
Random Access to Advice Strings

and Collapsing Results

Jin-Yi Cai ∗ Osamu Watanabe †

Abstract

We propose a model of computation where a Turing machine is given random access

to an advice string. With random access, an advice string of exponential length becomes

meaningful for polynomially bounded complexity classes. We compare the power of com-

plexity classes under this model. It gives a more stringent notion than the usual model of

computation with relativization. Under this model of random access, we prove that there

exist advice strings such that the Polynomial-time Hierarchy PH and Parity Polynomial-

time ⊕P all collapse to P. Our main proof technique uses the decision tree lower bounds for

constant depth circuits [Yao85, Cai86, H̊as86], and the algebraic machinery of Razborov and

Smolensky [Raz87, Smo87].

1 Introduction

In computational complexity theory, we cannot separate between many complexity classes. It is

generally believed that these separation results are very hard to prove. Among the supporting

evidence for such a pessimistic belief, people frequently cite the collapsing results under rela-

tivization, especially for complexity classes defined in non-randomized terms, such as P, NP, Σp
d,

⊕P, PSPACE, etc.

Consider, for example, the most famous P vs. NP conjecture. Baker, Gill and Solovay

[BGS75] showed that we can relativize it in both ways. That is, there exist two oracles A and B

such that PA = NPA (the collapsing) holds and PB 6= NPB (the separation) holds. Intuitively,

for each oracle set X, the relative computation model allowing oracle queries to X provides a

“relativized complexity world” where all computation is the same as our real world except that

one can use some special set of instructions, i.e., queries to the oracle set X. It is said that

most of known proofs can be relativized; that is, they are applicable in such relativized worlds.

Therefore, having the above oracles A and B means that these proof techniques can not resolve

the P vs. NP conjecture. For P vs. NP or PSPACE, perhaps the most straightforward proof of

a relativized collapse is PQBF = NPQBF = PSPACEQBF.

However, we feel that this argument is basd on a model of computation which is not stringent

enough. This is especially true for most of the relativized collapsing results. More precisely, rela-

tivized collapsing results are often proved by allowing stronger usage of an oracle to a simulating

machine than to a simulated machine.

∗Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA. Research supported in

part by NSF grants CCR-0208013 and CCR-0196197. Email: jyc@cs.wisc.edu

†Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro-ku Ookayama, Tokyo

152-8552, Japan. Email: watanabe@is.titech.ac.jp

1

Consider two complexity classes C1 (such as P) and C2 (such as NP or PSPACE). Let {Mi}

be an enumeration representing the class C2, and let M be an arbitrary machine from this

enumeration. A typical proof for a relativized collapsing result is to code the computation of

M for inputs of length n, in the oracle, in such a way that another machine M′ representing C1

can recover the results. In order not to “interfere” with computations of M at length n, these

results are coded at locations beyond what M can access at input of length n, and M′ is allowed

a running time and oracle access greater than that of M. This encoding is sometimes explicitly

carried out, sometimes implicitly done such as with the proof of PQBF = PSPACEQBF. In terms

of the simulation by the PQBF machine M′ simulating the PSPACEQBF computation M on an

input x, M′ will access an oracle location polynomially longer than where the corresponding

access M makes. That is, M′ is given more powerful oracle access than M. One can argue

that this asymmetry is within a polynomial factor, but it nonetheless denies access to certain

segments of the oracle to the simulated machine while affords such access to the simulating

machine. Moreover, if one actually relativizes the proofs of the few separation results such as

the hierarchy theorems, one observes that this asymmetry is not present in the relativized proof.

In order to rectify this problem we propose a model of computation that is more stringent

than the usual relativization computation. This turns out to be equivalent to a generalization

of the notion of advice strings proposed by Karp and Lipton [KL80]. Intuitively, any relativized

result can be regarded as a comparison between complexity classes under a certain nonuniform

setting provided by an (infinite) advice, namely an oracle. Here we generalize the advice string

formulation of Karp and Lipton by allowing random access to the advice string, so that advice

strings longer than polynomial length become meaningful for polynomial time bounded compu-

tations. Then we compare complexity classes, given such nonuniform advice strings. That is, we

compare two machines M1 and M2 (from complexity classes C1 and C2 respectively) that have

random access to the same advice string sn given by an advice function, for their computation

of any input of length n. Both machines will have complexity bounds that allow access to any

bit of the advice string. This way we compare them on the same footing. Note that, since the

advice string has a length accessible to both M1 and M2, we cannot in general “preserve” the

computation of one and let it be read by another, as in the usual relativization model.

