
Casting with Skewed Ejection Direction∗

Hee-Kap Ahn1 Siu-Wing Cheng2 Otfried Cheong3

Abstract

Casting is a manufacturing process in which liquid is poured into a cast (mould) that has a
cavity with the shape of the object to be manufactured. The liquid then hardens, after which
the cast is removed. We address geometric problems concerning the removal of the cast. A
cast consists of two parts, one of which retracts in a given direction carrying the object with
it. Afterwards, the object will be ejected from the retracted cast part. In this paper, we
give necessary and sufficient conditions to test the feasibility of the cast part retraction and
object ejection, where retraction and ejection directions need not be the same. For polyhedral
objects, we show that the test can be performed in O(n2 log2

n) time and the cast parts can
be constructed within the same time bound. The complexity of the cast parts constructed is
worst-case optimal. We also give a polynomial time algorithm for finding a feasible pair of
retraction and ejection directions for a given polyhedral object.

1 Introduction

The manufacturing industry has at its disposal a number of processes for constructing objects,
including gravity casting, injection molding [7, 21], stereolithography [3], NC-machining [10, 11],
and layered manufacturing [15, 12, 19]. In all of these manufacturing contexts, computer-aided
design systems of growing sophistication are presently being introduced, and more and more real-
world objects are modeled as geometric objects within a computer. These systems have to be
augmented with a component verifying, purely on the basis of a CAD model of the object, that an
object being designed can actually be manufactured using the intended techniques. The surveys by
Bose and Toussaint [4, 6], and by Janardan and Woo [16] give an overview of geometric problems
and algorithms arising in these manufacturing processes.

The casting process [9, 22] consists of two stages. First, liquid is poured into a cavity formed
by two cast parts. After the liquid hardens, the cast is opened and the manufactured object
is removed from the cavity. In plastic injection molding machinery, this second stage is often
implemented as follows: one of the two cast parts is retracted mechanically, carrying the object
with it. The object is then ejected from the retracted cast part, typically by a burst of compressed
air.

Previous work on the casting problem has assumed that the object is ejected in the direction
opposite to the retraction direction of the movable cast part. This is, in fact, not required by the
existing technology for injection molding: the air burst will eject the object as long as a direction
exists in which it can move out of the cast. Exploiting this possibility allows to cast more parts,
or to cast parts with simpler moulds, and is the subject of the present paper.

To simplify our discussion, we will pretend that it is not the manufactured object that is ejected
from the moving cast part, but that the cast part is removed from the object. In this way, both
retraction and ejection are modelled conceptually by the removal of a cast part. To model the
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Figure 1: The casting process

retraction, the fixed cast part will first be removed in a direction opposite to the retraction. To
model the ejection, the remaining cast part will then be removed in a direction opposite to the
ejection. Figure 1 illustrates the process on a 2-dimensional example.

To summarize, in our model of casting, the two cast parts are to be removed in two given direc-
tions and these directions need not be opposite. Note that the ordering of removal is important.

The cast parts should be removed from the object without destroying either cast parts or the
object. This ensures that the given object can be mass produced by re-using the same cast parts.
The casting process may fail in the removal of the cast parts: if the cast is not designed properly,
then one or more of the cast parts may be stuck during the removal phase, as in Figure 2. The
problem we address here concerns this aspect: Given a 3-dimensional object, is there a cast for
it whose two parts can be removed after the liquid has solidified? An object for which this is the
case is called castable.

Figure 2: The top part of the cast is stuck.

Separating a cast in two arbitrary removal directions in 2D [21] and in some special 3D cases
has been studied before [5]. While in practice the two cast parts are removed in opposite directions,
cores and inserts can be used to enlarge the class of objects manufacturable by casting [9, 20, 22].
Cores and inserts are appendages to the cast parts that are removed in arbitrary directions. Thus,
our technique for handling two arbitrary removal directions may shed some light on the problem
of incorporating cores and inserts.

The 2-dimensional version of the castability problem has been studied by Rappaport and
Rosenbloom [21]. They presented an O(n) time algorithm to determine whether a simple n-vertex
polygon can be decomposed into two monotone chains, which is a sufficient and necessary condition
for the polygon to be castable. Hui and Tan [14] gave a heuristic approach to the 3-dimensional
problem, assuming opposite directions for cast removal. It is based on testing candidate directions
using sample points, and may not find a feasible direction, or may incorrectly return an infeasible
direction. Kwong [17] gave the first complete algorithm to determine the feasibility of a given
parting direction. He reduced the problem to the hidden surface removal problem in computer
graphics by observing that if all the facets can be completely illuminated from the parting direction
and its opposite, then the parting direction is feasible. Chen et al. [8] showed how to find the
parting direction that maximizes the number of completely visible “cavities” in the object. This
direction, however, may not be a good parting direction even if one exists. Based on Chen et al.’s
work, Hui [13] gave exponential time algorithms that also take cores and inserts into account.
Again they are not guaranteed to find a feasible cast. Bose et al. [5] considered a special model of
casting, the sand casting model, where the partition of the cast into two parts must be done by a
plane. Note that even convex polyhedra are not always castable in this model [5].

Finally, Ahn et al. [2] gave, to our knowledge, the first complete algorithm to determine the
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castability of polyhedral parts for opposite directional cast removal. Given a simple polyhedron
with n vertices, they presented an O(n log n)-time algorithm to compute castability in a given
direction. They also presented an O(n4)-time algorithm to compute all combinatorially distinct

directions for which there is a good cast. They also showed that there exist polyhedra for which
there are Ω(n4) combinatorially distinct directions in which there is a good cast.

