng, and W. Zang, A min-max theorem on feedback vertex sets, Math.

Oper. Res. 27 (2002), 361-371.

[7] A. Caprara, A. Panconesi, and R. Rizzi, Packing cycles in undirected graphs, J. Algorithms

48 (2003), 239-256.

[8] G. Ding and W. Zang, Packing cycles in graphs, J. Combin. Theory Ser. B 86 (2002),

381-407.

[9] G. Ding, Z. Xu, and W. Zang, Packing cycles in graphs, II, J. Combin. Theory Ser. B 87

(2003), 244-253.

[10] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton,

NJ, 1962.

[11] A. Frank and A. Gyarfas, Directed graphs and computer programs, in: Problemes Combina-

toires et Theorie des Graphes, Colloque Internationaux C.N.R.S. 260 (1976), pp. 157-158.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Com-

pany, New York, 1979.

[13] A. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, in: Proc.

18th Annual ACM Symposium on Theory of Computing, 1985, pp. 136-146.

[14] D. Harel, A linear algorithm for finding dominators in flow graphs and related problems,

in: Proc. 17th Annual ACM Symposium on Theory of Computing, 1984, pp. 185-194.

[15] M. S. Hecht and J. D. Ullman, Flow graph reducibility, SIAM J. Comput. 1 (1972), 188-202.

19

[16] M. S. Hecht and J. D. Ullman, Characterizations of reducible graphs, J. ACM 21 (1974),

367-375.

[17] J. E. Hopcroft and J. D. Ullman, Am n log n algorithm for detecting reducible graphs, in:

Proc. 6th Annual Princeton Conference on Information Sciences and Systems, Princeton,

NJ, 1972, pp. 119-122.

[18] C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, J. London Math.

Soc. 17(1978), 369-374.

[19] V. Ramachandran, Finding a minimum feedback arc set in reducible flow graphs, J. Algo-

rithms 9 (1988), 299-313.

[20] V. Ramachandran, A minimax arc theorem for reducible flow graphs, SIAM J. Discrete

Math. 3 (1990), 554-560.

[21] V. Ramachandran, Parallel algorithms for reducible flow graphs, J. Algorithms 23 (1997),

1-31.

[22] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible graphs, SIAM

J. Comput. 8 (1979), 645-655.

[23] R. E. Tarjan, Depth-first search and linear graph algorithm, SIAM J. Comput. 1 (1972),

146-160.

[24] R. E. Tarjan, Testing flow reducibility, J. Comput. System Sci. 9 (1974), 355-365.

[25] R. E. Tarjan, Data Structure and Network Algorithms, SIAM, Philadelphia, PA, 1983.

20