Our main results in this paper show that both parity polynomial-time⊕P and the polynomial-

time hierarchy PH collapse to P for some exponential-size advice strings. More precisely, for

P and ⊕P (resp., P and PH), we show some advice function giving an advice string of length

2(1+ε)n for each input length n, with which ⊕P (resp., PH) collapses to P. We use decision tree

lower bounds for constant depth circuits [Yao85, Cai86, H̊as86] and the algebraic machinery of

Razborov and Smolensky [Raz87, Smo87]. It is open whether one can collapse PSPACE and P

under this notion of random access to advice.

Results of this type are mainly of value in delineating the limit of our ability to settle some

outstanding questions on complexity classes. Our model of random access to advice strings

provides a more stringent model than the usual relativization model, and therefore it provides

a more stringent perspective on the “provability” question. The open status of a collapse of

PSPACE to P under random access to advice is particularly interesting in view of a result of

Kozen [Ko78]: If PSPACE 6= P, then there exists a proof of this fact by diagonalization.

2

2 Random Access to Advice Strings

Recall the definition of C/poly by Karp and Lipton [KL80]. We generalize this notion by allowing

the underlying machines to have random access to an advice string. Let us fix any “length

function” ` from N to N. A function s : n 7→ {0, 1}`(n) is called an advice function of size

`(n). Given any advice function s of size `(n), we say a language L is in the class C/s via

random access to advice if there is some machine M representing the class C, such that x ∈ L iff

M(x; s(|x|)) accepts, where we denote the computation M on x with random access to s(|x|) by

M(x; s(|x|)). (The notion of random access is the usual one: A machine M can write down an

index to a bit of s(|x|) on a special tape and then it gets that bit in unit time.) We denote this

language as L(M; s). Clearly, if a time bound being considered is larger than the advice size,

then the random accessibility is not necessary, and this notion is the same as the one by Karp

and Lipton. (In the following, all complexity bounds and length functions are time and space

constructible as appropriate. Furthermore, we assume that log(`(n)) is polynomially bounded,

which is reasonable for comparing with polynomial-time classes even if we allow random access

to an advice string.)

Let s be any advice function. We say collapsing occurs w.r.t. s (write as C1/s ⊆ C2/s)

if for every machine M1 representing C1, there is a machine M2 representing C2, such that

L(M1; s) = L(M2; s). We say two classes are equal w.r.t. s (write as C1/s = C2/s) if both

C1/s ⊆ C2/s and C2/s ⊆ C1/s. On the other hand, we say separation occurs w.r.t. s (write as

C1/s 6⊆ C2/s) if there exists some machine M1 representing C1 such that L(M1; s) 6= L(M2; s)

for any machine M2 representing C2.

Then our main results can be stated as follows.

Theorem 1. For any length bound `(n) ≥ 2(1+δ)n, where δ > 0 is any positive constant, there

exists an advice function s of advice size `(n) such that ⊕P/s = P/s.

Remark. The same result is provable for the relationship between P and Modp class, for any

prime p. Also δ > 0 can be improved. We only need `(n)/2n to be superpolynomial.

Theorem 2. For any length bound `(n) ≥ 2(1+δ)n, where δ > 0 is any positive constant, there

exists an advice function s of advice size `(n) such that PH/s = P/s.

3 Class P vs. Class ⊕P

In this section we consider the relation between P and ⊕P and prove Theorem 1. The proof

techniques will be extended in the next section to prove Theorem 2.

To simplify the presentation we will consider only log(`(n)) = (1 + δ)n. It is easy to extend

the following proof to any `(n) with log(`(n)) ≥ (1 + δ)n.