In this paper we give a characterization of castability, under the assumption that the cast has to
consist of two parts that are to be removed in two given, not necessarily opposite directions. This
characterization applies to rather general, not necessarily polyhedral objects. This is important
since many industrial parts are not polyhedral. The characterization is constructive and translates
directly into an algorithm. In a CAD/CAM-system that supports boolean set operations and
sweeping, for instance by a volume representation, the characterization can be implemented easily.

In terms of asymptotic complexity, it seems hard to implement it efficiently, though. We
therefore give an algorithm to verify castability of polyhedral objects that runs in time O(n2 log2 n),
and produces cast parts of complexity O(n2). We show that this is optimal by giving an example
of an object that cannot be cast using cast parts of lower complexity.

Results for opposite cast parts removal [2, 14, 17] rely on the property that an object is castable
if and only if its boundary is visible completely from the two opposite removal directions. This
is not true when the removal directions are non-opposite: there are polyhedra whose boundary
is wholly visible from the removal directions but which are not castable with respect to those
directions [2] – there is a point in the complement of a polyhedron which hits the interior of the
polyhedron during translations in both removal directions.

For completeness, we also give an O(n14 log2 n)-time algorithm for finding all combinatorially
distinct feasible pairs of removal directions. Though the running time is polynomial, the algorithm
is clearly of theoretical interest only.

2 A characterization of castability

We assume that the outer shape of the cast equals a box denoted by B, which is large enough so
that the object Q to be manufactured is contained strictly in its interior. Our goal is to decompose
the cast into two parts which only overlap along their boundaries. The cast part to be removed
first is called the red part and is denoted by Cr. The other cast part is called the blue part and is
denoted by Cb. The removal directions for Cr and Cb are ~dr and ~db, respectively. We call ~dr the red

direction and ~db the blue direction. It will be convenient to define the object Q as a topological
open set, and the cast parts Cr and Cb as closed sets. The union of Cr and Cb equals B \ Q. We
use I to denote the interface Cr ∩ Cb.

We denote the interior of a set A ⊆ R
3 by int(A) and its closure by cl(A). A may be open,

closed, or neither. To represent A, we store its boundary bd(A) which is defined as cl(A)∩cl(R3\A).
When cl(A) is polyhedral, bd(A) consists of vertices, edges, and facets. We call them the vertices,
edges, and facets of A. They may not consist of points in A in general, for example, if A is an
open set.

We call an object Q castable with respect to (~dr, ~db) if we can translate Cr to infinity in direction
~dr without collision with Q and Cb \I, and can then translate Cb to infinity in direction ~db without
collision with Q. The order of removal is important.

We require Cb to be a connected subset of B. This connectivity requirement automatically
holds for Cr, as any connected component of Cr is guaranteed to be connected with a facet of B.

As mentioned in the introduction, previous work on the casting problem used a visibility
metaphor, which will also be helpful in our problem. Consider Q illuminated by two sources of
parallel light. The red light source is at infinity in direction ~dr; the blue light source is at infinity
in direction ~db. We say that a point p in space is illuminated by red light if a ray starting at p

with direction ~dr does not intersect Q, and similarly define points illuminated by blue light. Note
that since we assume Q to be open, a light ray will not stop when it grazes the boundary of Q.

We define the red shadow volume Vr to be the set of points of B \ Q not illuminated by red
light, and similarly define the blue shadow volume Vb.
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If we sweep Vb to infinity in direction ~dr, we will encounter a set of points in B that we denote
by V∗

b
. Note that V∗

b
includes Vb itself.

Lemma 1 If Q is castable, then Vr ⊆ Cb \ I and V∗

b
⊆ Cr \ I.

Proof. By definition, B \ Q = Cr ∪ Cb and so both Vr and Vb are contained in Cr ∪ Cb. Take any

point p in Vr. If we move p in direction ~dr to infinity, then p will be stopped by Q. So p cannot
be a point in the red cast part Cr. Thus, Vr ⊆ Cb \ I. By similar analysis, Vb ⊆ Cr \ I. Since Q is

castable, Cr can be translated first to infinity in direction ~dr without colliding with Q or Cb \ I.
Since Vb ⊆ Cr \ I, we conclude that V∗

b
⊆ Cr \ I.

We are now ready to prove our characterization of castability.

Theorem 2 Given an object Q and removal directions (~dr,~db), Q is castable if and only if Vr lies
in one connected component of B \ (V∗

b
∪ Q).

Proof. First, we prove that the condition is necessary. Since Q is castable, V∗

b
⊆ Cr \ I and Vr ⊆

Cb\I by Lemma 1. Since Cb ⊆ B\((Cr \I)∪Q), we have Vr ⊆ Cb ⊆ B\((Cr \I)∪Q) ⊆ B\(V∗

b
∪Q).

Therefore, if Vr does not lie in one connected component of B \ (V∗

b
∪ Q), then neither does Cb.

This implies that Cb is not connected, a contradiction.
Second, we prove the sufficiency of the condition. We let Cb be the connected component of

B \ (V∗

b
∪Q) that contains Vr. Then let Cr be B \ (Q∪ (Cb \ I)). Clearly Cb is connected. We now

show that the cast parts can be removed in order.
Since Cr is completely illuminated by red light, Cr can be translated to infinity in direction ~dr

without colliding with Q. This translation of Cr cannot be obstructed by Cb \ I. Otherwise, a

point p in int(Cr) can see a point q in Cb \I in direction ~dr. If the line segment pq contains a point
in V∗

b
, then q also belongs to V∗

b
, which is a subset of Cr by construction. Thus, q ∈ Cr, which

contradicts the fact that q ∈ Cb \ I. If the line segment pq does not contain any point in V∗

b
, then

pq lies in B \ (V∗

b
∪ Q). Since q ∈ Cb, p also belongs to the connected component of B \ (V∗

b
∪ Q)

containing Vr. Thus, p ∈ Cb, which contradicts the fact that p ∈ int(Cr).

After removing Cr, Cb can be removed to infinity in direction ~db without colliding with Q be-
cause Cb does not contain any point in Vb by definition.

The condition in Theorem 2 implies that Vr ∩ Vb is empty, but is slightly stronger. Since Vb

cannot be removed in direction ~db, it must be removed in direction ~dr. This implies that all points
in V∗

b
are illuminated by red light, i.e., Vr does not intersect V∗

b
. Figure 3 shows an object that

is not castable, even though Vr ∩ Vb is empty. To become a valid cast, each cast part must be
connected as one part, but it is impossible to find a connected blue cast part for this object: one
component of Vr is completely isolated from the other by the object and the components of V∗

b
.

sweeping Vb in ~dr

Vr Vb

red light

blue light

V∗
b

~dr

~db

Vr

Figure 3: An object Q and its shadow volume. Vr intersects two connected components of B \
(V∗

b
∪Q).
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3 Testing castability

The characterization of castability of Theorem 2 is constructive and translates directly to an algo-
rithm. In a CAD/CAM-system that supports boolean set operations and sweeping, for instance
by a volume representation, the characterization can be implemented easily.

From a more theoretical point of view, the situation is more complicated. The shadow volumes
Vb and Vr can be computed by computing the visibility map of Q. This can be done in time
O(n2 log n), if Q is a polyhedron with n vertices. The sweep volume V∗

b
can then be obtained

by computing the lower envelope of the boundary facets of Vb with respect to direction ~dr. In
general, the lower envelope of n2 triangles can have complexity Θ(n4). Figure 4(a) shows some
lower facets of Vb. The bar with pyramids standing on it is particularly interesting. The lower
facet of Vb generated by the lower facet of the bar is intentionally removed from the figure. This
causes the envelope to have complexity Θ(n3) as shown in Figure 4(b). If this removed facet
is included, the complexity of the envelope lowers to Θ(n2). This implies that computing the
lower envelope by standard techniques such as divide-and-conquer or (randomized) incremental
construction would need at least cubic time.

(a) (b)

red light

blue light

de
f

a
b

c
t1

defg

t2

t3

t4

a

b
c

g

t3
t2

t1

t4

Figure 4: Θ(n3) complexity.

In the following, we give an algorithm that tests castability of an n-vertex polyhedron for a
given pair of removal directions (~dr, ~db) in time O(n2 log2 n). This relies on a bound of O(n2) on
the complexity of V∗

b
, which we can prove under the assumption that Vb ∩ Vr ∩ bd(Q) is empty.

Our algorithm therefore starts by testing this assumption.
Throughout the rest of this paper, the object to be manufactured will be an open set P where

cl(P) is a polyhedron, that is, a possibly non-convex solid bounded by a piecewise linear surface.
The vertices, edges, and facets on this surface form bd(P). We require bd(P) to be a connected
2-manifold. Each facet of bd(P) is a connected planar polygon, which is allowed to have polygonal
holes. Two facets of P are called adjacent if they share an edge. We assume that adjacent facets
are not coplanar—this is no restriction, as they can be merged into one—but we do allow coplanar
non-adjacent facets. We also assume that P is simple, which means that no two non-adjacent facets
share a point. Our assumptions imply that P may contain tunnels, but no voids—a polyhedron
with a void is not castable anyway.

Throughout this section, we treat ~dr as the positive vertical direction. We assume that ~db

is not opposite to ~dr. Though the characterization of castability of Theorem 2 still holds for
opposite removal directions, the testing and construction algorithm in this section makes use of
the fact that the removal directions are non-opposite. Thus, it is not applicable when ~db and ~dr

are opposite. In this special case, the more efficient O(n log n)-time algorithm for opposite cast
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parts removal [2] should be used. We define the red shadow Sr := Vr ∩bd(P), and the blue shadow

Sb := Vb ∩ bd(P).

For each polyhedron edge e, let hb(e) denote the plane through e and parallel to ~db. (If e is

parallel to ~db, there are infinitely many planes that contain e and parallel to ~db. We can pick any
such plane as hb(e) as long as the two incident facets of e lie strictly on one side of the plane.)
Then e is a blue silhouette edge if it satisfies two requirements. The first requirement is that the
two facets incident to e lie in a closed halfspace bounded by hb(e) and the dihedral angle through

P is less than π. The second requirement is that if a facet incident to e is parallel to ~db, then e

should be behind that facet when viewing from direction ~db. A lower blue silhouette edge is a blue
silhouette edge e where P lies above hb(e) locally at e. Similarly, an upper blue silhouette edge is
a blue silhouette edge e where P lies below hb(e) locally at e.

For each lower blue silhouette edge e, imagine that e is a neon tube shooting blue rays in
direction −~db. We trace the “sheet” of blue rays emanating from e until they are stopped by P ,
or an edge or facet parallel to ~db and below P locally, or until they reach infinity in direction −~db.
The union of these intercepted or unintercepted blue rays define a subset of the plane hb(e) called
a lower blue curtain. Note that a lower blue curtain may pass through a facet of P parallel to
~db. Such a facet must then be locally above P . Upper blue curtains are symmetrically defined for
upper blue silhouette edges.

Given a blue silhouette edge e, we use Γ(e) to denote the blue curtain defined by e. If e is

parallel to ~db, then Γ(e) has empty interior. Otherwise, Γ(e) is bounded by e called the head, two

edges parallel to ~db and incident to the endpoints of e called the side edges, edges parallel to ~db

but not incident to the endpoints of e called the finger edges, and a set ξ(e) of polygonal chains
opposite to e called the tail. Note that the head and tail of a blue curtain lie on bd(P). Figure 5
shows an upper blue curtain Γ(f) and a lower blue curtain Γ(e) with side edges and a finger edge.