Proof of Theorem 1. Let M1,M2, . . . be a standard enumeration of all ⊕P machines. Our

goal is to construct an advice function s with s(n) ∈ {0, 1}`(n), with which the computation of

every Mi(x; s(|x|)) can be simulated by some P computation with the common advice s(|x|).

Let us fix any ⊕P machine M and any input length n, and discuss how to design s(n) so that

some P machine can simulate M on {0, 1}n with advice s(n). It would be easy later to “paste”

3

together a single s(n) for all machines to be considered at length n. (Only finitely many need

to be dealt with at any finite length n. We will omit this detail.)

Let m = nO(1) be the maximum number of accesses to the advice string made by M on any

nondeterministic path on any input of length n. We assume that n is sufficiently large.

Let L = 2(1+δ)n. We will consider the advice string s(n) of length L as being indexed by a

binary string of length I = (1 + δ)n.

For any x ∈ {0, 1}n, define Sx to be some subset of {0, 1}I of size ≈ nm. We want

{Sx}x∈{0,1}n to be a family of pair-wise disjoint subsets of {0, 1}I . For example, for s = dlog nme,

we can define

Sx = {xu0I−(n+s) |u ∈ {0, 1}s }.

Each string in
⋃

x∈{0,1}n Sx is the index of a bit in s(n). We assign Boolean variables for these

bits, and denote the set of these Boolean variables as Z. Let M = |Z|; note that M ≤ 2nm2n

� 2I . Let us name the Boolean variables in Z as z1, z2, . . . , zM .

Assign arbitrarily the bit values for all bits in s(n) other than those in Z. Then, for any input

x ∈ {0, 1}n, M(x; s(n)) is completely determined by the values of zi. That is, M(x; s(n)) is a

function on Boolean variables z1, . . . , zM . Furthermore, since M(x; s(n)) is a parity computation

asking at most m queries on each nondeterministic path, we may consider M(x; s(n)) as a

parity (or its negation) of (at most
∑m

i=0 2i
(

M
i

)

many) conjunctions of at most m literals from

z1, . . . , zM . Thus, M(x; s(n)) is expressed by a polynomial fx(z1, . . . , zM) of degree ≤ m with

integer coefficients mod 2. Note that fx(z1, . . . , zM) is multilinear, because we may assume that

each bit is not queried more than once on each nondeterministic path.

Now we would like to assign z1, . . . , zM so that the following system of equations (∗1) holds

(under the mod 2 computation) for {0, 1}n = {x1, . . . , xN} (where N = 2n).

(∗1)















fx1(z1, . . . , zM) = 1 −
∏

zj∈Sx1
zj,

...

fxN (z1, . . . , zM) = 1 −
∏

zj∈SxN
zj.

If this assignment is feasible (i.e., the advice string s(n) is constructed satisfying (∗1)), then for

any x ∈ {0, 1}n, one simply needs to check the membership of elements of Sx; M(x; s(n)) can

then be computed as 1 −
∏

zj∈Sx
zj in polynomial time.

Suppose, for a contradiction, that this is impossible to achieve. Then, since for every 0 or

1 value of z1, . . . , zM , each fx takes a 0 or 1 value, it follows that for every assignment to the

z1, . . . , zM , there exists some x ∈ {0, 1}n such that

fx(z1, . . . , zM) =
∏

zj∈Sx

zj .

Thus, for all 0,1-assignments to z1, . . . , zM , we have

∏

1≤i≤N





∏

zj∈Sxi

zj − fxi(z1, . . . , zM)



 = 0.

4

Then it follows from Fact 1 stated below that modulo the ideal J = (z2
1 − z1, . . . , z

2
M − zM), the

left hand side expression is identical to 0. In other words, we have the identity

∏

1≤i≤N

∏

zj∈Sxi

zj = L(z1, . . . , zM),

in the ring Z2[z1, . . . , zM]/J , where L is a polynomial of degree at most (N − 1)2s + m. On the

other hand, the degree of the lefthand side of the above equality is N2s, which is larger than

(N − 1)2s + m. A contradiction.
�

Fact 1. For any prime p, let F (x1, ..., xn) be a polynomial evaluated to 0 modulo p on all 0,1-

assignments to x1, ..., xn. Then modulo the ideal J = (x2
1 − x1, ..., x

2
n − xn), i.e., in the ring

Zp[x1, ..., xn]/J , F (x1, ..., xn) is identical to 0.