We divide castability testing into three steps. We first verify that the boundary of P is
completely illuminated by red and blue light, that is that Sr ∩ Sb = ∅. Once this test is passed,
we then check whether Vr ∩ Vb = ∅. If this test is passed, we construct the cast parts and verify
that Cb is connected.

3.1 Testing emptiness of Sr ∩ Sb

The emptiness of Sr ∩Sb can be tested in O(n2 log n) time as follows. Let H be a horizontal plane
above cl(P). We compute the projection of cl(P) onto H with the hidden portion removed. The
resulting arrangement is known as the visibility map. We project this visibility map vertically
downward on the boundary of P . This tells us which part of bd(P) is illuminated by red light. An
edge in the visibility map is the projection of a polyhedron edge. A vertex in the visibility map is
the projection of a polyhedron vertex or the intersection between the projections of two polyhedron
edges. Clearly, the size of the visibility map is O(n2). It can be computed in O(n2 log n) time
using a plane sweep over the projection of all polyhedron edges to remove the hidden line segments.
Output-sensitive algorithms for visibility map computation are also known [1]. Thus, determining
the parts of bd(P) illuminated by red light can be done in time O(n2 log n). Similarly, we can
determine the parts of bd(P) illuminated by blue light in time O(n2 log n). We can then decide
whether Sr∩Sb is empty by testing the intersection separately on every facet in bd(P), for instance
with a plane sweep algorithm. In total, this test takes time O(n2 log n).

3.2 Lower envelope of blue shadow facets and lower blue curtains

Once we know that Sr∩Sb is empty, we examine the lower envelope, denoted by L, of blue shadow
facets and lower blue curtains. The reason is that we can compute V∗

b
from L. Here and in the

following, let ℓ(p) denote the vertical line through a point p.

Lemma 3 Let L∗ be the set of points in B encountered while we sweep L to infinity vertically
upward. Then L∗ = cl(V∗

b
).
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Proof. Let p be a point in L∗, and let q be the point ℓ(p)∩L. By definition, q is on a blue shadow
facet or a lower blue curtain. Therefore q is in cl(Vb) and p is in cl(V∗

b
).

Let q be a point in cl(V∗

b
), and p be the lowest point of ℓ(q) ∩ cl(V∗

b
). By definition, p is on a

facet σ of cl(Vb) which bounds cl(Vb) from below. Since cl(Vb) is bounded by blue shadow facets
or blue curtains, σ is either a blue shadow facet or a lower blue curtain. Therefore p is in L and
q is in L∗.

We show below that the complexity of L is O(n2). We first need two technical lemmas.

Lemma 4 Suppose that Sr ∩ Sb is empty. For any blue shadow facets f1 and f2 there is no
vertical line ℓ that stabs both int(f1) and int(f2).

Proof. Assume to the contrary that the vertical line ℓ stabs both int(f1) and int(f2). Without
loss of generality, assume that ℓ∩ f1 is below ℓ∩ f2. Since f2 ⊆ bd(P), all points of ℓ lying below
ℓ ∩ f2 can not get any red light. Thus, ℓ ∩ f1 ∈ Sr ∩ Sb, a contradiction.

Lemma 5 Suppose that Sr ∩ Sb is empty. Then a finger edge of a lower blue curtain is divided
by upper blue silhouette edge(s) into segments of two types. One type consists of boundary edges
of some blue shadow facets. Segments of the other type lie strictly above L.

Proof. Consider a finger edge of a lower blue curtain Γ(e). It can be divided into O(n) segments

of two types: segments that lie on facets of P parallel to ~db, and segments that do not. Figure 5
shows segments of each type. The segments of the former type are shadow facet edges. It remains

f

Γ(f)

e

ss′

~db

Γ(e)

Figure 5: A finger edge consisting of two segments: s lying on a facet parallel to ~db, and s′ lying
on Γ(f).

to consider the segments of the latter type. It is the intersection of Γ(e) and another blue curtain,
say Γ(f). If Γ(f) is a lower blue curtain, then one of the two facets σ incident to f is a red shadow
facet. Since a lower blue curtain Γ(e) intersect σ, σ contains a point in Sr ∩ Sb, a contradiction.
So Γ(f) must be an upper blue curtain. Since points in the interior of upper blue curtains do not
appear in L, they lie strictly above L.

Lemma 6 Suppose that Sr ∩Sb is empty. The lower envelope L formed by all lower blue curtains
and all blue shadow facets has complexity O(n2).

Proof. The facets of L are bounded by three different kinds of edges: shadow facet edges including
heads and tails of lower blue curtains, side edges, and finger edges. The complexity of L is
determined by the number of vertices formed by them.

By Lemma 4, two shadow facet edges cannot define a new vertex of L. By Lemma 5, the finger
edges do not introduce any new vertex in L. It remains to bound the number of vertices generated
by side edges and shadow facet edges. Let e be a side edge of a lower blue curtain and h be a
vertical plane containing e. Then h intersects a shadow facet fi in a line segment, denoted by si.
Since a shadow facet edge is either an edge of P or the projection of an edge of P on bd(P) in

−~db direction, h intersects a linear number of shadow facets in a linear number of non-intersecting
line segments. Consider the 2-dimensional lower envelope of the si’s and e on h. This envelope
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has linear complexity. Since there are O(n) side edges, L has O(n2) vertices in total.

3.3 Computing V∗

b

We present efficient algorithms to test the castability and construct the cast parts. We need a
technical lemma.

Lemma 7 Suppose that Vr ∩ Vb is empty. Then for any two blue silhouette edges e and f and a
vertical line ℓ intersecting e and int(Γ(f)), ℓ ∩ e is not above ℓ ∩ Γ(f).