4 Class P vs. Class PH

We now show that there exists an advice function of advice size 2(1+δ)n, such that the class

PH collapses to P with random access to the advice strings given by the advice function. The

modification in the proof from 2(1+δ)n to larger `(n) is obvious. For simplicity of presentation

we will assume `(n) = 2(1+δ)n in what follows. We prove the following result for a fixed level

Σp
d; the construction for the advice string for PH follows since PH is a countable union of classes

Σp
d, d ≥ 0.

Theorem 3. For any constant d ≥ 0, and constant δ > 0, let `(n) = 2(1+δ)n; then there exists

an advice function s of advice size `(n) such that Σp
d/s = P/s.

Before stating our proof in detail, we explain its outline and some background. We begin

by recalling the decision tree version of the Switching Lemma.

Some notions and notations first. For any Boolean function f over variables x1, . . . , xn, a

random restriction ρ is a random function that assigns each xi either 0, 1, or ∗, with probability

Pr[ρ(xi) = ∗] = p (for some specified parameter p) and Pr[ρ(xi) = 0] = Pr[ρ(xi) = 1] = (1−p)/2,

for each i independently. Assigning ∗ means to leave it as a variable. Let f |ρ denote a function

obtained by this random restriction.

The decision tree complexity of a Boolean function f , denoted by DC(f), is the smallest

depth of a Boolean decision tree computing the function. It can be shown easily that if DC(f) ≤

t, then f can be expressed both as an AND of OR’s as well as an OR of AND’s, with bottom fan-

in at most t. Moreover, what is crucial for our argument is the following property: If DC(f) ≤ t,

then f can be expressed as a polynomial on the variables, with integer coefficients and with

degree at most t. In fact this polynomial always evaluates to 0 or 1, for any 0-1 assignments to

its variables.

Superpolynomial lower bounds for constant depth circuits were first proved by Furst, Saxe

and Sipser [FSS81], and by Ajtai [Ajt83]. Exponential lower bounds of the form 2nΩ(1/d)
for

depth d circuits were first proved by Yao [Yao85] in a breakthrough result. Yao’s bound was

further improved by H̊astad [H̊as86] to 2
1
10

n
1

d−1
, and his proof has become the standard proof.

Independently, Yao’s work was improved upon in another direction. Cai [Cai86] investigated

5

whether constant depth circuits of size 2nΩ(1/d)
must err on an asymptotically 50 % of inputs

against parity. To attack this problem, the decision tree point of view was first introduced

in [Cai86]. This approach in terms of inapproximability has been found most fruitful in the

beautiful work of Nisan and Wigderson [Nis91, NW94] on pseudorandom generators.

Adapting H̊astad’s proof to the decision tree model, one can prove the following.

Lemma 1. For any depth d + 1 Boolean circuit C on z1, . . . , zL, with bottom fan-in at most t,

Pr[DC(C |ρ) ≥ t] ≤
size(C)

2t
,

where ρ is a random restriction with the parameter p = Pr[zi = ∗] = 1/(10t)d.

We now explain our construction. Fix any Σp
d machine M and any sufficiently large input

length n. We want to construct s(n), such that the computation M(x; s(n)) can be simulated by

a polynomial-time deterministic machine, for all x of length n. Constructing the advice function

s for the simulation of all Σp
d machines can be done as before for ⊕P and is omitted here.

Thus, from now on, we are concerned with the simulation of M on 2n inputs of length n.

Let m be an integer bounding M’s running time on inputs of length n, where m = O(nk) for

some k ≥ 0. Let I = (1 + δ)n and L = 2I . Let z1, z2, . . . , zL be Boolean variables denoting the

bits in s(n). Let Z denote the set of all Boolean variables z1, . . . , zL. With a slight abuse of

notation we will also let Z denote a set of corresponding indeterminants.

For any input string x ∈ {0, 1}n, consider the computation of M(x; s(n)). The computation

M(x; s(n)) is a function from the Boolean variables z1, . . . , zL to {0, 1}. Furthermore, since M

is a Σp
d machine, by a standard interpretation (see [FSS81]) of the Σp

d query computation, we

may regard M(x; s(n)) as a depth d + 1 circuit on input variables z1, . . . , zL, of size at most

m2m and bottom fan-in at most m.

Our first step is to assign a random restriction ρ to z1, . . . , zL of an appropriate probability

p0 = Pr[zi = ∗]. By Lemma 1, with high probability the circuit is reduced to small depth

decision trees with depth t = 2m. In fact, by choosing p0 appropriately, we can even show that

with high probability, a random restriction converts all circuits for all 2n input strings to depth

t decision trees.

Then these small depth decision trees can be expressed by low degree (i.e., degree 2m)

polynomials with integer coefficients. That is, after the random restriction, each computation

M(x; s(n)) is expressed as a degree 2m polynomial px. We have arrived at a similar situation

to the parity computation. We will use a similar technique to attack this. However the exact

approach in the ⊕P case does not work.

In the ⊕P case the function encoded is essentially the AND function
∧

zj . This will not

survive the random restriction. Instead we will try to encode the parity on a suitable subset, one

for each x. Our encoding is implemented as follows. For each x ∈ {0, 1}n, we define a segment Sx

⊂ {0, 1}I of enough size, roughly speaking, 20m/p0, which is polynomial in n. These segments are

chosen so that the family {Sx}x∈{0,1}n is pair-wise disjoint. As in the proof of previous section,

we would like to use the assignment of variables in Sx to encode the result of M(x; s(n)). Here

notice that the random restriction ρ has already assigned values to some of the variables in Sx.

But since (i) |Sx| = 20m/p0, and (ii) variables remain unassigned with probability p0, we can

6

prove that with high probability, all segments Sx have at least 3m unassigned variables after

the random restriction. We use these unassigned variables for encoding.

Thus, there exists a random restriction satisfying the following.

(a) Each computation M(x; s(n)) is reduced to a decision tree Tx of depth at most 2m.

(b) Each segment Sx has at least 3m unassigned variables, i.e., assigned ∗ by the restriction.

Fix ρ0 to be one such restriction. Denote by Z0 the set of variables in
⋃

x∈{0,1}n Sx that are

assigned ∗ by ρ0, and rename variables so that Z0 = {z1, . . . , zM} and Z−Z0 = {zM+1, . . . , zL}.

The restriction ρ0 may assign ∗ to some variables in Z−Z0, we now assign all such variables

to 0. Then as explained above, the result of each computation of M(x; s(n)) is expressed

as a degree 2m polynomial px(z1, . . . , zM) over the integers Z. For each x, we try to equate

px(z1, . . . , zM) to the parity of Sx, i.e., ⊕zi∈Sxzi. (Note that Sx contains variables not in Z0

= {z1, . . . , zM} whose values are already fixed. By the term ⊕zi∈Sxzi, we mean the parity of

all variables in Sx including such variables.) In other words, we wish to choose an assignment

to z1, . . . , zM so that the following system of equations (∗2) holds for {0, 1}n = {x1, . . . , xN},

where N = 2n.

(∗2)











px1(z1, . . . , zM) = ⊕zj∈Sx1
zj ,

...

pxN (z1, . . . , zM) = ⊕zj∈SxN
zj .

Using a trick of exchanging 0,1 values by 1,−1 values, and reason about dimensions over a finite

field Z3, we can give an argument similar to the one in the previous section, and show that it is

indeed possible to find such an assignment. Then the result follows.

Now we specify the parameters and the conditions explained above, and describe our proof

precisely.