Proof. Assume to the contrary that there is a vertical line ℓ such that ℓ ∩ e is above ℓ ∩ Γ(f).
We can shift ℓ slightly such that it stabs the interior of Γ(f) and a facet incident to e. Thus, ℓ

intersects P above ℓ∩ Γ(f). If Γ(f) is an upper blue curtain, then this implies that an arbitrarily
short segment on ℓ below ℓ∩Γ(f) does not receive red or blue light. If Γ(f) is a lower blue curtain,
then an arbitrarily short segment above ℓ∩Γ(f) does not receive red or blue light. In either case,
Vr ∩ Vb 6= ∅, a contradiction.

Let ~v be a vector orthogonal to both ~dr and ~db. Let H be a plane spanned by ~v and ~db, and
let π(x) be the vertical projection of a point x onto H . The following lemma gives a necessary
and sufficient condition for Vr ∩ Vb = ∅, under the assumption Sr ∩ Sb = ∅. Since Sr ∩ Sb = ∅,
Vr ∩Vb is bounded completely by red and blue rays. So the facets of Vr ∩Vb are parallel to ~dr and
~db. Recall that, given a blue silhouette e, ξ(e) is the tail of the blue curtain Γ(e).

Lemma 8 Suppose that Sr ∩Sb is empty. Then Vr ∩Vb is non-empty if and only if for two lower
blue silhouette edges e and f , ℓ(p)∩e is not below ℓ(p)∩Γ(f) for some point p in π(e)∩int(π(Γ(f)))
or π(e) ∩ π(ξ(f)).

Proof. We prove sufficiency first. Assume to the contrary that Vr ∩ Vb is empty. Suppose that p

is a point in the intersection of π(e) and int(π(Γ(f))) such that ℓ(p) ∩ e is not below ℓ(p) ∩ Γ(f).
By Lemma 7, ℓ(p) ∩ e is also not above ℓ(p) ∩ Γ(f). Thus, ℓ(p) ∩ e = ℓ(p) ∩ Γ(f). The interior of
Γ(f) would contain the point ℓ(p)∩ e. By definition, no boundary point of P below P locally can
lie in the interior of a lower blue curtain, a contradiction.

The remaining alternative is that π(e) touches π(ξ(f)) at a point p where ℓ(p)∩ e is not below

ℓ(p) ∩ Γ(f). If we shift ℓ(p) slightly in direction ~db to a vertical line ℓ, we claim that ℓ must
intersect the interior of a facet σ incident to e. Otherwise, since e is a lower blue silhouette edge,
a facet incident to e would face downward and direction −~db, and so this facet would contain a
point in black shadow, a contradiction. Observe that ℓ also intersects the interior of Γ(f). By
definition, the interior of σ cannot lie on int(Γ(f)) since P is above σ locally. This implies that
there is a short segment on ℓ above int(Γ(f)) that does receive neither red nor blue light, which
contradicts the emptiness of Vr ∩ Vb.

We now prove necessity. Since Sr ∩Sb is empty, any facet of Vr ∩Vb is parallel to ~dr or ~db. At
least one facet σ of Vr∩Vb is parallel to ~db and bounds Vr∩Vb from below, otherwise Vr∩Vb would
be unbounded. The facet σ cannot receive any red light as it bounds the black shadow volume
from below. Thus, σ cannot be a blue shadow facet, otherwise σ would be in black shadow which
is supposed to be empty. Therefore, σ must lie on some lower blue curtain Γ(f). Let z be a point
in int(σ). If we shoot a ray upward from z, the ray hits bd(P) at a point v(z). Suppose that we

move z in the direction −~db. The vertical distance of v(z) from Γ(f) is monotonically decreasing
and remains non-negative. Otherwise, there would be a position such that v(z) becomes a point
in the black shadow which is impossible. (See Figure 6 (a)) Before or just when ℓ(z) stabs an edge
g of ξ(f), v(z) reaches an edge e such that P lies locally on one side of a vertical plane through
e. Otherwise, a facet adjacent to g would contain a point in black shadow, a contradiction. (See
Figure 6 (b)) Observe that e is also a lower blue silhouette edge, and ℓ(z) ∩ e does not lie below
ℓ(z) ∩ Γ(f). (See Figure 6 (c)) Clearly, π(e) either intersects the interior of π(Γ(f)) or touches
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π(ξ(f)) at the intersection of ℓ(z) and the xy-plane.

σz

e

σ

g

zσ

v(z)

z

(a) (b) (c)

~db
~db

~db

Γ(f)

ℓ(z) ℓ(z) ℓ(z)

Γ(f) Γ(f)

p

Figure 6: (a) v(z) in the black shadow, (b) A point p in the black shadow, and (c) A lower
silhouette edge e, where ℓ(z) ∩ e does not lie below ℓ(z) ∩ Γ(f)

We now show how to test the emptiness of Vr ∩ Vb and construct L in O(n2 log2 n) time. The
computation aborts once it detects that Vr ∩ Vb 6= ∅—the polyhedron is not castable in that case
anyway. Once L is available, we can construct L∗ = cl(V∗

b
). Afterwards, we can exclude the facets

that lie on lower blue curtains to obtain V∗

b
. All can be done in O(n2 log2 n) time.

Lemma 9 Suppose that Sr ∩ Sb is empty. In time O(n2 log2 n) and space O(n2 log n) we can
decide whether Vr ∩ Vb is empty, and, if so, compute L.