We focus on the simulation of some Σp
d machine M(x; s(n)) on N (= 2n) inputs of length

n for sufficiently large n. Let m = O(nk) be an integer bounding M’s running time on length

n inputs, and let I = (1 + δ)n and L = 2I . We regard the computation of M(x; s(n)) as a

function over Boolean variables z1, . . . , zL, where each zi is the boolean variable for a bit in

s(n). Furthermore, we may consider M(x; s(n)) as a circuit Cx of depth ≤ d + 1, size ≤ m2m,

and bottom fan-in ≤ m.

As explained above, we consider a random restriction to the variables z1, . . . , zL, with p0 =

1/(20m)d being the probability Pr[zi = ∗]. For each x ∈ {0, 1}n, the segment Sx is defined by

Sx = {xu0`−n−n0 : u ∈ {0, 1}n0 }, where n0 = dlog2 20m/p0e = d(d+1) log2 20me. Clearly, any

Sx and Sx′ , for x 6= x′, are disjoint, and |Sx| is of size larger than 20m/p0 but still polynomial

in n.

We want some random restriction ρ, such that it satisfies the following two conditions.

(a) For every x ∈ {0, 1}n, the circuit Cx is reduced to a depth t = 2m decision tree.

(b) For every x ∈ {0, 1}n, the segment Sx has at least 3m unassigned variables.

By using Lemma 1 and Chernoff’s bound (see, e.g., Corollary A.1.14 of [AS00]), it is easy to

show the following claim:

Claim 1. Under our choice of parameters, the probability that a random restriction ρ satisfies

both (a) and (b) is not zero.

7

Hence, there exists some random restriction satisfying both (a) and (b).

Consider one of the restrictions ρ0 satisfying both (a) and (b). We define s(n) based on this

ρ0; that is, we will assign a bit in s(n) to 0 or 1 according to ρ0. We will assign those variable

assigned ∗ by ρ0 later. Let Z∗ be the set of variables assigned ∗ by ρ0. From condition (b) it

follows that each Sx has at least 3m variables in Z∗. For each Sx, we pick lexicographically the

first 3m such variables, and define Z0 to be the set of those variables, over all x. Note that Z0

has exactly 3mN variables because all Sx’s are disjoint. By renaming variables, we assume that

Z0 = {z1, . . . , zM}, where M = 3mN . We assign 0 to all variables in Z∗ − Z0; thus, Z0 is the

set of remaining unassigned variables.

From condition (a), the computation M(x; s(n)) for each x ∈ {0, 1}n is represented as a

depth 2m decision tree Tx on z1, . . . , zM . Then we can express Tx as a low degree polynomial

px in the following way. For the trivial decision tree of depth 0 (where no variable is accessed at

all), the value is a constant 0 or 1. Inductively, suppose in the decision tree T , the first branch

is on the variable zi, and depending on its value, its left subtree is T0 for zi = 0, and its right

subtree is T1 for zi = 1. Then we see immediately that the polynomial p = (1 − zi)p0 + zip1

evaluates to the truth value of T , where p0 and p1 are the polynomials that correspond to the

subtrees T0 and T1 respectively. In this way, we can define the polynomial px computing the

value of Tx. Note here that the degree of p is at most 1 + max{deg p0,deg p1}. In particular, we

have deg px ≤ 2m for each decision tree Tx.

For these polynomials px, x ∈ {0, 1}n, we show below that there exists an 0,1-assignment

to variables in Z0 satisfying (∗2) above. We complete ρ0 by using one of such assignments, and

define s(n) accordingly. Then one can compute the value of M(x; s(n)), for each x ∈ {0, 1}n,

by asking queries on all the bits indexed in Sx and taking the parity of the answers. Since the

size of Sx is polynomially bounded in n, this is a P computation with random access to s(n).

Now the remaining task is to prove that (∗2) has a solution. Let us first transform (∗2) to

a system of equations in Z3. Note that the polynomials px, though defined over the integers

Z, only evaluate to the values 0 or 1 when each zi takes either 0 or 1. This fact is verified

inductively by looking at the above decomposition p = (1 − zi)p0 + zip1. Furthermore, this

property is invariant even if the polynomials are evaluated modulo q, for any prime q. Thus, we

may argue these polynomials under the modulo q computation, for any prime q. In particular,

we consider the polynomials under the modulo 3 computation, i.e., over the finite field Z3.