Proof. Recall that we assume that ~dr is the positive vertical direction. Let ~v be a vector orthog-
onal to both ~dr and ~db. Let H be a plane below P spanned by ~v and ~db. We first project all
blue shadow facets Sb downward onto H . By Lemma 4, the projections of blue shadow facets are
interior-wise disjoint. It follows that the complexity of the projection is O(n2). All blue shadow
facets can be identified in O(n2 log n) time by computing the complement of the part of bd(P)
which is illuminated by blue light. Edges of blue shadow facets are edges, parts of edges of P ,
parts of finger edges of blue curtains, or edges in the tails of blue curtains.

We partition H into slabs by drawing lines parallel to ~db through all projected vertices of P .
These lines intersect with the projections of blue shadow facets. Since a vertical plane parallel
to ~db intersects O(n) edges of P and O(n) edges in the tails of blue curtains, there are O(n2)
intersections which can be computed in O(n2 log n) time. Thus, after introducing the slabs, the
partitioned projection of blue shadow facets still has complexity O(n2).

We identify the upper and lower blue silhouette edges in O(n) time. For each lower blue
silhouette edge, we construct its lower blue curtain by intersecting a plane with P in O(n log n)
time. So we can construct all lower blue curtains in O(n2 log n) time.

Consider a slab. We cut it into regions along the projections of upper and lower blue silhouette
edges. Since upper and lower blue silhouette edges are boundary edges of blue shadow facets, we
do not introduce any new vertex. The regions in the slab are linearly ordered in −~db. We label
the region unbounded to the infinity in ~db by ∆0, the next by ∆1, and so on. We denote the
boundary between ∆i and ∆i−1 by ζi. A region ∆i can be completely empty, or completely or
partially covered by the projections of blue shadow facets. If Vr ∩ Vb is empty, no blue shadow
facet is above any lower blue curtain. Thus, if we can identify the lowest blue curtain covering
each empty area in every ∆i, we obtain L. Our algorithm carries out this computation inductively
by processing ∆1, ∆2, . . . in this order. We need to maintain a segment tree T for storing intervals
as we scan the regions.

Assume that we have come to ∆i. Let strip(ζi) denote the vertical strip through ζi. Induc-
tively, T stores the intervals at the intersections of strip(ζi) and the lower blue curtains that were
encountered before and cover some point in ζi. So the intervals in T are in 3D. Each interval I is
stored at the nodes in T representing the projection of I on ζi. The intervals stored at a node of T
are ordered in the vertical direction. Each lower blue curtain has O(n) finger edges. So there are
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h

h’

h

h’

h h

Figure 7: The boxes represent ∆i and ~db is the rightward direction. The shaded areas represent
the projected lower blue curtains. The bold chains are the p-tails. h and h′ are the p-fingeredges.
In the first four figures, the p-tails are also the extended p-tails. In the last figure, h′ and the
p-tail form the extended p-tail.

O(n2) intervals in T at any time. We explicitly maintain the interval in T , low(T ), that has the
lowest endpoint among all intervals in T . If ζi is the projection(s) of some lower blue silhouette
edge(s), we use Lemma 8 to test the emptiness of Vr ∩Vb. If low(T ) is lower than the highest edge
that projects onto ζi, by Lemma 8, Vr ∩ Vb 6= ∅. So P is non-castable and we abort. Afterwards,
we proceed to fill the empty areas in ∆i. If ζi is the projection(s) of some tail edge(s), we delete
from T the intervals induced by the corresponding lower blue curtains. Then we insert into T the
intervals induced by the lower blue curtains of the lower blue silhouette edges that project onto
ζi. Each insertion into T takes O(log2 n) time.

For each empty area inside ∆i, we pick one of its boundary vertices as its representative vertex.
We are to fill an empty area with the lowest blue curtain covering its representative vertex. This
is like a batched point location problem. We call the projection of each tail clipped within ∆i a
p-tail, and the projection of each finger edge clipped within ∆i a p-fingeredge. We first discuss the
structure of p-tails and p-fingeredges. Observe that no two p-tails cross each other by Lemma 4.
If a p-tail has an endpoint in the interior of ∆i, some p-fingeredge h is attached to this endpoint.
If h points towards −~db, as the projections of upper blue silhouette edges are also used in cutting
slabs into regions, Lemma 5 implies that h is the boundary edge of a projected blue shadow facet,
and h connects the p-tail and ζi+1. In this case, h cannot cross any other p-tail (as a p-tail bounds

projected blue shadow facets). If h points towards ~db, then h connects the p-tail and ζi. In this

case, h may cross some other p-tail. To each p-tail, we add the p-fingeredge pointing towards −~db,
if there is any, to form the extended p-tail. No two extended p-tails cross each other. Figure 7
shows some examples of extended p-tails.

We construct a planar subdivision Ki using the extended p-tails as follows. From each endpoint
of an extended p-tail, we extend two segments in ~db and −~db until they hit the nearest extended
p-tails or the boundary of ∆i. Ki is like a trapezoidal map of the extended p-tails, and it can be
built using a plane-sweep algorithm. Figure 8 shows an example. Given two extended p-tails η

and η′, η′ is behind η if (1) there is a directed line pointing towards ~db that hits η before η′, or
(2) there is another extended p-tail η′′ such that η′ is behind η′′ and η′′ is behind η. The behind
relation is a partial order. We use Ki to totally order the extended p-tails in a way consistent with
the behind relation. We first construct a directed acyclic graph G. In Ki, if an extension from
η towards ~db hits η′ or an extension from η′ towards −~db hits η, we add a directed edge from η′

to η. Then we topologically sort G into a total order η1, η2, . . ., so that if ηr is behind ηs, then
r < s. We add ζi as η0 and ζi+1 as η∞. For each face σ of Ki, take ηr with the least index that
bounds σ, and we call r the key of σ. We put the faces in Ki into a face-queue in non-decreasing
order of their keys. Let m be the number of vertices inside ∆i. The above construction runs in
O(m log m) time.