Then by a linear transformation, we can change the representation of 0 and 1 by +1 and −1

respectively; that is, 0 is represented by +1 and 1 by −1. More specifically, for each polynomial

px, we replace zi by z′i = 1 + zi, and express p′x = 1 + px as polynomials in z′i’s. Note that when

zi = 0 and 1 respectively, z′i = 1 and −1 respectively, and similarly for px and p′x. On the other

hand, the parity is now expressed by simply a product. (In the following we will rewrite zi for

z′i and px for p′x.) Thus, the system of equations (∗2) is transformed into the following system

of equations in Z3.

(∗3)















px1(z1, . . . , zM) =
∏

zj∈Sx1
zj = αx1 ·

∏

zj∈Z0∩Sx1
zj

...

pxN (z1, . . . , zM) =
∏

zj∈SxN
zj = αxN ·

∏

zj∈Z0∩SxN
zj .

Where each αx ∈ {−1,+1} denotes the product of all determinate variables zi ∈ Sx − Z0.

8

We claim that there is at least one assignment to ±1 for all zi ∈ Z0 satisfying (∗3). Sup-

pose, for a contradiction, that there is no such assignment. Then, since for every ±1 values of

z1, . . . , zM , each px takes a ±1 value, it follows that for every +1,−1-assignment (a1, . . . , aM)

to the zi’s, there must be at least one x such that

px(a1, . . . , aM) = − αx ·
∏

zi∈Z0∩Sx

ai.

Thus, we have

∏

1≤i≤N



 αxi

∏

zj∈Z0∩Sxi

zj + pxi(z1, . . . , zM)



 = 0,

for all +1,−1-assignments to z1, . . . , zM . Then it follows that the lefthand side expression is

identical to 0 modulo the ideal I = (z2 − 1 : z ∈ Z0). In other words, we have the identity

∏

1≤i≤N

∏

zj∈Z0∩Sxi

zj = L(z1, . . . , zM)

in the ring Z3[z1, . . . , zM]/I, where L is a multilinear polynomial of degree at most 3m(N −1)+

2m. On the other hand, the lefthand side is multilinear and its degree is 3mN , which is larger

than 3m(N − 1) + 2m. A contradiction.

This completes the proof of Theorem 3, and hence Theorem 2. With some more work one

can show

Theorem 4. For any prime p, and for any length bound `(n) ≥ 2(1+δ)n, where δ > 0 is any

positive constant, there exists an advice function s of advice size `(n) such that ModPH
p /s = P/s.

5 Relations to the Conventional Relativized Results

Our model of random access to advice can be viewed as a restricted type of relativization. Here

we explain the position of our results and proofs in the context of conventional relativization

results.

First it should be noted that most relativized separation results are proved in a stringent

way; that is, the proofs of such results can be modified easily for proving the same separation

w.r.t. some advice function of some exponential (or super-polynomial) advice size. Most typically

we can prove the following relation.

Proposition 5. For any super-polynomial length bound `(n), there exists an advice function s

of advice size `(n) such that NP/s 6⊆ P/s.

Since our nonuniform notion is a generalization of the standard nonuniform model by Karp

and Lipton, there are immediate implications for our nonuniform comparison from some of

the results for the standard nonuniform model. For example, it has been known [Kan82] that

PH 6⊆ P/p(n) for any fixed polynomial p(n). Since PH ⊆ PH/s for any advice function s, the

following fact is immediate from this result. This fact justifies the consideration of at least

super-polynomial advice size for obtaining a nonuniform collapsing result for P and PH.

9

Proposition 6. For any polynomially bounded advice `(n), there is no advice function s of

advice size `(n) for which PH/s ⊆ P/s.

While most relativized collapsing results are proved in a non stringent way, there are some

relativized collapsing proofs in the literature that also yield nonuniform collapsing results in our

context. For example, the following result is provable by a well-known technique.