Now, we are ready to traverse the faces of Ki to fill the empty areas in ∆i. For each r ≥ 1, ηr

has a corresponding interval Ir stored in the segment tree T (except possibly for η∞). Throughout
the traversal, we maintain the smallest index r∗ of the intervals in T induced by extended p-tails.
The traversal consists of a main loop, which iterates until the face-queue becomes empty. We
remove the face σ from the face-queue with the minimum key r. If r = r∗, we delete Ir∗ from T
and set r∗ = r + 1. Afterwards, we fill the empty areas that have representative vertices inside σ

as follows. Let v be such a representative vertex. Project v in ~db to a point v′ on strip(ζi). We
query T to find the lowest interval I above v′. Then we fill the empty area represented by v with
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Figure 8: The box is ∆i and ~db is the rightward direction.

the lower blue curtain corresponding to I. In each iteration, the manipulation of the face-queue
and T takes O(1) and O(log2 n) time, respectively. So the traversal of Ki takes O(m log2 n) time.

Why is this filling procedure correct? Let A be the empty area represented by v. First of all,
the face-queue guarantees that by the time we consider A, the intervals in T for extended p-tails
behind σ have been deleted. Therefore, a lower blue curtain covers v if and only if it has an
interval in T above v′. Let Γ be the curtain returned by T that is used to fill A. It suffices to show
that: (1) the p-fingeredges for Γ do not cross A, and (2) Γ is the lowest blue curtain above any
point in A. Assume to the contrary that (1) or (2) is false. Then there is a lower blue curtain Γ′

below Γ that covers some point in A: if (1) is false, Γ′ exists by Lemma 5; if (2) is false, Γ′ exists
by assumption. If Γ′ covers A entirely, then the querying of T should not have returned Γ as Γ′

is a better answer, a contradiction. So some p-fingeredge for Γ′ crosses A. Lemma 5 implies that
there is a lower blue curtain Γ′′ below Γ′ that covers some point in A. But then we can replace Γ′

by Γ′′ and repeat the above argument. Since there is a finite number of lower blue curtains, we
will reach a contradiction eventually.

After filling the empty areas, we update T to prepare for processing ∆i+1. All the current
intervals in T can be retained. We reexamine all extended p-tails ηr whose intervals have been
deleted from T when traversing Ki. If ηr intersects ζi+1, we insert into T the interval at the
intersection of strip(ζi+1) and the lower blue curtain corresponding to ηr. This takes O(m log2 n)
time.

Since we spend O(m log2 n) time in ∆i, the total time needed to fill all empty areas in all slabs
is O(n2 log2 n) as the total number of vertices in all slabs is O(n2). The sum of sizes of the planar
subdivisions constructed for all regions is O(n2). When processing a slab, since the number of
intervals stored in T is O(n2), T uses O(n2 log n) space.

3.4 Cast part construction

The computations so far have established that Vr ∩ Vb is empty and have constructed a represen-
tation of V∗

b
. This implies that Vr ⊆ B \ (V∗

b
∩ P). By Theorem 2 it only remains to verify that

Vr lies in a single connected component of B \ (V∗

b
∪ P), and to actually compute the cast parts.

We compute a representation of V∗

b
∪ P , and find all facets f of P with a downward normal.

Using a linear-time graph transversal, we verify that all these facets lie in the same connected
component of B \ (V∗

b
∪ P). If so, this will be the blue cast part Cb.

Since every connected component of Vr must be bounded by some facet f with a downward
normal, this computation indeed establishes that Vr lies in Cb.

Theorem 10 Given a pair of directions, we can determine the castability of a simple polyhedron
with n vertices in O(n2 log2 n) time and O(n2 log n) space. If castable, the cast parts can be
constructed in the same time and space bounds. The cast parts constructed have O(n2) complexity,
which is asymptotically optimal.

Lemma 6 implies that V∗

b
has O(n2) complexity. So the cast parts have O(n2) complexity. The

time and space complexities of the construction follow from Lemma 9 and the linear-time graph
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Figure 9: (a) A polyhedron with five vertical legs and four small holes, (b) The visibility map

from ~db, and (c) The visibility map from ~dr

traversal.
The optimality of the complexity of our cast parts follows from the example in Figure 9. The

polyhedron shown in Figure 9(a) has five vertical “legs”, and four small holes such that parts

of the cast inside the holes can only be removed in direction ~db. The blue shadow Sb has Θ(n2)

complexity (Figure 9(b) shows the visibility map as seen in direction −~db). It follows that the lower
envelope L of all lower blue curtains and blue shadow facets has complexity Ω(n2). Figure 9(c)
shows the blue shadow of the object. This shows that the analysis of the cast part size of our
construction is tight. Since the holes in the object are in the red shadow volume, they need to be
in Cb. The blue shadow on bd(P), on the other hand, must belong to Cr. In any cast construction,
there must be a path γ(i, j) connecting two points i and j in two holes through int(Cb). Let

γ∗(i, j) be the projection of the path on bd(P) in −~dr. We claim that all points in γ∗(i, j) belong
to the blue cast part. Otherwise, there is a point p ∈ Cr in γ∗(i, j) which implies that the point
ℓ(p) ∩ γ(i, j) would belong to Cr, a contradiction. For a similar reason, γ∗(i, j) cannot intersect
the blue shadow. Figure 9(c) shows a path γ(i, j) connecting points i and j in two holes. Note
that γ∗(i, j) intersects all the thin rectangular facets below the holes. Therefore, the red and
blue cast parts intersect the sequence of thin rectangular facets alternately, which results in Ω(n2)
complexity of the cast part. It follows that the size of the cast produced by our construction is
worst-case optimal.

Figure 10 shows the red and blue cast parts constructed for the model in Figure 9(a).