Proposition 7. For any length bound `(n) ≥ 2(2+δ)n, for any positive constant δ > 0, there

exists an advice function s of advice size `(n) such that NP/s ⊆ (P/poly)/s.

We omit the proof here.

A similar argument in fact proves NEXP ⊆ P/poly in the standard relativization model

[He86]. This is because for any given NEXP machine M running in time 2p(n), we can consider

query strings of length 3p(n); since 2n+p(n) < 22p(n), we still have enough room in {0, 1}3p(n) to

encode the results of M on all length n inputs. Some circuit of size cp(n) for some sufficiently

large c > 0 can retrieve this encoded information. On the other hand, this argument does

not work in our context because the advice size cannot be bounded even exponentially. It

should be also remarked here that a higher collapse is not immediate from a lower one in our

context; for example, the relatively simple proof of NP/s ⊆ (P/poly)/s for some advice s of

some exponential advice size bound does not give a proof of PH/s′ ⊆ (P/poly)/s′ for some s′ of

some exponential advice size bound. This latter result is indeed true, first proved by the authors

using complicated arguments based on Nisan-Wigderson pseudorandom generators. The results

of the present paper give a simplified proof of a stronger result.

We believe that this model of random access to advice strings is an interesting model, which

poses challenging problems. It is sufficiently different from the conventional relativization model

for specific problems. Previous known proofs of relativized collapsing results do not, in general,

imply the corresponding collapsing results in this model of random access to advice. Claims to

the contrary should be first verified against the open problem of PSPACE vs. P.

References

[Ajt83] M. Ajtai, Σ1
1-formulae on finite structures, Ann. Pure Applied Logic 24, 1–48, 1983.

[AS00] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 2000.

[BGS75] T. Baker, J. Gill, and R. Solovay, Relativizatons of the P =? NP question, SIAM J.

Comput. 4(4), 431–442, 1975.

[BDG89] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I & II, Springer, 1989 and

1990.

[Cai86] J-Y. Cai, With probability one, a random oracle separates PSPACE from the

polynomial-time hierarchy, in Proc. 18th ACM Sympos. on Theory of Comput., 21–29,

1986. (The final version appeared in J. Comp. Syst. Sci. 38(1), 68–85, 1989.)

[DK00] D. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons, Inc.,

2000.

10

[FSS81] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy, in

Proc. 22nd IEEE Symposium on Foundations of Computer Science (FOCS’81), IEEE,

260–270, 1981.

[H̊as86] J. H̊astad, Almost optimal lower bounds for small depth circuits, in Proc. 18th ACM

Symposium on Theory of Computing (STOC’86), ACM, 6–20, 1986.

[He86] H. Heller, On relativized exponential and probabilistic complexity classes, Information

and Control 71(3), 231–243, 1986.

[Kan82] R. Kannan, Circuit-size lower bounds and non-reducibility to sparse sets, Information

and Control 55, 40–56, 1982.

[KL80] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity

classes, in Proc. 12th ACM Symposium on Theory of Computing (STOC’80), ACM,

302–309, 1980. (An extended version appeared as: Turing machines that take advice,

in L’Enseignement Mathématique (2nd series) 28, 191–209, 1982.)

[Ko78] D. Kozen, Indexing of subrecursive classes, in Proc. 10th ACM Symposium on The-

ory of Computing (STOC’78), ACM, 287–295, 1978. (The final version appeared in

Theoretical Computer Science 11, 277–301, 1980.)

[Nis91] N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11(1), 63–70,

1991.

[NW94] N. Nisan and A. Wigderson, Hardness vs randomness, J. Comput. Syst. Sci. 49, 149–

167, 1994.

[Raz87] A. Razborov, Lower bounds on the size of bounded depth networks over a complete

basis with logical addition, Mathematical Notes of the Academy of Sciences of the

USSR 41, 333–338, 1987.

[Smo87] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit

complexity, in Proc. 19th ACM Symposium on Theory of Computing (STOC’87), ACM,

77-82, 1987.

[Yao85] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. 26th IEEE

Symposium on Foundations of Computer Science (FOCS’85), IEEE, 1-10, 1985.

11