4 Finding a pair of directions

We have seen how to test whether P is castable in a given pair of directions (~dr, ~db). In this
section we describe an algorithm to solve the following problem: Decide whether there is a pair
of directions (~dr , ~db) in which P is castable. In fact, we will solve the more general problem of

finding all pairs of directions (~dr, ~db) for which P can be cast.
The set of all pairs of directions forms a 4-dimensional parameter space Ψ. We choose an

appropriate parameterization that gives rise to algebraic surfaces in Ψ, see for instance Latombe’s
book [18]. Our goal is to compute that part of Ψ that corresponds to pairs of directions in which
P is castable. As we have proven before, castability depends on a number of simple combinatorial
properties. We will compute an arrangement of algebraic surfaces in Ψ that includes all pairs of
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Figure 10: The upper figure is the red cast part. The lower figure is the blue cast part. In order
to illustrate the main features of the cast, we cut out the top of the red cast part and move it
slightly away, and we cut out the two sides and the bottom of the blue cast part and move them
slightly away.

directions where one of these properties could possibly change. The following lemma enumerates
all relevant situations.

Lemma 11 Let γ1 and γ2 be two pairs of directions, such that P is castable in γ1 but not in γ2.
Let π be any path in 4-dimensional configuration space Ψ connecting γ1 and γ2. Then on π there
is a pair of directions (~dr, ~db) such that one of the following conditions holds:

(i) A facet of P is parallel to ~dr or ~db.

(ii) The projection in direction ~dr of a vertex v coincides with the projection of an edge e.
Here edges and vertices are edges and vertices of P or of the blue shadow Sb.

(iii) Two vertices of P lie in a plane parallel to the plane determined by ~dr and ~db.

Proof. The castability of P depends on three factors:

• Sr ∩ Sb = ∅.
• Vr ∩ Vb = ∅. This is equivalent to the condition of Lemma 8.
• Vr lies in one connected component of B \ (V∗

b
∪ P).

Let’s first consider the first condition: Sr ∩ Sb = ∅ if and only if Sb is completely visible from the
red direction. The blue shadow Sb changes combinatorially if and only if the visibility map of P
in ~db changes. This can happen only when a facet becomes parallel to ~db, or when a vertex or
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edge of P passes in front of another edge or vertex. These possibilities are included in cases (i)
and (ii). Similarly, the combinatorial structure of the visibility map of P and the blue shadow in
~dr can change only if a vertex or edge of P passes in front of an edge or vertex of either P or Sb.
Again this is included in case (ii).

Consider now the arrangement of all blue curtains. It can change combinatorially only when
the intersection pattern of two curtains changes. The edges in the tails of the curtains are blue
shadow edges, so any change in their projections leads to a situation as in case (ii) of the lemma.
The only remaining possibility for the intersection pattern of two curtains to change is when the
projection of a vertex of P passes over an edge of P (case (ii) again), or over the projection of the
side edge of a curtain. Since the side edge of a curtain is determined by another vertex of P and
the blue direction ~db, this leads to case (iii).

We have now seen that if none of cases (i), (ii), (iii) happens, the combinatorial structure of
the red and blue shadow and of the projection of the curtains cannot change. Neither can the
combinatorial structure of the arrangement of the blue curtains. It follows that the combinato-
rial structure of V∗

b
cannot change without leading to a configuration as postulated in the lemma.

Without such a change, Vr cannot change from lying in one connected component of B\(V∗

b
∪P).

We can now turn this characterization into an algorithm.

Theorem 12 Given a simple polyhedron with n vertices, we can in time O(n14 log2 n) construct
a set of all possible pairs of directions in which the polyhedron is castable.

Proof. We consider the 4-dimensional parameter space, and construct a set of algebraic surfaces.
These surfaces correspond to the cases listed in the previous lemma.

There are O(n) surfaces for case (i), and O(n2) surfaces for case (iii). For case (ii), we observe
that there are O(n) vertices and edges of P , while there can be O(n2) edges and vertices of the
blue shadow. We create O(n2) surfaces where an object vertex lies in the plane defined by an

object edge and one of the directions ~db, ~dr. We create O(n3) surfaces defined by an object edge,
an object facet, and an object vertex (the set of all direction pairs where the projection of the
vertex along one direction on the facet lies in the projection of the edge along the other direction).
Finally, we make O(n3) surfaces defined by three object edges.

We have now arrived at a set of O(n3) algebraic surfaces in our 4-dimensional configuration
space. All pairs of directions leading to a situation as in the lemma lie on one of the surfaces.
Consequently, it is sufficient to sample one configuration in every cell of the arrangement of the
surfaces.

The arrangement of O(n3) surfaces has complexity O(n12), and so there are at most O(n12)
pairs of directions that we can test using the algorithm from the previous section. Since each cell
in the arrangement takes O(n2 log2 n) time, we conclude that all directions for which there is a
good cast can be computed in O(n14 log2 n) time.

5 Conclusion

We discussed casting with skewed ejection direction or equivalently, the two cast parts are removed
in non-opposite directions. This generalizes casting with opposite cast removal directions and
expands the class of objects that can be made by casting. We presented a necessary and sufficient
geometric characterization of castability with respect to a pair of cast removal directions ~db and
~dr. For a polyhedron with n vertices, we developed an O(n2 log2 n)-time algorithm to test the

castability of the polyhedron with respect to ~db and ~dr. If the test is positive, a cast can be
constructed in the same time bound. We showed that this cast has O(n2) size and this is worst-
case optimal. Based on this testing algorithm, we developed a polynomial-time algorithm to
enumerate all feasible pairs of cast removal directions. It is still open how to compute a cast with
optimal complexity instead of just worst-case optimal complexity.
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